JAPAGEN: Efficient Few/Zero-shot Learning
via Japanese Training Dataset Generation with LLM

Takuro Fujiil>*

and Satoru Katsumata®

"Yokohama National University *Nomura Research Institute, Ltd. *Retrieva, Inc.

tkr.fujii.ynu@gmail.com

Abstract

Recently some studies have highlighted the po-
tential of Large Language Models (LLMs) as
effective generators of supervised training data,
offering advantages such as enhanced infer-
ence efficiency and reduced costs associated
with data collection. However, these studies
have predominantly focused on English lan-
guage tasks. In this paper, we address the
fundamental research question: Can LLMs
serve as proficient training data generators for
other language tasks? Specifically, we lever-
age LLMs to synthesize supervised training
data under few-shot and zero-shot learning sce-
narios across six diverse Japanese downstream
tasks. Subsequently, we utilize this synthesized
data to train compact models (e.g., BERT). This
novel methodology is termed JAPAGEN. Our
experimental findings underscore that JAPA-
GEN achieves robust performance in classifi-
cation tasks that necessitate formal text inputs,
demonstrating competitive results compared to
conventional LLM prompting strategies.

1 Introduction

Large language models (LLMs) have demonstrated
exceptional performance across various natural lan-
guage processing (NLP) tasks, even with minimal
parameter updates (Brown et al., 2020; Kojima
et al., 2022). However, the rapid growth in model
size, driven by scaling laws (Kaplan et al., 2020),
has led to substantial demands for GPU memory
and computational resources, making the operation
of LL.Ms prohibitively expensive.

To mitigate these costs, recent studies have in-
vestigated the generation of training data using
powerful LLMs, followed by training smaller mod-
els (e.g., BERT) on the synthesized supervised
data (Ye et al., 2022a,b; Yu et al., 2023; Chung
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Figure 1: Overview of SUPERGEN in text sentiment
classification as an example.

et al., 2023a). This approach, termed SUPER-
GEN (Supervision Generation Approach) based on
prior work (Meng et al., 2022), has demonstrated
promising results. The overview of SUPERGEN
is illustrated in Figure 1. SUPERGEN has been
demonstrated to outperform few-shot and zero-shot
prompting and few-shot fine-tuning methods in var-
ious tasks, effectively reducing both the cost of col-
lecting supervised data and the operational costs of
trained models. However, these studies have been
limited to English tasks, and thus, the applicabil-
ity of SUPERGEN on other language tasks remain
uncertain.

Given that powerful LLMs like GPT-4 (OpenAl,
2024) are primarily trained on English texts with
limited exposure to other languages, it is crucial to
investigate the effectiveness of SUPERGEN in such
linguistic contexts and its suitability for different
types of languages. In this paper, we implement
SUPERGEN in Japanese as a case study. Japanese
is mid-resource language compared to English and
has different characteristics, such as the absence
of spaces between words. Therefore, we pose the
research question: Do SuperGen methods perform
effectively in Japanese? We term the application of
SUPERGEN to Japanese tasks as JAPAGEN (§3).

To address the aforementioned interests, we eval-
uate JAPAGEN across various Japanese tasks, in-



cluding text classification, natural language infer-
ence, semantic textual similarity, and linguistic ac-
ceptability, in both few-shot and zero-shot learn-
ing settings. Furthermore, we propose a novel
approach termed Knowledge-Assisted Data Gen-
eration (KADG)!, which integrates task-specific
knowledge into prompts to align generated texts
more closely with gold-standard distributions and
enhance text diversity (§3.4).

Our experiments indicate that, in five out of six
tasks, zero-shot JAPAGEN outperforms few-shot
BERT fine-tuning. Moreover, JAPAGEN demon-
strates superior performances in two tasks com-
pared to few-shot PROMPTING. These experimen-
tal results suggest that JAPAGEN has the potential
to surpass settings with more parameters and more
annotated data. Additionally, our analysis shows
that KADG enhances the fidelity of generated texts
to gold-standard distributions while maintaining
label accuracy, although it does not consistently
improve overall task performance.

In summary, our contributions are four-fold:

1. We empirically evaluate JAPAGEN, leverag-
ing LLMs as synthetic data generators, across
various Japanese NLP tasks.

2. We demonstrate the effectiveness of JAPA-
GEN, particularly in classification tasks with
formal text inputs.

3. We analyze the impact of dataset size on JAPA-
GEN, observing performance improvements
with larger synthetic datasets that eventually
reach saturation.

4. We propose and evaluate KADG, demonstrat-
ing its potential to refine synthetic data distri-
butions to align with gold standards, thereby
enhancing the robustness of JAPAGEN.

2 Related Work

2.1 Efficient Learning Strategies with LLMs

Large Language Models (LLMs) exhibit high per-
formance across various tasks using few-shot or
zero-shot learning paradigms. Despite their capa-
bilities, LLMs have numerous parameters, leading
to substantial operational costs. To address these
challenges, several methods for more efficient uti-
lization of LLMs have been proposed. One such

'We define the setup of KADG as zero-shot* to distinguish

it from strict zero-shot methods due to the incorporation of
task knowledge.

method is PROMPTING, which enables LLMs to
perform tasks effectively without requiring param-
eter updates. This is achieved by injecting prompts
based on task descriptions (Brown et al., 2020; Gao
et al., 2021; Le Scao and Rush, 2021; Zhang et al.,
2022). A prompt consists of input text for the LLM
and includes instructions to obtain the desired re-
sponses. In few-shot PROMPTING?, the prompt
includes a small number of text-label pairs. Com-
pared to traditional fine-tuning, which necessitates
costly updates to the LLM’s parameters, PROMPT-
ING improves data efficiency in low-data scenarios.
However, Prompting incurs substantial operational
costs due to the extensive number of parameters
involved.

2.2 Synthesis of Training Data via LLM

To reduce the operational costs of LLMs, re-
searchers have recently explored using LLMs as
training data generators, followed by fine-tuning
smaller task-specific models (TAMs), such as
BERT (Devlin et al., 2019), on the synthetic data.
Existing approaches typically employ simple class-
conditional prompts and focus on addressing the
issues related to the quality of the generated data.
Notable early efforts, such as SuperGen (Meng
et al., 2022) and ZeroGen (Ye et al., 2022a), have
explored the use of LLMs for generating training
data for text classification tasks using basic class-
conditional prompts. They have also incorporated
additional noise-robust learning techniques (Laine
and Aila, 2017; Wang et al., 2019) to mitigate the
quality issues of the generated data. However, it
has been reported that balancing the diversity of
synthetic datasets with task performance remains
challenging (Chung et al., 2023b).

To date, these approaches have been primarily
validated on English-language tasks. This paper
investigates the effectiveness of these methods in
mid-resource languages with different linguistic
characteristics from English.

3 Method: JAPAGEN

In this section, we introduce the motivation for syn-
thetic data generation via LLMs in Japanese tasks,
define the problem, and describe the methodology
for generating synthetic training data for each task.

2Few-shot PROMPTING is referred to as In-Context Learn-
ing (Brown et al., 2020), however, in this paper, both few-
shot and zero-shot PROMPTING are collectively termed as
PROMPTING.



The overview of generating training data via LLMs
is illustrated in Figure 1.

3.1 Motivation

We define JAPAGEN as the Japanese counterpart
to SUPERGEN. The rationale behind selecting
Japanese stems from its status as a mid-resource
language compared to English, and its different
characteristics, such as the absence of spaces be-
tween words. Given that powerful LLMs are pri-
marily trained on English texts with limited ex-
posure to other languages including Japanese, it
is plausible that they can generate high-quality
pseudo training data in English. In this paper, we
evaluate JAPAGEN, the Japanese version of SUPER-
GEN, as a case study focusing on such languages.

3.2 Problem Definition

Given the label space Y = {y;}I";, we manually
create label-descriptive prompts T'(task, y;). For
prompt details used in our experiments, please refer
to §A.4. We employ LLMs (G to generate training
data for encoder models Ey (e.g., LSTM (Hochre-
iter and Schmidhuber, 1997), BERT (Devlin et al.,
2019)), which are subsequently fine-tuned as esti-
mators. SUPERGEN comprises the following three
stages: (1) Synthesizing supervised training data
using LLM. (2) Fine-tuning small models using
synthetic data. (3) Testing the trained model on
gold data.

3.3 Pseudo Data Generation

In this section, we describe the process of generat-
ing pseudo datasets using an LLM for classification
and regression tasks. Our approach includes either
a single sentence or a sentence pair as input.

Single Sentence Task We employ an LLM to
generate pseudo-supervised sentences . j corre-
sponding to a label y,:

Z¢j ~ Probrm(-|T(task, y.)), (D

where T(task, y.) represents a prompt including
the task description and label y.. By repeating
Equation 1 M times, we obtain the pseudo dataset

Dy, = {(Zc;, yc)}jj\il. Applying this process for
all labels {yg}cczl, we generate the pseudo dataset
D = [DylvDym L Dyc]~

Sentence Pair Task Initially, we employ an LLM

to generate the first sentence i’i ;» analogous to

Equation 1 but excluding the label y.:
iy j ~ ProbLym(+|T(task)). ()

In the initial phase of sentence generation, the
prompt comprises solely the task description. Sub-
sequently, to generate the second sentence 5;(2: ;» the
prompt is augmented to include the task descrip-

tion, the first sentence 33(1: o and the label y.:
2 ; ~ ProbLom(-|T(task), T(task, Z; ;, yc)). (3)

By repeating Equations 2 and 3 M times, we gener-
ate the pseudo dataset D, = {("%im jij, Ye) jj\il.
Applying this process for all labels {yc}f:p we ob-

tain the pseudo dataset D = [Dy,,, Dy, , ..., Dy,.].

3.4 Knowledge-Assisted Data Generation

The diversity of synthetic datasets significantly en-
hances dataset quality, a critical factor in improving
task performance (Chung et al., 2023b). Previous
studies attempted to diversify text generation by
adjusting hyperparameters such as Top-p and tem-
perature. However, this approach may compro-
mise label accuracy. In this paper, we introduce
Knowledge-Assisted Data Generation (KADG) to
enhance dataset diversity while maintaining label
correctness.

For each task, we manually create a set of task-
specific words Si,, and randomly select a word
d from this set. We construct a prompt based on
the task description, label y., and the selected task-
specific word d:

d~ Staska (4)
c,j ~ ProbLim(-|T(task, ye, d)). )

By following a process similar to Section 3.3 across
all classes, we generate the synthetic dataset D. For
the actual prompts used in our experiments, please
refer to §A 4.

4 Experiment

In this section, we present an overview of the bench-
mark datasets, the corresponding evaluation set-
tings, the baseline methods, and the implementa-
tion details. Subsequently, we compare our JAPA-
GEN to baseline methods in both few-shot and zero-
shot settings.

4.1 Setup

Benchmarks. To evaluate JAPAGEN across var-
ious tasks, we used the following benchmarks



from JGLUE (Kurihara et al., 2022): MARC-
ja, JSTS, JNLI, and JCoLA. Additionally, to
test across diverse domains, we also used two
datasets for news topic classification (News) and
SNS fact classification (COVID-19). All of these
benchmarks are Japanese tasks. JSTS involves
sentence similarity estimation, while the others
are text classification tasks. We evaluated using
Spearman’s rank correlation coefficient (Spearman
score) for JSTS, Matthews correlation coefficient
(MCC; (Matthews, 1975)) for JCoLA, and Accu-
racy for the remaining tasks. For more detailed
information such as dataset statistics and task ex-
planations, please refer to Section A.1.

Baselines. We compared the performances of
JAPAGEN with three baselines: (1) PROMPTING,
a prompt-based learning framework via LLM, as
introduced in Section 2.1. (2) FEW-SHOT FINE-
TUNING, where BERT is fine-tuned on five gold
samples per class. (3) FULLY SUPERVISED, where
BERT is fine-tuned on all gold data. We evaluated
the performances of JAPAGEN and PROMPTING in
both few- and zero-shot settings. In the few-shot
setting, we used one sample per class and incorpo-
rated them into the prompt. To distinguish between
the few-shot setting of BERT fine-tuning and the
one of JAPAGEN and PROMPTING, we refer to the
former as "few-shot 8" and the latter as "few-shot

@"

Implementation Details. We conducted our ex-
periments using PyTorch (Paszke et al., 2019) and
Hugging Face Transformers (Wolf et al., 2020).
For synthetic data generation, we utilized the Ope-
nAl model gpt-3.5-turbo-06133. The size of
the generated data was 25,000 per class. In the
few-shot setting ), one sample per class was ran-
domly selected. The generation parameters were
set to max tokens of 500, top-p of 1.0, tempera-
ture of 1.2, and frequency penalty of 0.02, with
five pieces of data generated at a time. In JSTS
whose labels are continuous values between 0.0
and 5.0, we set six classes {0, 1, 2, 3, 4, 5}. For
the fine-tuning of BERT, we used the pretrained
BERT* and performed our experiments on a single
NVIDIA TITAN RTX 24GB GPU. The training
parameters’ were set to batch size of 32, epoch of

3The generated texts are used solely for study purposes,
not for commercial use.
4tohoku—nlp/bert—base—japanese—v3

SWe set training parameters based on (Kurihara et al.,
2022).

4, label smooth temperature of 0.1, optimizer of
AdamW with learning rate of Se-5, 81 of 0.9, 5o
of 0.999, warmup ratio of 0.1. Additionally, we
set max token length of 512, 512, 512, 128, 512,
384 for MARC-ja, JNLI, JSTS, JCoLA, News, and
COVID-19 respectively. For each task, we mea-
sured performances over five runs with different
random seeds. In the few-shot setting (©), we ran-
domly selected five samples per class.

4.2 Experimental Results

In this section, we compare JAPAGEN to baselines.
Our experimental results are shown in Table 1.

Zero-shot JAPAGEN vs. FINE-TUNING

Compared to zero-shot JAPAGEN, BERT fine-tuned
on gold data uses the same model size but with a
larger amount of annotated data. It is well-known
that the zero-shot approach cannot outperform task-
specific models trained on human-annotated data.
In Table 1, JAPAGEN adheres to this rule, un-
derperforming compared to fully supervised fine-
tuning across all tasks. However, JAPAGEN outper-
forms few-shot fine-tuning on five tasks except for
COVID-19. Notably in JSTS, JAPAGEN achieves
a Spearman score of 57.67%, exceeding the per-
formance of few-shot (8 fine-tuning. This result
suggests that JAPAGEN can be effective in scenar-
ios where the cost of data collection or annotation
is high.

Zero-shot JAPAGEN vs. PROMPTING

Compared to zero-shot JAPAGEN, PROMPTING
employs a significantly larger model size. In Ta-
ble 1, JAPAGEN achieves performance improve-
ments of 3.94%, 4.96%, and 17.10% over zero-shot
PROMPTING on JSTS, JNLI, and News, respec-
tively. These tasks typically involve formal text as
input. Moreover, JAPAGEN also surpasses few-shot
(© PROMPTING on JNLI and News, suggesting that
JAPAGEN has the potential to outperform settings
with more parameters and more annotated data.
These tasks are commonly classification tasks that
involve formal text as input.

KADG and JAPAGEN

We attempt to enhance the performance of JAPA-
GEN by injecting task knowledge into prompts, as
prompt engineering has been shown to enhance the
capability of LLMs and improve the quality of gen-
erated text (Wu and Hu, 2023; Yang et al., 2023;
He et al., 2022). In Table 1, KADG outperforms
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Method MARC-ja JSTS JNLI JCoLA News COVID-19  Avg.
Acc. Spearman Acc. Mcc. Acc. Acc.

FINE-TUNING: fine-tuning pretrained BERT under gold data.

Fully Supervised ~ 95.78+0.1 87.47+05  90.19404  40.62+12 9575404  78.49+03 82.82

Few-Shot 61.57+85  14.80+113 37.72+134 -0.85+35 51.98+53 4224494  37.40

PROMPTING: prompt-based LLM learning.

Zero-Shot 94.82+02  68.53+06  41.53+10 2476412  40.27+13 62.76+0.6 57.66

Few-Shot 97.38+0.2 7850420  35.86453  26.004+29 44.82+209 65.44+34 61.72

JAPAGEN: fine-tuning pretrained BERT under pseudo training data generated via LLM.

Zero-Shot 7776454  72.47+01  46.49+15  18.17+17  57.37+2.1 3436464  54.23
w/ KADG 83.24+60  71.49+12  46.04+04 16.22+05 59.00+14  26.29+08  50.38

Few-Shot 62.97+73 72.56+03  50.82+08 14.54+11  62.86+28  43.13+15 51.15

Table 1: Results on six Japanese tasks. Each value is average with standard deviations over five runs. The tasks
that JAPAGEN outperforms zero-shot PROMPTING are in gray . Zero-shot JAPAGEN outperforms zero-shot
PROMPTING on JSTS, JNLI, ad News. Few-shot (Only one sample per class) JAPAGEN can improve performances

on JNLI and News.

zero-shotJAPAGEN only on MARC-ja and News,
but does not improve performance on the other four
tasks. Specifically, KADG achieves a 5.48% higher
score than JAPAGEN on MARC-ja. This suggests
that prompt engineering may be particularly effec-
tive for specific tasks. In JAPAGEN, the few-shot
(© setting consistently outperforms the zero-shot
setting on JSTS, JNLI, News, and COVID-19. No-
tably, the few-shot setting achieves improvements
of 4.33%, 5.49%, and 8.77% over the zero-shot
settings on JNLI, News, and COVID-19, respec-
tively. Injecting task knowledge into prompts or
using few-shot samples can bring generated texts
closer to gold-standard texts, but it may restrict
the diversity of the synthetic dataset. A detailed
analysis is provided in §4.3.

4.3 Additional Analysis

In this section, we analyze JAPAGEN on distribu-
tion, diversity, and label correctness of synthetic
and gold datasets. Then, we qualitatively evaluate
synthetic data for each task.

Distribution. One of the critical factors influenc-
ing task performance is the alignment between the
distributions of gold data and synthetic data. To
observe this alignment, we compare token appear-
ances within their respective datasets in a simple
manner. Figure 2 represents the distribution of
token frequencies within the dataset. We also quan-
titatively assess the alignment using the weighted
Jaccard index, based on 1,000 samples per class
for distribution analysis. In the top and middle sec-

tions of Figure 2, KADG achieves a higher Jaccard
index compared to zero-shot JAPAGEN for MARC-
ja, JSTS, JNLI, and News. Conversely, in the top
and bottom sections of Figure 2, few-shot JAPA-
GEN outperforms zero-shot JAPAGEN regarding
the Jaccard index for JSTS, JNLI, and News. Qual-
itatively, we observe a decrease in the number of
words appearing only in the synthetic dataset, the
blue-only part in Figure 2, with KADG and the few-
shot setting. These results suggest that designing
effective prompts and incorporating a few real sam-
ples can help bring the synthetic data distribution
closer to that of the gold standard.

Diversity & Label Correctness. Synthetic
datasets often exhibit limited diversity because they
are generated using the same prompt input into the
LLM. To assess dataset diversity, we adopt the
methodology of a previous study (Holtzman et al.,
2020) and use the Self-BLEU metric (Zhu et al.,
2018) to compare the diversity of synthetic and
gold datasets. A lower Self-BLEU score indicates
higher dataset diversity. Previous studies have high-
lighted a trade-off between dataset diversity and
label correctness (Chung et al., 2023b; Ye et al.,
2022a). Consequently, we also evaluate label cor-
rectness in the synthetic dataset. To do so, we first
train BERT on the gold training dataset and then
measure accuracy® on the synthetic dataset. Table 2
presents the diversity and label correctness analysis
for each task.

®In JSTS, Mean Squared Error (MSE) is used for measure-
ment.



Gold vs. zero-shot JapaGen
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Figure 2: Distribution of the number of appeared tokens between gold and synthetic dataset. Top: zero-shot
JAPAGEN, Middle: JAPAGEN with KADG, and Bottom: few-shot JAPAGEN. Compared to zero-shot JAPAGEN,
KADG can improve alignment between gold and synthetic dataset on MARC-ja, JSTS, JNLI, and News. Few-shot
JAPAGEN can also improve alignment on JSTS, JNLI, and COVID-19.

Dataset MAR. JSTS* JNLI JCoLA
DIVERSITY (%)
Gold 40.53 7293 7294 56.66
Zero-shot 91.67 74.89  69.97 65.80
w/ KADG 8497 76.12  73.13 78.91
Few-shot 90.25 81.80  78.28 67.15
LABEL CORRECTNESS (%)
Gold 99.06 0.137  98.01 96.28
Zero-shot 99.97 1.540 35.11 66.34
w/ KADG  99.96 1.540  39.37 63.94
Few-shot 99.90 1.094 50.16 63.33

Table 2: Diversity and label correctness of synthetic
dataset. We measure the diversity by Self-BLEU. *In
JSTS, label correctness is measured by MSE.

As shown in the upper part of Table 2, the Self-
BLEU score of the synthetic dataset of zero-shot
JAPAGEN is approximately twice as high, indicat-
ing less diversity compared to the gold dataset in
MARC-ja. However, zero-shot JAPAGEN can syn-
thesize datasets with a diversity similar to the gold
dataset in JSTS, JNLI, and JCoLA. In contrast, in
the lower part of Table 2, the label correctness in
JSTS, JNLI, and JCoLA is not as high as in the gold
dataset. Despite reports suggesting that decreasing
the Self-BLEU score reduces label accuracy and

Zero-Shot o0 KADG Few-Shot
80 80 80 -
. . e\ —
£ 60 S 60 £ 60
E € /*_‘ £ /‘/
£ 40 £ 401 € 401
g g / g ./'__'
20 20 20 -
0 . 0 T 0 T
102 10? 10? 10° 102 10}
data num data num data num
—8— marc-ja —e— J5is nli jcola  —e— news —e— covid-19

Figure 3: Performance transition with synthetic dataset
size on zero-shot, KADG, and few-shot settings.

degrades downstream task performance (Ye et al.,
2022a), in MARC-ja, KADG improves the Self-
BLEU score without compromising label correct-
ness and enhances downstream performance. The
few-shot setting yielded results similar to zero-shot
JapaGen in diversity, but improvements in label
correctness were observed in the two tasks, JSTS
and JNLI.

Data Scaling. We analyze the performance scal-
ing with respect to data size. Figure 3 demonstrates
that for most tasks, performance improves as the
data size increases. However, performance tends
to plateau, as the results with 5,000 samples are
similar to those with 50,000 samples.



Task

Synthesized Text

| Label

MARC-ja

ZOREE > TV RIZEIES Uo7z T | BEALTAYBIZER 2 -72TY, ...
(This product was even more nice than I expected! I'm really glad I bought it. ...)

PAAEIER ISR C U, MEAVEW RIZ, BRICHEBEDRH D E L, o ThHDB L.

(I was extremely dissatisfied with the product. In addition to poor quality, there were delays in delivery. ...)

Positive

Negative

JSTS

TR HEEHTRELZ S ITEATVE T,
(The children are having fun playing in the park.)
HHTES TR PRE TP Z R LATVET,

(The children playing in the park are smiling and enjoying something.)

similarity
=10

JNLI

SERE S LAY TUVHFEDRVTHELEFNT WS,

(A happy couple is walking hand in hand along the seaside.)

HWELPPERIZILAD, FHONBZAZRS LT WS,

(With the blue sky and waves in the background, the light of the setting sun shines on the couple.)

Entailment

RADEKT 5HDHT, BB W0HAE LA ER,
(In the forest where trees grow thickly, bright light streams through the landscape.)
BOWEPP2 D, BAPIFE A LRI DA,

(A solitary tree stands amidst a dense fog, with almost no visibility.)

Contradiction

ZLWARETEOH, JESEOHFIZHE PN L2 DI HBFHPITZERT ER > T WS,
(In the beautiful sunset sky, the outlines of mountains depicted in the landscape painting quietly emerge.)
HFENRIZH PN AT, UK ESNEOHFIZIXILZ DIREHHrN TN E T,

(In the landscape painted at dusk, the outlines of mountains are depicted against a beautifully colored sky.)

Neutral

JCoLA

MIZAE L WEH &R I LT,
(I'will have the sushi I atte with my friends yesterday.)
EHOK, KELBVWLWTI—AVERNE U

Unacceptable

Acceptable

(Last night, I ate delicious ramen with my friends.)

COVID-19

COVID-19DEHMER T, BUHEREBF < 7=DIiE, FUVWP YR DEH. AL OFfifk...
(Here is the latest information on COVID-19. To prevent the spread of infection, it is important,...)

S HIFRADPCOVID-19TER L TWE Lz, DEITEH, RAHETLII L %..

(Today, my friend tested positive for COVID-19. I'm worried, but I hope they recover quickly...)
FRlaaF ANV ADBREPIEKRT B, Y A7 OEAPFRCOEEMZ HAFHL ..
(Amid the spread of the novel coronavirus, I have come to realize once again the importance...)
SHIEBVWLWBHAZARE L DX XDFFZER LA -72TT |

(Today, I had some delicious sushi! The seasonal toppings were especially tasty!)

General Fact
Personal Fact
Opinion

Impression

72DDH U VI MAZFERL £ U7z

News with a more comfortable flight experience.)

H AR DEAMME A28 2 4 PeachAviationld, Z—¥ —IiZ & WPz 7 71 MABRZ IR T 2

(Japan’s low-cost airline Peach Aviation has announced a new initiative to provide users

HADOHERIL, TAS Y 7 ADERBUIFHTH D Z MU SN E Uiz, HiziEio
BARCCHEA U 72 B ORI X b, RIZEAKIEIZ ERLUTWET,

(It has been reported that Japan’s airline, Smax, is experiencing strong performance. The opening of
new routes and the operation of newly purchased aircraft have significantly increased their profits.)

Peachy

S-MAX

Table 3: Synthesized data sample by zero-shot JAPAGEN for each task.

4.4 Qualitative Evaluations

We observe that JAPAGEN was generally able to
synthesize texts in accordance with the tasks. Be-
low, we describe examples where JAPAGEN did
not perform well for each task.

MARC-ja. JAPAGEN tends to generate similar
texts such as "Z D i IE R \W/AEWT T, (This
commodity is good/bad.)". Table 2 also indicates
a high Self-BLEU score for MARC-ja, implying
significant similarity among the synthesized texts.
As indicated by the high score of label correctness
in Table 3, we observe no discrepancy between the
synthesized text and the corresponding label.

JSTS. While labels are continuous values, em-
ploying discrete values as labels in the prompt lim-

its the capability of JAPAGEN to capture detailed
similarity between two sentences. For instance, the
similarity between the two sentences presented in
Table 3 is 1.0. However, from the perspective of
native Japanese speakers, this similarity should be
rated above 3.0. The label correctness score (MSE)
of synthesized texts by JAPAGEN is also too high,
which suggests that several labels are not correct,
compared to that of gold data.

JNLI. JAPAGEN exhibits difficulty distinguish-
ing between "Entailment" and "Neutral". Specif-
ically, text pairs for "Neutral" are frequently mis-
classified as "Entailment". The label correctness
score (Accuracy) of synthesized texts by JAPAGEN
is also too low compared to that of the gold data.



JCoLA. JCoLA is a binary classification task to
predict whether a Japanese text is syntactically ac-
ceptable or unacceptable. Our observation indicate
that the LLM struggles with generating unaccept-
able sentences. Specifically, the expression "&~
- 7z" in Table 3 is not a syntactic error but a typo.
This is because LLMs are trained to generate syn-
tactically correct sentences, leading to difficulties
in generating grammatically incorrect ones.

COVID-19. Synthesized texts correspond to
each label; however, JAPAGEN frequently gener-
ates similar texts (e.g.,"F¥E\" (washing hands), "<
A " (wearing a mask)) within a label. The Self-
BLEU score of synthetic texts in COVID-19 is
much higher, indicating lower diversity compared
to gold data presented in Table 5.

News. This is a news topic classification task
where topic names as labels include entity-like
unique expressions. Synthetic texts frequently fail
to align with these labels, particularly when the la-
bels involve proper nouns or lacks common sense.
For instance, in Table 3, "Peachy" is a category
indicating news targeting women; however, it gen-
erates content about the real airline "Peach (Peach
Aviation)". Similarly, "S-MAX" is a category for
software-related news; however, it frequently pro-
duces content about fictional people or companies
named 'S-MAX’ are often generated.

Throughout all six tasks, while the text synthe-
sized by JAPAGEN has challenges in terms of di-
versity and label consistency, it was generally able
to produce text that aligned with the tasks.

4.5 Overall Results

In this section, we summarize §4.2, §4.3, and §4.4
related to the experimental results and analysis.
The results of zero-shot JAPAGEN, comparing to
few-shot fine-tuning and prompting, showed that it
is particularly effective for classification tasks with
formal text input. This suggests JAPAGEN has the
potential to surpass scenarios with more parame-
ters and more annotations. Additionally, the results
from KADG and few-shot JAPAGEN indicated that
incorporating task knowledge and examples into
the prompts can further enhance its capabilities. On
the other hand, challenges include low label cor-
rectness and the difficulty in synthesizing datasets
with continuous value labels such as JSTS and with
the desired grammatical errors in JCoLA.

5 Conclusion

To investigate the effectiveness of SUPERGEN in a
mid-resource language with characteristics differ-
ent from English, we evaluated SUPERGEN specif-
ically for Japanese tasks, termed JAPAGEN. Our
experimental results demonstrate that JAPAGEN is
particularly effective for classification tasks where
the input consists of formal text compared to few-
shot PROMPTING.

Future Work

* We will examine the efficacy of prompts in
synthesizing high-quality texts for specific
tasks.

* As the development of open LLMs is also
progressing rapidly, we would like to evaluate
JAPAGEN using such LLMs.

Limitation

* Our trained models are unavailable for com-
mercial use because we used OpenAl LLM
for data generation.

* Although we used GPT-3.5 as a pseudo train-
ing data generator, using more advanced LLM
(e.g., GPT-4) might yield different results.

* To examine the impact of SUPERGEN on lan-
guages with distinct characteristics from En-
glish and classified as mid-resource, we se-
lected Japanese as a case study. Future re-
search will address additional languages.

Ethics Statement

While PLMs have demonstrated remarkable ca-
pabilities in text generation and comprehension,
they also pose potential risks or harms (Bender
and Koller, 2020; Bender et al., 2021), such as
generating misinformation (Pagnoni et al., 2021)
or amplifying harmful biases (Prabhumoye et al.,
2018). Our work specifically focuses on leveraging
existing PLMs to generate training data for NLU
tasks, rather than on developing new PLMs or gen-
eration methods. In this study, we comply with the
OpenAl’s terms of use by not disclosing synthetic
data and by refraining from using it for purposes
other than study. Furthermore, this study did not
involve any sensitive data but only used publicly
available data, including MARC-ja, JSTS, JNLI,
JCoLA, News, and COVID-19.
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A Appendix
A.1 Dataset and Task

We describe the six tasks used in our experiment.
The dataset statistics are presented in Table 4.

MARC-ja A binary classification task to predict
the sentiment of product reviews as positive or neg-
ative. The dataset used for this task is derived from
the Japanese subset of the Multilingual Amazon
Reviews Corpus (MARC) (Keung et al., 2020).

JSTS A regression task to predict the semantic
similarity score between two sentences. The score
ranges from O (least similar) to 5 (most similar).
The data for this task are sourced from the Japanese
version of the MS COCO Caption Dataset (Chen
etal., 2015) and the YJ Captions Dataset (Miyazaki
and Shimizu, 2016).

JNLI A three-way classification task to predict
the relation between two sentences. The possible
relations are {contradiction, neutral, entailment}
reflecting the categories utilized in the Stanford
Natural Language Inference (SNLI) dataset (Bow-
man et al., 2015). The data source for this task is
the same as that used for JSTS.

JCoLLA A binary classification task to predict
whether a Japanese text is syntactically acceptable
or unacceptable. For further details, please refer to
(Someya et al., 2024).

News A nine-way classification task to predict
the news topic of a given news text. The news texts
are sourced from Livedoor News. The possible
topics are {Trend Topic News, Sports Watch, IT
Life hack, Consumer Electronics, MOVIE, DOKU-
JOTSUSHIN, S-MAX, HOMME, Peachy}.

COVID-19 A four-way classification task to
predict the factuality of tweets about COVID-
19. The categories of factual information
include "general fact," "personal fact,” "opin-
ion," and "impressions." The data for this task
are sourced from https://www.db.info.gifu-u.
ac.jp/covid-19-twitter-dataset/.

non

A.2 Metrics

Spearman’s Correlation Score This metric
means the consistency between two sets of rank-
ings by calculating the correlation between their
ranks. A score close to 1 indicates strong agree-
ment, meaning the model’s ranked outputs closely
match the true ranked labels.

Dataset Number of Samples

Train Dev. Test
MARC-ja 150,022 37,506 5,654
JSTS 9,960 2,491 1,457
JGLUE JNLI 16,058 4,015 2,434
JCoLA 4,000 1,000 865
News 4,375 625 1,475
COVID-19 4,375 625 7,547

Table 4: Dataset statistics.

Dataset News COVID-19
DIVERSITY (%)
Gold 62.97 43.14
Zero-shot 79.90 84.31
w/ KADG 82.93 81.91
Few-shot 79.25 83.40
LABEL CORRECTNESS (%)
Gold 98.89 90.87
Zero-shot  49.84 60.80
w/ KADG 43.61 58.86
Few-shot 57.33 64.43

Table 5: Diversity and label correctness of synthetic
dataset in News and COVID-19.

Matthews Correlation Coefficient (MCC)
MCC measures the quality of binary classifications
by considering true positives, false positives, true
negatives, and false negatives in a balanced way.
Its value ranges from -1 to 1, where 1 indicates
perfect prediction, and -1 a complete inverse
relationship.

Self-BLEU This metric calculates BLEU scores
for generated text samples against other samples
within the same set to measure diversity. Lower
Self-BLEU indicates more diverse outputs.

A.3 Additional Results

The diversity (Self-BLEU) and label correctness of
News and COVID-19 are shown in Table 5. While
the diversity of News and COVID-19 in few-shot
is lower than that in zero-shot, few-shot JAPAGEN
can improve the label correctness of News and
COVID-19.

A4 Prompt for Each Task

For prompt details used in our experiments,
please refer to https://github.com/retrieva/
JapaGen due to the page limitation.
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