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Abstract
Knowledge-based Visual Question Answering (KBVQA) is a challenging task, which aims to answer an image
related question based on external knowledge. Most of the works describe the semantic distance using the
actual Euclidean distance between two nodes, which leads to distortion in modeling knowledge graphs with
hierarchical and scale-free structure in KBVQA, and limits the multi-hop reasoning capability of the model. In
contrast, the hyperbolic space shows exciting prospects for low-distortion embedding of graphs with hierarchical
and free-scale structure. In addition, we map the different stages of reasoning into multiple adjustable hyperbolic
spaces, achieving low-distortion, fine-grained reasoning. Extensive experiments on the KVQA, PQ and PQL datasets
demonstrate the effectiveness of HyperMR for strong-hierarchy knowledge graphs. The code is publicly available at
https://github.com/WANGBEAN068/HyperMR/.
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1. Introduction

Visual Question Answering (VQA) aims to under-
stand the natural language questions and related
images to infer the correct answers. Due to the
limited knowledge in the regular corpus during
model training, some questions could not be an-
swered. This requires the model be able to use ex-
ternal knowledge to infer the correct answer, called
Knowledge-based Visual Question Answering (KB-
VQA). For complex questions, it needs to capture
evidence in the knowledge base and infer the cor-
rect path (Cui et al., 2023). To accomplish such
a challenging task, the model needs to link ques-
tions, images, and entities in the knowledge base
and embeds them in a multi-dimensional vector
space to restore their complex semantic structures,
when triples of linked entities are not enough to an-
swer the question, multi-hop reasoning is needed.
Finally the model decodes reasoning result to get
the answer.

Most previous works (Zhang et al., 2022; Heo
et al., 2022; Adjali et al., 2023) exist with neglected
problems. Many real-world graphs, such as so-
cial networks and internet, tend to have scale-free
and hierarchical structure (Chami et al., 2019).
When these graphs are embedded in the Euclidean
space, the distance of border nodes shrink as the
graph is extended, which may lead to very close
distance of leaf nodes belonging to different sub-
trees (Figure 1a). In other words, it is not intuitive
that nodes with very different semantics may be
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(a) Knowledge embedding in
euclidean space. As the tree-
like graph embedded in Eu-
clidean space spreads, the
edge nodes get closer to each
other, leading to semantic dis-
tortion of the structure.
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(b) Knowledge embedding in
hyperbolic space. Each line seg-
ment in a Poincaré disc has
the same length, e.g. a and b.
Thus the relative positions of the
nodes can be properly modeled.

Figure 1: Examples of graph embedding in eu-
clidean and hyperbolic space.

very close to each other in the Euclidean vector
space. Bourgain’s theorem (Linial et al., 1995)
shows that Euclidean space is unable to obtain
comparably low distortion for trees, even using
an unbounded number of dimensions. And after
calculation, we find that most of the knowledge
graphs in KBVQA also have a hierarchical struc-
ture. However, due to the natural defects of the Eu-
clidean space, the embedding structure of knowl-
edge graph in Euclidean space suffers from a large
distortion, which limits the performance of multi-
hop reasoning on knowledge evidence.

In contrast, due to certain superior properties,
hyperbolic space allows the embedding of graph
structure with low distortion (Chami et al., 2020).
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For example, 1) in the mapping from Euclidean
space to Poincaré model, the angles between em-
bedded vectors of knowledge are identical. That
is, the mapping is conformal. 2)When the crowded
structure modeled in the euclidean space is trans-
ferred to the hyperbolic space, due to the distortion
of the space, it is able to maintain a reasonable
relative position (Figure 1b). 3) In hyperbolic space,
the volume grows exponentially with radius, while
in Euclidean space it grows polynomially. This
means that the hyperbolic space can embed more
information than Euclidean space when they have
same dimensions. These tree-like properties of the
hyperbolic space are key features exploited for the
knowledge graphs embedding of KBVQA.

Further, for complex multi-hop knowledge rea-
soning questions, the model requires multiple
stages to iteratively perform the reasoning process.
Therefore, different spatial patterns are needed to
match the reasoning process at different stages of
the reasoning. In addition, hyperbolic space is a
non-Euclidean space with negative constant curva-
ture, and the curvature determines the distribution
structure of the space. For reasoning over complex
questions, a single curvature cannot accurately
portray the optimal spatial structure required for
the knowledge graphs at different stages of rea-
soning. Therefore, it is necessary to use multiple
adaptive curvatures to fit out different spatial struc-
tures that are best suited for each reasoning stage,
respectively.

Therefore, we propose a multi-hop reasoning
framework embedded in hyperbolic space, named
HyperMR. It can utilize hypergraph (Kim et al.,
2020; Heo et al., 2022) to encode higher-order se-
mantics of complex structures in hyperbolic space
with low distortion, and perform multi-hop knowl-
edge reasoning. Specifically, we transform the in-
put features in Euclidean space into hyperbolic em-
beddings to restore the complex hierarchical struc-
ture of the free-scale knowledge graphs. Then the
question hypergraph and knowledge hypergraph
are constructed in the hyperbolic space, and the
higher-order semantics and relations of multi-hop
fact knowledge are captured by the hyperedges.
After that, we construct a hypergraph reasoning
network based on the transformer encoder layer.
Due to the different spatial structures required at
different stages of question reasoning, and the dif-
ferent curvatures determine the degree of warping
of the space. We map different layers of the hyper-
graph reasoning network into multiple hyperbolic
spaces, adjusting the structural properties of each
space separately with multiple trainable curvatures,
achieving low-distortion, fine-grained reasoning. In
summary, our contributions are as follows:

• We propose a hyperbolic hypergraph multi-hop
reasoning method, named HyperMR, which

exploits the high fidelity of hyperbolic geom-
etry to model and reason about hierarchical
knowledge evidence with low distortion, effec-
tively improving model performance.

• We map the different stages of reasoning into
multiple adjustable hyperbolic spaces, to ob-
tain the optimal spatial structure that best suits
the different stages of reasoning, achieving a
low-distortion, fine-grained reasoning process.

• Extensive experiments on three mainstream
datasets fully demonstrate the advanced multi-
hop reasoning capability of HyperMR for
strong-hierarchy data and the rationality of
multi-space reasoning.

2. Related Work

2.1. Knowledge-based Visual Question
Answering

The core of this task is the acquisition and inte-
gration of knowledge to answer questions that ex-
ceed the content of the images. Early explorations
were dominated by the retrieval methods. Wang
et al. (2017) parsed the input into a structured
query and retrieved supporting knowledge from
the fixed knowledge base to obtain the answer.
After that, Kim et al. (2018) argued that the previ-
ous approaches ignored the interaction between
commonsense knowledge and questions, so the
answers were obtained by calculating the soft at-
tention score between the retrieved knowledge and
the question as the basis for matching. Yu et al.
(2020); Zhu et al. (2021) constructed visual, factual,
and semantic graphs, respectively, and performed
joint reasoning on three graphs to find complemen-
tary evidence of multi-modality. Since the over-
smoothing of graph convolution leads to limited
long-distance message propagation in multi-hop
reasoning, HAN (Kim et al., 2020) and Hypergraph
Transformer (Heo et al., 2022) achieved efficient
multi-hop reasoning by constructing hypergraphs.
However, the hypergraph method uses triples as
node units, focusing on semantic clustering and
propagation of nodes while ignoring the accurate
structure representation of the graph. In order to
make the structure information of the graph work
as it should, we use the low-distortion property
of the hyperbolic space to model the knowledge
graph.

2.2. Knowledge Graph Embeddings in
Hyperbolic Space

Previous works (Huang et al., 2021; Wang et al.,
2020) have conducted a lot of research on knowl-
edge graphs embedded in Euclidean space and
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achieved a lot of outcomes, but most of them
have problems such as too high embedding di-
mension or distorted embedding structure. Hyper-
bolic space has shown increasing interests due
to its ability to model data with potential hierarchi-
cal structure. Nickel and Kiela (2017) proposed
to learn a hierarchical representation of symbolic
data through Poincaré embeddings. Chami et al.
(2020) demonstrated that hyperbolic space are
able to embed more information than Euclidean
spaces in lower dimensions, and also explored the
importance of curvature on spatial distributions.
Further, by analyzing the effect of curvature for
distortion of data with different hyperbolicity, Fu
et al. (2021) demonstrated that adaptive fusion
of hierarchical topology with feature information
is necessary. By leveraging hyperbolic geometry
for low-distortion modeling of hierarchical structure
and applying learnable curvature, we accomplish
accurate understanding and multi-hop reasoning
about knowledge graphs.

2.3. Hyperbolic Geometry

Hyperbolic geometry is a necessary background
for this work. Here we review the key points in
hyperbolic geometry involved in our work. More
details are described in (Chami et al., 2019) and
(Ganea et al., 2018).

The hyperbolic space is the unique complete,
simply connected Riemannian manifold as well as
an isotropic space with constant negative sectional
curvature. The curvature measures how far a ge-
ometric object deviates from the plane, where it
determines the warping of hyperbolic space. The
hyperbolic space degenerates to Euclidean space
when the curvature is 0. There are several equiv-
alent models that describe the hyperbolic space,
such as Hyperboloid model and Poincaré model,
etc. Here we focus on the study of multi-hop rea-
soning in the Poincaré ball. Assuming that the
n-dimensional embedded Poincaré sphere has cur-
vature −c (c > 0), its corresponding Riemannian
manifold is: Hn,c =

{
x ∈ Hn | ∥x∥2 < 1

c

}
, where

∥·∥ is the L2 norm in the Euclidean space.
For any point xH ∈ Hn,c embedded in a hyper-

bolic space, there exists a tangent space TxHn,c,
which is a local, first-order approximation of the
hyperbolic manifold at x and the restriction of the
Minkowski inner product to TxHn,c is positive def-
inite. Its geometric meaning is that it contains
curves in all directions passing through point x
in the manifold, which is locally approximated as
Euclidean space at point x. This is very useful
for performing various undefined operations in hy-
perbolic space. The method of mutual mapping
between the hyperbolic space Hn,c and the tangent
space at x is modeled in the Poincaré ball is given:

expc
x (z) = z ⊕c

(
tanh

(√
c
λc
x ∥z∥
2

)
z√
c ∥z∥

)
, (1)

logc
x (y) =

2√
cλc

x

tanh−1 (√c ∥−x⊕c y∥
) −x⊕c y√

c ∥−x⊕c y∥
,

(2)
where x ∈ TxHn,c, y ∈ Hn,c, the exponential map-

ping maps TxHn,c to Hn,c, the logarithmic mapping
maps Hn,c to TxHn,c, λc

x = 2/(1 − c ∥x∥2)is the
conformal factor and the ⊕c refers to the Möbius
addition (Ganea et al., 2018). Since the addition
of two points in Poincaré ball may derive a point
outside the ball, for this Möbius addition is a gen-
eralization of the addition operation in Euclidean
space. It is defined as follows:

x⊕c y =

(
1 + 2c ⟨x, y⟩+ c ∥y∥2

)
x+

(
1− c ∥x∥2

)
y

1 + 2c ⟨x, y⟩+ c2 ∥x∥2 ∥y∥2
,

(3)
where ⟨x, y⟩ is the Euclidean inner product opera-

tion.
The path through the shortest distance between

two points x, y embedded in non-Euclidean geome-
try is called the geodesic, which is a generalization
of the straight-line distance in Euclidean geome-
try. This is very meaningful for node embedding
and multi-hop reasoning in knowledge graphs. The
distance in the Poincaré ball is defined as follows:

dc (x, y) =
2√
c
arctanh

(√
c ∥−x⊕c y∥

)
. (4)

3. Method

In this section we will introduce HyperMR, a frame-
work for KBVQA multi-hop reasoning in hyperbolic
space, which implements higher-order semantics
reasoning about knowledge under low-distortion
hierarchy in hyperbolic space. Due to the lack of
pre-trained word embedding in hyperbolic space,
like GloVe (Pennington et al., 2014), we map their
embedded features in Euclidean space to hyper-
bolic space (Eq.5) after entity linking of questions,
images and knowledge graphs. Then we construct
hypergraph for knowledge and questions and use
hyperbolic hypergraph reasoning network to per-
form higher-order semantics reasoning on hyper-
edges. Each stage of the reasoning process, con-
sisting of an attention network, is mapped to a
different hyperbolic space. Multiple trainable cur-
vatures are used in spatial adjustments during em-
bedding and reasoning to find the most appropriate
spatial structure for the current stage.

3.1. Task Definition

We describe the notation of the KBVQA task with-
out loss of generality. Given the questions Q, the
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Figure 2: The overview of HyperMR. First the question-image pairs are linked to entities of knowledge
graphs and embeded into the hyperbolic space. After that hypergraphs are constructed for the questions
and knowledge, and multi-hop reasoning is performed using Hyperbolic Hypergraph Reasoning Network,
where each stage is mapped to a different hyperbolic space with different trainable curvatures. In the end,
the joint representation is transferred to the tangent space to get the answer.

images I and the knowledge graphs G = (V,R,S),
where V, R, S represent the set of entities, rela-
tions and triples, respectively. The triplet is defined
as S = {(h, r, t) | h, t ∈ V, r ∈ R} ⊆ V × R × V,
where h, t, r stand for the head entities, the tail
entities and the relations between them, respec-
tively. The purpose of the task is to find an in-
ference process φ (·), which reasons about the
knowledge graphs based on questions and im-
ages to derive the probability distribution Pv of
the set of nodes and thus the answer. Pv =
φ ({vi ∈ V | Q, I,G }) ⇒ Ans ∈ Dd, where Dd is
the list of words of size d.

3.2. Entity Linking

Visual targets (e.g., name, object, position, etc.) in
images as well as key entities in questions are de-
tected. These visual targets and entities are then
matched to the knowledge entities in the knowl-
edge graphs, constituting question-image-KG en-
tity links.

3.3. Hyperbolic Embedding

After embedding the questions and the knowledge
graphs linked by question-image pairs into the Eu-
clidean space, we utilize the exponential mapping
to map the features embedded in the Euclidean
space to hyperbolic manifold in the Poincaré ball.
Assume that x(0,R) ∈ Rd is a d-dimensional vec-
tor embedded in Euclidean space. We map fea-
tures from the tangent space T0Hn,c centered at

the point
(
0,x0,R)

to the hyperbolic manifold Hn,c:

x0,H = expc0
((
0,x0,R))

=

(
0, tanh

(√
c ∥x∥

) x√
c ∥x∥

)
.

(5)

3.4. Hypergraph Construction

Based on previous works (Heo et al., 2022; Kim
et al., 2020), we construct the hypergraph in a
hyperbolic space. Hypergraph is a graph repre-
sentation based on higher-order semantics, which
consists of a set of nodes and hyperedges, and a
hyperedge can connect more than two nodes at
the same time. It implements abstract clustering
of graphs based on higher-order relationships of
different nodes.

For the knowledge hypergraph, we utilize the
traversal approach to construct the hypergraph,
and preserve the higher-order semantics by using
the triple as a basic unit, starting with the linked
entity node and considering connecting all nodes
linked to it via hyperedges. For the n-hop questions,
the traversal connects n facts and merges them
into a hyperedge.

For the question hypergraph, there exists an in-
tuitive manner for constructing graphs. That is,
the semantics in a sentence often consists of a
sense-group of n-gram phrases, e.g., the question
in Figure 2. Therefore, we take the sense-groups of
the adjacent 3-gram in the sentence as node units,
and traverse them to construct the hypergraph.



8509

3.5. Hyperbolic Hypergraph Reasoning
Network

In this part, we first performs the linear transform
on the hyperbolic input, after which the features
are mapped to the tangent space for multi-head
attention reasoning, and then mapped back to the
hyperbolic space. With the above process, dimen-
sion normalization and higher-order semantics rea-
soning for hypergraphs in hyperbolic space are
achieved.

3.5.1. Poincaré Ball Linear Transform

After mapping the features from the Euclidean
space to the hyperbolic space and constructing
the hypergraph, the excessive dimension becomes
a problem. Especially for the hypergraph construc-
tion, if taking the 3-gram phrase as a node of ques-
tion hypergraph, the feature of a node is 900 di-
mensions. Previous work (Liu et al., 2019) proved
that: excessive dimensions provide very limited
improvement in the representation ability of hyper-
bolic manifolds.

Thus, according to the work of Chami et al.
(2019), we perform a linear transformation on the
embedding vectors in hyperbolic space using the
weight matrix W ∈ Rn′×n and the bias b ∈ R,
where the n′ and n are the matrix dimensions after
and before mapping. Specifically, matrix multiplica-
tion in the Poincaré ball is defined by Möbius scalar
multiplication:

W ⊗c x = expc0 (W logc0 (x)) . (6)

For bias addition, b is defined as a vector located
in the tangent space T0Hn,c, which is parallel trans-
ported to hyperbolic point x in the tangent space
TxHn,c, and then mapped into the manifold.

xH ⊕c b = expcx (P
c
o→x (b)) , (7)

where P c
o→x (v) = logcx (x⊕c expc0 (v)) =

λc
o

λc
x
v is the

parallel transportation from T0Hn,c to TxHn,c.

3.5.2. Multiple Hyperbolic Space Reasoning

Humans usually divide the reasoning process into
several stages, such as dividing a huge question
into several parallel sub-questions, or completing
the reasoning process in a step-by-step progres-
sion. Inspired by this, we divide the reasoning
process into different stages as well, taking ad-
vantage of the property that hyperbolic space can
be warped and adjusted, so as to find the most
suitable spatial structure for each reasoning stage.
Final select the hyperedge that contains the cor-
rect answer. Algorithm 1 shows the inputs and

Algorithm 1 Multiple hyperbolic space reasoning

Input: The value of nodes NV ; A set of curvatures
C = {c1, c2, ..., cn}

Output: The feature of nodes NF
initialization
for i ∈ [1, n] do

if i = 1 then
NFi−1 = hyperbolicEmb(NV )ci

else
stagei(NFi−1)

ci−1
in = stagei−1(NFi−1)

ci−1

out

NFi = stagei(NFi−1)
ci
out

end if
end for
return NFn

outputs as well as the curvature assignments for
each stage of the reasoning process:

In order to accomplish higher-order semantics
reasoning for hypergraphs in hyperbolic space, the
encoder layer of transformer (Vaswani et al., 2017)
is used to construct multi-head attention block and
self-attention block. In addition, we process the
attention reasoning blocks using exponential and
logarithmic mappings, allowing the operations of
attention, normalization, and feed-forward network
in the standard encoder layer to be implemented
in hyperbolic space.

Let the knowledge hyperedges be Ek, and the
question hyperedges be Eq. For two multi-head
attention blocks, we set query Q, key K, and value
V as respectively:

Qk = EkWQk
;Kq = EqWKq

;Vq = EqWVq
,

Qq = EqWQq
;Kk = EkWKk

;Vk = EkWVk
,

where W(·) is the attention weight matrix.
Then scaling dot product attention

Att (Q,K, V ) = softmax
(

QKT

√
d

)
· V is performed

by Att (Qk,Kq, Vq) and Att (Qq,Kk, Vk).
For the two self-attention blocks, we use similar

approach as above, but where the query, key, value
of the multi-head attention is set to the same value:
Att (Qq,Kq, Vq) and Att (Qk,Kk, Vk).

3.6. Decoding

The representations of the knowledge hyperedges
and the question hyperedges are updated by mul-
tiple hyperbolic space reasoning network, and ag-
gregated into a joint vector representation j. We
use the logarithmic mapping logc0 (·) to project
j into the tangent space of the origin to obtain
j(0,R) ∈ T0Hn,c, after which we compute the dot-
product similarity p = j(0,R)DT with the answer
word list Dd×w ,w being the word embedding di-
mension. Finally we use the cross-entropy be-
tween the calculated answer and ground-truth as
the loss function.
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PathQuestion PathQuestion-Large KVQA
PQ-2H PQ-3H PQ-M PQL-2H PQL-3H PQL-M

# Entities 1,057 1,837 2,257 5,035 6,506 6,506 39,414
# Relations 14 14 14 364 412 412 18
# Knowledge facts 1,211 2,839 4,050 4,247 5,597 9,844 174,006
# Words 1,180 1,929 2,407 5,505 7,001 7,034 63,164
# QA pairs 1,908 5,198 7,106 1,594 1,031 2,625 183,007
# Answers 305 1,009 1,107 380 292 438 19,360

Table 1: Statistics of three benchmark datasets: PathQuestion (PQ), PathQuestion-Large (PQL) and
Knowledge-aware Visual Question Answering (KVQA).

Hyperbolicity δ=1.5 Original (ORG) Paraphrased (PRP) Mean
1-hop 2-hop 3-hop 1-hop 2-hop 3-hop

BLSTM - - - - - - 51.0
GCN (Kipf and Welling, 2016) 65.7 67.4 66.9 65.8 67.5 67.0 66.7
GGNN (Li et al., 2016) 72.9 74.5 74.0 72.9 74.6 74.1 73.8
MeMNN (Sukhbaatar et al., 2015) 78.1 77.8 76.1 78.0 78.1 76.0 77.3
HAN (Kim et al., 2020) 77.5 77.5 77.2 77.1 77.4 76.9 77.3
BAN (Kim et al., 2018) 83.5 84.0 83.7 83.7 84.3 83.8 83.8
HyperTransformer (Heo et al., 2022) 88.1 90.2 91.0 87.8 90.5 90.7 89.7
DSAMR (Sun et al., 2024) 89.1 91.0 91.1 89.0 90.7 91.1 90.3

HyperMR 90.7 91.9 91.9 90.7 91.7 91.7 91.4

Table 2: The accuracy of advanced methods for various types in KVQA dataset. ORG and PRP denote
the question type.1-hop, 2-hop, 3-hop represent the number of hops in the ground-truth path. δ = 1.5
stands for the hyperbolicity of the KVQA dataset as 1.5.

4. Experiment

4.1. Experiment Setup

4.1.1. Datasets

In this work, we evaluate our method on the
Knowledge-aware VQA dataset (KVQA) and the
textual question answering datasets PathQuestion
(PQ) and PathQuestion-Large (PQL), which focus
on multi-hop reasoning ability. In addition, we
compute Gromovs δ - hyperbolicity, a notion from
group theory that measures how tree-like a graph
is. Lower δ represents a graph that is more hierar-
chical, and when δ = 0 represents a tree. Hyper-
bolicity is used to aid in investigating the properties
of knowledge representation in hyperbolic spaces.

1. KVQA (Shah et al., 2019) is the largest
dataset for exploring VQA over knowledge
graph. It consists of 183,007 question-answer
pairs involving more than 39,414 named
entities based on Wikidata (Vrandečić and
Krötzsch, 2014) and 24,602 images from
Wikipedia.

2. PQ and PQL (Zhou et al., 2018) datasets are
two question-and-answer datasets that focus
on multi-hop reasoning, including 7,106 and
2,625 QA pairs on 4,050 and 9,844 knowledge
facts from the subset of Freebase (Bollacker

et al., 2008), respectively. The knowledge of
PQ and PQL has different structure and PQL
contains more knowledge facts.

4.1.2. Baselines

This work is the first to conduct the KBVQA task
in hyperbolic space. Besides, the text QA base-
lines in the PQ and PQL datasets is not in the
VQA domain and only serves as a supporting proof.
Therefore the baselines contain only the more ad-
vanced methods of VQA embedded in Euclidean
space. For these KBVQA methods, we divide them
into three categories: graph-based, memory-based
and attention-based networks. In order to evaluate
the pure reasoning ability of models regardless of
entity linking performance, we give ground-truth
named entities in the images for all methods.
Graph-based networks. Graph Convolutional Net-
works (GCN) (Kipf and Welling, 2016) and Gated
Graph Neural Networks (GGNN) (Li et al., 2016)
propagate information among neighbors by learn-
ing the question graph and knowledge graph, and
aggregating nodes to complete the update of the
graph representation.
Memory-based networks. Memory Network
(MemNN) (Sukhbaatar et al., 2015), a baseline in
the early stage when memory-based approaches
were still popular, embeds knowledge in slots and
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Hyperbolicity δ
PathQuestion PathQuestion-Large

PQ-2H PQ-3H PQ-M Mean PQL-2H PQL-3H PQL-M Mean
δ=2 δ=2 δ=2 δ=0 δ=1 -

Seq2Seq (Sutskever et al., 2014) 89.9 77.0 - - 71.9 64.7 - -
MemNN (Sukhbaatar et al., 2015) 89.5 79.2 86.8 85.2 61.2 53.6 55.8 56.9
KV-MemNN (Miller et al., 2016) 91.5 79.4 85.2 85.4 70.5 63.4 68.6 67.5
IRN (Zhou et al., 2018) 96.0 87.7 - - 72.5 71.0 - -

Embed (Bordes et al., 2014b) 78.7 48.3 - - 42.5 22.5 - -
Subgraph (Bordes et al., 2014a) 74.4 50.6 - - 50.0 21.3 - -
MINERVA (Das et al., 2018) 75.9 71.2 73.1 73.4 71.8 65.7 66.9 68.1
IRN-weak (Zhou et al., 2018) 91.9 83.3 85.8 87.0 63.0 61.8 62.4 62.4
SRN (Qiu et al., 2020) 96.3 89.2 89.3 91.6 78.6 77.5 78.3 78.1
HyperTransformer (Heo et al., 2022) 96.4 90.3 89.5 92.1 90.5 77.9 94.5 87.6
DSAMR (Sun et al., 2024) 98.4 91.1 91.7 93.7 95.6 81.7 98.8 92.0

HyperMR 96.2 90.5 89.5 92.1 96.3 83.7 98.9 93.0

Table 3: Accuracy of advanced methods under PQ and PQL datasets. Hyperbolicity is also given for
different question types. The methods in the top half are of the fully supervised type, and the bottom half
including our methods are of the weakly supervised type.

computes the soft attention between each memory
slot and the question to obtain a joint representa-
tion.
Attention-based networks. Bilinear Attention Net-
works (BAN) (Kim et al., 2018), Hypergraph Atten-
tion Networks (HAN) (Kim et al., 2020), Hypergraph
Transformer (Heo et al., 2022) and Dual-Stream At-
tention (DSAMR) (Sun et al., 2024) consider inter-
actions between knowledge and question based on
co-attention mechanism. Among them, BAN is up-
dated by computing the attention of the knowledge
entity with the question, and both HAN and Hy-
pergraph Transformer belong to hypergraph-based
reasoning. The difference is that HAN performs
the construction of hyperedges using randomly se-
lected nodes as starting nodes, while Hypergraph
Transformer uses the knowledge entities linked to
the image-question pairs as the starting point for
the construction of hyperedges. DSAMR adds the
dual-stream attention module to Hypergraph Trans-
former, which effectively solves the problem of too
much redundant information in the last layer of
the attention network, and extracts the necessary
knowledge for answer prediction.

4.1.3. Implementation Details

The question and knowledge graphs are first ini-
tialized in Euclidean space as a 300-dimensional
vector by GloVe (Pennington et al., 2014). After
mapping to the hyperbolic space, subsequent oper-
ations are performed with 256 dimensional hidden
size. For person entities in KVQA, we use the
well-known pre-trained models RetinaFace (Deng
et al., 2020) for face detection and ArcFace (Deng
et al., 2022) for face feature extraction. For PQ and
PQL datasets, we divide the training set, validation
set, and testing set according with 8:1:1. Adam
(Kingma and Ba, 2015) is used as an optimizer for

all learnable parameters. All experiments report
an average accuracy of 5 trials.

4.2. Experiment Results

4.2.1. Results for KVQA

As shown in Table 2, our proposed method out-
performs baselines in all settings, especially when
the KVQA dataset accuracy is close to 1. Graph-
based networks focus on information aggregation
and transfer among nodes, memory-based net-
works and attention-based networks focus on atten-
tion interaction for knowledge and questions. They
both ignore that knowledge has a hierarchical struc-
ture, which is crucial for knowledge understanding
and multi-hop reasoning. The improvement we
obtained is due to the low-distortion modeling of
hierarchical knowledge graphs by hyperbolic geom-
etry. The auxiliary experimental proof is described
in detail in section 4.2.4.

4.2.2. Results for PQ and PQL

In order to evaluate the multi-hop reasoning ability
of the proposed method, we additionally conducted
experiments on the PQ and PQL datasets of textual
QA task. The PQ and PQL datasets have three
question types: 2-hop, 3-hop and M, to denote the
number of hops in the ground-truth path, with M
representing a mixture of 2-hop and 3-hop.

The results, as shown in Table 3, show that our
method achieves great improvement in all question
types on the PQL dataset. For PQL-2H and PQL-M,
our method achieves an advanced score of 95.1%
and 97.5%, respectively. For PQL-3H the lower
precision is due to fewer QA pairs being included
(2,625 in PQL-M compared to 1,031 in PQL-3H,
Table 1), leading to insufficient training. The results
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Original (ORG) Paraphrased (PRP) Mean
1-hop 2-hop 3-hop 1hop 2-hop 3-hop

Single space w/ fixed curvature 90.2 91.2 91.5 90.1 91.2 91.4 90.9
Single space w/ trainable curvature 90.5 91.6 91.7 90.5 91.5 91.5 91.2
Multiple space w/ trainable curvature 90.7 91.9 91.9 90.7 91.7 91.7 91.4

HyperMR by hyperboloid 84.3 85.0 85.2 83.7 86.9 85.6 85.1

Table 4: Results for the KVQA dataset at different settings. The top three are modeled by a Poincaré
model, and the bottom one is modeled by a hyperbolic model.

PathQuestion PathQuestion-Large

PQ-2H PQ-3H PQ-M Mean PQL-2H PQL-3H PQL-M Mean

Single space w/ fixed curvature 93.2 87.1 86.0 88.8 94.2 79.2 96.6 90.0
Single space w/ trainable curvature 94.2 87.7 90.1 90.1 95.1 81.3 97.5 91.3
Multiple space w/ trainable curvature 96.2 90.5 90.3 92.3 96.3 83.7 98.9 93.0

HyperMR by hyperboloid 84.8 81.4 82.1 82.8 94.4 78.9 95.4 89.6

Table 5: Results for PQ and PQL datasets at different settings. The top three are modeled by a Poincaré
model, and the bottom one is modeled by a hyperbolic model.

of the poor performance on the PQ dataset are
analyzed in detail in section 4.2.3.

4.2.3. Analyze for Hierarchical Data
Representation in Hyperbolic
Geometry

We measured the knowledge of KVQA, PQ and
PQL dataset Gromovs δ-hyperbolicity, a notion that
measures how tree-like a graph is. Where the δ
corresponding to the knowledge of PQL-2H is 0,
indicating that it is completely tree-structure. Corre-
sponding to the experimental results in Table 2, the
accuracy improvement of PQL-2H is also the most
significant. The δ of the knowledge of PQL-3H and
KVQA are 1 and 1.5, respectively, with a corre-
sponding reduction in the accuracy enhancement.
While the δ of the knowledge in PQ dataset is 2,
hyperbolicity is further weakened and no longer
has a clear hierarchical structure to be embedded
in the hyperbolic space. In addition, compared to
the PQL and KVQA datasets, the PQ dataset has
much fewer knowledge entities (Table 1) , and the
knowledge structure is simpler. That is, poorly hi-
erarchical and simple structured graph data is not
suitable for embedding in hyperbolic space. Even
so, it still obtained comparable performance to Hy-
perTransformer on the PQ dataset.

Besides modelling the hyperbolic space using
the Poincaré ball model, we also tested the perfor-
mance of the hyperbolic model, as shown in Tables
4 and 5. The hyperbolic model has a large gap
compared to the Poincaré model in all question
types across all datasets. Because the model was
very unstable during the training phase, with large
fluctuations in accuracy and loss, we believe that

the hyperbolic model is not suitable for the data
distribution in this work.

4.2.4. Effect of Multiple Hyperbolic Space

We find that single space with trainable curvature in
Table 4 and 5 performs worse compared to Hyper-
Transformer in Table 2 and 3. This is counterintu-
itive, since when the trainable curvature is adjusted
to 0, the structure of the hyperbolic space flattens
out and degenerates into Euclidean space. That
means at worst it should get results comparable
to a Euclidean space, not worse. We believe that
using a single trainable curvature in a multi-layer
network cannot accurately fit all the requirements
of the training process. When the update weights
of different layers in the backpropagation are not
distributed evenly, e.g., one layer plays too large a
role in the curvature adjustment process, resulting
in the curvature not being adjusted to 0 (the curva-
ture in the PQ dataset in Fig.3 is very close to 0),
achieving worse results than the Euclidean space.

In contrast, multiple hyperbolic spaces with multi-
ple adjustable curvatures achieve comparable per-
formance to HyperTransformer. This demonstrates
that mapping the different stages of reasoning into
spaces with different forms achieves a more fine-
grained training process, and also more accurately
fits the spatial structural requirements of the differ-
ent stages during reasoning.

5. Conclusion and Future Work

In this paper, we introduced HyperMR, a multi-hop
reasoning framework over knowledge graph for
KBVQA task. It exploits the expressiveness of hy-
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Figure 3: Convergence process of one trainable curvature in trebling hyperbolic spaces.

perbolic geometry for low-distortion modeling of
hierarchical structure, thus performing multi-hop
reasoning on complex knowledge evidence. In ad-
dition, In order to satisfy the spatial morphology re-
quirements of different stages of the reasoning pro-
cess, we map each reasoning stage into multiple
hyperbolic spaces , achieving a more fine-grained
reasoning process. We conducted extensive ex-
periments on the KVQA, PQ and PQL datasets
to demonstrate the effectiveness of HyperMR for
strong-hierarchy knowledge graphs.

In future work, We plan to explore the relation-
ship between different stages of reasoning and
spatial morphology. How more "curved" or more
"flat" spatial morphology contributes to the graph
modeling and multi-hop reasoning. This will further
reveal the properties of hyperbolic spaces in graph
modeling.

6. Ethics Statement

We ensure that our research was conducted in ac-
cordance with the relevant ethical guidelines and
regulations. We obtained all necessary permis-
sions and approvals from any involved institutions
or organizations, and maintained the confidentiality
and anonymity of any participants or sensitive data
throughout the study. In addition, we made every
effort to minimize any potential harm or negative
consequences that could arise from our research.
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