
Proceedings of the 1st Workshop on NLP for Science (NLP4Science), pages 197–207
November 16, 2024 ©2024 Association for Computational Linguistics

Exploring Scientific Hypothesis Generation with Mamba

Miaosen Chai1*, Emily Herron2*, Erick Cervantes3, Tirthankar Ghosal2
1University of Southern California

2Oak Ridge National Laboratory 3Texas A&M International University
miaosenc@usc.edu, {herronej, ghosalt}@ornl.gov, Erickcervantes@dusty.tamiu.edu

Abstract

Generating scientifically grounded hypotheses
is a challenging frontier task for generative AI
models in science. The difficulty arises from
the inherent subjectivity of the task and the
extensive knowledge of prior work required to
assess the validity of a generated hypothesis.
Large Language Models (LLMs), trained on
vast datasets from diverse sources, have shown
a strong ability to utilize the knowledge em-
bedded in their training data. Recent research
has explored using transformer-based models
for scientific hypothesis generation, leveraging
their advanced capabilities. However, these
models often require a significant number of
parameters to manage long sequences, which
can be a limitation. State Space Models, such
as Mamba, offer an alternative by effectively
handling very long sequences with fewer
parameters than transformers. In this work,
we investigate the use of Mamba for scientific
hypothesis generation. Our preliminary
findings indicate that Mamba achieves
similar performance w.r.t. transformer-based
models of similar sizes for a higher-order
complex task like hypothesis generation.
We have made our code available here:
https://github.com/fglx-c/Exploring-
Scientific-Hypothesis-Generation-with-
Mamba

1 Introduction

Large language models (LLMs) have emerged as
a cornerstone in artificial intelligence, particularly
in scientific discovery. These models have been
increasingly integrated into scientific hypothesis
and idea generation, transforming traditional ap-
proaches to research. Traditionally, the process of
scientific hypothesis generation has involved a com-
plex interplay of the scientific method and inductive
reasoning, requiring meticulous observation, litera-
ture review, and identification of knowledge gaps.

*Equal contribution

This process, while crucial, is time-consuming and
labor-intensive, relying heavily on researchers’ ex-
pertise and creativity.

LLMs offer unique capabilities that address
many challenges inherent in traditional scientific
inquiry. They excel at processing vast amounts
of text, identifying intricate patterns, and drawing
upon an extensive knowledge base. This allows
them to mitigate cognitive biases, efficiently iden-
tify research gaps, and generate a broad spectrum
of hypotheses, including unconventional and cross-
disciplinary ideas. Their ability to handle complex-
ity makes them particularly valuable for addressing
intricate, interdisciplinary problems, potentially ac-
celerating the pace of scientific discovery. (Banker
et al., 2023; Zhou et al., 2024; Park et al., 2023;
O’Brien et al., 2024)

Scientific Inspiration Machines Optimized for
Novelty (SciMON) (Wang et al., 2024) represents
a leading approach in LLM-based scientific hypoth-
esis generation. It utilizes an LLM-based genera-
tion module and a novel iterative novelty boosting
mechanism to produce ideas that are both innova-
tive and grounded in existing literature. However,
SciMON still faces limitations in generating out-
puts that match the depth and utility of real scien-
tific papers. To address these challenges, we have
integrated a new LLM architecture called Mamba
(Gu and Dao, 2023) into SciMON’s generation
module. Mamba, based on selective state space
models, combines the strengths of Transformer and
recurrent architectures. It introduces a selection
mechanism for content-based reasoning and selec-
tive information processing within a simplified neu-
ral network design. This integration aims to en-
hance SciMON’s ability to generate more novel,
technically sophisticated, and practically useful sci-
entific ideas.

Our work provides a comprehensive comparison
of Mamba and Transformer-based models in sci-
entific hypothesis generation tasks. We evaluate
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Mamba’s performance on general in-context learn-
ing benchmarks and long-context tasks, assess its
capabilities in downstream hypothesis generation,
and investigate its potential as a baseline model
for scientific hypothesis generation. Throughout
our study, we ensure reproducibility by providing
detailed experimental setup information, including
datasets, benchmark versions, and implementation
scripts.

2 Related Work

Recent research has explored the potential of Large
Language Models (LLMs) in scientific hypothesis
and idea generation, employing various approaches
from direct prompting to more complex frame-
works. (Park et al., 2023) and (Banker et al., 2023)
investigated the capabilities of GPT-3 and GPT-
4 in generating hypotheses across diverse fields
such as materials chemistry, physics, quantum in-
formation, and social psychology. While these
models demonstrated broad knowledge and inter-
disciplinary insights, they often produced scientifi-
cally inaccurate outputs, highlighting the need for
refined approaches.

More sophisticated methods have emerged, in-
tegrating inter-domain translation, iterative pro-
cesses, and adversarial techniques. The Field-
SHIFT framework (O’Brien et al., 2024), for
instance, utilized GPT-4 to translate concepts
between neuroscience and developmental biol-
ogy, successfully generating novel hypotheses and
demonstrating potential for identifying symmetries
across scientific domains. HypoGeniC (Zhou et al.,
2024) employed a multi-armed bandit-inspired re-
ward function to iteratively improve hypotheses,
outperforming few-shot prompting across multiple
tasks. In astronomy, (Ciucă et al., 2023) applied ad-
versarial prompting using multiple GPT-4 instances
to generate, critique, and refine hypotheses, signifi-
cantly improving their quality.

Further advancements in LLM-based hypothe-
sis generation have incorporated multi-agent ap-
proaches, causal graphs, knowledge graph-based
retrieval augmentation, and novelty optimization.
Qi et al. (2023) developed a collaborative frame-
work where LLM agents serve different roles (an-
alyst, engineer, scientist, critic) in the hypothesis
generation process. Tong et al. (2023) combined
causal graphs extracted from psychology articles
with LLMs to generate psychological hypotheses
matching the novelty of human experts. The Sci-

MON framework (Wang et al., 2024) generates
novel research directions based on background con-
texts and a seed term used to constrain and guide
the hypothesis space for the model. It employs an
iterative novelty optimization workflow and vari-
ous retrieval augmentations. GPT-4 produced the
best results within this framework, although gener-
ated ideas still fell short of scientific literature in
terms of depth.

While previous work has primarily utilized
Transformer-based models, this study leverages
Mamba (Gu and Dao, 2023), a sequence modeling
architecture based on selective state space models.
Mamba has demonstrated comparable or superior
performance to Transformer-based architectures,
particularly with long sequences. By implement-
ing our approach within the SciMON framework,
we aim to capitalize on Mamba’s strengths for im-
proved hypothesis generation in scientific contexts,
potentially addressing limitations observed in pre-
vious LLM-based approaches.

3 Methodology

As mentioned, our methodology is inspired by the
SciMON model. For our benchmarking study with
Mamba, we use the similar experimental frame-
work as SciMON.

3.1 SciMON Model and Dataset Description

We make use of the recently released SciMON (Sci-
entific Inspiration Machines Optimized for Nov-
elty) model (Wang et al., 2024), designed to gen-
erate novel, literature-informed scientific ideas in
the field of Natural Language Processing (NLP).
The system begins by extracting problems, mo-
tivations, and proposed ideas from scientific pa-
pers accessed through the ACL Anthology1. The
dataset is derived from the Semantic Scholar Open
Research Corpus (S2ORC) (Lo et al., 2020), com-
prising 67,408 ACL Anthology papers published
between 1952 and 2022. Papers were filtered to in-
clude only those in English with available abstracts.
The dataset is divided temporally: the training set
includes papers before 2021, the validation set con-
tains papers from 2021, and the test set comprises
papers from 2022. For our experiments, we use
model checkpoints trained on data preceding 2022
to avoid the risk of data contamination. The papers
are processed using several information extraction
(IE) and natural language processing tools:

1https://aclanthology.org
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Figure 1: Use of IE to obtain literature data: background,
proposed ideas (target), and seed terms.

1. PL-Marker (Ye et al., 2022), pretrained on
SciERC (Luan et al., 2018), extracts entities
(Task, Method, Evaluation Metric, Material,
Other Scientific Terms, and Generic Terms)
and their relationships, focusing on used-for
relations.

2. SciCo (Cattan et al., 2021) performs corefer-
ence resolution for entity normalization.

3. Scispacy (Neumann et al., 2019) expands ab-
breviations to their full forms.

4. A sentence classification model by Cohan
et al. (2019) categorizes abstract sentences
into Background, Method, Objective, Other,
and Result.

In SciMON, a seed term refers to a key concept or
keyword that serves as the starting point for gener-
ating hypotheses, while the target sentence is the
desired output that articulates a potential scientific
idea or goal. SciMON takes a seed term and a
background context as inputs and generates a cor-
responding target sentence as output. To train the
model, paper abstracts are categorized into Back-
ground sentences (B) and Target sentences (T),
forming (B, T) training pairs. The Target sentences
are selected from the Methods and Objectives sec-
tions of the papers. From these, seed terms (typi-
cally Tasks) and target terms (typically Methods)
are extracted to form input-output pairs. During
evaluation, target information is removed. Figure
1 illustrates this process. To ensure dataset qual-
ity, we retain only high-confidence outputs from
the IE models. The evaluation indicates high pre-
cision rates for most preprocessing steps, except
for relation extraction. Overall, 79.7% of instances
passed all preprocessing steps, which constitute
the challenging dataset. For evaluation, SciMON
creates a high-quality gold test set containing 194

instances by removing test cases where models can
rely on surface-level background information to
infer the ground truth. The remaining instances
are then manually annotated to ensure a strong rele-
vance between seed and target terms. At the core of
SciMON is its inspiration retrieval module, which
retrieves relevant inspirations from three external
sources:

1. Semantic Neighbors: Finds similar problems
and ideas in the training set based on sentence
embeddings.

2. Knowledge Graph (KG) neighbors: Retrieves
related concepts from a background knowl-
edge graph built from the text dataset. The
background KG has more than 197k nodes
and 261k relations.

3. Citation Neighbors: Identifies relevant paper
titles from the citation network of the input pa-
per. The citation networks contain 87k paper
titles.

SciMON’s generation module utilizes either fine-
tuned T5 language models or in-context learning
with GPT-3.5 or GPT-4 LLMs. When fine-tuning
the T5 models, an in-context contrastive objective
is employed to discourage the models from simply
copying their inputs. The in-context contrastive
objective is calculated by taking negative examples
from the input text and computing an InfoNCE loss
(van den Oord et al., 2019) over the hidden states
of the decoder with the objective of maximizing
the probability of the ground truth against those
of in-text negatives. Both the contrastive loss and
cross-entropy loss optimized during fine-tuning.
During the generation phase, the input contexts are
combined with the inspirations retrieved from the
previous module. The next phase in the pipeline
is Iterative Novelty Boosting. This process begins
with an idea generated by the generation module
and retrieves similar ideas from the reference cor-
pus or training dataset. The ideas are compared us-
ing a similarity threshold. If the generated ideas are
too similar to existing ones, the model is instructed
to update the idea to improve its novelty. This pro-
cess is repeated until a sufficient degree of novelty
is achieved. To evaluate the effectiveness of Sci-
MON, both automated metrics such as ROUGE and
BERTScore were employed, as well as extensive
human evaluation. The human evaluation assessed
the relevance, novelty, clarity, and scientific reason-
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Figure 2: Using the Mamba architecture, the model gen-
erates ideas based on background context and literature
inspirations, enhancing novelty by repeatedly compar-
ing them to related work.

ableness of the generated ideas, providing a com-
prehensive assessment of the framework’s perfor-
mance in generating novel scientific ideas. In total,
the retrieval dataset includes 59k papers with over
374k sentences, allowing SciMON to ground its
idea generation in a broad spectrum of research, en-
abling it to generate novel and literature-informed
scientific ideas in the field of NLP.

3.2 Mamba Architecture

The Mamba architecture (Gu and Dao, 2023) repre-
sents a significant advancement in sequence mod-
eling, introducing selective state-space models
(SSMs) to achieve linear time processing of long
sequences. At the core of Mamba’s design is a
novel selection mechanism that enables dynamic
focusing on or filtering out of inputs, effectively
compressing contexts into smaller states. This ap-
proach strikes a balance between effectiveness and
efficiency in sequence processing, making it partic-
ularly suitable for hypothesis generation in scien-
tific contexts. The key innovation in Mamba lies
in its selective SSM layer, which modifies tradi-
tional SSMs by making multiple parameters (∆,
B, C) functions of its inputs. This feature em-
powers the model to perform content-based reason-
ing and selectively propagate or forget information
along the sequence length dimension. To imple-
ment this mechanism efficiently, Mamba employs
a hardware-aware parallel algorithm that lever-
ages the memory hierarchy of GPUs. Structurally,

Mamba consists of simplified and heterogeneous
blocks. Each block incorporates elements inspired
by existing SSM models with MLPs, as found in
modern neural networks. A typical Mamba block
includes an input linear projection, a convolutional
layer, the selective SSM layer, and a linear projec-
tion output layer. These blocks are stacked and
interleaved with normalization and residual con-
nections throughout the complete architecture, as
illustrated in Figure 3. This design represents a sim-
plification of previous SSM architectures by elim-
inating separate MLP blocks and combining vari-
ous components into one repeating unit. Mamba
distinguishes itself from other state-of-the-art se-
quence models by avoiding the use of attention
mechanisms and standalone MLP blocks. These
attributes enable Mamba to achieve state-of-the-art
performance across various applications and modal-
ities, including language, audio, and genomics.
As demonstrated in Section 4.2, Mamba outper-
forms other models on language modeling tasks
and downstream evaluations. While previous work
has primarily utilized Transformer-based models,
leveraging Mamba within the SciMON model aims
to capitalize on its strengths for improved hypoth-
esis generation in scientific contexts. Mamba’s
ability to handle long sequences efficiently is par-
ticularly advantageous for processing extensive sci-
entific literature and data. Mamba scales better
than other models as sequence length increases, po-
tentially addressing limitations observed in previ-
ous LLM-based approaches. Furthermore, Mamba
boasts inference times up to five times faster than
Transformer models and exhibits linear scaling in
sequence length (Gu and Dao, 2023). This effi-
ciency is crucial for rapid hypothesis generation
and iterative refinement in scientific research. The
model’s ability to selectively focus on relevant in-
formation while filtering out noise could lead to
more precise and contextually appropriate hypothe-
ses. By implementing Mamba within the SciMON
model, we aim to leverage its unique architecture
for enhanced scientific reasoning. The model’s
demonstrated success in language modeling and its
ability to capture long-range dependencies make
it a promising approach for efficient and effective
hypothesis generation, potentially surpassing the
capabilities of previous Transformer-based models
in scientific contexts.
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Figure 3: Mamba block we use for SciMON. Back-
ground and seed serve as input to the model.

4 Experiments & Discussion

We select T5 (Raffel et al., 2019) and GPT-4 as
our baseline models to compare with Mamba. We
fine-tune various sizes of T5, Mamba models and
use a few short GPT-4 in parallel, with the fine-
tuning process taking between 1 to 3 hours using
eight H100 GPUs. We present three evaluations:
one using the automated metrics and the other with
LLM-as-judge (Claude-3.5), following up with a
long-text evaluation and finally an evaluation of
generated output by a human.

4.1 Automatic Evaluation

It is crucial to recognize that the open-ended na-
ture of scientific hypothesis generation poses chal-
lenges for automatic evaluations, as semantically
comparing outputs from SciMON to the ground
truth can be constrained and shallow. Despite these
limitations, automated metrics like ROUGE (Lin,
2004) and BERTScore (Zhang et al., 2019) still
offer valuable insights. We conduct an automatic
evaluation for the outputs generated through the
novelty iteration with the Challenging and Gold
datasets(§3)

Results Our findings indicate that both fine-tuned
T5 and Mamba models show improved perfor-
mance with increased model size, as evidenced
by higher ROUGE-L (Lin, 2004) and BERTScore
(Zhang et al., 2019) metrics in Table 1. Generally,
Mamba models perform on par with T5 models of
similar sizes, with the Mamba-790M model achiev-
ing the highest overall scores for three evaluations.
However, Mamba does not show a considerable
difference compared to T5, as indicated by the re-
sults from the original paper (Gu and Dao, 2023).

Additionally, GPT-4 underperformed compared to
both T5 and Mamba in few-shot settings, likely
because GPT-4 generates longer outputs that do
not adhere to the shallow structured templates fol-
lowed by T5 and Mamba, which are penalized by
automatic evaluation metrics. This suggests that
human judgment is necessary for a more accurate
evaluation.

Model - SciMon R-L BERT R-L (GS) BERT (GS)
T5 - 60.5 m 0.178 0.514 0.184 0.524
T5 - 223 m 0.197 0.604 0.217 0.627
T5 - 738 m 0.223 0.663 0.243 0.684

Mamba - 130 m 0.176 0.523 0.191 0.562
Mamba - 370 m 0.219 0.628 0.237 0.631
Mamba - 790 m 0.227 0.683 0.242 0.695

GPT-4 FS 0.146 0.614 0.143 0.627

Table 1: Automatic results for the challenging (left) and
gold (right) subsets. R-L denotes ROUGE-L. BERT
denotes BERTScore with SciBERT as its encoder. GS
denotes as Gold subsets.

4.2 LLM As a Judge

To address the limitations of automatic evaluation
metrics, we incorporate an LLM evaluation to as-
sess the quality of the generated scientific hypothe-
ses. Specifically, we employ Claude-3.5 instead
of the more mainstream GPT-4 to mitigate poten-
tial self-enhancement bias, which occurs when a
model is evaluated using its own framework (Xu
et al., 2024b). We utilize a reference-guided style
prompt, as introduced by previous research (Zheng
et al., 2023), which has been shown to increase
the agreement between human and machine evalu-
ations by providing a reference solution.

We design a structured prompt that directs
Claude-3.5 to judge the effectiveness of a hypoth-
esis. Specifically, Claude-3.5 is asked to assess
the relevance of the hypothesis to the background
context and seed term, ensuring sufficient novelty
without overly mirroring the provided information,
verifying the scientific soundness, and evaluating
the clarity and coherence of the language. See
the detailed prompt(C). Based on these criteria,
Claude-3.5 assigns a rating of either "ineffective"
or "effective" to each generated hypothesis, along
with a brief justification for its decision, format-
ted in JSON for consistent analysis. To assist the
LLM in making more accurate assessments, we
provide it with five examples of both "ineffective"
and "effective" hypotheses.
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Model Output
Input: Seed Term: Hierarchical table dataset Context: Tables are often created with hierarchies, but

existing works on table reasoning mainly focus on flat tables and neglect hierarchical tables.
Hierarchical tables challenge numerical reasoning by complex hierarchical indexing, as well as
implicit relationships of calculation and semantics.

GPT-4: In that context, a suitable task for a hierarchical table dataset could be Hierarchical Table
Reasoning. This task involves understanding, interpreting, and reasoning over complex
hierarchical structures present in tables, such as nested rows and columns, hierarchical indexing,
and implicit relationships between cells. Extra generated reasoning: The task is well-suited for
this dataset because it addresses the problem of understanding complex relationships within the
hierarchical structure.

T5: A task that can be used for hierarchical table dataset is semantic parsing
Mamba: Question answering systems are an effective tool for reasoning with hierarchical tables
Ground Truth: Targeting table reasoning, we leverage entity and quantity alignment to explore partially

supervised training in QA and conditional generation in NLG, and largely reduce spurious
predictions in QA and produce better descriptions in NLG

Table 2: Example of SCIMON outputs with different models. T5 denotes T5-large. Mamba denotes Mamba-790m.

4.3 Human Evaluation

To validate the effectiveness of Claude-3.5, we re-
cruit five NLP experts, each with graduate-level
education, to independently rate the outputs. We
selected 100 questions at random from the Chal-
lenge set and developed a structured questionnaire
(Figure 5) for the experts to evaluate the hypotheses.
Experts rated each hypothesis as either effective or
ineffective based on four key criteria: relevance,
novelty, scientific validity, and clarity which is the
same as the prompt instruction for Claude-3.5 (C).
To ensure objectivity, the raters were blind to the
conditions, and the system outputs were randomly
shuffled across the instances.

Results We find that both Claude-3.5 and human
evaluations yield similar patterns in the perfor-
mance of the models. GPT-4 achieves the high-
est scores in both evaluations, with an accuracy of
76% in the Claude-3.5 evaluation and 68% in the
human evaluation. This consistency across evalua-
tion methods highlights GPT-4’s strong capability
in generating hypotheses that align with key cri-
teria such as relevance, novelty, scientific validity,
and clarity. Given GPT-4’s larger model size, its su-
perior performance is expected. However, Mamba
does not significantly outperform the transformer-
based T5, likely due to the nature of the SciMON
task, which does not fully exploit Mamba’s long-
context potential. The average input length in this
task is less than 102 tokens, which favors models
with stronger in-context learning abilities like T5.
Although we hypothesize that Mamba’s strengths
would be more apparent in tasks requiring longer

Figure 4: Human and Claude 3.5 Sonnet evaluations of
generated scientific hypothesis. The y-axis represents
the accuracy(%).

contexts, the dataset preprocessing used by the Sci-
MON authors prevents us from directly testing this
hypothesis within this context.

To further explore this, we conduct a set of
long-context experiments in NLP, ordering tasks
by input length: scrolls_narrativeqa (longest),
scrolls_quality, and scrolls_contractnli (shortest).
Our findings (Table 4) indicate that T5 models
excel at tasks with smaller input sizes, with T5-
Large achieving the highest accuracy of 35.97%
on scrolls_contractnli. Conversely, Mamba mod-
els perform significantly better with larger input
lengths, as evidenced by Mamba-790M attaining
the highest F1 score of 13.81 on scrolls_narrativeqa.
However, Mamba models exhibit instability on
tasks with smaller inputs, as shown by the non-
converging training loss when scaling to large-sized
models. Similar instability has been observed in
Mamba’s performance on the ImageNet dataset
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(Xu et al., 2024a), but the underlying cause remains
unclear. This issue is likely related to the current
instantiation of Mamba, which may suffer from
vanishing and exploding gradients. This suggests
that while Mamba does not outperform excessively
on current tasks, Mamba may be more effective for
scientific hypothesis generation under long-input
settings. Also, the linear scaling with sequence
length benefits Mamba for faster reference. How-
ever, future experiments are needed to demonstrate
the performance of the Mamba architecture on a
large scale.

5 Limitations and Future Work

While this study provides valuable insights, it is
important to acknowledge its limitations and po-
tential areas for future research. The architecture
of SciMON introduces certain constraints that af-
fect the scope and generalizability of our findings.
One key limitation is the data scope, as SciMON’s
dataset is exclusively composed of ACL Anthol-
ogy papers from S2ORC. This specialized focus
may limit the applicability of our results to other
scientific domains, particularly those that rely on
multimodal data such as visual representations in
biology or chemical structures in materials science.

Our comparative model analysis was restricted
to an empirical comparison between Mamba and
Transformer-based models under constrained pa-
rameter sizes. Future work could benefit from more
extensive comparisons involving larger parameter
settings, which may reveal additional insights into
the relative performance of these models in hypoth-
esis generation tasks.

Furthermore, the rapid pace of development in
state space models presents new opportunities for
advancing hypothesis generation capabilities. Re-
cent innovations such as Jamba (Lieber et al., 2024),
Samba (Ren et al., 2024), and TTT (Sun et al.,
2024) were not included in our analysis but repre-
sent promising avenues for future research. Inves-
tigating these emerging models could potentially
uncover novel approaches to improve the efficiency
and effectiveness of scientific hypothesis genera-
tion.

6 Memorization

Given that LLMs are trained on extensive datasets,
including potentially the same sources used for
evaluation, there is a risk that the models may re-
produce memorized content rather than generating

novel hypotheses. So, we conduct a memorization
check to ensure the validation of our experiments.

1. (Raffel et al., 2019) shows that T5 is pre-
trained on C4 which was crawled from web
prior to April 2019.

2. Mamba uses the Pile dataset (Gao et al., 2020),
and follows the training recipe described in
(Brown et al., 2020).

3. The GPT-4 checkpoint used in this study is pri-
marily based on data collected before Septem-
ber 2021, with only a minimal amount of more
recent data included during both pretraining
and post-training stages (Wang et al., 2024).
Given that the evaluation focuses on papers
published in 2022, the chance that these pa-
pers are part of GPT-4’s pretraining dataset is
considerably low.

Furthermore, a manual review of GPT-4’s out-
puts is conducted from SciMON using a gold
set composed of 2022 ACL Anthology papers.
This review specifically looks for instances
where GPT-4 might reproduce detailed infor-
mation, such as method names, or generate
text that closely mirrors the original papers.
The findings show no significant evidence of
memorization.

7 Conclusion

Our study provides insights into the application of
language models, particularly the Mamba architec-
ture, for scientific hypothesis generation within the
SciMON model. Comparative analysis reveals that
Mamba models perform comparably to T5 models
of similar sizes, with Mamba-790M achieving the
highest scores in automatic evaluations. GPT-4,
however, outperforms both in human and LLM-
based evaluations, demonstrating superior capabil-
ity in generating relevant, novel, and scientifically
valid hypotheses. Mamba exhibits strength in pro-
cessing longer input sequences, suggesting poten-
tial for complex scientific reasoning tasks. How-
ever, it shows instability with smaller inputs, indi-
cating areas for improvement. These findings high-
light the potential of state space models in advanc-
ing scientific hypothesis generation, despite limita-
tions such as the use of only ACL Anthology papers
and restricted parameter sizes in our analysis. Fu-
ture research should focus on expanding the dataset
to diverse scientific domains, investigating larger
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parameter settings and emerging state space mod-
els, developing specialized benchmarks for long-
sequence processing, and addressing Mamba’s in-
stability with smaller inputs. While Mamba shows
promise, particularly for long-context tasks, further
research is needed to fully harness its potential and
address limitations. As language models evolve,
their integration into scientific workflows holds
great promise for accelerating hypothesis gener-
ation and innovation across diverse fields. This
research represents a significant step towards lever-
aging advanced language models to expand the
frontiers of scientific inquiry and knowledge gener-
ation.

Acknowledgement

This research used resources of the Oak Ridge
Leadership Computing Facility (OLCF), which is
a DOE Office of Science User Facility at the Oak
Ridge National Laboratory supported by the U.S.
Department of Energy under Contract No. DE-
AC05-00OR22725.

References
Sachin Banker, Promothesh Chatterjee, Himanshu

Mishra, and Arul Mishra. 2023. Machine-assisted
social psychology hypothesis generation.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Ma teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Arie Cattan, Sophie Johnson, Daniel S. Weld, Ido Da-
gan, Iz Beltagy, Doug Downey, and Tom Hope. 2021.
Scico: Hierarchical cross-document coreference for
scientific concepts. ArXiv, abs/2104.08809.
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A Human Evaluation

To assess the effectiveness of Claude-3.5, we re-
cruit five NLP experts, all of whom have graduate-
level education, to independently evaluate the out-
puts by using the following questionnaire.

Figure 5: Human evaluation instructions

B Additional Experiments

B.1 In-context Learning
Modern attention-based LLMs exhibit remarkable
in-context learning (ICL) capabilities, enabling
them to learn new tasks effectively with only a few
demonstrations. Research indicates that Mamba
performs on par with Transformers in standard re-
gression ICL tasks and surpasses them in tasks such
as sparse parity learning (Park et al., 2024). Ad-
ditionally, (Grazzi et al., 2024) found that Mamba

incrementally optimizes its internal representations
in a manner similar to transformer models, which
aids in solving ICL problems. This adaptability
suggests that Mamba can be effectively compared
to Transformers in few-shot and fine-tuning set-
tings with comparable data and training time due
to its ICL, which serves as the basis for our experi-
ment’s design.

Model MATHQA (acc) % MMLU (acc) % MMLUSR (acc)% GPQA (acc)%
Mamba-130M 23.38 22.82 23.05 25.00
Mamba-370M 24.32 22.95 22.96 24.78
Mamba-790M 25.56 23.74 23.38 25.00

T5-Small 21.64 23.07 23.49 24.78
T5-Base 22.18 22.93 22.96 25.00

T5-Large 22.51 22.94 22.94 25.45

Table 3: Results for General In-Context Learning Tasks

B.2 Long-Text Evaluation
We selected three datasets, ranging from 102 to
106 words per input, to test the model’s ability in
question answering and natural language inference,
which are the basic ability for a scientific hypothe-
sis generation model: ContractNLI (102 to 103.5)
(Koreeda and Manning, 2021), QuALITY (103.3 to
103.7) (Pang et al., 2021), and Narrative (103.5 to
106) (Kociský et al., 2017). The first two tasks use
accuracy scores and are designed to answer spe-
cific questions based on long science and literature
documents, while the latter uses F1 score for eval-
uation, generating results using the continuation
probabilities returned by the model.

Model Contract NLI (acc) % QuALITY (acc) % NarrativeQA (f1)
Mamba-130M 14.46 24.11 8.79
Mamba-370M 10.22 24.88 11.31
Mamba-790M 11.86 24.30 13.81

T5-Small 30.76 23.97 2.26
T5-Base 32.88 23.97 0.45

T5-Large 35.97 24.98 1.63

Table 4: Results for Long-Text Evaluation
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C LLM Prompt

This is prompt for Claude: Your goal in this task is to rank idea suggestions written by LLM.
The LLM helps its users write paper abstracts by generating sentences with proposals for new
ideas or questions to consider. You are first given:

1. A context which describes relevant background in a specific area of interest.
2. A seed term that should be a focus of the generated scientific idea.
3. An idea suggestion generated by LLMs written in the form of a paper abstract (SUGGESTION).

Consider the following factors in your evaluation:

1. Is the suggestion relevant to the context and seed term?
2. Is the suggestion sufficiently novel, not overly copying the context?
3. Is the suggestion scientifically sound?
4. Is the language clear and coherent?

Assign a rating as either "effective" or "ineffective", where:
- "effective" = The SUGGESTION is sufficiently novel, relevant, scientifically sound, and clear.
- "ineffective" = The SUGGESTION lacks novelty, relevance, scientific soundness, or clarity.

Provide your rating and a brief justification for your assessment.

Return your output in JSON format only with the keys "justification" and "rating":
{
"justification": "<your brief justification>",
"suggestion": "ineffective< / effective>"

}
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