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Abstract
Aspect-Based Sentiment Analysis (ABSA)
has seen significant advancements with
the introduction of Transformer-based mod-
els, which have reshaped the landscape of
Natural Language Processing (NLP) tasks.
This paper introduces enhancements to the
Instruct-DeBERTa model which is one of
the leading ABSA models for ABSA. It takes
a hybrid approach combining the strengths
of InstructABSA for Aspect Term Extrac-
tion (ATE) and DeBERTa-V3-baseabsa-V1 for
Aspect Sentiment classification (ASC). In
this work, we enhance Instruct-DeBERTa
by introducing category classification through
a cosine similarity-based method, compar-
ing aspect embeddings with predefined cat-
egories. Also for InstructABSA and
DeBERTa-V3-baseabsa-V1, we investigate dif-
ferent configurations by adding a linear layer
followed by ReLU activation, incorporation
of regularization and optimization of atten-
tion heads. These modifications were tailored
specifically for the data sets in the hospital-
ity domain. Our empirical evaluations, run
on diverse datasets, have shown that these en-
hancements significantly raise the performance
of Instruct-DeBERTa for hospitality domain
datasets.

1 Introduction

The growing interest in NLP makes ABSA an im-
portant building block for sentiment detection and
investigation using textual information (Mudalige
et al., 2020; Rajapaksha et al., 2020). Unlike tra-
ditional approaches to sentiment analysis, where
just the estimate of polarity value was estimated,
ABSA focuses on fine-grained opinions expressed
on some features or attributes offered by products
or services (Rajapaksha et al., 2021; Jayasinghe
et al., 2021). This is especially important for any
business wishing to understand customer feedback
better and improve products and services based on
the overall opinion of the consumers.

It was only in the most recent years that one wit-
nessed substantial progress in machine and deep
learning applied to ABSA methodologies (Rajapak-
sha et al., 2022; Samarawickrama et al., 2022).
Early lexicon-based approaches failed to properly
account for context and ambiguity, while later-
introduced machine learning models were most
of the time heavily reliant on manual feature engi-
neering and lacked generalization across domains.
Significant progress has been associated with its
application, especially through models such as re-
current neural networks, long short-term memory
networks, and convolutional neural networks. But
still, capturing long-term dependencies and com-
plex syntactic structures effectively remains hard.

Transformer-based architectures, most notably
exemplified by BERT, revolutionized the field
by using attention mechanisms to capture con-
textual relationships from all directions within
a sentence. Having advanced their ability to
further comprehend complex linguistic patterns
and relations, these models set new records on
many NLP tasks. In this line of research, state-
of-the-art models that emerge are InstructABSA
for ATE and DeBERTa-V3-baseabsa-V1 for
ASC. The work presented by Jayakody et al.
(2024b) introduces Instruct-DeBERTa —
a hybrid model that combines the best of
InstructABSA (Scaria et al., 2024) in ATE with
those of DeBERTa-V3-baseabsa-V1 (Yang et al.,
2023, 2021) in ASC. The model was constructed to
perform the joint task of aspect extraction and sen-
timent polarity detection within a single pipeline.
Evaluation across the SemEval 2014-2016 restau-
rant reviews ( Res-14, Res-15, and Res16 )and
the SemEval 2014 laptop dataset (Lap-14), has
demonstrated that Instruct-DeBERTa is better by
quite a margin than any other model in accuracy
and robustness and is hence likely state-of-the-art
for the joint task of ATE and ASC.

However, there are always some aspects that



F1 Score (%)
Model Res-14 Res-15 Res-16

ATE ASC ATE ASC ATE ASC
InstructABSA (Scaria et al., 2024) 92.10 --- 76.64 --- 80.32 ---
DeBERTa-V3-base-absa-v1.1 (Yang et al., 2023, 2021)* --- 90.94 --- 89.55 --- 83.71
DeBERTa-V3-base-absa-v1.1-Improved version --- 91.62 --- 86.79 --- 85.88
Instruct-DeBERTa (Single task)* 91.39 88.63 75.13 81.26 77.79 79.35
Instruct-DeBERTa-Improved version (Single task) 91.39 89.22 75.13 81.14 77.79 80.61
Instruct-DeBERTa (Joint task)* 80.78 --- ---
Instruct-DeBERTa-Improved version (Joint task) 81.64 68.93 72.23

Table 1: F1 scores for the selected models individually and when pipe-lined. Note*: These F1 scores were taken
from Jayakody et al., 2024b.

remain quite underdeveloped in the case of
Instruct-DeBERTa. In this work, we make a few
substantial improvements beyond the base model.
We include a component for category classifica-
tion with cosine similarity to classify the extracted
aspects by comparing them with the pre-trained
embeddings of categories. This is then plotted on a
Voronoi diagram to clearly and intuitively provide
insight into how the aspects are spread across dif-
ferent categories. Furthermore, we did extensive
hyper-parameter tuning and architectural changes
of our model with availabl for especially on the
DeBERTa-V3-baseabsa-V1 model—to ensure that
our trained model works most effectively on the
hospitality domain. This also increases the capacity
to classify sentiment polarities accurately. These
numerous innovations further open up the horizons
of ABSA in order to have a more detailed and pre-
cise model for the analysis of customer feedback.

2 Background

Recent studies have explored advanced methodolo-
gies to enhance the efficiency and scalability of
ABSA models. These include using the Quantized
Low-Ranking Adaptation (QLoRA) (Dettmers
et al., 2023) approach to Llama 2 (Touvron et al.,
2023) fine-tuning, utilizing the SETFIT (Tunstall
et al., 2022) framework for few-shot learning,
and implementing FAST_LSA_T_V2 (Yang and Li,
2024) within the PyABSA (Yang et al., 2023) frame-
work. Among them, the best result was produced
by the FAST_LSA_T_V2 model with 87.6% and
82.6% on the Res-14 and Lap-14 datasets, re-
spectively. None of these models outperformed
the reported LSA+DeBERTa-V3-Large (Yang and
Li, 2024) model by the accuracy of 90.33% and
86.21% on the same datasets (Jayakody et al.,
2024a). This study mainly focused on single-task
ABSA in the effort of establishing a hybrid model
for performance in certain domains such as restau-
rants and laptops.

In general, there are two main underlying ABSA
subtasks: Aspect Term Extraction and Aspect Sen-
timent Classification. Transformer-based models
have significantly advanced the performance of
these tasks. Very recently, the authors of Jayakody
et al., 2024b have therefore proposed an ABSA
pipeline chain based on Transformer-based models
that will automatically extract aspects and perform
the sentiment analysis in the text data.

In the present review, the best model perfor-
mance was identified for each of the subtasks. How-
ever, the instructABSA has performed the best on
the ATE task so far, with 92.10% F1 on the Res-
14 dataset, outperforming every other model that
also had equally very good performance for all
other datasets such as Res-15, Res-16, and Lap-14,
showing strong generalization capability across do-
mains. Among these, DeBERTa-V3-base-absa-v1
was the best in the general ASC task, showing
the highest F1 score on all datasets. For exam-
ple, the Res-14 dataset alone recorded 90.94%.
Its performance was considered quite good for all
datasets across Res-15, Res-16, and Lap-14, which
were from different domains. Based on these re-
sults, a hybrid model, termed Instruct-DeBERTa,
was proposed, consisting of a pipelined combi-
nation of the InstructABSA model for ATE and
the DeBERTa-V3-base-absa-v1 model for ASC,
where the benefits of both models are sought to be
utilized in accomplishing the joint ABSA task.

Instruct-DeBERTa demonstrates strong perfor-
mance across various sentiment classification tasks,
with most of the extracted and classified aspects
achieving high F1 scores, underscoring the model’s
precision and stability. As illustrated in Table 1,
although there was a slight decrease in some F1
scores due to the pipelining process referenced in
Jayakody et al., 2024b, the hybrid model’s over-
all performance remained resilient. Particularly,
the model performs exceptionally well in the joint
task, achieving pair extraction F1 scores of 80.94%



for the Lap-14 dataset and 80.78% for the Res-
14 dataset. These results underscore the model’s
durability and efficacy by showing that it can at-
tain higher accuracy than what has been previously
reported for these datasets.

3 Methodology

Under this section, we discuss on optimizing the
performance of Instruct-DeBERTa for enhanced
efficiency in ABSA in the hospitality domain. Rs-
14, Res-15, and Res-16 are the main data sets that
we utilize in the analysis to focus on this domain.
More importantly, a new mechanism for category
classification is introduced, and the model architec-
ture parameters are fine-tuned. The overall struc-
ture of our model is shown in Fig. 1.

First, we developed a categorization classifica-
tion method through which the identified aspects
were allocated to the established categories, using a
cosine similarity-based methodology. Further elab-
oration of this development will enhance the accu-
racy of analysis and allow better structuring and in-
terpretation for the sentiments associated with these
aspects. This is undertaken for visualization using
Voronoi diagrams in order to exactly understand
how such aspects distribute within the categories
in a very clear and intuitive way. Based on this
work, we fine-tuned some additional model archi-
tecture parameters for the dropout rates, the atten-
tion mechanism, layer normalization, and several
others, within the DeBERTa-V3 and InstructABSA
models. This was done to further compress more
improvements into the model with respect to accu-
racy and robustness in the classification of aspects
and sentiment polarity.

3.1 Integrating aspect categorization

In order to improve the Instruct-DeBERTa model,
we embedded aspect category separation within the
domain of sentiment analysis. The model catego-
rizes each aspect term identified within a sentence
into predefined categories, using an embedding-
based similarity approach. Additionally, we visu-
alized the relationships between these aspects and
their categories using t-SNE dimensionality reduc-
tion and Voronoi diagrams. This whole process
was explicitly done without training the model on
a certain dataset that would contain both aspects
and categories, but categorization has been purely
based on similarities between embeddings.

The core functionality of the model is to

categorize aspect terms into specific categories.
This was achieved using an embedding-based
method where each aspect term is embed-
ded into a high-dimensional vector space us-
ing GIST-Embedding-v0 (Solatorio, 2024). This
model was chosen since it was the best performing
embedding model with the least amount of model
parameters and embedding dimensions. This ad-
dition of the embedding model made the col-
lective hybrid model Instruct-DeBERTa a sin-
gle triple task model consisting of InstructABSA,
DeBERTa-V3 and GIST-Embedding-v0. The aspect
term is then categorized based on its similarity to
predefined category embeddings.

The categorization process is mathematically for-
malized as follows:

easpect = Encode(aspect) (1)

Where:

• easpect represents the embedding of the aspect
term, obtained using the embedding model’s
encode function.

The similarity between the aspect embedding
and each category embedding is calculated using
the cosine similarity function:

CS(easpect, ecategory) =
easpect · ecategory

∥easpect∥∥ecategory∥
(2)

Where:

• CS stands for Cosine Similarity

• ecategory is the embedding of a predefined cat-
egory.

• · denotes the dot product, and ∥ · ∥ represents
the vector norm.

The aspect term is assigned to the category with
the highest average cosine similarity score:

Best Category = arg max
category

1

n

n∑
i=1

CS(easpect, ecategory) (3)

Where:

• n represents the number of embeddings per
category.

This approach ensures that each aspect term is
grouped with the category that it is most semanti-
cally aligned with, according to the vector repre-
sentations learned by the embedding model. Also,



Figure 1: New structure of Instruct-DeBERTa

this categorization process was carried out without
training the model on a specific dataset that explic-
itly links aspects to categories. Instead, it relied
entirely on the inherent similarities between embed-
dings in the vector space, demonstrating the ability
of pre-trained embeddings in capturing semantic
relationships.

3.2 Improvements to the existing architecture
of Instruct-DeBERTa

Under this section, the different changes that we
experimented are being discussed for both the as-
pect extraction and the sentiment polarity model
which will eventually increase the performance of
the collective hybrid model Instruct-DeBERTa.
We explored a series of architectural modifi-
cations and regularization techniques on the
Instruct-DeBERTa model to enhance its per-
formance in sentiment analysis tasks. These
modifications included adding an extra feed-
forward layer, implementing additional regulariza-
tion methods, and adjusting the number of atten-
tion heads. The changes were tested for both the
DeBERTa-V3-baseabsa-V1 which performs ASC
and InstructABSA which performs ATE. Several
of these interventions resulted in improvements to
the model’s weighted F1 score, highlighting the po-
tential of fine-tuning and architectural adjustments
to optimize models with pre-trained weights for
specific NLP tasks. This approach emphasizes the
value of achieving meaningful performance gains
with minimal retraining, reducing the need for ex-
tensive re-training with each architectural change.

3.2.1 Adding a linear layer with ReLU and
regularization for ASC enhancements

In our experiment, we utilized the
DeBERTa-V3-base-absa-V1 model for the ASC
task. The original model’s classifier architecture
consisted of a linear layer that projected the output
of the transformer layers into a higher-dimensional
space, followed by a GELU activation function to
introduce non-linearity. This was then followed by
a final linear layer that reduced the dimensionality
to produce logits corresponding to the three
sentiment classes (negative, neutral, positive). To
explore potential performance improvements, we
modified this architecture by adding an additional
feed-forward layer in the classifier. Specifically,
we introduced an extra linear layer followed by a
ReLU activation function after the first linear layer
in the classifier. This additional linear layer, which
maintained the same output dimensionality, was
inserted to perform further transformations of the
feature space. The ReLU activation added another
layer of non-linearity, enhancing the model’s
ability to capture complex patterns. By extending
the classifier with this deeper architecture, we
aimed to increase the model’s capacity for more
sophisticated feature representations, potentially
leading to more accurate classification decisions.
There are also additional theoretical grounds
for setting feed-forward layers in a universal
approximation theorem. The theorem says a neural
network with enough depth and non-linearity can
approximate any continuous function, and because
it adds one more degree of freedom to the model
by being flexible in how it models the decision



boundary among classes, this might lead to better
generalization.

The weighted F1 score, when measured after-
wards, improved slightly for Res-14 and Res-15,
while it remained the same for Res-16. In addi-
tion to that, this represents a marginal yet critical
movement toward effectiveness in classification,
reflecting the change in realization. In other words,
this leads to another layer, hence making the model
more effective in capturing base data distribution
and representing that, which finally improves pre-
diction accuracy. This documented increase is quite
minor in the F1 score but crucial in noting how it
may make the model’s architecture important to en-
sure performance is optimized maximally towards
the task. Now, with more fine-grained decision-
making, that was due to the added feed-forward
layer; it brought just a better fit of the model’s
predictions to the actual labels. This illustrates
potential gains of deviation from the base model
for general NLP problems in driving up perfor-
mance. However, these modifications also come
with potential disadvantages. The added layers
and parameters increase the model’s complexity,
which introduces a risk of over-fitting, especially
if the training data is not large or diverse enough
to justify the increased capacity. Over-fitting can
cause the model to learn patterns specific to the
training data that do not generalize well to unseen
data, potentially undermining the benefits of the
added complexity (Aliferis and Simon, 2024).

To address the potential over-fitting introduced
by adding an extra linear layer and ReLU activation
to our model, we explored various regularization
techniques. Realizing that the enhanced model
complexity led to over-fitting, we resorted to hav-
ing L2 (ridge) regularization in the classifier of the
model (Ying, 2019). This is a method by which
large values of weights are penalized so that the
model generalizes better to unseen data and does
not become very adapted to any specific parame-
ters. n addition to L2 regularization, we also exper-
imented with adjusting the dropout rate to further
mitigate over-fitting. So we validated for dropout
rates between 0.1 and 0.5, and in the process for the
range, there wasn’t much significance in changing
the accuracy with no re-training. Based on these
observations, we selected a dropout rate of 0.3 as
a balanced choice for future use. This rate is in-
tended to provide sufficient regularization without
overly compromising the model’s ability to learn
from the training data.

On the other hand, it is also necessary to recog-
nize the threats related to high dropout. Although
dropout contributes to model regularization, too
much dropout leads to under-fitting: the model
poorly learns because the random exclusion of in-
formation is too much during the training proce-
dure. This type of situation may marginally im-
pede the ability of the model to fit the training data
properly, primarily if the dataset does not possess
enough size or diversity. In the process, our strategy
for mitigating over-fitting included the implemen-
tation of L2 regularization in concert with careful
tuning of the dropout rate. These modifications
will create a balance between the improvement of
generalization and maintaining the learning capa-
bility of the model so that it is resilient for use in
the future. By incorporating these regularization
techniques, we aim to enhance the strength and
suitability of the model for future use to ensure it
performs its tasks efficiently without over-fitting
on the training data.

3.2.2 Increasing the number of attention
heads for ASC enhancements

For sentiment classification, we also explored the
impact of varying the number of attention heads
in the transformer model architecture on the effec-
tiveness of the classification. Attention heads are a
crucial component of the multi-head self-attention
mechanism in transformer models. Each attention
head operates as an independent set of attention
mechanisms that learn to focus on different parts or
aspects of the input sequence simultaneously. This
allows the model to capture diverse patterns and re-
lationships in the data, which are essential for tasks
like sentiment classification where multiple con-
textual cues contribute to the final classification.
The number of attention heads determines how
many separate attention distributions the model can
learn in parallel. Increasing the number of attention
heads allows the model to capture more complex
patterns and dependencies in the dataset, as each
head can focus on different elements of the input
sequence (Nguyen et al., 2022).

3.2.3 Improvements done for the aspect term
extraction model

In our study related to the aspect term extraction
task, we used the same set of architectural changes
and a set of regularization methods as described
in the previous section for the transformer model-
InstructABSA, but with pre-trained weights with-



out fine-tuning. In any case, a similar observation
was that none of the changes resulted in substan-
tial improvements in the weighted F1 score of the
development set for aspect term extraction.

The far less varied F1 score values suggest that
the aspect term extraction task may be more sensi-
tive to model architecture and applied regulariza-
tion techniques than sentiment classification. More-
over, it does not show further improvements in
performances due to these modifications, which
might indicate that the intrinsic characteristics of
aspect term extraction benefited less from the ap-
plied changes than what was the case for senti-
ment analysis tasks. This is likely because of the
specialty of the aspect term extraction task itself,
which may rely far more on the other dimensions
of model performance, or require much more archi-
tectural change and regularization than afforded by
the experiments.

3.2.4 Integrating the combined model
In the final stage, the enhanced
DeBERTa-V3-baseabsa-V1 ASC model, in
which modifications were introduced such as
adding a linear layer with ReLU activation with
regularization methods and changing attention
heads, was combined with the InstructABSA
ATE model to make the improved version of
the combined hybrid model, Instruct-DeBERTa.
This was supposed to integrate both models’
benefits and, as such, integrate their capabilities
into one package for comprehensive aspect-based
sentiment analysis.

4 Results

Following few key changes to the model, such
as, adding an extra linear layer, ReLU, applying
regularization methods, and tuning attention head
settings, we observed improvements on multiple
datasets. These changes were for enhancing the
capability of the model to learn complex patterns
while retaining its generalization power on pre-
viously unseen data. In the following sections,
we present a thorough discussion of weighted F1
scores discussing various gains witnessed for the
datasets, Res-14, Res-15, and Res-16.

4.1 For integrated aspect categorization
To provide more understanding of the relationships
between aspect terms and their categories, we vi-
sualized the embeddings using t-SNE for dimen-
sionality reduction and Voronoi diagrams. t-SNE

(t-Distributed Stochastic Neighbor Embedding) is
a non-linear dimensionality reduction technique
that projects high-dimensional data into a 2D or
3D space while preserving the local structure of
the data. The embeddings of the aspect terms and
categories were reduced from their original high-
dimensional space of 768 dimensions to 2D for
visualization purposes.

The below cost function is optimized according
to the t-SNE algorithm, the function measures the
divergence between the probability distributions of
the pairwise similarities in the original and target-
dimensional spaces:

C =
∑
i

∑
j

Pij log
Pij

Qij
(4)

Where:

• Pij is the joint probability that points i and j
are neighbors in the high-dimensional space.

• Qij is the joint probability in the low-
dimensional space.

By minimizing this cost function, t-SNE ensures
that similar points in the high-dimensional space
remain close in the 2D projection. The 2D em-
beddings of the categories and aspects were then
used to generate a Voronoi diagram. A Voronoi
diagram partitions the space into regions based on
the distance to a set of pre-defined points, known
as Voronoi sites.

Mathematically, the Voronoi region Vi associ-
ated with a category i is defined as:

Vi = {x ∈ R2 | ∥x− ei∥ ≤ ∥x− ej∥ for all j ̸= i} (5)

Where:

• ei is the 2D embedding of category i.

• ∥x − ei∥ is the Euclidean distance between
any point x and the embedding ei.

The Voronoi diagram as in Figure 2 provides a
clear visualization of how each aspect term (pro-
jected into the same 2D space) relates to the prede-
fined categories. The regions help in understanding
which categories dominate specific areas of the em-
bedding space, and how close or distant different
aspects are from each other and their respective
categories.



Figure 2: Voronoi diagram to visualize the aspect cate-
gories

Under category separation, we mainly focused
on the hospitality domain. The pre-defined cate-
gories that we used here were cleanliness, facilities,
food and dining, booking process, overall experi-
ence, room quality, room service, value for money
and staff service. We then manually checked the ac-
curacy of the category separation for 100 reviews
which were publicly available in the internet, in
which we obtained an accuracy of 85%. In the fu-
ture, we hope to build our own data set for category
separation to formally observe the accuracy levels.

4.2 Results after architectural improvements
for Instruct-DeBERTa

This section highlights the enhancements in
weighted F1 resulting from the changes discussed
in the methodology section. The modifications
are carefully tested to ascertain their impact on
model performance with respect to ABSA in the
hospitality industry. A comparison of F1 scores
between the enhanced and standard models clearly
underlines the efficiency of the revised method-
ology. The upgraded model gave better overall
performance proving that its performance enhance-
ment was prominent, and thus the precision and
generalization capability are significantly higher.

4.2.1 After adding a linear layer with ReLU
and regularization

Initially, the weighted F1 scores achieved for Res-
14, Res-15, and Res-16 were 90.94%, 89.55%, and
83.71% respectively as in Table 1. After adding an
extra linear layer followed by a ReLU activation
function after the first linear layer in the classifier,
it was observed that the F1 scores for Res-14 and
Res-15 improved to 90.99% and 89.56% respec-
tively while the F1 score for Res-16 remained the
same. Changing the dropout rates and applying L2

regularization for the classifier did not result any
change in the F1 scores but they were added to the
model to overcome over-fitting as discussed in the
methodology section.

4.2.2 After Increasing the number of
attention heads

We tested the model with various numbers of at-
tention heads, starting from 8, 12, 16, 24, 32, 48,
and 64 heads, respectively. The default value was
12 attention heads, which aligns with the model’s
hidden state size of 768. In transformer models,
the number of attention heads must be a divisor of
the hidden size to ensure that each head receives
an equal portion of the hidden representation. This
is why divisors of 768 were chosen for the exper-
iment—ensuring that the hidden state size could
be evenly split across the attention heads without
causing errors during processing. The F1 scores
were calculated by varying the number of attention
heads for all three data sets as in Figure 3.

For Res-14, the resulting weighted F1 scores
were 0.8462, 0.9099, 0.9162, 0.9131, 0.8497,
0.7565, and 0.7249 for attention heads 8, 12, 16,
24, 32, 48, and 64 respectively. These results indi-
cate that increasing the number of attention heads
initially enhances the model’s ability to learn and
generalize by capturing a wide range of attention
patterns. Specifically, with 12,16, and 24 attention
heads, the model achieved the highest F1 scores of
0.9099, 0.9162, and 0.9131 respectively. This sug-
gests that at these levels, the model achieves an op-
timal balance, providing enough parallel attention
distributions to capture complex data dependencies
without overwhelming its learning capacity. How-
ever, as the number of attention heads increased
above 16, the performance began to decline. The F1
scores dropped significantly as the attention heads
were increased to 32, 48, and 64. The reason
for the decline is due to the over-parameterization
of the model. As the attention heads increase, the
model will begin to overfit for the training data and
lose its ability to generalize for unseen data (Voita
et al., 2019). Additionally, when the model is made
complex with too many attention heads, each head
may receive fewer computational resources, lead-
ing to weaker attention distributions and less effec-
tive learning (Michel et al., 2019). Our findings
indicated that for the ASC task of Res-14, 16 at-
tention heads provided the best performance, re-
sulting in the highest F1 score of 0.9162. This was
achieved by using the same pre-trained weights ini-



(a) Res-14 (b) Res-15 (c) Res-16

Figure 3: Variation in F1 score with an increase in the number of attention heads

tially trained with 12 attention heads, demonstrat-
ing that careful tuning of the model architecture can
lead to significant performance improvements with-
out the need for extensive retraining. In addition to
that for the Res-16 data set the same phenomenon
was observed, where unlike in Res-14 the peak F1
score was achieved at 24 attention heads while for
Res-15 the peak was observed at the default 12
attention heads. To balance these variations and
optimize performance across different datasets, we
selected the mid-value of 16 attention heads for our
final model.

4.2.3 Joint task F1 scores for improved
Instruct-DeBERTa

The performance of the integrated model was quan-
tified for F1 scores on the joint task, hence bearing
insights into important perspectives about the im-
provement in overall performance achieved by such
integration. Here joint Task F1 Scores refers to the
performance metric calculated for the entire pair
of aspect and sentiment as a combined task, rather
than evaluating them separately. In this context,
the model’s performance is assessed based on its
ability to correctly identify both the aspect term
and its corresponding sentiment in a sentence. This
means that the F1 score reflects the model’s accu-
racy for not just extracting the correct aspect but
also assigning the correct sentiment to the respec-
tive aspect. As in Table 1 for the single task of
the combined model, F1 score values remained the
same across the three data sets for the ATE task
since no architectural changes were made. How-
ever, the ASC F1 Scores increased for Res-14 and
Res-16 significantly with the changes. The ASC F1
value remains the same for Res-15 since it peaks
at 12 attention heads and we have used 16 to suit
all the data sets as a whole. Furthermore, as ob-
served in Table 1 the joint task F1 score for Res-14
also improved by 1.14%. The joint task F1 scores
were not previously calculated for the other two

data sets, hence we calculated them and included
in Table 1. In addition to those, we checked the
F1 score for the Lap-14 dataset as well. It also
improved from 80.94% (Jayakody et al., 2024b)
to 80.97%. The improved version shows promis-
ing results across multiple domains, demonstrating
that it works well for other domains too. However,
the model can be further customized to optimize
its performance when the domain changes, allow-
ing for better adaptation and fine-tuning to specific
domain characteristics.

5 Conclusion

In this work, we aimed at improving the
Instruct-DeBERTa model by focusing its base
models individually. The improvements added
were a linear layer followed by ReLU activation,
incorporation of regularization, optimization of at-
tention heads, and adding an aspect category extrac-
tion capability. Importantly, this was done without
retraining the model; thus, it demonstrates our ap-
proach toward enhancing the model’s performance
without losing those strengths it previously demon-
strated. These strategic adjustments indeed caused
significant enhancement in the weighted F1 scores
across the datasets, especially in the hospitality
domain. The model was further augmented by in-
corporating the function of aspect category extrac-
tion that allowed the model to go beyond just the
identification of aspects and sentiments but instead
classify aspects effectively. Improvement within
the Instruct-DeBERTa hybrid model concretizes
a path toward realizing significant accuracy gain
on domain-specific sentiment analysis applications.
Further optimizations can be explored in future
studies and this method can be applied to other
domains for the expansion of applicability and ef-
fectiveness as well.
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