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Abstract

Recent breakthroughs in scale have enabled
the emergence of powerful generative language
models, and the ability to fine-tune these mod-
els on various tasks by casting them into
prompts or instructions. In this landscape, the
problem of Unsupervised Domain Adaptation
(UDA), or the problem of leveraging knowl-
edge from a labeled source domain to an un-
labeled target domain, has been left behind,
with recent UDA methods still addressing dis-
criminative classification. In particular, two
popular UDA approaches, involving Continued
Pre-Training (CPT) and learning domain invari-
ant representations, have been under-explored
in the generative setting, signaling a gap. In this
work, we evaluate the utility of CPT for gener-
ative UDA. We first perform an empirical eval-
uation to measure the trade-offs between CPT
and strong methods promoting domain invari-
ance. We further evaluate how well the ben-
efits of CPT extend to different architectures,
tuning methods and data regimes. We then
motivate the use of CPT by studying to what
degree it benefits classification performance
on the target domain. Finally, we attempt to
understand the mechanism behind which CPT
improves classification performance on the un-
labeled target domain. Our findings suggest
that the model implicitly learns the downstream
task while predicting masked words informa-
tive to that task. Our work connects the body of
UDA research with that of instruction tuning,
enabling an initial step towards a wider appli-
cability of modern language models. Our code
is available at https://github.com/Uppaal/
cpt-generative-uda.

1 Introduction

Recent advancements in the pre-training of lan-
guage models have enabled the widespread use
of powerful generative models, which can be
leveraged across multiple domains with no train-
ing (Brown et al., 2020; Scao et al., 2022; Touvron

et al., 2023, inter alia). Despite these advance-
ments, these autoregressive models are still fragile
under certain kinds of data distribution shifts, mak-
ing their applications across these domains chal-
lenging (Ribeiro et al., 2020; Bajaj et al., 2021;
Chuang et al., 2023; Uppaal et al., 2024, inter alia).
This is addressed, in part, by the concept of instruc-
tion tuning with templates (Zhang et al., 2023; Sanh
et al., 2022; Ouyang et al., 2022; Wang et al., 2022;
Wei et al., 2022), enabling the learning of new tasks
without any randomly initialized parameters.

The problem of unsupervised domain adapta-
tion (UDA) leverages learned knowledge from a
labeled source domain to an unlabeled target do-
main (Pan and Yang, 2010; Ganin and Lempitsky,
2015; Long et al., 2015, inter alia). It is useful for
adaptation to unlabeled domains with high labeling
costs, where supervised instruction tuning does not
suffice. Despite the pervasive need for models to
generalize to such domains, recent UDA methods
still address discriminative classification, barring
the application of these approaches to recent gener-
ative models. In particular, Continued Pre-Training
and Domain Invariance-based methods, two widely
popular classes of UDA approaches (Ramponi and
Plank, 2020), are completely unexplored for UDA
in the generative setting.

The Continued Pre-Training (CPT) approach in-
volves extended pre-training on a domain or task,
followed by supervised training on the downstream
task (Gururangan et al., 2020). This approach
has been widely used for adaptation to labeled do-
mains (Gao et al., 2021; Kim et al., 2021; Hung
et al., 2023, inter alia), and in the UDA setup for un-
labeled domains (Han and Eisenstein, 2019; Zhang
et al., 2021b; Karouzos et al., 2021; Pfeiffer et al.,
2020; Parović et al., 2023). Invariance-based ap-
proaches attempt to learn representations that are
invariant across domains (Tzeng et al., 2014; Ganin
et al., 2016; Wu and Shi, 2022; Guo et al., 2022),
with the notion that when the learned representa-
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tions from both domains cannot be distinguished
by a classifier and the classifier performs well on
the source domain, it will also exhibit strong per-
formance on the target domain. These two classes
of methods introduce a trade-off: invariance-based
methods suffer from instability issues (Han and
Eisenstein, 2019; Kashyap et al., 2021), while con-
tinued pre-training requires a larger computational
budget. But how would this trade-off extrapolate
to the generative setting? For example, invariance-
based methods are well motivated in discriminative
tasks, where there is a clear decision boundary;
however, the same does not hold for generative
tasks.

To address these gaps, we introduce the setting of
Generative UDA, where an autoregressive model
is trained to leverage knowledge from a labeled
source domain to an unlabeled target domain, us-
ing only next word prediction as its objective. We
formalize the use of CPT for this setting in Sec-
tion 2, and then attempt to explore and understand
the behaviour of CPT for Generative UDA. We
begin by performing an empirical analysis on 40
real-world domain pairs to explore the tradeoff be-
tween continued pre-training and invariance-based
approaches, and find vanilla CPT to be competitive
with and significantly more stable than a state of
the art invariance-based approach (Section 3). We
then stress test CPT, by applying it across varying
model architectures and scales, tuning approaches
and data regimes. We find that CPT is robust
across these settings, unlike our invariance-based
approach (Section 4).

With recent language models being trained
across vast corpora which may include domains
similar to the target domain, the requirement for
continued pre-training may be raised to question.
In Section 5, we show that continued pre-training
is indeed essential for strong downstream perfor-
mance on the target domain, and this performance
rapidly degrades with limited target domain ex-
posure. Finally, we attempt to shed light on how
masking plays a role in improving classification ac-
curacy on the unlabeled target domain in Section 6.
We find that the model may implicitly learn the
downstream task as it predicts masked words that
are informative to the downstream task.

Our work attempts to connect the body of UDA
research with recent trends in language modeling,
by providing a set of insights into the behaviour
of the popular class of continued pre-training ap-

proaches, in the Generative UDA setting. We hope
this enables an initial step towards a wider applica-
bility of modern language models.

2 Continued Pre-Training for Generative
UDA

2.1 Preliminaries: The UDA Problem
We consider a text classification task, where X
is the input space of all text sentences and Y =
{1, ...K} is the label space. In the UDA prob-
lem, we have access to a source labeled dataset
Dsrc = {(xi, yi)}Ni=1 consisting of samples from
a joint distribution Psrc, and a target unlabeled
dataset Dtgt = {xj}Mj=1 sampling from a target
input distribution PX

tgt. We further denote PX
src

as the marginal distribution of Psrc on X , where
PX

src ̸= PX
tgt. The goal of UDA is to learn a func-

tion f : X → Y that minimizes the error rate
Ex∼PX

tgt
1[f(x) ̸= y].

2.2 CPT for UDA as a Sequence of Prompt
Based Tasks

We now formalize the extension of continued pre-
training to the setting of generative UDA. We use
the traditional two-phase training pipeline from Gu-
rurangan et al. (2020)1. The first phase uses tem-
plates to cast the source and target domain se-
quences into an autoregressive pre-training task.2

The second phase applies supervised instruction-
tuning of the model on source-labeled data.

Task 1: Autoregressive Continued Pre-training
We reuse the input sequences from the source-
labeled dataset Dsrc as the source-unlabeled dataset,
denoted as DX

src. Next, similar to Raffel et al.
(2020); Song et al. (2019), for an unlabeled se-
quence x ∈ DX

src and Dsrc, we use a prompt tem-
plate to convert the sequence x to an input-output
sequence pair, i.e., M(x) = (x̃, ỹ). For masked
language modeling (MLM), an instruction is pre-
pended to a randomly masked sequence x to cre-
ate x̃. The output sequence ỹ is a concatenation
of masked words from x. For example, given
x =“The movie was so cool! Two hours of fun.”,
we construct x̃ =“Fill in the blanks: "The _ cool!

1While we use the two-phase multi-task training pipeline
(sequential) in our main experiments, in Appendix I, we show
that an equivalent single-phase multi-task training pipeline
(joint) results in similar performance.

2We investigate mask language modeling for T5 models
and switch to causal language modeling for decoder-only mod-
els with a few simple template changes. We compare both in
Section 4.
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Two hours _”, and ỹ = “<sep> movie was so <sep>
of fun. <sep>”. For causal language modeling
(CLM), x̃ = x.

Given (x̃, ỹ), we train an autoregressive LM
parameterized by θ to minimize the negative log-
likelihood loss averaged over output words and the
total loss over a corpus D = DX

src ∪ Dtgt.

ℓ(x̃, ỹ; θ) = − 1

|ỹ|
∑

t

logPθ(ỹt|x̃, ỹ1:t−1) (1)

LCPT(D; θ) =
1

|D|
∑

x∈D
ℓ(M(x); θ)

Task 2: Source Supervised Instruction-tuning
In the second phase, we use labeled data from the
source domain to train the model on the down-
stream classification task. Similar to the first phase,
we use prompts3 to generate input-output sequence
pairs: C(x, y) = (x̃, ỹ) ∀ (x, y) ∈ Dsrc. For ex-
ample, for sentiment classification, if x =“I like
this movie.”, y = 1 ⇒ x̃ = “[x] Is this sentence
positive or negative?”, ỹ = “Positive”.

Given the augmented sequence pair (x̃, ỹ) and
the model trained after the first phase, we compute
the same negative log-likelihood loss ℓ(x̃, ỹ; θ) in
Eq. (1). Finally, we define the total loss on the
source-labeled dataset in the second phase as:

LCLS(Dsrc; θ) =
1

|Dsrc|
∑

(x,y)∈Dsrc

l(C(x, y); θ)

(2)
After training, we follow the practice of Liu et al.

(2022) to convert a label string ỹ to its correspond-
ing label y at test time for evaluation.

3 Evaluating the Efficacy of Continued
Pre-training for Generative UDA

3.1 Experimental Setup
Datasets We use the MNLI and Amazon Re-
view classification datasets, which are widely used
UDA benchmarks (Malik et al., 2023; Karouzos
et al., 2021; Guo et al., 2020). The MNLI cor-
pus (Williams et al., 2018) contains sentence pairs
across five genres: Travel (T), Fiction (F), Gov-
ernment (G), Slate (S), and Telephone (Te). The
task classifies every sentence pair as entailment,
neutral, or contradiction. The Multi-Domain Sen-
timent Analysis Dataset (Blitzer et al., 2007) con-
tains binary sentiment reviews for different types

3Prompt templates were selected from the Public Pool of
Prompts (Bach et al., 2022).

of Amazon products. We use reviews from the Ap-
parel (A), Baby (B), Books (Bo), Cameras (C), and
Movies (M) domains. We evaluate a total of 40
pairs of source and target domains, across the two
datasets. Appendix A contains more details about
the datasets.

Models and Tuning Methods Our main exper-
iments use the T5v1.1 base model and (IA)3 (Liu
et al., 2022) PEFT method. T5v1.1 is an improved
version of the original T5 model (Raffel et al.,
2020), and unlike the original T5 model, it is not
trained on any supervised datasets. We then extend
our evaluation to different model architectures (T0,
GPT-2), tuning methods (full fine-tuning, adapters)
and data regimes (Section 4).

Training Each training phase is 30,000 steps
long for MNLI and 15,000 steps for the Amazon
dataset. We use Adam, a batch size of 8, and a
learning rate of 0.003. We set the maximum se-
quence length to 256 tokens. We use length nor-
malization during evaluation, as proposed by Liu
et al. (2022). For each experiment, we report the
mean and standard deviation across 3 runs. More
details can be found in Appendix B.

Baselines Since our goal is to study the behaviour
of CPT for generative UDA, we compare it with a
simple supervised baseline, and a state-of-the-art
invariance-based approach.
• Src+Tgt (All labeled): We fine-tune the model

using labeled data from both the source and tar-
get domains. This serves as an upper bound on
target domain performance.

• UDAPTER: Malik et al. (2023) propose an
invariance-based method that measures the
multi-kernel maximum mean discrepancy (MK-
MMD) (Gretton et al., 2012; Bousmalis et al.,
2016) between source and target embeddings
from each transformer layer and sums them to
obtain an aggregate loss Ldiv. The final loss is
the weighted sum of Ldiv and the classification
loss, i.e., L = λ Lcls + (1 − λ) Ldiv, where λ
gradually changes from 0 to 1 during training.
Here, we use the embeddings from a model as
it is being instruction tuned on the downstream
classification task. Their method achieves state-
of-the-art performance, and outperforms popu-
lar UDA approaches like DANN (Ganin et al.,
2016) and DSN (Bousmalis et al., 2016); thus
we only compare CPT with this approach.
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3.2 Continued Pre-training is Competitive
with Domain-Invariance Methods

Performance We compare CPT with other base-
lines over 40 domain pairs of the MNLI and Ama-
zon Review datasets, and report the average ac-
curacies over all pairs in Table 1. We see that
CPT is competitive to UDAPTER. (Appendix C
contains detailed results over 40 pairs and signif-
icance tests to check for competitiveness.) Inter-
estingly, a visualization of sentence embeddings
in Figure 8 (Appendix C) suggests that represen-
tations learned through CPT are not domain in-
variant. In addition to the MMD based method
of Malik et al. (2023), we also compare CPT on
one domain pair with other methods that promote
domain invariance (DANN (Ganin et al., 2016),
CORAL (Sun et al., 2017)) and weight interpola-
tion (Ilharco et al., 2022) in Appendix C, further
confirming the competitiveness of CPT.

Dataset Src+Tgt UDAPTER CPT

Amazon 92.66 (0.45) 89.02 (2.17) 89.34 (0.48)
MNLI 78.14 (0.25) 70.19 (1.71) 74.12 (0.68)

Table 1: Avg. target-domain classification accuracy and
standard deviation over 3 runs.

Stability CPT performs more stably than
UDAPTER, with the invariance-based method often
reporting a variance of over 20% across runs (Ta-
ble 6 in Appendix C). For example, for the MNLI
pair Fiction (F) → Government (G), minimizing
UDAPTER yields a variance of 23.4% across runs.
This observation is consistent with existing find-
ings (Kashyap et al., 2021; Han and Eisenstein,
2019) that minimizing divergence measures like
MMD, when combined with auxiliary task-specific
loss functions, result in training instabilities and
vanishing gradients. We discuss this in more detail
in Appendix J.

4 How General are the Benefits of CPT?

Instruction tuning for large models is often per-
formed through parameter-efficient fine-tuning
(PEFT) on limited data. This tuning also applies
to models of different scales and architectures
(decoder-only and encoder-decoder). In this sec-
tion, we evaluate the utility of CPT across these
factors, using the A→M domain pair from the Ama-
zon Reviews dataset.

CPT Helps Decoder-only Models. We extend
our analysis from MLM with encoder-decoder lan-

guage models, to causal language modeling (CLM)
with decoder-only language models, using GPT-2
(medium) (Radford et al., 2019). We perform CLM
in the first training phase by simply training the
model for next-word prediction given the original
sequence. Table 2 shows that CPT provides strong
improvements on the target domain in comparison
to the invariance-based baseline.

Method Accuracy

Src+Tgt 79.8 (0.3)
UDAPTER 66.0 (1.1)
CPT 75.8 (0.4)

Table 2: Performance of CPT with causal language
modeling for the decoder-only GPT-2 model. CPT sig-
nificantly outperforms the invariance-based method.

CPT Outweighs Invariance-based Methods for
Instruction-tuned Models. We evaluate the per-
formance of CPT over T5v1.1 XL (3B param-
eters) and the instruction-tuned T0 (3B param-
eters) (Sanh et al., 2022). Figure 1 (Table 8
of Appendix D) shows a wider gap between
UDAPTER and CPT with higher model capacity,
and this gap is further increased with instruction
tuning. We hypothesize that this gap is due to the
vast difference between the objectives of domain
invariance and instruction tuning.

T5v1.1 Base
(60M)

T5v1.1 XL
(3B)

T0
(3B)

(ins. tuned)

50

60

70

80

90

Ac
cu

ra
cy

Src+Tgt
UDAPTER
CPT

Figure 1: The performance gap between CPT and
UDAPTER increases with larger models, from
T5v1.1 Base (60M parameters) to T5v1.1 XL (3B
parameters), and further increases with instruction
tuning (T0 3B).

CPT Benefits are Consistent across Tuning Ap-
proaches. PEFT approaches have been shown
to introduce resilience to domain shift (Fu et al.,
2023). To isolate this effect from the CPT frame-
work, we use T5v1.1 to evaluate CPT in a full fine-
tuning setup. Additionally, we compare CPT with
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two PEFT approaches4 : Adapters (Houlsby et al.,
2019) and (IA)3 (Liu et al., 2022). We see in Fig-
ure 2 (Table 9 in Appendix E) that CPT continues
to perform stronger than the domain invariance-
based UDAPTER method.

Full Fine-tuning (IA)3 Adapter
76

78

80

82

84

86

88

90

Ac
cu

ra
cy

Src+Tgt
UDAPTER
CPT

Figure 2: Performance of CPT across different tuning
approaches with the T5v1.1 base model. CPT remains
more powerful than UDAPTER across all tuning ap-
proaches.

CPT Outperforms Invariance-based Methods in
Low-data Regimes. In this low-data experiment,
we assume access to k labeled source-domain ex-
amples. For CPT, we assume access to the full un-
labeled dataset in both domains for the first training
phase, and k-shot access to labeled source-domain
examples for the second phase of supervised train-
ing. For a fair comparison, we also introduce a
two-phase version of the UDAPTER pipeline—the
first phase minimizes MMD between unlabeled
source and target domain embeddings (full data ac-
cess), while the second phase optimizes supervised
training on the source domain (k-shot). Figure 3
(Table 10 in Appendix F) showcases CPT clearly
outperforming both variants of UDAPTER, across
three different models for k = 256. Furthermore,
Figure 4 (Table 11 in Appendix F) shows CPT
providing consistent improvements in as low as
32-shots, unlike the unstable invariance-based ap-
proach.

5 To What Extent is Target-Domain
Exposure Beneficial?

Given the vast distributions language models are
pre-trained on, a natural assumption might be that

4We choose Adapters because He et al. (2022) present
a unified view of PEFT approaches which shows that the
operations applied by Adapters are very similar to those of
Prefix Tuning (Li and Liang, 2021) and LoRA (Hu et al.,
2022). We choose (IA)3 since it is a state-of-the-art PEFT
approach that uses a fraction of the learnable parameters of
Adapters (More in Appendix E).
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Two Phase UDAPTER
CPT

Figure 3: Performance of CPT across different mod-
els, in a 256-shot learning setup. Unlike both variants
of UDAPTER, CPT is stable and provides consistent
benefits across models.

the model has already been exposed to a domain
similar to the target domain during pre-training.
This would mean that the model could simply ex-
trapolate the learned downstream task from the
source to the target domain, questioning the need
for CPT.

In this section, we establish that exposure to
the target domain is helpful, even when similar
domains may have been encountered during pre-
training. Table 3 evaluates CPT on the A→M do-
main pair with the T5v1.1 model. We note that
the performance on the target domain is strongly
impacted by the presence of target-domain data
during the first phase of training.

Phase 1 Data Accuracy
Source Target

Source Only 93.3 (0.1) 76.5 (0.2)
Target Only 92.9 (0.4) 82.3 (0.7)
Source + Target 93.5 (0.4) 83.3 (0.5)

Table 3: Comparison of CPT with varying data exposure
during the first phase of training. Performance on the
target domain strongly benefits more from exposure to
target domain, and is boosted further with exposure to
the source domain.

For a more fine-grained analysis, we investigate
the impact of degree of exposure to the target do-
main, by varying the masking rates during the first
phase of training. While masking 15% of a se-
quence is considered standard for random masking,
previous work has shown that BERT-sized models
(Devlin et al., 2019) can learn from as high as 80%
masking rates during pre-training followed by adap-
tation to a labeled task (Wettig et al., 2023). The
source-domain performance shown in Figure 5 (Ta-
ble 12 in Appendix) matches this trend. However,
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Figure 4: Few-shot performance of CPT, for varying
k. Unlike both variants of UDAPTER, CPT is stable
and provides consistent benefits across number of
shots.

high masking rates effectively reduce the exposure
of the model to target data, strongly deteriorating
the performance on the target domain5. We hypoth-
esize that since the model never sees any labeled
data of the target domain, it heavily depends on
the signal it gets from the unlabeled data through
masking.

5% 15% 30% 60% 90%
Masking Rate
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Target

Figure 5: Impact of Masking Rate on CPT. With high
masking rates, the performance on the source domain
is largely maintained, but the performance on the target
domain rapidly deteriorates.

6 Why does Word Prediction Aid
Classification for Generative UDA?

In this section, we examine why predicting
masked words of the source and target domains
through CPT boosts sentence classification on the
unlabeled target domain for generative UDA. We
hypothesize that by having to predict masked words
that are informative to the downstream task during

5With masking rates under the optimal value of 15%, the
semantic and background features learned through model pre-
diction of masked words is limited, hurting performance on
the target domain.

pre-training, the model implicitly learns informa-
tion about the downstream task. For example, given
the masked sentence, “I really _ the movie, it was
a fascinating watch.”, the masked word is indica-
tive of the downstream task, in this case sentiment
analysis. The model can only predict this masked
word (which would be a positive word like “loved”
or “enjoyed”) by using other words informative to
the task (“fascinating”). Through this process, the
model is essentially learning features which are
useful to the downstream task, despite having no
direct supervision.

To test this hypothesis, we quantize the “infor-
mativeness” of each word to a classification task:
an informative word is highly correlated with any
of the labels in the downstream task.6 Specifically,
we follow Gururangan et al. (2018) and use point-
wise mutual information (PMI) (Fano, 1961) of the
word with respect to the class label:

PMI(word, class) = log
p(word, class)
p(word)p(class)

,

where we count the frequency of a word-class pair
on Dsrc to estimate p(word, class), and similarly
count a word and a class individually on Dsrc to
estimate p(word) and p(class).

674 100119

Source

Target

Figure 6: Vocabulary overlap between label-informative
words of the source and target domains. The numbers
in the Venn diagram indicate the number of words in
both sets.

We use two sets of words from a dataset: those
with the top k% (informative) and bottom k% (un-
informative) PMI with any inference label (k =
15). We also filter out low-frequency words from
the selection.7 We compute these sets for the source
and target domains individually, assuming access
to target labels. We use the T5v1.1 model on the
A→M pair for our analysis.

6These informative words are similar to pivot fea-
tures (Blitzer et al., 2006; Ziser and Reichart, 2018; Ben-David
et al., 2020, inter alia), with the exception that they are chosen
based on information from the source domain only.

7Any word that occurs less than 10 times in the entire
training corpus is considered to be low frequency.
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How Masking helps Learn Classification We
first confirm that label-informative words indeed
impact the classification performance of the CPT
model. We do this by masking informative words
from a sentence at inference. Figure 7 (a) shows
us that the performance of the model on the source
domain is not impacted by masking uninformative
words, but drops on masking informative words.
However, how do we know how much of this bias
towards label informative words was learned dur-
ing the continued pre-training phase, rather than
during supervised fine-tuning? To attempt to disen-
tangle the impact of the training phases, we train
the model through selective masking (informative
or uninformative) in the first phase of training, and
minimize the impact of the second phase by mak-
ing it a few-shot task. Figure 7 (c) shows us that the
model performs best on classification when trained
to predict label informative words during masking,
indicating that the model does indeed learn fea-
tures relevant to the downstream task during the
first phase of training.

The Interplay between CPT and Classification
for Generative UDA We now extend this analy-
sis to the target domain to understand how CPT
plays a role in learning features from the unla-
beled domain. Figure 7 (d) shows us that infor-
mative masking outperforms uninformative mask-
ing by a significant gap, once again signaling that
the masking process helps the model implicitly
learn the downstream task. However, unlike with
the source domain, random masking results in the
strongest performance. This is due to the domain
mismatch: the informative words for the source
and target domains are not identical (Figure 6), and
the supervised training on the source domain adds
a bias towards source-informative words. The mix-
ture of these two sets of words are best predicted
through random masking, explaining its strong per-
formance.

This phenomenon also draws the observation
that random masking is preferred to selective mask-
ing for generative UDA, contrary to single domain
settings where informative masking is more use-
ful (Levine et al., 2021; Gu et al., 2020).

7 Discussion

The Computational Trade-off of CPT Our
results in Section 3.2 show that continued pre-
training and methods promoting domain invariance
are competitive with each other. Continued pre-

training suffers from the computational drawback
of requiring an additional phase of training. Con-
versely, invariance-based methods are difficult to
optimize, possibly requiring more runs to achieve
a stable optimum, and having a higher amortized
computational cost. Inspired by Karouzos et al.
(2021), we introduce a simple single phase variant
of continued pre-training which is equivalent in
performance to its two phase variant, nullifying the
additional computational overhead of the approach
(more details in Appendix I).

UDA in the Age of LLMs Recent breakthroughs
in scale have showcased that large language mod-
els (LLMs) are highly powerful, and can perform
various downstream tasks with limited or no train-
ing. This may raise question on the relevance of
the UDA problem as a whole — does a model
even require expensive adaptation to a domain
it may have already been exposed to during pre-
training? In addition to our analysis in Section 5,
we argue that the requirement to adapt small mod-
els to unseen domains still holds in specific cases.
Small supervised models have been shown to be
comparable with, or even outperform, zero-shot
general-purpose LLMs on various downstream
tasks (Huang et al., 2023; Zhu et al., 2023; Tang
et al., 2024), serving as lightweight and customize-
able (through fine-tuning) alternatives. Safety criti-
cal domains like healthcare and finance would ben-
efit more from these models than a generalist LLM.
Our study does not address how to better adapt to
domains, rather we investigate ways a model may
adapt to data unseen during pre-training. This is
a question that holds for current LLMs, and will
continue to hold as long as models are unable to
access infinite data during pre-training.

8 Related Work

UDA through Promoting Domain Invariance
A major class of approaches in Model-centric UDA
methods (Ramponi and Plank, 2020) aims to mini-
mize H∆H divergence (Ben-David et al., 2010)
between the source and target domain features,
through adversarial training (Tzeng et al., 2014;
Ganin et al., 2016; Tzeng et al., 2017; Guo et al.,
2022, inter alia) or through minimizing measures
of domain similarity (Bousmalis et al., 2016; Ge
et al., 2023). Malik et al. (2023) have shown
the minimization of MMD to outperform other
invariance-based methods. However, past work has
shown that domain-invariance is a weak constraint
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Figure 7: The impact of selective masking on classification performance of a CPT trained model. Left: Masking
label informative words during inference degrades classification performance, compared to the original unmasked
sequence. However, the removal of uninformative words does not impact the model on the source domain. Right:
The impact of continued pre-training can be partially disentangled from that of supervised training by making the
supervised training phase few-shot and training the model to mask informative or uninformative words during the
continued pre-training phase. Informative masking is most beneficial for the source domain, indicating that the
model learns task relevant features during masking. On the target domain, informative masking still captures some
knowledge about the downstream task, however, the supervised training phase adds a bias towards source label
informative words. Thus, random masking is most powerful.

for adaptation (Zhao et al., 2019; Karouzos et al.,
2021), could introduce domain-specific hyperpa-
rameters (Trung et al., 2022), and is also prone to
instability issues (Han and Eisenstein, 2019; Sun
et al., 2019; Wilson and Cook, 2020; Kashyap et al.,
2021).

UDA through Continued Pre-Training The
limitations of invariance-based model-centric meth-
ods have encouraged the emergence of alternate
approaches, based on self-supervised learning
through contrastive learning (Kumar et al., 2022;
Shen et al., 2022; Long et al., 2022), pseudo-
labeling (Zhou and Li, 2005; Ruder and Plank,
2017, inter alia) or language model pre-training.
Despite not being directly useful to certain down-
stream tasks (Uppaal et al., 2023), CPT has been
used for adaptation to labeled tasks, in both full
fine-tuning (Gururangan et al., 2020; Lee et al.,
2020; Gao et al., 2021, inter alia) and PEFT se-
tups (Kim et al., 2021; Hung et al., 2023). A
smaller body of work has explored the utility
of CPT in a UDA setup (Han and Eisenstein, 2019;
Zhang et al., 2021b; Karouzos et al., 2021; Parović
et al., 2023), identifying the class of methods to be
more stable than invariance-based methods.

Generative UDA The emergence of large lan-
guage models (Brown et al., 2020; Scao et al., 2022;
Touvron et al., 2023, inter alia) introduced the con-
cept of instruction tuning with templates (Zhang

et al., 2023; Sanh et al., 2022; Ouyang et al., 2022;
Wang et al., 2022; Wei et al., 2022; Gao et al., 2021;
Liu et al., 2023), enabling multi-task training with-
out any task specific architectural changes. How-
ever, the framework of casting discriminative clas-
sification tasks into generative next word prediction
tasks has not yet been extended to UDA. The clos-
est work to this setting (Ben-David et al., 2021)
uses a generative model to create domain identi-
fier prompts and feed them back into the model,
however the final task label prediction is still dis-
criminative. In our work, we focus on gaining
insights to extend the powerful class of CPT meth-
ods to purely generative UDA, where prediction on
the downstream task is treated as a next word pre-
diction task. Through this, we also present novel
findings on the impact of CPT to prompt-based clas-
sifiers in the UDA framework, countering previous
findings from other studies in a single-domain set-
ting (Gu et al., 2020; Levine et al., 2021; Wettig
et al., 2023).

9 Conclusion

We introduce the setting of Generative UDA, and
perform an investigation on the utility of continued
pre-training in this setting. We compare the ap-
proach with the popular class of domain-invariance
based methods for UDA, showing that CPT is both
competitive with, and more stable than invariance-
based approaches. Our experiments show that the
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benefits of CPT extend to different architectures,
tuning methods and data regimes. We motivate
the need for target domain exposure through CPT
by showing that performance on the target domain
gradually degrades with increasing masking rate.
Finally, we shed light on the interplay between
masking and classification performance, and how
this aids UDA. Our analysis shows that in predict-
ing masked words that are informative to the down-
stream task, the model implicitly learns about the
downstream task, furthering the benefits of directly
learning the task. Our work connects the body of
UDA research with that of instruction tuning, en-
abling an initial step towards a wider applicability
of modern language models.

Limitations

Our work presents an investigation into contin-
ued pre-training for UDA in a generative setting.
Since generative UDA is an almost completely un-
explored area, we establish a proof of concept by
using sentence classification tasks for our analy-
sis. We leave the extending our analysis to more
complex tasks to future work.

In our study, we consider a class of PEFT meth-
ods that involve inserting learnable parameters be-
tween the layers of the model. Other classes of
PEFT methods were not considered. However,
we use Adapters and He et al. (2022) have shown
connections between the method with Prefix Tun-
ing (Li and Liang, 2021) and LoRA (Hu et al.,
2022).

Due to the high variance across runs in PEFT-
based learning, we note that the performance can
vary significantly across random seeds. We attempt
to make our findings reproducible by averaging ev-
ery experiment over 3 seeds. Taking environmental
costs into consideration, we reduce our computa-
tional budget by running a majority of our experi-
ments with a smaller-sized model. Learning with
larger models is discussed in Section 4.

Ethics Statement

Our project aims to extend the problem of unsuper-
vised domain adaptation to the generative setting,
matching current needs with large language models.
This is an effort towards improving the reliability
and safety of language models, which can be frag-
ile under distribution shift (Ribeiro et al., 2020) and
incur great costs over incorrect predictions (Ulmer
et al., 2020; Zhang et al., 2021a).

Our study does not involve any human subjects
or violation of legal compliance. We do not an-
ticipate any potentially harmful consequences to
our work. As detailed in Appendix A, all of our
experiments are conducted using publicly avail-
able datasets. Our code shall be released for re-
producibility. Through our study and releasing our
code, we hope to raise stronger research and soci-
etal awareness toward the problem of unsupervised
domain adaptation in natural language processing.
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A Preparation of Evaluation Benchmarks

We use two classification datasets, with 5 domains
each. This results in a total of 40 pairs of source
and target domains. For brevity, we include results
of 24 domain pairs in the main paper, and the re-
maining 16 in Appendix C. For both datasets, we
use the train, validation and test splits from (Malik
et al., 2023). More statistics about each dataset
is available in Table 4. The listed datasets are in-
tended for research purposes only. We do not make
any commercial use of them.

MNLI The Multigenre Natural Language Infer-
ence (MNLI) corpus (Williams et al., 2018) con-
tains sentence pairs across multiple genres: Travel
(T), Fiction (F), Government (G), Slate (S) and
Telephone (Te). The NLI task involves classifying
every premise-hypothesis sentence pair as Entail-
ment, Neutral or Contradiction.

Amazon The Multi Domain Sentiment Analy-
sis Dataset (Blitzer et al., 2007) contains Amazon
product reviews for different type of products. We
use reviews from the Apparel (A), Baby (B), Books
(Bo), Cameras (C) and Movies (M) domains. Each
review is labelled as positive or negative.

Dataset Language License Statistics per Domain
Train Val Test

MNLI English cc-by-4.0 69600* 7735** 1945
Amazon English cc-by-4.0 1440 160 400

Table 4: Artifacts used in our study. The dataset statis-
tics report the values used in our study.
* All domains contain approximately 69,600 examples.
The exception is the Telephone domain, with 75,013
examples.
** All domains contain 7735 validation examples, ex-
cept for Slate and Telephone, which contain 7731 and
8336 examples respectively.

B Details on Implementation

Models and Implementation We use T5v1.1,
T0 and GPT-2 and LLaMA-2 from the Hugging-
Face library8, and use PyTorch9 to train our models.

Training We use the default hyperparameters
from Liu et al. (2022), except for batch size and
training duration. We perform a grid search for
these values. We train each training phase for
30,000 steps on MNLI and 15,000 steps on the

8https://github.com/huggingface/transformers
9https://pytorch.org/

Training Steps Source Accuracy Target Accuracy

5,000 93.2 (0.4) 81.9 (0.4)
10,000 93.4 (0.5) 81.6 (0.6)
15,000 93.5 (0.4) 83.3 (0.5)

Table 5: We use early stopping on one domain pair to
determine the number of training steps, which we then
use for all domain pairs of that dataset. For example, the
Apparel→Movies domain pair of the Amazon Reviews
dataset shown in the table saturates at 15,000 steps.

Amazon dataset, with a batch size of 8. For the
T5v1.1 XL and T0 models (3B parameters each),
we use a batch size of 1. We train with Adam and
use a learning rate of 0.003. We set the maximum
sequence length to 256 tokens. We use length nor-
malization during evaluation, as proposed by Liu
et al. (2022). For each experiment, we report the
mean and standard deviation across 3 runs.

We choose the number of training steps based on
early stopping on the validation set for one domain,
and use that number of steps for all domains within
that dataset. We report the test set performance
after a varying number of training steps in the ta-
ble below. For example, for the Apparel→Movies
domain pair of the Amazon Reviews dataset, the
performance saturates at 15,000 steps, as shown in
Table 5.

Computations Using the (IA)3 PEFT frame-
work, training the T5v1.1 Base model (60 million
parameters) for 15,000 steps takes approximately
two hours on a single NVIDIA RTX A6000 GPU.
The T5v1.1 XL model and T0 model (3 billion pa-
rameters) take approximately 8 hours for 15,000
steps of training. For reproducibility, each exper-
iment is repeated thrice, with changing random
seeds. In total, we run 540 experiments with the
Base model and 72 experiments with the larger
models. This results in a total compute time of
approximately 2400 GPU hours.

C Detailed results with the Amazon and
MNLI Datasets

Table 6 shows the performance of CPT on the Ama-
zon and MNLI datasets.

On the Amazon dataset, CPT is competitive with
the state of the art UDAPTER method from Malik
et al. (2023) on average. We confirm this by check-
ing for a significant difference in the performance
of CPT and UDAPTER on the 20 dataset pairs. The
Mann-Whitney U test and Student’s t-test both re-
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Source: Negative
Source: Positive

Target: Negative
Target: Positive

Figure 8: UMap visualizations of sentence embeddings
from the Apparel → Movies data pair, using the T5v1.1
base model and (IA)3 PEFT method. Despite not pro-
moting domain-invariance, CPT may be learning sen-
tence embeddings that are separable by class labels,
regardless of the domain of these sentences. The clas-
sification hyperplane for the source domain has been
imagined as a solid line for illustration purposes, and
its extension to the target domain is shown as a dashed
line.

sulted in non-significant p-values of 0.5516 and
0.8316, confirming the hypothesis that there is no
significant difference between CPT and UDAPTER

on the Amazon dataset.
However, on the MNLI dataset, where all do-

mains have larger gaps, both significant tests
showed a significant difference between CPT and
UDAPTER, with CPT being more powerful. This is
exemplified through cases like Travel (T) → Gov-
ernment (G), where CPT yields an accuracy of
83.6% on the target domain, equalling the upper
bound of the Src+Tgt baseline.

Comparison with other Model Centric Ap-
proaches In addition to the MMD based method
of Malik et al. (2023), we also compare CPT with
other methods that promote domain invariance: 1)
DANN (Ganin et al., 2016), which is the most
widely used UDA method in NLP (Ramponi and
Plank, 2020), but has been shown to be highly un-
stable; 2) CORAL (Sun et al., 2017), which min-
imizes second order statistics of the data embed-
dings. Additionally, with an emerging class of
weight interpolation based methods, we make a
comparison with task vector arithmetic (Ilharco
et al., 2022). The use of task vectors with PEFT
methods beyond LoRA (Hu et al., 2022) has been
unexplored in the literature, and we find that the

method does not work with IA3. With fully fine-
tuned models, the method improves in performance,
but is still weaker than CPT.

CPT may learn representations that general-
ize across domains To better understand the im-
proved UDA performance, we visualize the sen-
tence embeddings learned by CPT in Figure 8. Us-
ing UMap (McInnes et al., 2018), the figure visual-
izes embeddings for the Apparel→Movies domain
pair from the Amazon Product Review dataset. We
see that CPT learns sentence embeddings that gen-
eralize across domains. For illustration, we draw
a black line that cuts across both source and tar-
get domains. Note that the solid line suggests that
there exists a classification hyperplane learned on
the source labeled data (in blue and green). The
same classifier can be potentially used to separate
target data (in gray and orange). The visualization
suggests that CPT achieves competitive UDA re-
sults without having to explicitly promote domain-
invariant representations.

D CPT across Model Architectures and
Scales

We evaluate the performance of CPT over T5v1.1
XL and the instruction tuned T0 (3B) (Sanh et al.,
2022) in Table 8.

E PEFT Frameworks

The framework proposed in Section 2 is general
and can be applied to fine-tune all model param-
eters. Additionally, our CPT framework is com-
patible with the parameter-efficient fine-tuning ap-
proach. The PEFT approach is desirable because
it adds only a small amount of learnable parame-
ters ϕ to a pre-trained language model θ, and fine-
tunes only ϕ to perform prediction while keeping
the other model parameters θ frozen. We use two
instantiations in our implementations: Adapters
(Houlsby et al., 2019) and (IA)3 (Liu et al., 2022).

(IA)3 is a state of the art PEFT learning method,
and uses around a tenth of learnable parameters
compared to popular methods like Adapters. (IA)3

works by element-wise multiplication (i.e. rescal-
ing) of the model’s activations against a learned
vector. In this case, the set of learnable parame-
ters ϕ is a set of vectors {lv, lk, lff} applied to each
attention mechanism and feed-forward layer as,
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Amazon MNLI
Src+Tgt UDAPTER CPT Src+Tgt UDAPTER CPT

A → B 94.7 (0.2) 93.8 (0.3) 93.9 (0.3) T → F 77.2 (0.4) 69.7 (0.8) 74.1 (0.9)
A → Bo 94.3 (0.4) 92.5 (1.1) 90.2 (1.2) T → G 83.6 (0.7) 79.3 (0.5) 83.6 (0.3)
A → C 95.0 (0.2) 91.8 (0.5) 92.1 (0.5) T → S 72.3 (0.5) 69.6 (0.1) 70.7 (0.6)
A → M 85.8 (0.5) 81.3 (0.6) 83.3 (0.5) T → Te 77.8 (0.1) 69.4 (0.8) 76.8 (0.0)

B → A 93.4 (0.3) 93.3 (0.2) 93.4 (0.4) F → T 79.9 (0.1) 69.9 (0.2) 65.4 (0.8)
B → Bo 94.7 (0.7) 93.8 (0.3) 92.2 (0.1) F → G 82.3 (0.1) 54.3 (23.4) 78.8 (2.5)
B → C 94.7 (0.8) 93.4 (0.1) 92.1 (0.3) F → S 72.1 (0.2) 64.6 (1.8) 65.3 (1.6)
B → M 85.3 (0.2) 81.3 (0.7) 82.8 (0.2) F → Te 78.3 (0.6) 64.6 (0.7) 72.5 (0.2)

Bo → A 94.6 (0.3) 91.6 (0.5) 91.3 (0.2) G → T 79.9 (0.4) 75.9 (0.3) 75.8 (0.6)
Bo → B 94.8 (0.2) 92.9 (0.6) 90.9 (0.2) G → F 76.7 (0.1) 69.9 (0.2) 73.5 (0.2)
Bo → C 94.3 (0.2) 89.8 (0.1) 90.3 (0.4) G → S 73.1 (0.0) 69.4 (0.1) 68.0 (1.8)
Bo → M 85.5 (0.9) 84.6 (0.7) 80.1 (1.2) G → Te 78.1 (0.6) 69.9 (0.3) 73.5 (0.6)

C → A 93.4 (0.4) 92.3 (0.3) 92.5 (0.6) S → T 79.5 (0.3) 74.4 (1.7) 76.8 (0.1)
C → B 95.0 (0.6) 94.1 (0.1) 92.1 (0.2) S → F 77.7 (0.2) 73.1 (0.0) 72.4 (0.5)
C → Bo 93.9 (0.8) 91.3 (0.5) 89.0 (0.1) S → G 83.4 (0.2) 78.2 (0.5) 76.3 (0.9)
C → M 85.8 (0.1) 81.5 (0.7) 79.7 (1.2) S → Te 78.5 (0.0) 66.7 (0.2) 74.8 (0.3)

M → A 94.2 (0.7) 89.1 (1.4) 90.1 (0.5) Te → T 79.8 (0.3) 71.4 (0.0) 76.5 (0.4)
M → B 95.3 (0.5) 81.0 (16.1) 89.9 (1.2) Te → F 77.9 (0.1) 69.9 (0.5) 74.3 (0.5)
M → Bo 94.1 (0.4) 80.5 (18.6) 91.5 (0.0) Te → G 82.5 (0.1) 75.6 (1.6) 82.0 (0.6)
M → C 94.3 (0.5) 90.5 (0.0) 89.7 (0.3) Te → S 72.2 (0.0) 68.0 (0.4) 71.3 (0.5)

Table 6: Comparison of CPT and UDAPTER by target domain classification accuracy on the Amazon Product
Review and MNLI datasets. Each row represents a Source→ Target pair. On average, CPT is competitive
with UDAPTER, often outperforming it. We use the T5v1.1 base model, and (IA)3 as a PEFT method. The
highest values between CPT and UDAPTER have been marked in bold.

Method Accuracy

CPT 83.3 (0.9)
UDAPTER 81.3 (0.6)
DANN 52.3 (1.7)
CORAL 80.9 (0.4)
Task Vectors 48.0 (0.7)
Task Vectors (fine-tuning) 69.0 (0.4)

Table 7: Comparison of CPT with more baselines, using
the T5v1.1 base model and (IA)3 PEFT method on the
Apparel→Movies pair from the Amazon review dataset.
For task vectors, we include versions with (IA)3 as well
as full fine-tuning. CPT outperforms all baselines.

h = σ

(
Q(lk ⊚• KT )√

dk

)
(lv ⊚• V )

h = (lff ⊚• γ(W1x)W2)

Here, K, Q and V are the key, query and value
representations used in an attention block, and W1

and W2 are the weights in the feed-forward layer
following an attention block. lk ∈ Rdk , lv ∈ Rdv ,
lff ∈ Rdff , σ is the softmax function while γ is any
non-linearity.

Model Src+Tgt UDAPTER CPT

T5 v1.1 Base 85.8 (0.5) 78.6 (1.3) 83.3 (0.5)
T5 v1.1 XL 93.0 (0.5) 65.2 (9.5) 92.0 (1.5)
T0 3B 92.2 (0.7) 51.8 (0.8) 93.8 (0.4)

Table 8: The performance gap between CPT and
UDAPTER increases with larger models, from
T5v1.1 Base (60M parameters) to T5v1.1 XL (3B
parameters), and further increases with instruction
tuning (T0 3B).

Intuitively, each vector l simply learns weights
measuring the importance of each feature in an
activation of the pre-trained model, for the specific
downstream task the model is trained on.

Adapters are a popularly used and high perform-
ing PEFT framework, and He et al. (2022) have
shown equivalence in the operations applied by
Adapters, Prefix Tuning (Li and Liang, 2021) and
LoRA (Hu et al., 2022).

Adapters work by adding small learnable
modules between transformer layers. Specifi-
cally, down and up projections Wdown ∈ Rd×r

and Wup ∈ Rr×d are learnt such that ϕ =

114



{Wup,Wdown}. A residual connection and non-
linearity γ is added at every layer,

h = h+ γ(hWdown)Wup

Table 9 shows CPT beats UDAPTER across dif-
ferent tuning methods. We also note that fine-
tuning yields slightly better performance for all
UDA methods.

F CPT in a Few-Shot Setup

Table 10 accompanies Figure 1 (Section 4), show-
ing the 256-shot performance of CPT and other
baselines, across model sizes. Similarly, Table 11
accompanies Figure 3, showing the relative perfor-
mance of all baselines across varying k.

G Impact of Target Domain Exposure

The experiments in this section use the T5v1.1 base
model on the Apparel→Movies domain pair of the
Amazon reviews dataset.

Table 12 accompanies results from Figure 5,
which show the impact of varying masking rates
on CPT. Using the T5v1.1 base model, we train
CPT using varying random masking rates on the
Apparel → Movies domain pair, and report the
mean and standard deviation over three runs. With
high masking rates, the performance on the source
domain is largely maintained, but the performance
on the target domain rapidly deteriorates.

H Understanding how CPT aids UDA

Table 13 (accompanies Figure 7) shows the impact
of masking sequences at inference, on classification
accuracy. Words are selected for masking based
on their their “informativeness”, measured by their
PMI to the inference class label. The performance
of the model is best with the original unmasked
sequences, indicating the presence of both infor-
mative and uninformative words are essential for
strong classification performance.

Table 15 accompanies Figure 7 and shows the
impact of varying masking strategies on classifica-
tion performance, in a few-shot setting. We also
consider two different few-shot setups: one with
access to the full unlabelled datasets in phase 1 pre-
training, and another where even the unlabelled
data is few-shot.

To isolate any effects of PEFT methods or pre-
training data, we repeat the analysis from Table 15
in Table 14 with fine-tuning Flan-T5 in a full data
setting, and note similar trends.

I Single Phase CPT Training

Our proposed approach in Section 2 involves two
stages of training, which is more expensive than
standard single phase UDA approaches. In this
section, we propose a single training phase variant
to CPT, and show that it performs similarly to the
original method. We use the two phase pipeline in
our experiments in the main paper, but note that the
single and two phase pipelines are interchangeable.

We simply replace the two phase training with a
joint multi-task objective as follows,

L(D,Dsrc; θ) =
1

|D|
1

|Dsrc|
∑

x′∈D

∑

(x,y)∈Dsrc

(λ l(C(x, y); θ)
+ (1− λ) l(M(x′); θ))

where l is the cross-entropy loss defined in Eq. (1),
and M and C are the templates defined in Section 2.
λ is the adaptation factor which gradually changes
from 0 to 1 over the course of training. This results
in the model being trained almost exclusively on
the MLM task early on in training, and the CLS
task towards the end of training.

Table 16 compares the performance of the sin-
gle phase and two phase variants of CPT. We also
compare with a vanilla joint single phase objective,
where λ is fixed at 0.5 through training (called Sin-
gle Phase Vanilla). The performance of the single
and two phase variants are almost identical, and
either can be used interchangeably. In compari-
son, the vanilla single phase method is significantly
weaker on the target domain.

J Instability of Domain Invariance
Methods for UDA

The Maximum Mean Discrepancy (MMD) (Gret-
ton et al., 2012) measures the difference between
first order moments of variables in a Reproduc-
ing Kernel Hilbert Space (Aronszajn, 1950). Mul-
tiple lines of work have shown that minimiz-
ing divergence measures like MMD, when com-
bined with auxiliary task-specific loss functions,
results in training instabilities and vanishing gra-
dients (Kashyap et al., 2021; Han and Eisenstein,
2019).

We also note that as minimizing MMD does not
use any label information, there is a possibility
for embeddings of the target domain to be aligned
with the closest source domain class cluster. For
example, Figure 9 shows us a setting where both
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Method Src+Tgt UDAPTER CPT

Fine-Tuning 86.4 (0.4) 82.4 (1.6) 84.4 (0.3)
(IA)3 85.8 (0.5) 81.3 (0.6) 83.3 (0.5)
Adapters 85.3 (0.5) 79.1 (0.3) 82.7 (0.5)

Table 9: Performance of CPT across different adaptation methods with the T5v1.1 base model on the Apparel →
Movies domain pair. CPT remains more powerful than UDAPTER across all methods.

Model Src+Tgt UDAPTER CPT

T5v1.1 Base 77.8 (0.4) 60.9 (1.6) 73.1 (1.7)
T5v1.1 XL 84.4 (0.1) 84.8 (1.5) 89.9 (1.1)
T0 3B 88.3 (0.5) 81.8 (1.3) 93.9 (0.4)

Model Src+Tgt UDAPTER Two Phase CPT

T5v1.1 Base 82.8 (0.6) 62.5 (0.7) 79.8 (1.4) 81.2 (0.7)
T5v1.1 XL 92.5 (0.4) 71.7 (7.8) 84.3 (0.9) 86.8 (2.2)
T0 3B 91.8 (0.6) 79.5 (6.7) 53.5 (0.4) 92.8 (0.2)

Table 10: Performance of CPT across different models, in a k-shot learning setup on the Apparel → Movies domain
pair. We see CPT retaining strong performance on the target domain across models. Left: 32-shot. Right: 256-shot.

Number of Shots Src+Tgt UDAPTER Two Phase UDAPTER CPT

32 77.8 (0.4) 60.9 (1.6) 59.4 (2.0) 73.1 (1.7)
128 82.5 (0.5) 75.1 (0.6) 62.8 (0.6) 78.8 (1.0)
256 82.8 (0.6) 62.5 (0.7) 79.8 (1.4) 81.2 (0.7)

Table 11: Performance of CPT across different number of shots, on the Apparel → Movies domain pair, using the
T5v1.1 base model. We see CPT retaining strong performance on the target domain across shots.

Masking Rate Accuracy
Source Target

5% 92.8 (0.8) 78.8 (1.8)
15% 93.5 (0.4) 83.3 (0.5)
30% 92.8 (0.6) 78.8 (1.4)
60% 92.5 (0.9) 71.0 (3.0)
90% 92.3 (0.5) 70.4 (1.5)

Table 12: Impact of Masking Rate on CPT. We train
CPT using varying random masking rates on the Ap-
parel → Movies domain pair. With high masking rates,
the performance on the source domain is largely main-
tained, but the performance on the target domain rapidly
deteriorates.

Method Accuracy
Source Target

Original 93.5 83.3
Informative Masking 88.0 78.8
Uninformative Masking 92.0 79.0

Table 13: Impact of masking at inference. We evaluate
CPT on the Apparel → Movies domain pair, and select
words for masking based on their “informativeness” to
the classification task.

classes of the target domain (shown in green and
gray) are mapped to the cluster of negative class

Masking Strategy Accuracy
Source Target

Random 95.8 (0.0) 86.8 (0.3)
Informative 93.9 (0.6) 85.3 (0.3)
Uninformative 95.0 (0.0) 84.8 (0.1)

Table 14: Impact of word selection for masking during
training, using Flan-T5 base and no PEFT methods.

Phase 1 Data Masking Strategy Accuracy
Source Target

256 Shot Random 91.0 (0.9) 78.1 (2.4)
Informative 90.4 (0.5) 76.0 (0.7)
Uninformative 89.6 (1.2) 73.5 (1.6)

Full Data Random 90.1 (0.5) 81.2 (0.7)
Informative 91.8 (0.5) 78.0 (0.9)
Uninformative 89.3 (0.5) 72.8 (1.1)

Table 15: Impact of word selection for masking, in a
256-shot learning setup. We evaluate CPT on the Ap-
parel → Movies domain pair, and select words for mask-
ing based on their “informativeness” to the classification
task. Random masking is most powerful for the target
domain, indicating that both semantic and background
features are necessary for effective classification on the
unlabelled domain. However, informative masking is
significantly more useful than uninformative masking.
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Method Accuracy
Source Target

Two Phase 93.7 (0.3) 83.3 (0.9)
Singe Phase 93.5 (0.4) 83.3 (0.5)
Singe Phase Vanilla 93.6 (0.1) 75.0 (5.7)

Table 16: Comparison of single and two-phase variants
of CPT, on the Apparel → Movies domain pair. The
single and two phase variants are almost identical in
performance.

Source: Negative
Source: Positive

Target: Negative
Target: Positive

Figure 9: UMap visualizations of sentence embeddings
from the Apparel → Movies data pair, using the T5v1.1
base model and (IA)3 PEFT method. Training with
UDAPTER risks stability issues, and all embeddings
from the target domain can be mapped to the closest
source class cluster. This results in poor classifica-
tion performance on the target domain.

source embeddings (shown in blue).
We compare variants of the UDAPTER method

in Table 17 and show that the loss is sensitive to
small changes in the loss design. Specifically we
compare the UDAPTER method used in the main
paper with:

• MMD over Logits: Measures the MMD be-
tween the logits of source and target domains,
instead of using intermediate model outputs.

• Fixed Weight MMD: Instead of the multi-task
loss for the MMD reduction and classification
tasks, we use fixed weights for both tasks10.

• Two Phase MMD: The first training phase is
used to minimize MMD between source and

10For the weighted loss, LCLS + 3 LMMD was found to be
the best performing.

target embeddings, while the second phase is
used to train the model for classification on
the source domain.

CPT remains more powerful than all variants.

Method Accuracy
Source Target

CPT 93.7 (0.3) 83.3 (0.9)
UDAPTER 94.7 (0.3) 81.3 (0.6)
UDAPTER over Logits 95.0 (0.2) 81.3 (0.7)
Fixed Weight MMD 93.4 (0.2) 78.6 (1.3)
Two Phase UDAPTER 90.1 (0.1) 68.7 (2.0)

Table 17: Comparison of variants of minimizing MMD,
on the Apparel → Movies domain pair. CPT remains
more powerful than all variants.
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