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Abstract
Stylistic transformation of artistic images is an important part of the current image processing field. In order to access
the aesthetic artistic expression of style images, recent research has applied attention mechanisms to the field of
style transfer. This approach transforms style images into tokens by calculating attention and then migrating the
artistic style of the image through a decoder. Due to the very low semantic similarity between the original image
and the style image, this results in many fine-grained style features being discarded. This can lead to discordant
artifacts or obvious artifacts. To address this problem, we propose MccSTN, a novel style representation and transfer
framework that can be adapted to existing arbitrary image style transfers. Specifically, we first introduce a feature
fusion module (Mccformer) to fuse aesthetic features in style images with fine-grained features in content images.
Feature maps are obtained through Mccformer. The feature map is then fed into the decoder to get the image
we want. In order to lighten the model and train it quickly, we consider the relationship between specific styles
and the overall style distribution. We introduce a multi-scale augmented contrast module that learns style repre-
sentations from a large number of image pairs. Code will be posted on https://github.com/haizhul2/MccSTN
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1. introduction

An image is a story, and an art-style image is worth
a thousand words. The purpose of image style
transfer is to present the content of the source im-
age using the characteristic elements of the style
image. For example, embedding pop art stylistic
features such as textures, patterns, and colors into
real, everyday photographs. The main elements
of our work are shown in Figure (1). Since the pio-
neering work of (Gatys et al., 2016), style transfers
have attracted a great deal of interest from both
academia and industry. The field has grown con-
siderably due to the large influx of researchers in
recent years. The main areas include improving
training efficiency (Ulyanov et al., 2016), genera-
tion quality (Lin et al., 2021), generalisation ability
(Hong et al., 2023), diversity of generated images
(Wang et al., 2020) and user control (Kwon and Ye,
2022, 2023) . Text-driven style transfer (Zhao et al.,
2023).

In order to construct a reasonable representation
of style features, high-dimensional distributions of
style features need to be explored to capture fine-
grained features. There are several dominant ap-
proaches to the representation of style features. Ex-
amples include neural flow models (An et al., 2021),
and visual transformers (Deng et al., 2022). Re-
cent advances in image style transfer incorporate
attentional mechanisms (Hong et al., 2023). The
attention mechanism learns the semantic similarity
relationship between patches from style images

Figure 1: The generated result of our method. Artis-
tic images provide stylistic information.

and patches from content images. This shows
strong performance in guiding detail expression
and retaining content information. However, they
generally directly compute their attention by feeding
content information and style information directly
into the feature extraction module. This leads to a
lot of invalid computations, increasing the amount
of computation without significantly increasing the
quality of the image. As shown in Figure (2), the
decoded image is prone to artifacts and halos.

To solve this problem, we propose a style fea-
ture extraction module, which we call Mccformer.
It fuses style features and content features and
inputs the raw features of the style image and con-
tent image into the module while computing the
attention score. In this way, the model can extract
as many fine-grained features as possible to avoid
feature loss. And it can also avoid too many invalid
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https://github.com/haizhu12/MccSTN

Figure 2: Problems with previous studies. Artifacts
appear in line 1. An incongruous image appears in
row 2. Zooming in shows it more clearly.

calculations. And the whole model is optimized by
the style enhancement contrast learning module.
This module for proper artistic style representa-
tion can effectively eliminate artifactual features.
At the same time, Introducing a 7 value makes
the model more tolerant to samples with the same
features. Our generated results are closer to real
paintings and have better feature representation
performance. Our main contributions are as fol-
lows:

+ A feature fusion extraction module called Mc-
cformer is proposed that fuses fine-grained
features of content and style to avoid feature
loss and artifacts.

» A parameter optimization method called style-
enhanced contrast is proposed to improve
training efficiency and image quality.

« Introduction of 7 values to build flexible and
effective contrast learning modules to train the
correct artistic style of characteristic represen-
tation.

 Extensive experiments have demonstrated the
competitiveness of our proposed method.

2. Methods

2.1,

The dataset’s content images are denoted by P.
and style images by p;. Our aim is to train a style
transformation model capable of converting any
given set of content images into the desired artistic
style images. The key insight is to extract aes-
thetic features from P; for style transformation to
synthesize images with artistic style without arti-
facts. Images that are comparable to real paintings.
we propose a new style transformation framework
called MccSTN.

As indicated in Figure (3), our MccSTN consists
of four main components. 1. a pre-trained VGG

Overview of The Methodology

encoder that projects the image into a multilevel
feature embedding. 2. a feature processing mod-
ule, Mccformer, that inputs the fused feature map
F,,. 3. a decoder, D, that recovers the feature
embedding into a stylized image. 4. a multiscale
comparison module that guides the model to train
the stylized migration result free of artifacts. The
overall process is as follows.

1. Firstly, the content image I. € P. and style
image I; € P; are input to the pre-trained VGG
(Chen et al., 2021) network. The input to the VGG
network is preceded by advanced downsampling.
After encoding in VGG network get feature embed-
ding token.

2. The features of the content image I. and
the features of the style image I, are input into
Mccformer to obtain the feature map F,, =
Mecceformer(F,, Fy).

3. The feature map F,, is input to the decoder D
to obtain the style transfer image I...

4. Input I, into the pre-trained encoder VGG to
generate feature token (sharing parameters with
VGG in the first step). Sample two feature tokens
that match the high-dimensional feature distribu-
tion of I.s, and then input it to the feature mapping
module FPN to get the mapping vectors Z and Z*,
and finally sum Z and Z* to get the mean value to
get Z+.

5. Sample an image of another style in the
dataset. Style embed this image (as in step 4)
to get Z—.

6. Compare I.; to Z—,Z+ to calculate the loss.
In simple words our goal is to get I, as close to
Z+ and as far away from Z— as possible.

2.2. Mccformer Module

We propose the Mccformer module, which can
adaptively fuse style features into content features
by taking into account global style and local struc-
ture features through the attention mechanism.
This allows the combination of VGG content and
style features. According to Figure (4), Mccformer
first does a fusion of vgg encoded content features
and style features to get F., then inputs the fused
feature F., into the attention module to calculate
the attention score, and finally encodes the target
feature map F,,.

Inspired by (Wang et al., 2022; Deng et al., 2020),
the inner product of channels between vectorized
features can represent global features well, and
channel attention can effectively improve feature
representation. Specifically, given style feature
F, € REXHXW gnd content feature F, € REXHXW
from VGG (where H and W are height and width,
and C is the number of channels). After obtain-
ing the style features F; and content features F,
we perform regularization and convolution opera-
tions to obtain F, and F,. The implementation is
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Figure 3: An overview of the methods we propose. It mainly contains the Mccfomer module for image
sequence processing and the contrast learning module for model training optimization.

as follows:

Fo =TI (feon (Norm (F,))) € REHXW (q)

where Norm denotes regularization (mean normal-
ization) to avoid excessive fluctuations. Where
feonv denotes learnable convolution. 1I is a vec-
tor operation.
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Figure 4: An overview of our Mccformer modules.
The content features and style features are fed into
the Mccformer module, respectively, and then the
attention score is computed, and then the original
feature information is added to get the final output
sequence.

F, and F, are then dot-multiplied to obtain F_,.
Specifically, we input F., into the attention mod-

ule to compute the attention scores between them.
The output is then multiplied by the convolutional
features of the style features F . Finally, the output
is summed with the content feature F, to obtain
the final output feature map F,,. The method of
realization is as follows:

Attn., = ST (H (attention (FCT ® F’S))) e R? (2

where II denotes the vector operation, attention
denotes the computation of attention, sf denotes
the softmax function, and T denotes the transpose
operation of the vector. Z denotes the range of
vector space Z = H W, x HWs.

The implementation details of the feature map
F,, are as follows:

Fn = foorv (I ((Attn2, @FT) & F,)) € RO*H*W

(3)
where f..n, denotes a learnable convolution with
convolution size 1x1. @ denotes vector addition. T
denotes vector transposition.

Our Mccformer module can take into account
both style features and content features and intro-
duces the original feature information after com-
puting attention. The model can replenish the lost
information, which improves the image quality and
avoids artifacts and other discordant images. It also
maximizes the preservation of texture features of
the content image. The style attention used in our
method is closely related to (Deng et al., 2020). But
there are 3 main differences. (1) Our method simpli-
fies the computational steps and processes, which
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largely reduces the training time and resource con-
sumption. At the same time the performance of fea-
ture map generation is improved and higher quality
images can be generated. (2) We use fusion at-
tention to fully exploit the semantic information of
style images and content images, and high quality
images can be generated under the guidance of
loss function. (3) The information we input into the
Mccformer module contains only style features F
and content features F,.. This approach makes it
easier to train the model and more convenient for
the user during operation.

2.3. Style Enhancement Contrast

The purpose of our proposed technique is to train
a topic-driven image style transformation model
that needs just content pictures and style images
for training. The styled picture’s fine-grained char-
acteristics are captured by the framework and in-
corporated into the content image. We have to
produce an artistic picture that is visually appealing
and devoid of artifacts.

Figure 5: We use a VGG network to project the
style image into high dimensional space. Visualiza-
tion in 3-dimensional space can be intuitive. The
enhancement process is sampling in the neighbor-
hood of the image.

The key is to find a suitable training method. In-
spired by (Zhang et al., 2023) we design the style
enhancement embedding module. Specifically, we
use a pre-trained VGG network to embed the image
I..; into the image space, which we represent using
tokens, and then we use an enhancement method
to increase the feature tokens by two groups (Figure
(6)). Specifically, we sample two sets of tokens that
match the high-dimensional distribution of the style
image I.s . Asin Figure (5),the three sets of tokens
are then projected into the latent image space to
encode global style features and fine-grained style
features.
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Figure 6: An overview of our feature projection
network.

2.4. Comparative Training.

Due to the limited number of art-style images in the
dataset and the fact that the images in the dataset
have a lot of details that do not match human aes-
thetics, such as discordant patterns and colors,
Inspired by (Zhang et al., 2023), we design style-
enhanced contrast learning.

specifically, we use the VGG 19 network, which
is pretrained on the WIKI dataset, for comparison
training. After extracting the stylized image tokens,
enhancement sampling is performed and then fed
into a feature projection network (FPN) to generate
style embedding codes, respectively. Finally, the
style codes are summed to find a mean value. We
consider this result to be a positive sample, denoted
by Z+.

At the same time, we sample other style images
in the dataset (different from F;) and project it as a
style code. We consider this result as Z— and our
training goal is to minimize the distance between Z
and Z* and maximize the distance between Z and
Z- ( Figure (3) bottom left). In order to prevent the
training process from collapsing, these generated
feature codes need to be normalized to prevent
collapse (as shown in Figure (6)). Our contrast
loss is defined as follows:

exp (Dt
Leon = _ZIO p( )
= exp (DY) + 2 exp (D7)
(4)
where "." denotes the dot product operation of two
vectors. Dt = z; -zl /r. D™ = z; - Zi_j/T. N

denotes the number of negative samples sampled.

Perceiving hardness aids in recognizing distinct
characteristics that are evenly spread out but may
have a limited tolerance for samples that are iden-
tical in meaning. The magnitude of the penalty
imposed on challenging negative samples is deter-
mined by the temperature parameter (7). As the
temperature decreases, the penalty becomes more
focused in regions with high similarity, whereas as
the temperature increases, the distribution of penal-
ties becomes more even, resulting in all negative
samples being penalized equally. An association
between uniformity, tolerance, and temperature is
established.
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Figure 7: Similar negative samples with small =
values have small penalties. Unsimilar negative
samples with larger 7 values have larger penalties.

2.5. Penalty Parameter

We introduce the variable 7 to regulate the disper-
sion of the negative gradient (Zhang et al., 2023).
Decreasing the value of 7 increases the emphasis
on the anchor point’s nearest neighbours, whilst
increasing 7 equally penalises negative samples.
This is seen in Figure (7). When the value of 7 is
held constant, the magnitude of the gradient for the
positive samples is equivalent to the total of the gra-
dients for all the negative samples. Prior research
on 7 analysis has mostly examined the lack of uni-
formity in penalties for negative samples inside an
anchor (Wang and Liu, 2021), or the cumulative
penalties of various anchors within a training batch.
Contrary to prior work, the current study specifically
examines the ratio of fines between positive and
negative samples.

This work considers the similarities between the
style codes of other creative images I, and the ref-
erence style I,, and provides an input-dependent
strategy to calculate 7. The 7 rises with the number
of extremely similar samples in the memory bank.
To do this, 7 is represented using the sigmoid func-
tion, which is a monotonic function with defined
upper and lower limits. In order to align with the
centre of the sigmoid function, the independent vari-
able of image similarity needs to be normalised to
a distribution with a mean of 0. The distribution of
image similarity is presumed to follow a Gaussian
distribution.

In order to ensure consistency in image simi-
larity during the training process, the mean and
variance are calculated. As the training progresses
and more samples are included, the data distribu-
tion’s mean and variance are estimated. Here are
the recursive rules: The new mean is determined
by first updating the average and then evaluating
the average similarity of each new image in relation
to the known mean similarity. The new variance is
calculated by adjusting the existing variance based
on the difference between the similarity of each
new image and the average similarity, taking into
account their respective weights. We calculate our

input-dependent 7 as follows:
1
1+ exp (f (Zleg (Sn) — u) : 0)

+B (5)

T =

where i and o denote the es;sfimates of the mean
and standard deviation of > ", g ('sn), and /3 de-
notes the lower limit of 7. 3 is set to 0.05.

2.6. Style Code Embedding

Feature Projection Network. (Zhang et al., 2023)
We aim to create a comprehensive framework for
migrating artistic images to natural photos, preserv-
ing both the local stroke characteristics and overall
appearance. An essential element is to identify ap-
propriate style representations that may be utilised
to differentiate between various styles and then di-
rect the creation of stylized images. To achieve this
objective, we present the feature projection module,
comprising a style feature extractor and a Feature
Projection Network (FPN). In the FPN, As shown
in Figure (3), instead of utilising layer-specific fea-
tures or combining several layers, features from
different layers are projected onto a distinct latent
image space to capture both local and global style
cues.

More precisely, we utilised VGG-19 (Simonyan
and Zisserman, 2014), a pre-trained model on Im-
ageNet, and made further adjustments to optimise
its performance. The model amassed a total of
18,000 art images spanning over 50 distinct cate-
gories. The M-layer feature maps extracted from
VGG-19 were chosen as the inputs for the multilayer
projector. The mean and maximum values of the
characteristics were captured using maximum pool-
ing and average pooling techniques. The maximum
pooling and average pooling layers are employed to
extract the highest and mean values of the features,
respectively. The FPN comprises a pooling layer, a
convolutional layer, and numerous multilayer linear
layers. These layers are responsible for projecting
the style features into a collection of K-dimensional
latent style codes {z; | i € [1, M],z; € R }.

3. Generalized Loss Functions

For generic style transfer, as in case of (Huang and
Belongie, 2017), we compute the content loss L.
and the style loss L, which are implemented as
follows, with the goal to preserve as much of the
texture features of the content image and the color,
pattern, and other features of the style image as
possible in the generated image:

L. = ||Norm (Is) — Norm (I.)]], (6)

where Norm denotes regularization.
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Table 1: The inference time represents the time used to process an image. The best of all results are in

bold, and the second-best are underlined.

Methods Inference time] | Contentloss| | LPIPS| | Deception Ratet
MANet (Deng et al., 2020) 43ms 0.155 0.338 39.5%
ArtFlow (An et al., 2021) 118ms 0.121 0.314 37.6%
IEContraAST (Chen et al., 2021) 62ms 0.134 0.305 61.4%
AesUST (Wang et al., 2022) 59ms 0.143 0.334 58.5%
CAST (Zhang et al., 2023) 436ms 0.160 0.328 61.7%
MicroAST (Wang et al., 2023) 23ms 0177 0.340 54.1%
MccSTN(Ours) 41ms 0.109 0.310 69.2%

We compute the style loss so that the generated
image retains as many of the fine-grained features
of the original style image, such as pattern, texture,
and color, as possible.

Ly =1 (es) = 1 (L)l
+ ||U (Ics) -0 (IS)H2

where 1 and o are the mean and standard deviation
of the channel, respectively.

Furthermore, in order to limit the loss of con-
tent features and preserve more texture and global
features, we use the identity loss L, to constrain
the identity mapping between content features and
style features.

['id = ||Icc - I(:HQ + ||Iss - Is||2 (8)

Where ... denotes the use of image I. as the result

of generating content images and style images, and

I denotes the use of style image Is as the result

of generating content images and style images.
The overall optimization objective is:

Ligtal = M Lcont + A2Le +A3Ls + AaLig  (9)

(7)

where )\ is a weighting factor that adjusts the weight
of the loss term.

4. Experiments

4.1.

We follow the multilevel strategy of (Huang and
Belongie, 2017) by integrating two Mccformer mod-
ules on the index 3 and index 4 layers of VGG-19,
respectively. Our content dataset is MS-COCO (Lin
et al., 2014) and style dataset is WikiArt (Phillips
and Mackintosh, 2011). Both datasets contain
about 80,000 training images. We use the Adam
optimizer with a learning rate of e=* and a batch
size of 4. A total of 160,000 iterations were used for
training. During training, all images are rescaled
to 512 while preserving the aspect ratio and then
randomly cropped to 256 x256 pixels. We use the
PyTorch deep learning framework, and all experi-
ments are performed on NVIDIA RTX 3090 24GB
GPUs.

Implementation Details

4.2. Comparison of SOTA Methods

We compare our method to six of the state-of-the-
art methods, specifically Multi-Adaptation (Deng
et al., 2020), IEContraAST (Chen et al., 2021), Mi-
croAST (Wang et al., 2023), AesUST (Wang et al.,
2022), CAST (Zhang et al., 2023), and ArtFlow (An
et al., 2021). All baselines use default configura-
tions and publicly available code.

As shown in Table (1), the inference speed and
other common parameters are compared. We use
inference picture time to explore the degree of light-
ness of the modeling approach. We use content
loss to indicate the extent to which the model loses
content features during feature embedding. We
use LPIPS to explore the quality of the final gen-
erated image. Deception loss (Kotovenko et al.,
2019) is to measure whether the generated result
has obvious artifacts. Specifically, it is a measure
of whether the generated image differs from a real
painting. We conducted a user study to calculate
deception loss, i.e., the number of times a gener-
ated image was guessed to be a "real painting". We
randomly selected 40 composite images for each
method and asked 50 subjects to guess whether it
was a real painting.

According to Table (1), our method reaches the
state-of-the-art in almost all the domains, e.g., our
LPIPS reaches the minimum, indicating that our
method loses the least number of content features
during the style migration process. The reception
rate is the highest, indicating that the quality of our
images is better and more preferred by the users.

4.3. Qualitative Comparison

We show the results of the qualitative comparison,
as shown in Figure (8). ArtFlow, MicroAST, etc.
produce obvious artifacts and discordant patterns.
This is what we do not want to see. MAnet, IECon-
traAST, etc. can generate concise and effective
results, but some of the generated results have
distorted structures and artifacts. AesUST, CAST,
preserves very well in terms of content features
but lacks the ability to perceive certain complex
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Figure 8: Qualitative comparison results. Our method generates higher quality images.

textures and patterns. Our method generates high-
quality images. These problems are avoided.

4.4. User Preference Study

because of the unique qualities of creative pictures.
It is not a good idea to represent the quality of im-
age production using mathematical formulas. We
created a user preference research as a result.
Users’ choices for photographs vary, and even the
same image will receive varying ratings. We polled
fifty users about their preferences. Finding more
aesthetically pleasing photos that are favored by
a larger number of individuals is our aim. To be
more precise, we contrasted our approach with the
best available technique to select photographs with
greater aesthetic appeal from alternatives A and B.
In order to select photos with greater visual appeal,
we also contrasted our approach with the best one
currently in use. We conducted individual tests with
each user and noted their selections. Every time
we compare our approach with one of the other
state-of-the-art ways, we select one hundred styles
for every content image and ask the user to select
the method that produces an image that they find
more aesthetically pleasing out of the two. Figure
(9) shows the results of comparing our method with
other state-of-the-art methods.

4.5. Degree of Stylization Control

By adjusting the various in Eq.(9), we can regulate
the level of stylization applied to an image. The fea-
ture maps are altered by changing the weights of

100%
15%
25%
37%

2% 4%

81% S E5%
6
0
6% - o

| = MANet MicroAST IEContraAST CAST AesUST ArtFlow Ours |

Figure 9: The results of our user preference study.

various loss functions to generate images with dif-
ferent degrees of stylization. This can be done with
good results, but it requires retraining the model
and is very user-unfriendly. To achieve runtime
control, inspired by (Huang and Belongie, 2017),
we introduce an interpolation method to control the
degree of stylization as shown in Figure (10).

In the testing process, we first input the content
image I. and the style image Is into the model
and output the feature map F,,. Then we use the
content image 1. as the content input and the style
input. Output feature map F.,,. ¢ value is used to
control the weight value of feature maps Fm and
Fpn, fusing the two feature maps to get F,.cim, the
realization formula is as follows.

chmZQOFm'*'(l_@)ch (10)

When ¢ = 1 is satisfied, the entire model will be
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Figure 10: Example of runtime style control with a style image in the upper right corner of the content
image. different ¢ values result in different degrees of stylization.

fully stylized output. When ¢ = 0, the entire model
will be an image reconstruction.

5. Limitations

Our method easily extracts fine-grained features
from style images, but for many with multiple dis-
tinctive features, Our method may give the wrong
results. There are many features that we don’t
want that are also embedded in the feature map
F,, by the Mccformer module. In short, there will
be some difference between the style of the image
recognized by the human eye and the style recog-
nized by the neural network. In our later work, we
will add more manual annotation, which can make
the results generated by the model more suitable
for human aesthetics. Our work does not com-
pute attention scores for content images or style
image sheets separately, which perhaps affects the
model’s ability to recognize image styles. We will
introduce the multiple attention module in our future
work, which we believe can significantly improve
the performance of the model.

6. Conclusion

We propose a simple and effective style transfer
network that can easily embed the fine-grained fea-
tures of style images into content images. Specifi-
cally, we fuse content images and stylized images
by computing an attention score. We call it Mc-

cformer. This method fuses the generated fea-
ture maps to avoid artifacts. We also propose the
style enhancement contrast method to optimize
the parameters. Specifically, this method improves
the training efficiency and solves the problem of
insufficient supervised information in the dataset.
Through experimental exploration, our method has
achieved its current state-of-the-art optimal perfor-
mance. Artifacts are almost eliminated while pre-
serving content image texture features, and style
control is achieved. No additional artistic feature
embedding module is required to generate highly
aesthetic images. Extensive experiments show the
superiority of our image conversion method.
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