Your Stereotypical Mileage May Vary: Practical Challenges of Evaluating Biases in Multiple Languages and Cultural Contexts

Karen Fort, Laura Alonso Alemany, Luciana Benotti, Julien Bezançon, Claudia Borg, Marthese Borg, Yongjian Chen, Fanny Ducel, Yoann Dupont, Guido Ivetta, Zhijian Li, Margot Mieskes, Marco Naguib, Yuyan Qian, Matteo Radaelli, Wolfgang S. Schmeisser-Nieto, Emma Raimundo Schulz, Thiziri Saci, Sarah Saidi, Javier Torroba Marchante, Shilin Xie, Sergio E. Zanotto, Aurélie Névéol


Abstract
Warning: This paper contains explicit statements of offensive stereotypes which may be upsetting The study of bias, fairness and social impact in Natural Language Processing (NLP) lacks resources in languages other than English. Our objective is to support the evaluation of bias in language models in a multilingual setting. We use stereotypes across nine types of biases to build a corpus containing contrasting sentence pairs, one sentence that presents a stereotype concerning an underadvantaged group and another minimally changed sentence, concerning a matching advantaged group. We build on the French CrowS-Pairs corpus and guidelines to provide translations of the existing material into seven additional languages. In total, we produce 11,139 new sentence pairs that cover stereotypes dealing with nine types of biases in seven cultural contexts. We use the final resource for the evaluation of relevant monolingual and multilingual masked language models. We find that language models in all languages favor sentences that express stereotypes in most bias categories. The process of creating a resource that covers a wide range of language types and cultural settings highlights the difficulty of bias evaluation, in particular comparability across languages and contexts.
Anthology ID:
2024.lrec-main.1545
Volume:
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Month:
May
Year:
2024
Address:
Torino, Italia
Editors:
Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
Venues:
LREC | COLING
SIG:
Publisher:
ELRA and ICCL
Note:
Pages:
17764–17769
Language:
URL:
https://aclanthology.org/2024.lrec-main.1545
DOI:
Bibkey:
Cite (ACL):
Karen Fort, Laura Alonso Alemany, Luciana Benotti, Julien Bezançon, Claudia Borg, Marthese Borg, Yongjian Chen, Fanny Ducel, Yoann Dupont, Guido Ivetta, Zhijian Li, Margot Mieskes, Marco Naguib, Yuyan Qian, Matteo Radaelli, Wolfgang S. Schmeisser-Nieto, Emma Raimundo Schulz, Thiziri Saci, Sarah Saidi, et al.. 2024. Your Stereotypical Mileage May Vary: Practical Challenges of Evaluating Biases in Multiple Languages and Cultural Contexts. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 17764–17769, Torino, Italia. ELRA and ICCL.
Cite (Informal):
Your Stereotypical Mileage May Vary: Practical Challenges of Evaluating Biases in Multiple Languages and Cultural Contexts (Fort et al., LREC-COLING 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/landing_page/2024.lrec-main.1545.pdf