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Abstract

Previous work has explored the structure of dic-
tionaries as directed graphs, with arcs between
words when one word is used in the definition
of another. We analyze the efficacy of these
methodologies for analyzing semantic ground-
ing and explore the cross-linguistic patterns of
the strongly connected components of multi-
ple monolingual dictionaries. We find that the
number of sources in the condensation graph
of a directed dictionary graph is roughly stable
across multiple languages, and present future
research directions.

1 Introduction

Explanatory dictionaries are an important tool for
lexical semantics. However, to connect lexical
meaning to real-world senses, not all meanings
can be defined in terms of words; some words
must be defined outside of the language in terms of
sensorimotor experience. This observation is the
symbol grounding problem (Harnad, 1990). Some
theories, especially in cognitive semantics, solve
this problem by considering specific words or con-
cepts as fundamental within a language and cross-
linguistically (e.g., Semantic Primes (Wierzbicka,
1996)). One empirical approach towards this prob-
lem is to analyze dictionary structures, modeling
them as directed graphs (e.g., Kostiuk et al. (2023)).

There are two major approaches for analyz-
ing dictionary graphs. The first approach consid-
ers Feedback Vertex Sets (FVS’s) (Kostiuk et al.,
2023). For a directed graph D, a Feedback Ver-
tex Set is a set of vertices /' C V(D) such that
D\ F is acyclic. The Minimum Feedback Ver-
tex Set Problem consists of finding an FVS that is
minimum with respect to cardinality. For semantic
grounding, these sets have a convenient theoretical
interpretation: if words from an FVS are removed,
the dictionary becomes "grounded", i.e. there are
no self-referential definitions.

The second approach considers the dictionary
structure through strongly connected components,
or SCCs (Vincent-Lamarre et al., 2016). For a di-
rected graph D, a SCC is a maximal vertex set
S C V(D) such that there exists a directed path
in D between every pair of vertices in S. The con-
densation of a graph is the graph obtained by con-
tracting each SCC into a single vertex. SCCs parti-
tion a directed graph into equivalence classes, and
the corresponding condensation graph is acyclic.
Thus, the condensation graph captures the struc-
ture between groups of "equivalent" words, and
the sources (i.e., vertices with no incoming arcs)
represent ungrounded groups. Vincent-Lamarre
et al. presented a taxonomy of the dictionary la-
tent structure in this manner, with the sources in
the condensation graph called the "core" !, and all
other non-trivial SCCs referred to as "satellites".
They also analyzed the psycholinguistic correlates
of the words at various levels of the latent structure,
finding words in the core to be more frequent, less
concrete, and learned earlier than those in the satel-
lites. Thus, the core occupies a fundamental role in
the dictionary’s structure.

While FVS’s can be more directly interpreted
as grounding a dictionary (by removing self-
referential definitions), there are major downsides.
The minimum FVS Problem is NP-Hard (Karp,
1972), and the minimum sizes scale with the dic-
tionary (Vincent-Lamarre et al., 2016). FVS’s are
not unique, so we must arbitrarily choose one for
comparison. By contrast, the SCCs of a digraph
are unique and efficient to compute. They consider
groups of self-referential words, and thereby re-
move arbitrary choice, facilitating cross-linguistic
comparison.

This study utilizes the SCCs approach to iden-
tify common structure of monolingual dictionaries

"Vincent-Lamarre et al. described the taxonomy in alter-
nate but equivalent terminology.
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to lend credence to the cross-linguistic aims of
cognitive semantics theories. In contrast to prior
literature that focused only on English (Kostiuk
et al. 2023, Vincent-Lamarre et al. 2016) or Span-
ish (Pichardo-Lagunas et al., 2017), we analyze
and compare English, French, German, Mandarin,
Russian, and Spanish.

2 Methods

We acquired monolingual dictionaries® from the
Wiktionaries for English, French, German, Man-
darin, Russian, and Spanish using Wiktextract (Ylo-
nen, 2022), based on their availability of parsed
data. We limited our analyses to content words
by filtering for entries with a part of speech tag of
either noun, verb, adjective, or adverb, and with the
Python library stopwordsiso to remove function
words. The definitions for all word senses for each
entry were tokenized and lemmatized by STANZA
(Qi et al., 2020).

The dictionaries were processed into directed
graphs. Each headword was treated as a vertex, and
an arc was added from vertex wu to vertex v if the
wordform u was included in at least one definition
of v. For undefined words used within a definition,
an arc from the lemma form was added, and if the
lemma was not present, the word was excluded.

The final dictionary directed graph was prepro-
cessed. All leaves (vertices with no outgoing arcs)
were removed recursively, since they were unused
in definitions and not directly relevant for the anal-
ysis. This removed all trivial SCCs. We built the
condensation graph of the directed dictionary graph
using the built-in function from networkx (Hag-
berg et al., 2008), and finally extracted the sources
from the condensation graph.

3 Results and Discussion

From each of the six monolingual dictionaries, we
found the condensation graphs and sources within
those graphs. Table 1 presents relevant descriptive
statistics, including the overall size of the dictio-
nary graph for each language and the number of
sources in the condensation graph.

Observe that, overall, the number of sources in
the condensation graphs are relatively close cross-
linguistically. Mandarin appears to be an outlier,
with 648 sources; however, it was the smallest
dictionary by far with only 25,736 words in to-
tal. Without Mandarin, the number of sources in

The dictionaries were accessed on 7/20/2024.

Language Order Number of Sources
English 1,053,726 77
French 1,849,021 39
German 843,506 65
Mandarin 25,736 648
Russian 408,173 134
Spanish 746,297 29

Table 1: Number of wordforms in preprocessed dictio-
nary graph, and number of sources in the condensation
graph, for each language.
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Figure 1: Scatter plot demonstrating the overall trend of
fewer sources in the condensation given the order.

the remaining 5 languages have a mean of 68.8
with a standard deviation of 36.9. Also note that
as the size of the dictionary increases, the number
of sources declines. Additionally, the rate at which
the number of sources declines with respect to dic-
tionary size is not constant. In fact, it appears to
decrease, as illustrated in Figure 1.

These results suggest that for sufficiently large
dictionaries, the number of sources in the condensa-
tion graph are consistent cross-linguistically. Thus,
the number of groups of "fundamental" words for
grounding are similar, supporting Semantic Prime
theory. While Wiktionary has large dictionary sizes,
a unified format, varied selection, and accessibility,
professionally curated dictionaries would provide
more conclusive results. Additionally, the varia-
tion of dictionary size (Mandarin ~ 1% of English)
could impact condensation graph structure; more
consistent dictionary sizes, or an approach to con-
trol for the size, could improve results.

Dictionary conversion ignores undefined words
and the differences of word senses, limiting both
the number and reliability of connections. The
conversion also ignores morphological complex-
ity, using either the inflected wordform or solely
the lemma. Morphological parsing would prevent
losing inflectional information when not present
within the dictionary, and help with consistency
across typologically diverse languages.
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