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Abstract

This paper describes the application of fine-
tuning pre-trained models for SemEval-2024
Task 10: Emotion Discovery and Reasoning
its Flip in Conversation (EDiReF), which
requires the prediction of emotions for each
utterance in a conversation and the identifi-
cation of sentences where an emotional flip
occurs. This model is built on the DeBERTa
transformer model and enhanced for emotion
detection and flip reasoning in conversations.
It employs specific separators for utterance
processing and utilizes specific padding
to handle variable-length inputs. Methods
such as R-drop, back translation, and focal
loss are also employed in the training of
my model. The model achieved specific
results on the competition’s official leader-
board. The code of this paper is available at
https://github.com/jiaowoobjiuhao/SemEval-
2024-task10.

1 Introduction

Navigating the complexities of emotional dynam-
ics within conversations presents a formidable
challenge in natural language processing (NLP).
Human interactions are characterized by rapid
emotional shifts, influenced by context and sub-
tle linguistic nuances, requiring sophisticated mod-
els for accurate capture and interpretation. Thus,
understanding and precisely identifying emotions,
especially within conversations marked by emo-
tional transitions, is a significant and challenging
endeavor in NLP research.

The SemEval-2024 competition introduces the
Emotion Discovery and Reasoning its Flip in Con-
versations (EDiReF) task (Kumar et al., 2024), di-
vided into three subtasks designed to explore the
nuanced landscape of emotional dynamics within
dialogues:

• Subtask 1: Identify and classify the emo-
tional states expressed in each utterance

within a conversation (Kumar et al., 2023a).
As shown in Table 1, the emotion of each
utterance is identified through the first two
columns.

• Subtask 2: Identify specific utterances that
mark an emotional transition within Hindi-
English code-mixed dialogues (Kumar et al.,
2022, 2023b). As shown in Table 1, the trig-
gers of emotions are identified through the
first three columns.

• Subtask 3: Identify specific utterances that
mark an emotional transition within English
conversations (Kumar et al., 2022, 2023b).
The first three columns in Table 1 identify
emotional reversal triggers.

In the previous sentiment analysis work, vari-
ous hand-crafted features and sentiment lexicons
were utilized to construct solution systems. These
systems were developed by integrating traditional
methods such as Naive Bayes, Support Vector Ma-
chines (SVM) (Mohammad et al., 2013), and De-
cision Trees (Blake, 2007). Following the ad-
vent of deep learning, Convolutional Neural Net-
works (CNNs) (Kim, 2014), based on Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997)architectures, were employed for sen-
tence classification tasks. Additionally, GloVe
(Pennington et al., 2014) was utilized for learning
sentence features, and Bidirectional Long Short-
Term Memory (Bi-LSTM) (Kong et al., 2020;
Zhang et al., 2018) models were applied to sen-
tence classification to enhance performance. How-
ever, these methods encountered challenges in ef-
fectively capturing the contextual information of
longer texts. With the progression toward larger
models, BERT-based large-scale pre-training mod-
els marked a significant breakthrough in sentiment
analysis (Zheng et al., 2022)

This study proposes a deep learning sys-
tem for Task 10 in SemEval-2024. We use a
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Speaker Utterance Emotion Trigger
Sp1 I had an awful day today! Sad 0
Sp2 Oh no! What happened? Sad 0
Sp1 Somebody ate my sandwich! Sad 0
Sp2 I can make you a new one right now! Joy 1
Sp1 That would be great! Thanks! Joy 0

Table 1: Examples of EDiReF

decoding-enhanced bert with disentangled atten-
tion(DeBERTa) (He et al., 2020)sequence classi-
fication model as the base model. Our enhance-
ment to the DeBERTa model introduces a pivotal
integration of specialized mechanisms for process-
ing [SEP] tokens and handling label padding with
-1, along with the innovative incorporation of a
KL divergence (Wu et al., 2021) loss function,
known as R-drop. This strategic amalgamation en-
sures that each utterance within a conversation is
precisely mapped to its corresponding emotional
state, facilitating a more accurate representation of
emotional dynamics. Introducing R-drop is crit-
ical in preventing overfitting by enforcing consis-
tency between the model’s outputs for various data
sub-samples, thus enhancing the model’s general-
ization ability across different conversational con-
texts. The contributions of this study are as fol-
lows.

• We introduce a foundational model utilizing
a pre-trained Deberta sequence classification
model for the label sequence classification is-
sue.

• Incorporation of KL Divergence Loss (R-
drop) for Overfitting Prevention and adoption
of focal loss to address data imbalance issues.

• The model employs [SEP] tokens and -1
padding to align utterances with their corre-
sponding labels and grasp the context within
conversations.

The remainder of this paper is organized as fol-
lows: Section 2 provides an overview of our pro-
posed model and system. Section 3 conducted the
experiments to analyze the effectiveness of the pro-
posed method. The paper concludes with a sum-
mary and reflections in Section 4.

2 System Description

This section delves into the architecture of the pro-
posed model, detailing its essential components:

Figure 1: Multi-emotion label sequence classification
model

the tokenizer, the pre-trained Deberta model, and
the implementation of Regularized Dropout and
Focal loss for Neural Networks. Specifically, the
model tailored for Task 1, which addresses the
multi-label sequence classification problem, is il-
lustrated in Figure 1. Meanwhile, the models de-
signed for Tasks 2 and 3, focusing on binary se-
quence classification issues, are depicted in Figure
2.

2.1 Tokenizer

Transforming raw text into a machine-readable for-
mat is a preliminary step for many NLP tasks.
To achieve this, a tokenizer is utilized, segment-
ing the text into discrete elements and encoding
them uniquely. In our model, the DeBERTa tok-
enizer, mainly designed for handling long texts in
sequence classification challenges, is employed to
process the text for NLP tasks. Input texts are seg-
mented to accommodate the extensive length of di-
alogues in subtasks 1 and 2 using a 2048 token cut-
off, ensuring comprehensive coverage of conversa-
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Figure 2: Binary label sequence classification model

tions without truncating critical emotional context
in later utterances. For subtask 3, a 1024 token
limit is applied, optimizing for shorter textual in-
puts. The final output X of the tokenizer is denoted
as:

X = [CLS] a1···an [SEP ] b1···bm [SEP ]···z1···zp [SEP ]
(1)

where n, m, and p denote the lengths of dis-
tinct utterances within the dialogue. With [CLS]
marking the start and [SEP] serving as a delim-
iter between utterances, it ensures the model rec-
ognizes dialogue flow. For subtasks 1 and 2,
sequences shorter than 2048 tokens are padded
with zeros, and longer ones are truncated to main-
tain this limit, optimizing for more extended dia-
logues. Conversely, subtask 3 employs a 1024 to-
ken threshold, adjusting for its specific data struc-
ture and requirements.

2.2 DeBERTa Model

DeBERTa enhances BERT’s (Devlin et al., 2019)
architecture by introducing disentangled attention
and an enhanced mask decoder, making it highly
suitable for complex dialogue tasks requiring a de-
tailed understanding of context and word positions.
Like BERT, DeBERTa comprises two core compo-
nents: an Embedding block for initial word vector
representation and a Transformer Encoder block
for deep contextual processing. Additionally, De-
BERTa introduces a third major component, the
Enhanced Mask Decoder (EMD).

Following the tokenizer’s segmentation of input

texts and incorporation of special tokens ([CLS]
and [SEP]), these tokens are embedded, captur-
ing the nuances of words as vectors that sig-
nify their meanings and relationships. The Trans-
former Encoder further processes these vectors
by employing disentangled attention to analyze
dialogues’ contextual relationships and depth in-
tricately. The EMD, leveraging content and po-
sitional information, refines the model’s ability
to predict and understand masked language ele-
ments, thoroughly comprehending dialogue intri-
cacies. Consequently, the final layer’s hidden state
representation, denoted as HL, is passed to the out-
put layer, where L represents the number of layers
in the Transformer.

2.3 Output Layer

Subtask1. This subtask involves multi-sequence
sentiment classification, with the model designed
to recognize [sep] and label padding of -1. This
setup allows for processing the DeBERTa model’s
sequence output through a custom classifier, gen-
erating logits for each utterance to predict labels,
detailed in section 3. The layer initially maps the
data dimensions from L to 512 dimensions, then
applies the ReLU activation function and dropout
to refine and classify the data further, followed
by mapping from 512 to 256 dimensions, adding
ReLU and Dropout again, and finally mapping to
the label dimension (8 dimensions) to obtain log-
its. After obtaining the classification probability
distribution P , calculate the loss with the real clas-
sification label y and learn the model weight. The
calculation formula of the probability distribution
is as follows.

P = softmax (W0H0 + b0) (2)

where W0 is the weight matrix of the final linear
layer, with dimensions of R8×256, H0 is the fea-
ture vector input to this linear layer, with a dimen-
sionality of 256; and b0 is the bias term, with a
dimensionality of 8.

Subtask2&subtask3. These two subtasks involve
binary sequence classification, where the main
difference in the output layer from subtask 1 is
the transformation of the model’s output logits
into probabilistic classifications through a sigmoid
layer. The calculation formula of the probability
distribution is as follows.

P = sigmoid (W1H1 + b1) (3)

779



where W1 is the weight matrix of the final linear
layer, with dimensions of R1×256, H1 is the fea-
ture vector input to this linear layer, with a dimen-
sionality of 256, and b1 is the bias term, with a
dimensionality of 8.

2.4 Methods
Regularized Dropout. Due to the existence of
dropout, the same model with identical inputs will
produce two distinct distributions, effectively treat-
ing them as two different network models. De-
noted as Pθ (y|x) and P

′
θ (y|x), these distributions

represent the output probabilities of the model
under dropout conditions. The primary objective
of R-Drop is to minimize the KL Divergence be-
tween these two distributions throughout the train-
ing process. Given the asymmetry of KL diver-
gence, a globally symmetric version is indirectly
employed by interchanging the positions of these
distributions, a concept known as bidirectional KL
divergence. Furthermore, the model is trained on
both distributions’ negative log-likelihood (NLL)
loss terms. Given (xi, yi) as training set input ,The
final loss is as follows:

Li
KL = α

[
DKL

(
Pθ(yi|xi)||P

′
θ(yi|xi)

)

+DKL

(
P

′
θ(yi|xi)||Pθ(yi|xi)

)]

Li
NLL = − logPθ(yi|xi)− logP ′

θ(yi|xi) (4)

Li
R−drop = LKL + LNLL

Focal Loss. Focal Loss (Lin et al., 2017) is uti-
lized in our model as the primary loss function,
specifically designed to mitigate the impact of
class imbalance by dynamically adjusting the im-
portance of each class and the difficulty of each
sample. Two parameters α and γ are introduced to
modulate each class’s loss contribution and focus
more on challenging, misclassified samples rather
than those easily classified. Pt represents the prob-
ability of class t output by softmax or sigmoid
function and αt is a training parameter. The for-
mula is listed as follows.

FL (Pt) = −αt(1− Pt)
γ log (Pt) (5)

3 Experimental Results

3.1 Datasets
The training sets for these three subtasks are de-
rived from dialogues in various scenarios within
TV dramas. In subtask 1, 343 training sets are pro-
vided, including four columns: episode, speakers,

emotions, and utterances, with eight types of emo-
tions contained within the emotions column. For
subtasks 2 and 3, 4893 and 4000 training sets are
provided, each with an additional column named
triggers compared to subtask 1.

3.2 Evaluation Metrics
The evaluation tools employed for these three sub-
tasks are Precision, Recall, and Micro-F1, with
their formulas categorized as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN
(6)

F1 =
2× Precision×Recall

Precision+Recall

3.3 Implementation Details

Training Set Preprocessing. To align each ut-
terance with its label throughout an entire dia-
logue and to learn the relationships within the di-
alogue, each dialogue is separated by [sep]. The
label data are filled with -1 to match the maxi-
mum number of utterances in the training and val-
idation sets, and a mask is incorporated into the
model. This approach ensures that labels marked
as -1 are excluded from loss calculation, allowing
the model to handle dialogues of varying lengths.
Specifically, the maximum number of utterances
for subtasks 1 and 2 is 106, while for subtask
3, it is 24. The labels for subtask 1 are emo-
tions, with eight types: anger, contempt, disgust,
fear, joy, neutral, sadness, and surprise. These are
mapped to data values 0-7, facilitating correct pro-
cessing by the model. For subtasks 2 and 3, ini-
tially in string format as 0 and 1, the label data
are converted to floating-point numbers 0.0 and
1.0. Given the limited training dataset for sub-
task 1, data cleaning and normalization are first
performed using ekphrasis, which improves the
model’s learning from dialogues. Text augmen-
tation is then conducted through back-translation
(Edunov et al., 2018) and synonym replacement;
Hindi dialogues are translated into English and
then back, while the process is reversed for En-
glish dialogues. Synonym replacement involves
exchanging words with the same meaning for dif-
ferent expressions. Finally, subtask 1 is expanded
to 1029 training sets.

Imbalanced Data Handling. Due to the predomi-
nant proportion of neutral and joy labels in subtask
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contempt 542
disgust 127

fear 514
joy 1596

neutral 3909
sadness 558
surprise 441

Table 2: Occurrences of Emotional Labels in Subtask

1, as illustrated by the quantities in Table 2, as well
as the prevalence of the 0.0 label in subtasks 2 and
3, focal loss and oversampling methods (Chawla
et al., 2002) have been utilized. This approach
enables the model to learn more effectively from
samples that appear less frequently, thereby en-
hancing the model’s performance.

Prediction Challenges. When tokenizing text in-
puts, lengths of 2048 were selected for truncation
in subtasks 1 and 2, while 1024 was chosen for
subtask 3. However, during the prediction phase
for subtask 2, the number of labels predicted fell
short of the expected count. This shortfall could be
attributed to dialogues in the test set that exceed
the maximum length of 2048. The constraints
posed by GPU capabilities also resulted in our
model’s inability to fully perform the prediction
task for subtask 2. We hope to try using Long-
former (Beltagy et al., 2020) to address the issue
of long dialogues in the future.

Model Comparison. For all tasks, bert-base-
cased, bert-large-cased, deberta-
base, and debertav2-xlarge were
compared. When employing the debertav2-
xlarge model, the AdaLoRA (Zhang et al.,
2023) model was used for fine-tuning to prevent
exceeding the GPU memory limits.

Optimizer and Loss Parameter Configuration.
The AdamW (Loshchilov and Hutter, 2017) opti-
mization was employed to train the model across
all subtasks, with a batch size of 1. To achieve the
expected results, we experimented with different
learning rates and epochs to observe their impact
on the F1 score for Subtask 1 using the deberta-
base model. Figures 3 and 4 are presented below.
For subtask 1, the learning rate for AdamW was
set at 5e-6, while for subtasks 2 and 3, it was estab-
lished at 5e-5. Focal loss parameters for subtask 1
were defined as alpha=0.1 and gamma=0.3, while
for subtasks 2 and 3, the parameters were set to

Figure 3: The impact of different learning rates on the
F1 score for Subtask 1

Figure 4: The impact of different learning rates on the
F1 score for Subtask 1

alpha=1 and gamma=5.

3.4 Results and Analysis

Subtask1. Validation set results for different mod-
els for the multi-label sequence classification task
are presented in Table 4. Performance increases
from the bert to the DeBERTa phase, yet a signifi-
cant decline occurs at the debertav2-xlarge
model phase. This decline may be attributed to
the large parameter size of the debertav2-
xlarge model and the small dataset size, mak-
ing it challenging for the model to learn features
from a small dataset. The overall low scores for
the model could be due to the approach of pre-
dicting the entire dialogue segment and calculat-
ing loss against actual values rather than calculat-
ing loss for each utterance individually. This ap-
proach might have contributed to the suboptimal
performance of our model. Another potential rea-
son could be the selection of 2048 as the trunca-
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Speaker Utterance Predicted label True label
maya indu tumne vah mere earplugs dekhe hain neutral neutral
indravardhan earplugs kyon anger surprise
maya <time>baj rahe hain na madhubhai ki

bhatiji ka sone ka time ho gaya hai
neutral neutral

indravardhan are baap re yyane announcement shuru
ho jayegi

anger fear

dvd player train sound anger neutral
maya a <elongated> anger fear

Table 3: Model’s prediction results on the test set for Subtask 1

Model
Dev set

P R F1
DeBERTa-base 0.39 0.39 0.39

DeBERTaV2-xlarge 0.18 0.18 0.18
Bert-base 0.28 0.28 0.28
Bert-large 0.31 0.31 0.31

Table 4: Validation set results for different models for
Subtask 1

tion value. Although this ensures that a few longer
dialogue texts are fully captured, it may hinder
the model’s ability to learn information from long-
distance texts for most shorter dialogues, leading
to poor learning outcomes. There is a keen interest
in attempting to segment longer texts in the future
to mitigate the adverse effects on learning caused
by long texts.

As indicated, the model deberta-base out-
performs others on the validation set. Subsequent
experiments will explore the impact of different
methods on the model’s performance based on
deberta-base. The results are presented in Ta-
ble 5, which reveals that the baseline model, not
utilizing focal loss or r-drop, and instead using
CrossEntropyLoss as the loss function, achieves
an F1 score of only 0.25. Introducing either fo-
cal loss or r-drop results in improved scores, reach-
ing 0.36 and 0.35, respectively. Combining these
two methods and applying them to the deberta-
base model on the validation set increases the
F1 score to 0.39, outperforming the previous three
configurations. The experiments demonstrate that
both rdrop and focal loss contribute to enhance-
ments in model performance.

The model deberta-base-focalloss-
rdrop was employed to make predictions on
the test set, with the results presented in Table
7, which indicates that the predictions for shorter

Model
Dev set

P R F1
DeBERTa 0.25 0.25 0.25

DeBERTa-focalloss 0.36 0.36 0.36
DeBERTa-rdrop 0.35 0.35 0.35

DeBERTa-focalloss-
rdrop

0.39 0.39 0.39

Table 5: Validation set results for different methods for
Subtask 1

Model
Dev set
P R F1

DeBERTaV2-xlarge 0.90 0.90 0.90

Table 6: Validation Set Results for Subtask 2

sentences are not very accurate, which may be
due to the model’s insufficient learning of brief
phrases. Another reason could be that the pre-
trained model, deberta-base, was primarily
trained in English, resulting in inadequate learning
for languages like Hindi. Applying a multilingual
model might yield better results, and further exper-
iments are hoped to be conducted.

Subtask2. Validation Set Results for the Binary
Label Sequence Task are shown in Table 6.When
the debertav2-xlarge model was attempted
for prediction, 2048 was selected as the truncation
length for tokenizing the test set dialogues. It was
found that the number of predicted labels did not
meet the expected count, possibly due to dialogues
exceeding the length of 2048, leading to this short-
fall. Given the GPU constraints, our model could
not effectively predict the test set.

Subtask3. Validation Set Results are presented in
Table 8.It was observed that the values of preci-
sion and recall are identical across all tasks, which
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Speaker Utterance Emotion Predicted trigger True trigger
Mark why do all your coffee mugs have

numbers on the bottom
surprise 0.0 0.0

Rachel oh. that is so Monica can keep track.
That way if one of them is missing, she
can be like, where is number <number>?!
<repeated>

anger 0.0 0.0

Rachel y ’ know what ? neutral 0.0 0.0

Table 7: Model’s prediction results on the test set for Subtask 3

Model
Dev set
P R F1

DeBERTa-base 0.82 0.82 0.82
DeBERTaV2-xlarge 0.82 0.82 0.82
Bert-base 0.82 0.82 0.82
Bert-large 0.82 0.82 0.82

Table 8: Validation set results for different models for
Subtask 3

may be attributed to using micro-F1 as the evalu-
ation metric and calculating loss based on entire
dialogue segments rather than extracting individ-
ual utterances. This approach resulted in identical
calculated values. The prevalence of 0.0 labels in
every dialogue segment possibly made it challeng-
ing for the model to learn and perform well on the
test set. The aspiration is to learn more practical
models in the future to address this issue. The re-
sults obtained from predicting the test set using the
debertav2-xlarge model are shown in Table
7, which shows that the model performs well in
identifying non-emotional triggers. Based on my
overall prediction results, the model’s ability to
predict triggers is unsatisfactory, which is an area
I should aim to improve in the future.

4 Conclusions

This paper proposes a deep learning model for sen-
tence sequence classification tasks, utilizing the
DeBERTa sentence sequence classification model
as the foundation. Achievements have been made
in the final submission for SemEval-2024 Task10.
However, there remains significant room for im-
provement in both the model and its parameters.
Therefore, in future studies, enhancements will be
made to the model to achieve better results.
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