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Abstract
This paper proposes a new data selection
strategy, the Least Pseudo-Labeling Sta-
tus (LPLS) strategy, for semi-supervised
active learning (SSAL). A selection strat-
egy is used in the active learning phase in
SSAL to ask for the gold labels for a lim-
ited amount of unlabeled data. The pro-
posed LPLS strategy considers the pseudo-
labeling status resulting from the semi-
supervised learning phase in SSAL. Our
SSAL method is based on JointMatch (Zou
and Caragea, 2023), the state-of-the-art
SSL method, which uses multiple mod-
els for automatic pseudo-labeling for unla-
beled data. The proposed strategy utilizes
these multiple models to measure the label
uncertainty of a data point based on not
only the intra-model uncertainty (entropy)
but also the inter-model uncertainty (diver-
gence). Our text classification experiments
on three common benchmark datasets con-
firm that our proposed SSAL method using
the LPLS strategy outperforms both Joint-
Match and AcTune (Yu et al., 2022), the
state-of-the-art SSAL.

1 Introduction
The large amount of labeled data is a key
to the successful results in text classification.
However, not everyone can afford the high an-
notation costs required to train a model in
real-life applications. Semi-supervised learn-
ing (SSL) and active learning (AL) mitigate
this annotation cost issue. SSL is to automati-
cally leverage large unlabeled data during the
training process based on the initially provided
small labeled data. On the other hand, AL
is a human-in-the-loop approach, which itera-
tively queries the gold label for a data point
in unlabeled data to the oracle (typically, a
human annotator) during training. By select-
ing the most informative data points according

to a particular selection strategy, AL tries to
achieve the highest performance with a mini-
mum annotation cost.
Semi-supervised active learning (SSAL) in-

tegrates SSL and AL (Wang et al., 2017; Gao
et al., 2020; Yu et al., 2022). As AL and SSL
only select data from one side in terms of con-
fidence score, that is, SSL selects data with
high confidence and AL selects data with low
confidence, basically each of them can work in-
dependently of the other in a complementary
way. However, we speculate that a synergy
can be achieved by coupling them more tightly.
Specifically, in previous studies, the perfor-
mance of SSL methods is affected by pseudo-
labeling. Therefore, we explore the possibility
of helping SSL by gaining ground-truth data
from AL with a novel selection strategy that
considers SSL.
This paper proposes the least pseudo-

labeling status (LPLS) selection strategy, an
SSAL selection strategy considering the SSL
status of pseudo-labeling, for a better inte-
gration of SSL and AL in SSAL. Pseudo-
labeling (Xie et al., 2020; Sohn et al., 2020;
Zhang et al., 2021; Zou and Caragea, 2023)
generates the artificial labels for data whose
predictions are confident. In other words, the
data whose confidence scores pass the thresh-
old will gain pseudo-labels. Our proposed over-
all SSAL method, which is illustrated in Fig-
ure 1, is based on the state-of-the-art (SOTA)
SSL method, JointMatch (Zou and Caragea,
2023). In the AL part of our proposed SSAL
method, priority is given to the class with
the fewest pseudo-labeled instances from Joint-
Match. Then the LPLS strategy selects the
most uncertain data point within the priori-
tized class. Additionally, for a better uncer-
tainty estimation, multiple models used and
tuned in JointMatch are also utilized, as a



Figure 1: Overview of our SSAL method, which embeds the JointMatch SSL method (Zou and Caragea,
2023) in an AL framework. The upper half of the figure corresponds to JointMatch, which originally
uses only two classification models (nets), while our version allows more than two nets (Multi-Nets). The
lower half is the AL part, in which we use our LPLS selection strategy for querying the oracle. The LPLS
strategy refers to Pseudo-Labeling Status and reuses the nets from JointMach SSL.

variant of query-by-committee (QBC) selec-
tion strategy (Seung et al., 1992), which lever-
ages multiple models to select the data with
the largest disagreement between the models.
The final classification model is also obtained
as an ensemble of the trained multiple models.
We evaluate our proposed LPLS-based

SSAL method on three benchmark datasets,
comparing it against JointMatch and the
SOTA method AcTune (Yu et al., 2022). In
our experiments, our proposed SSAL method
outperfroms all baselines.
The contributions of this paper are: 1) the

new effective AL selection strategy LPLS that
considers the pseudo-labeling status of SSL in
SSAL, 2) the new SOTA SSAL method that
utilizes the proposed LPLS strategy, 3) ad-
ditional experiments demonstrate that using
more than two models does not lead to a bet-
ter result while considering both intra-model
uncertainty (entropy) and inter-model uncer-
tainty (divergence) does.

2 Related Work

2.1 Semi-Supervised Learning
Semi-Supervised Learning (SSL) is a learn-
ing method to reduce the annotation cost by
leveraging a large amount of unlabeled data.
UDA (Xie et al., 2020) proposes the combina-
tion of data augmentation techniques such as
backtranslation and a consistency regulariza-

tion to reduce the distance of predicted results
between different augmented data. MixText
(Chen et al., 2020) proposes TMix, which in-
terpolates labeled and unlabeled data to over-
come the limitation of using them separately.
FixMatch (Sohn et al., 2020) takes the pre-
diction results of weakly augmented data as
the pseudo-label of strongly augmented data.
FlexMatch (Zhang et al., 2021) proposes cur-
riculum pseudo-labeling which applies flexible
thresholds adjusted by pseudo-labeling status
(PLS). JointMatch (Zou and Caragea, 2023)
trains two differently initialized models and
uses them to teach each other in a cross-
labeling manner to alleviate error accumula-
tion. In SSL of our SSAL framework, we uti-
lize pseudo-labeling and consistency regular-
ization. Furthermore, based on JointMatch,
we construct our SSAL framework as multi-
nets framework and we utilize PLS not only
in SSL but in AL to select the helpful data for
SSL. We also take JointMatch as one of our
baselines.

2.2 Active Learning
Active Learning (AL) is a learning method
that achieves high performance with minimal
labeling cost by querying data with the ora-
cle. AL can selectively query the most in-
formative data from a large pool of unla-
beled data and send the selected data to be
annotated by the oracle. There are vari-



Algorithm 1 The Least Pseudo-Labeling Status selection strategy
1: Input: s, the pseudo-labeling status
2: Input: NC , the number of classes
3: Input: U = {ui | i ∈ (1, 2, . . . , NU )}, a set of unlabeled data
4: Input: M = {mi | i ∈ (1, 2, . . . , NM )}, a set of differently initialized models
5: Output: the data point to query
6:
7: // Set the target query class with the least pseudo-labeling status value
8: query_class ← argmin(s)
9:
10: // Calculate the uncertainty of each data point
11: D← {} // a set to hold the data with content, uncertainty, and prediction results
12: for u in U do
13: P← {Pj = predict(mj , u) | j ∈ (1, . . . , NM )} // all models predict for the unlabeled data

14: entropy←
− 1

NM

∑NM
j=1

∑NC
c=1 Pc

j log(Pc
j ) // calculate the mean entropy

15: divergence← 1

NM (NM − 1)

∑NM
i=1

∑NM
j=1,j ̸=i KLD(Pi||Pj) // calculate the divergence

16: uncertainty← entropy · divergence // calculate the uncertainty
17: prediction← argmax( 1

NM

∑NM
i=1 Pi) // obtain the prediction result (class index number)

18: d← (u, uncertainty, predicition); D ← D ∪ {d}
19: end for
20:
21: // Select the data point to query
22: L← sortByUncertainty(D) // sort D in descending order based on the uncertainty of each data point
23: for di in L do
24: if di.prediction = query_class then
25: return di // di is the i-th element of sorted list L
26: end if
27: end for
28: return d1 // return the data point with the highest uncertainty because we did not find a data point which

matches the query class

ous query strategies in AL. In our proposed
method, we apply uncertainty-based sampling
and the disagreement-based strategy. Uncer-
tainty sampling prefers the most uncertain in-
stances and disagreement-based strategies uti-
lize multiple models to select the data which
has the most disagreement among the mod-
els. The most well-known disagreement-based
method is QBC (Seung et al., 1992) which
trains a distinct group of models to select the
data with the greatest disagreement. In our
work, we merge both QBC and uncertainty-
based methods to measure uncertainty in AL
for semi-supervised active learning (SSAL).

2.3 Semi-Supervised Active Learning
Both SSL and AL aim to reduce annota-
tion costs while achieving high performance.
Therefore, recent studies have started to ex-
plore whether these two methods can be used
simultaneously. Gao et al. (2020) proposes
a query selection strategy for SSAL. The se-
lection strategy in the paper is to select the
data based on the difference in predictions be-
tween augmentations and the original data.

AcTune (Yu et al., 2022) proposes a region-
aware querying strategy and a momentum-
based method to enforce both the informative-
ness and the diversity of queried samples dur-
ing AL and alleviate the label noise in self-
training. We select the SOTA SSAL method,
AcTune, as one of our baseline models.

3 Proposed SSAL Method
In this section, we introduce our proposed se-
lection strategy, the Least Pseudo-Labeling
Status (LPLS) strategy, for semi-supervised
active learning (SSAL). This section will de-
scribe the key concepts in LPLS, (1) pseudo-
labeling, (2) measuring uncertainty, and (3)
selection strategy.
Figure 1 shows the pipeline of our SSAL

method based on JointMatch SSL (Zou and
Caragea, 2023). The upper half of the fig-
ure corresponds to JointMatch SSL. The lower
half is the AL part, in which we use our pro-
posed LPLS selection strategy (illustrated in
Figure 2) for querying the oracle. The LPLS
strategy refers to pseudo-labeling status and
reuses the nets from JointMatch. At the last



Figure 2: Illustration of the LPLS strategy for AL. The most uncertain data point in the prediction class
of the least pseudo-label status value at the moment is queried for the gold label.

of this section, the overall SSAL training pro-
cedure on the presented pipeline will be de-
scribed.

3.1 Pseudo-Labeling

Pseudo-labeling is a technique used in SSL
where a model trained on a small labeled
dataset is used to predict labels for an un-
labeled dataset. There are different SSL
works applying pseudo-labeling. UDA relied
on the principle of consistency regularization
where the model is encouraged to produce con-
sistent predictions for augmented and origi-
nal versions of the same data. FlexMatch
proposed the concept of flexible thresholds
which adjusts the value of thresholds on each
class for pseudo-labeling during the training
based on pseudo-labeling status (PLS). In-
spired by FlexMatch and UDA, our proposed
method also applies pseudo-labeling with flex-
ible thresholds. Furthermore, we apply cross-
labeling which means the pseudo-labels from
one model are used in another model to filter
out more noise in pseudo-labeling.

We adopt the same data augmentation tech-
niques with JointMatch for fair comparisons.
In detail, we use backtranslation for strong
augmentation and synonym replacement for
weak augmentation.

To enhance the synergy between SSL and
AL, our SSAL utilizes PLS in AL. Pseudo-
labeling status is the representation of the dis-
tribution of pseudo-labels at each time step t
across each class. At first, s0 is [1/C, 1/C,
1/C..., 1/C] where C is the number of classes.
Then at each time step t during training, st
will be [st(1), st(2), st(3), ..., st(C)] where st(c)

is the pseudo-labeling status of class c, that is,

st(c) =
the number of pseudo-labels in c

the number of all pseudo-labels .

By observing the status of pseudo-labels in
each class, we can identify which class is not
learning well and prioritize AL to obtain data
that likely belongs to that class.
We extend the cross-labeling of JointMatch

to enable more than two nets. Our extension
simply matches i-th model to ((i+1) mod M)-
th model, where M is the number of models,
as shown in Figure 1.

3.2 Measuring Uncertainty
In LPLS, the purpose of this strategy is to se-
lect the uncertain data whose prediction is the
same as the needy class based on the status of
pseudo-labeling. To achieve this goal, we need
to measure the uncertainty. Our framework
is multi-nets. To make full use of it, we uti-
lize the multiple nets as query by committee
(QBC) and consider the uncertainty from each
model. QBC is an active learning algorithm
where a committee of models, each trained on
the current labeled dataset, is used to select
the most informative samples from a pool of
unlabeled data. The main idea is to identify
samples on which the committee members dis-
agree the most, as these samples are consid-
ered the most informative for improving the
model. But in LPLS, we consider not only
the disagreement of models’ prediction for un-
labeled data but also the total uncertainty of
models. The uncertainty of a data sample is
calculated as follows based on mean entropy
and mean divergence:

Uncertainty = Entropy · Divergence.



Entropy and Divergence are defined as below:

Entrropy =
1

NM

NM∑
i=1

Enti,

Divergence =

∑NM
f=1

∑NM
g=1,g ̸=f KLD(Pf ||Pg)

NM (NM − 1)
,

where Enti means the prediction entropy in
i-th model for the given data point and
KLD(Pf ||Pg) means KL-Divergence of predic-
tions between two models f and g.

3.3 Least Pseudo-Labeling Status
Selection Strategy

In this paper, we proposed a new query strat-
egy, LPLS, for SSAL. In SSL with pseudo-
labeling, the performance is largely affected
by the quality of pseudo-labeling. However,
in the past, SSL only leverages unlabeled data
whose prediction confidence is above the fixed
threshold and there are some classes which the
model has difficulty learning. Therefore, Flex-
Match proposed Curriculum Pseudo-Labeling
(CPL) which adjusts thresholds for each class
actively based on PLS. However, in SSAL, the
model has the opportunity to obtain ground-
truth data during training. Based on this char-
acteristic, we proposed LPLS, a query strategy
considering the PLS.

The pseudo-code of our strategy is presented
in Algorithm 1. First, for each unlabeled data,
we use all models to make predictions and
calculate the sum of uncertainty from each
model’s prediction on this data. Then, we mul-
tiply this sum by the total difference between
the models’ predictions to get the total uncer-
tainty. This uncertainty score serves as the
ranking order for each data to be compared.
Finally, we consider the pseudo-labeling sta-
tus s. The class with the lowest value is the
queried class we are looking for. We start
to compare data from the highest uncertainty.
If the prediction result of the compared data
matches the queried class, we select this data
and send it to the oracle. On the other hand,
if we can not find the data in the queried class,
the strategy will send the data with the high-
est uncertainty to the oracle.

3.4 SSAL Training Procedure
Algorithm 2 shows our SSAL training proce-

dure. The procedure interleaves the SSL part

Algorithm 2 Our SSAL training procedure
1: Input: NC , the number of classes
2: Input: NL, the number of initial data per class
3: Input: α(L) = {α(li) | i ∈ (1, 2, . . . , NL ·NC)},

a set of labeled data
4: Input: U = {ui | i ∈ (1, 2, . . . , NU )},

a set of unlabeled data // NL << NU

5: Input: M = {mi | i ∈ (1, 2, . . . , NM )},
a set of differently initialized models

6: Input: NF , the final annotation amount limit
7: Input: NE , the max number of SSL epochs

// NL < NF and NF ·NC < NE

8: for epoch = 1 to NE do
9: // SSL
10: for m ∈M do
11: m.supervised-learning(L)
12: end for
13: (s,M)← MultiNetsSSL(NC ,M,U) // s: PLS
14: // AL
15: if |L| < NF ·NC then
16: q ← LPLS(s,NC , U,M) // Algorithm 1
17: l← oracle(q) // obtain the label of q
18: U ← U \ {q} // remove q from U
19: L← L ∪ {(q, l)} // add the new instance
20: end if
21: end for
22: return ensemble(M) // return the final model

AL-QBC AcTune JointMatch Ours
Type AL SSAL SSL SSAL
Multi-Nets ! % !* !

LPLS % % – !
* The original JointMatch uses only two nets, while our
extension enables more than two.

Table 1: Qualitative comparisons to baselines. Our
proposed method is an SSAL method based on
JointMatch SSL. Although our selection strategy
is a variant of QBC, our method takes the pseudo-
labeling status into consideration. Moreover, our
framework utilizes multiple nets in SSL and AL,
while AcTune, the SOTA SSAL, does not.

and the AL part up to NE times. First, the
SSL part conducts pseudo-labeling-based semi-
supervised learning on unlabeled data using
differently initialized NM models. Then, the
LPLS strategy selects a data point q, which is
queried to the oracle for its gold label1. The
AL part is skipped once the amount of labeled
data reaches the annotation cost limit LF · C.

4 Experiments
4.1 Baselines
We consider three baselines for comparison,
that is, AL-QBC, AcTune, and JointMatch.

1Our experiments emulate unlabeled data by using
labeled datasets, where the gold labels are accessible
for models only through the oracle, except for the ini-
tial small portion of labeled data.



Dataset Label Type NC #Training #Validation #Test NL NF

AG News Topic 4 5000 2000 1900 25 35
Yahoo! Answer Topic 10 5000 2000 6000 27 35
IMDB Sentiment 2 5000 1000 12500 25 35

Table 2: Dataset statistics and splits. The numbers of training, validation and test data mean the
number of data points per class. NC , NL, NF are defined in Algorithm 2. NL data points are randomly
sampled from the training data per class to be included in labeled data L. The remaining training data
are used as unlabeled data U .

AG News Yahoo! IMDB
Methods Accuracy Macro-F1 p Accuracy Macro-F1 p Accuracy Macro-F1 p

AL-QBC 0.821 0.819 ** 0.607 0.598 ** 0.735 0.736 **
AcTune 0.877 0.877 * 0.666 0.661 ** 0.791 0.790 +

JointMatch 0.881 0.880 * 0.675 0.667 * 0.753 0.752 **
Ours 0.885 0.885 – 0.681 0.673 – 0.796 0.792 –

Table 3: Performance results. The best in each column is marked in bold. * and ** indicate a difference
to our method using the proposed LPLS strategy with statistical significance of p < 0.05 and p < 0.01,
respectively. + indicates a significant tendency of p < 0.1. Multiple testing correction is not applied.

AL-QBC is a pure AL framework utilizing a
QBC strategy. The implemented QBC strat-
egy is equivalent to our LPLS (Algorithm 1)
except that it always returns d1, the most un-
certain data point in unlabeled data U . Ac-
Tune (Yu et al., 2022) is the SOTA SSAL text
classification method. JointMatch (Zou and
Caragea, 2023) is the SOTA SSL text classifi-
cation method, on which our method is based.
Table 1 clarifies the relationship between each
method and our method. Our SSAL method is
the only one to utilize multi-nets and consider
PLS in AL.

4.2 Datasets
We evaluate LPLS on common text classifica-
tion datasets: IMDB (Pal et al., 2020), AG
News (Zhang et al., 2015) and Yahoo! An-
swers (Chang et al., 2008). Following Joint-
Match (Zou and Caragea, 2023), we use the
original test set and randomly sample from the
training set to construct our training labeled
set, and training unlabeled set. Table 2 shows
the dataset statistics and split information.

4.3 Experimental Setups
Following JointMatch, we used the BERT-
based-uncased model2 as our backbone model
and the HuggingFace Transformers library for
the implementation.

2https://huggingface.co/google-bert/
bert-base-uncased

The training procedure of our method fol-
lowed Algorithm 2. However, after passing
(NF − NL) · NC steps, the training could
be early-stopped before reaching the NE-th
step based on performance check on validation
data. We set NE to 100. AcTune and LPLS
were trained in accordance with this procedure.
The training of AL-QBC was stopped at the
NE-th step if there was no early-stopping.
To verify the feasibility of our approach, as

shown in Table 2, we set the total annotation
cost of AL as NF = 35 multiplied by the num-
ber of classes NC and start with NL = 25 an-
notated samples per class for AG News, IMDB,
and start with NL = 27 annotated samples per
class for Yahoo!.3 To make fair comparisons,
we provide JointMatch with NF ·NC samples
as the initial small training data L, while other
AL methods receive only NL ·NC at first.

4.4 Comparisons with Baselines
We summarize the comparison with baselines
on different text classification datasets in Ta-
ble 3. We reproduced the baseline results.
All results in table 3 are the average of five
runs. We conducted McNemar’s test (McNe-
mar, 1947) between each baseline method and
our proposed method on the three datasets
separately.

3We slightly boosted the start-up with extra sam-
ples as the Yahoo! dataset has more classes.

https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased


AG News Yahoo! IMDB
# of nets Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

2 0.885 0.885 0.681 0.673 0.796 0.792
3 0.883 0.883 0.680 0.674 0.788 0.786

Table 4: Comparison between different numbers of nets in the proposed Multi-Nets SSAL method.

Selection Strategies AG News Yahoo! IMDB
PLS Uncertainty Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
% Random 0.876 0.875 0.663 0.660 0.759 0.756
% Entropy 0.880 0.878 0.673 0.672 0.776 0.772
% Divergence 0.881 0.881 0.670 0.664 0.780 0.778
% Entropy · Divergence 0.882 0.882 0.670 0.664 0.784 0.782
! Random 0.879 0.879 0.665 0.660 0.768 0.766
! Entropy 0.882 0.881 0.675 0.670 0.795 0.794
! Divergence 0.880 0.880 0.674 0.667 0.786 0.787
! Entropy · Divergence 0.885 0.885 0.681 0.673 0.796 0.792

Table 5: Comparison between different selection strategies. The bottom row corresponds to our proposed
LPLS selection strategy. The column labeled as PLS indicates if it considers PLS.

We compared our experimental results with
AcTune, JointMatch, and AL-QBC. LPLS
outperforms all baselines on all benchmark
datasets. Our method has better results than
JointMatch by about 0.5% points on AG News,
Yahoo!. On IMDB, our method surpasses
JointMatch by about 4% points but AcTune
only by 0.5%.

Although our method presents higher scores
than others in terms of accuracy and F1 score,
it does not have a statistical significance over
AcTune in IMDB. We consider that the reason
is because the trait of our LPLS and IMDB is a
two-class classification. LPLS is trying to raise
the opportunity of producing the labeled data
in the least class in PLS. Our method comes
from the imbalance of pseudo-labeling. How-
ever, IMDB is a two-class classification task.
If one class is classified as particularly effec-
tive, it can also directly improve the learning
performance of the other class. Therefore, it
is more challenging to become more effective
in our method during training.

4.5 Ablation Studies
4.5.1 Multi-Nets SSAL with different

numbers of models
Because our proposed method is a framework
of multiple networks, we explore if the accu-

racy will be improved when the number of
models increases. The results have been shown
in Table 4. As shown in Table 4, using more
models will not yield better results.

4.5.2 Multi-Nets SSAL with Different
Settings

Our selection strategy in AL leverages PLS in
SSL. To evaluate the effectiveness of our pro-
posed strategy, there is a comparison between
cases where PLS is considered and those where
it is not, as well as the comparison of different
uncertainty measuring methods. The results
are shown in Table 5. In the situation with-
out considering PLS, although our proposed
measuring method for uncertainty has the best
result, it just improves a little by the other un-
certainty methods.

5 Conclusion

We proposed a query selection strategy based
on pseudo-labeling status for semi-supervised
active learning (SSAL) and empirically con-
firmed the effectiveness of the proposed se-
lection strategy on text classification. Our
method is inspired by the observed impact
that pseudo-labeling status (PLS) affects a lot
in semi-supervised learning (SSL) with pseudo-
labeling. Furthermore, in SSAL, the model



has the opportunity to obtain correctly labeled
data which helps improve SSL performance.
Therefore, we proposed a data selection strat-
egy based on PLS.

We demonstrated that our proposed method
can outperform or compete with AL-QBC, Ac-
Tune, and JointMatch across all benchmark
datasets. We also explored the performance of
using three models but the results show that
adding more models can not improve the accu-
racy. Our selection strategy is better than the
entropy-based selection method which shows
our framework is effective. We hope that our
research can raise the importance of PLS in
SSAL.
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