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Abstract

Recent advancements in Large Language Mod-
els (LLMs) have significantly improved their
performance across various Natural Language
Processing (NLP) tasks. However, LLMs still
struggle with generating non-factual responses
due to limitations in their parametric memory.
Retrieval-Augmented Generation (RAG) sys-
tems address this issue by incorporating ex-
ternal knowledge with a retrieval module. De-
spite their successes, however, current RAG
systems face challenges with retrieval failures
and the limited ability of LLMs to filter out
irrelevant information. Therefore, in this work,
we propose DSLR (Document Refinement with
Sentence-Level Re-ranking and Reconstruc-
tion), an unsupervised framework that decom-
poses retrieved documents into sentences, fil-
ters out irrelevant sentences, and reconstructs
them again into coherent passages. We ex-
perimentally validate DSLR on multiple open-
domain QA datasets and the results demon-
strate that DSLR significantly enhances the
RAG performance over conventional fixed-size
passage. Furthermore, our DSLR enhances per-
formance in specific, yet realistic scenarios
without the need for additional training, pro-
viding an effective and efficient solution for
refining retrieved documents in RAG systems.

1 Introduction

Recent advancements in Large Language Models
(LLMs) (Brown et al., 2020; OpenAI, 2023b; Tou-
vron et al., 2023) have significantly expanded their
capabilities across diverse knowledge-intensive
tasks in Natural Language Processing (NLP), such
as Question Answering (QA) (Kwiatkowski et al.,
2019; Joshi et al., 2017; Rajpurkar et al., 2016).
However, despite these capabilities, LLMs still
face challenges such as generating plausible yet
non-factual responses, known as hallucination, due
to their reliance on limited parametric memory
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(Mallen et al., 2023). Also, it is noted that this
parametric memory is static, as LLMs can learn
knowledge only up to the specific date on which
the training was completed. Therefore, these lim-
itations restrict their adaptability to long-tailed or
ever-evolving domains (Kasai et al., 2023) and to
unseen knowledge outside their training data (Baek
et al., 2023).

Retrieval-Augmented Generation (RAG) (Khan-
delwal et al., 2020; Lewis et al., 2020; Borgeaud
et al., 2022; Shi et al., 2023b) has been introduced
as an effective solution to address such problems.
Specifically, RAG enhances LLMs by integrating
non-parametric memories fetched from external
knowledge bases using a retrieval module, which
helps LLMs’ responses grounded on factual evi-
dence and makes them more up-to-date.

While the efficacy of RAG depends on the per-
formance of the retrieval module, the instability of
LLMs in incorporating the retrieved knowledge is
also a critical challenge to RAG. To be specific,
retrieved documents sometimes contain irrelevant
information (Cho et al., 2023), and LLMs often
struggle to effectively filter out such redundant de-
tails and focus on the most query-relevant knowl-
edge (Shi et al., 2023a; Li et al., 2023; Liu et al.,
2023; Wu et al., 2024), which leads to the failure
of the overall RAG systems. Therefore, it is crucial
to investigate how to effectively refine retrieved
documents before augmenting them with LLMs,
ensuring that the LLMs are not distracted by irrele-
vant information within retrieved documents.

Re-ranking the order of the retrieved document
set (Nogueira et al., 2020; Qin et al., 2023a) or
refining them into new documents (Wang et al.,
2023; Xu et al., 2024) can be considered as solu-
tions. However, they generally require high com-
putational costs for training additional re-ranking
or refining models. Another proposed solution is to
reduce the retrieval granularity from passage-level
to sentence-level which can help eliminate redun-
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Figure 1: Comparison of the conventional RAG pipeline (top) and our sentence-level re-ranking and reconstruction framework
(bottom) in an RAG system. Initially, both methods retrieve query-relevant documents at the passage level. The conventional
approach directly utilizes these passages, which may contain redundant information leading to QA inaccuracies. By contrast, our
method decomposes passages into sentences, re-ranks them based on relevance, and reconstructs them into coherent passages for
more accurate LLM responses.

dant information within passages (Lee et al., 2021a;
Chen et al., 2023). However, this might also inad-
vertently remove important contextual information,
which is crucial for accurately answering the given
queries (Choi et al., 2021). Therefore, we should
explore a novel method that can effectively and
efficiently filter out irrelevant information while
maintaining the necessary contextual details.

In this work, we introduce an unsupervised
DSLR (Document Refinement with Sentence-
Level Re-ranking and Reconstruction) framework
that consists of three steps: 1) decomposition, 2) re-
ranking, and 3) reconstruction. Specifically, after
retrieving the passage-level document, the DSLR
framework operates by first decomposing the re-
trieved document into sentences for finer granular-
ity and then filtering out the irrelevant sentences
based on their re-ranking scores from the rank-
ing models, including off-the-shelf retrievers and
re-rankers. Finally, the remaining sentences are re-
constructed into a single document to preserve the
original contextual information. Note that DSLR is
an unsupervised refinement framework, which does
not require any additional training for re-ranking or
reconstruction steps. The overall DSLR framework
is illustrated in Figure 1.

We validate our framework across a diverse
range of open-domain QA benchmarks, which in-
clude three general QA datasets and three spe-
cific QA datasets that require domain-specific or
ever-evolving knowledge. Our experimental re-
sults show that DSLR significantly enhances the
overall RAG performance and is comparable to,
or even outperforms, the supervised baseline ap-
proaches. Specifically, when evaluated with spe-
cific QA datasets, DSLR shows high robustness in
realistic settings. Furthermore, a detailed analysis

demonstrates the effectiveness of each proposed
step and how it contributes to the overall perfor-
mance.

Our contributions in this work are threefold:
• We point out that recent RAG systems are

largely vulnerable to redundant knowledge
within fixed-size passage-level retrieved docu-
ments and that the existing refining strategies
generally require additional training steps.

• We propose a DSLR framework that incorpo-
rates sentence-level re-ranking and reconstruc-
tion to effectively remove redundant knowl-
edge that negatively affects the RAG system.

• We show that DSLR is highly effective and
efficient even without additional training steps
in both general and specific scenarios.

2 Related Work

Information Retrieval. Information Retrieval
(IR) is the task of searching for query-relevant doc-
uments from a large corpus (Ponte and Croft, 1998),
which has been widely applied for both search sys-
tems and various NLP tasks such as open-domain
QA (Petroni et al., 2021). IR models can be cate-
gorized into sparse retrievers (Salton and Buckley,
1988; Robertson and Zaragoza, 2009), which use
lexical metrics to calculate relevance scores be-
tween queries and documents, and dense retrievers
(Karpukhin et al., 2020; Izacard et al., 2022), which
embed queries and documents into a dense space
that captures semantic relationships but requires
significant computational resources (Jeong et al.,
2022).

In order to further enhance retrieval performance,
additional strategies have been proposed. Specifi-
cally, the re-ranking strategy improves retrieval per-
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formance by recalculating relevance scores using
an additional re-ranking model (Nogueira and Cho,
2019; Nogueira et al., 2020; Zhuang et al., 2023),
and then reordering the documents based on these
scores. Recently, LLMs have shown remarkable
re-ranking performance by generating relevance
labels without requiring further fine-tuning (Liang
et al., 2022; Qin et al., 2023b).

While the aforementioned work on IR (Wang
et al., 2019; Karpukhin et al., 2020) generally as-
sumes fixed-size, 100-word passages as the doc-
ument length, some work has explored an op-
timal level of retrieval granularity (Seo et al.,
2019; Lee et al., 2021a; Jeong et al., 2023; Chen
et al., 2023). These approaches validate that a fine-
grained level of granularity, containing only the
knowledge needed to answer the query, can en-
hance the overall performance by excluding re-
dundant details in the lengthy retrieved documents.
However, reducing retrieval granularity to the sen-
tence level can disrupt the original context and
result in a loss of the document’s coherence (Choi
et al., 2021). In addition, sentence-level retrieval
generally requires a much larger index size com-
pared to passage-level retrieval (Lee et al., 2021b).
By contrast, we investigate a novel framework for
effectively re-ranking sentences within retrieved
passage-level documents and then reconstructing
the re-ranked sentences to preserve contextual in-
tegrity.

Retrieval-Augmented Generation. RAG has
emerged as a promising solution for addressing
LLMs’ hallucination issues by leveraging exter-
nal knowledge fetched by the retrieval module.
Specifically, RAG incorporates retrieval modules
that reduce the need to update the parameters of
LLMs and help them generate accurate and reliable
responses (Khandelwal et al., 2020; Lewis et al.,
2020; Borgeaud et al., 2022; Shi et al., 2023b). Ad-
ditionally, various real-world applications integrate
RAG as a core component when deploying LLM-
based services (OpenAI, 2023a; Chase, 2022; Qin
et al., 2024). However, they still have limitations
due to the imperfections of the retrieval module
within RAG, where the retrieved documents con-
taining query-irrelevant information can negatively
lead the LLMs to generate inaccurate answers.

To address them, several studies have attempted
to leverage the capabilities of LLMs to en-
hance their resilience against irrelevant knowledge.
These approaches include crafting specialized

Query:
How many episodes in “Grace and Frankie” Season 1?

Sentence Decomposition

[𝘴₁] Grace and Frankie is an American comedy web television 
series created by Marta Kauffman and Howard J. Morris for Netflix.

[𝘴₃] It premiered on Netflix on May 8, 2015, with  all 13 episodes of 
the first season released simultaneously.

[𝘴₂] The series stars Jane Fonda and Lily Tomlin in the title roles of 
Grace and Frankie, two unlikely friends who are brought together …

Sentence Re-ranking

[𝘴’₁] It premiered on Netflix on May 8, 2015, with  all 13 episodes 
of the first season released simultaneously.
[𝘴’₂] Grace and Frankie is an American comedy web television 
series created by Marta Kauffman and Howard J. Morris for Netflix.

[𝘴’₃] The series stars Jane Fonda and Lily Tomlin in the title roles of 
Grace and Frankie, two unlikely friends who are brought together …

Contextual Reconstruction

[𝘴*₁] Grace and Frankie is an American comedy web television 
series created by Marta Kauffman and Howard J. Morris for Netflix.
[𝘴*₂] It premiered on Netflix on May 8, 2015, with  all 13 episodes 
of the first season released simultaneously.

T

Figure 2: Examples of each step in the DSLR framework,
which consists of three steps: 1) Sentence Decomposition 2)
Sentence Re-ranking, and 3) Contextual Reconstruction.

prompts (Press et al., 2023; Cho et al., 2023), train-
ing plug-in knowledge verification models (Baek
et al., 2023), adaptively retrieving the required
knowledge (Jeong et al., 2024; Asai et al., 2024;
Yu et al., 2023b), and augmenting knowledge us-
ing the capabilities of the LLM itself (Yu et al.,
2023a). Among the promising solutions, recent
studies show that further refining the retrieved doc-
uments into fine-grained knowledge can improve
the RAG performance (Xu et al., 2024; Wang et al.,
2024, 2023; Jin et al., 2024). However, such refine-
ment strategies generally require additional fine-
tuning on a specific dataset, which might result
in limited generalizability and high computational
cost. By contrast, our proposed refinement frame-
work removes irrelevant information with unsuper-
vised sentence-level re-ranking and reconstruction
steps by using off-the-shelf ranking models without
requiring additional training costs.

3 Method

In this section, we describe a novel framework
DSLR for enhancing the precision of retrieval re-
sults through sentence-level ranking and recon-
struction, integrated into the RAG system. Note
that DSLR does not require additional training.

3.1 Preliminaries

We first introduce the general RAG system, which
consists of three steps: the retrieval step, the re-
ranking step, and the generation step. Note that all
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steps focus on passage-level documents.

3.1.1 Retrieval Step
The retrieval step searches for a potentially rele-
vant document set D to the given query q from a
retrieval corpus C consisting of millions of doc-
uments. This retrieval step is conventionally per-
formed using a sparse retriever S, such as BM25,
which is widely used for processing large corpora
due to its low latency. The sparse retriever S fetches
the relevant documents having high relevant scores
based on lexical values such as document length
or unique word count. Formally, we define the re-
trieval step as:

D = Retrieve(q, C;S) = {d1, d2, ..., dn}

where dk represents a document having the top-
k score among the retrieval corpus C for a given
query q, and n denotes the size of D, generally
ranging from tens to hundreds.

3.1.2 Re-ranking Step
While the sparse retriever S can efficiently handle
a large corpus, it cannot consider semantic similar-
ities, thereby limiting its retrieval performance for
lexically different but semantically relevant pairs.
To address this, the re-ranking step aims for more
precise retrieval results by reordering the retrieved
document set D using the ranking model R. This
model transforms D into a newly ordered docu-
ment set D′ based on relevance scores with a query
q, capturing semantic meanings that could not be
addressed in the retrieval step with S. Formally, we
define the re-ranking step as:

D′ = Re-rank(q,D;R) = {d′1, . . . , d′m}

where d′k represents the document that has top-k
relevance score among D and m ≪ n, indicat-
ing that the subset D′ contains significantly fewer
documents than the original set D.

3.1.3 Generation Step
After the re-ranking step, the document set D′ is
augmented to the LLM M with the supporting doc-
uments to generate the correct answer a for the
given query q. The generation step can be formal-
ized as:

a = Generate(q,D′;M)

In RAG systems, the three key steps are designed
to retrieve the most query-relevant knowledge for
LLMs, typically at the passage level. However, this

fixed granularity can overlook finer relevance be-
tween queries and individual sentences. Therefore,
in this work, we introduce a fine-grained, sentence-
level ranking strategy in the re-ranking step, aiming
to reduce distractions from irrelevant information
and enhance answer accuracy.

3.2 Document Refinement with
Sentence-Level Re-ranking and
Reconstruction (DSLR)

We propose a novel unsupervised refinement frame-
work, Document Refinement with Sentence-Level
Re-ranking and Reconstruction (DSLR), designed
to assess the fine-grained relevance of individual
sentences within a passage and reconstruct to pre-
serve the original contextual coherence. Figure 2
illustrates examples generated by each step in our
DSLR framework.

3.2.1 Sentence Decomposition and Re-ranking
After the retrieval step (§3.1.1), we conduct
sentence-level re-ranking for the documents within
the retrieved set D. First, each document di ∈ D
is decomposed into a sentence set Si = {sj}lj=1,
where sj represents the j-th sentence in document
di and l is the number of sentences in di. Then,
the passage-level retrieved set D is redefined to
the sentence-level retrieved set S = ∪n

i=1Si. For
instance, as illustrated in Figure 2, a passage re-
trieved for a query “How many episodes in "Grace
and Frankie" Season 1?" is decomposed into three
sentences s1, s2, and s3 during the sentence decom-
position step.

To extract sentences containing relevant informa-
tion for a query q, we initially perform re-ranking
to assess relevance scores at the sentence level. Sen-
tences in S with scores below a predefined thresh-
old T are deemed irrelevant and removed, resulting
in a refined set S ′. The sentence-level re-ranking is
formally defined as follows:

S ′ = Re-rank(q,S;R) = {s′1, . . . , s′m}
where each s′k is a sentence from S whose rele-
vance score exceeds T . Figure 2 demonstrates the
reordering of sentences, highlighting the exclusion
of s′3 due to its insufficient relevance score. Note
that this step of the DSLR framework utilizes off-
the-shelf ranking models, which are identical to
those used in passage-level re-ranking.

3.2.2 Contextual Reconstruction
While the sentence decomposition and re-ranking
steps select the top-m relevant sentences for the
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query q, these sentences may lack contextual re-
lationships to one another, as these steps can dis-
rupt the original contextual flow of the passage by
discarding some sentences. Instead of following
a widely used approach of simply concatenating
these sentences in descending order of their rele-
vance scores, we propose to reconstruct them into
the contextually organized set, S∗, to reflect the
order in which they were originally positioned be-
fore being decomposed from passages, ensuring
the original coherence and logical flow:

S∗ = Reconstruction(S ′,S) = {s∗1, . . . , s∗m}

where s∗i is the sentence included in S′ and i de-
notes the relative position of s∗i within S . As shown
in Figure 2, the remaining two sentences are recon-
structed in their original order by switching their
positions to preserve the context before the sen-
tence re-ranking step. Then, LLM M generates the
answer a for a given query q with S∗ formalized
as: a = Generate(q,S∗;M).

4 Experiment Setups

In this section, we describe the experimental setup
for evaluating DSLR across various scenarios. We
provide additional details in Appendix A.

4.1 Models
Retriever. We use BM25 (Robertson and Zaragoza,
2009) as a passage-level retriever, which is a widely
used sparse retriever due to its notable performance
with high efficiency. The retriever fetches the top-
1 passage-level query-relevant document from an
external corpus, which serves as the baseline docu-
ment.
Re-ranker. We operationalize a variety of rank-
ing models as re-rankers, including off-the-shelf
retrievers, fine-tuned re-rankers, and LLMs. 1)
Sparse Retriever: We use BM25 (Robertson and
Zaragoza, 2009) as a sentence-level re-ranker. Note
that BM25 is only applied at the sentence level,
as it is primarily utilized in the retrieval step.
2) Dense Retriever: We utilize two representa-
tive dense retrievers, Contriever (Izacard et al.,
2022) and DPR (Karpukhin et al., 2020), which
are better at capturing the semantic similarity be-
tween documents and queries than sparse retriev-
ers. 3) Supervised Re-ranker1: We employ two

1It is important to note that the terms ‘supervised’ and
‘unsupervised’ in this context refer to the models being trained
on document ranking tasks, and not on document refinement
tasks.

supervised re-ranking models based on T5 (Raffel
et al., 2020), MonoT5 (Nogueira et al., 2020) and
RankT5 (Zhuang et al., 2023). These models are
specifically trained for pointwise document ranking
tasks. 4) Unsupervised Re-ranker1: We explore
Relevance Generation (RG) (Liang et al., 2022), a
pointwise ranking method using the inherent rank-
ing ability of LLMs, validating its effectiveness in
scenarios lacking extensive labeled data. We use
LLama2-13b-chat (Touvron et al., 2023) as a rank-
ing model for RG.
Reader. We use the instruction-tuned, open-source
LLM LLama2-13b-chat as our reader. To generate
the final answer, the document is prepended to the
system prompt.

4.2 Datasets
We evaluate our DSLR across 6 open-domain
QA datasets, including both general and spe-
cific domains. First, we conduct our experiment
using the development set of Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019), TriviaQA
(TQA) (Joshi et al., 2017), and SQuAD (SQD) (Ra-
jpurkar et al., 2016), consisting of queries with
general topics. Additionally, we incorporate spe-
cialized datasets such as RealtimeQA (RQA) (Ka-
sai et al., 2023), SciQ (SQ) (Welbl et al., 2017),
and BioASQ (BASQ) (Tsatsaronis et al., 2015;
Krithara et al., 2023) for evaluating the general-
izability of our proposed method. In detail, RQA
includes questions that are updated periodically to
test our system’s ability to handle ever-evolving
knowledge. In addition, SQ and BASQ are domain-
specific datasets in science and biology, respec-
tively. Specifically, for BASQ, we selectively use
the questions from the BioASQ6 challenge (task b)
that are suitable for yes/no and factoid responses.
We report the effectiveness of our framework with
Accuracy (Acc), which determines whether the
prediction contains golden answers, following Asai
et al. (2024).

4.3 Implementation Details
The threshold T , used to remove irrelevant content,
was determined empirically by sampling 1,000 ran-
dom entries from each of the NQ, TQA, and SQD
training sets and setting T to the relevance score
at the 90th percentile. Detailed values of T for
various models are provided in Table 5. The re-
trieval corpus for NQ, TQA, and SQD is a pre-
processed Wikipedia dump from Dec. 20, 2018
following Karpukhin et al. (2020), and for BASQ
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Type Re-ranker NQ TQA SQD RQA SQ BASQ AVG.
# tok Acc # tok Acc # tok Acc # tok Acc # tok Acc # tok Acc # tok Acc

Baseline

- - 167 25.6 170 58.0 166 28.5 1277 41.1 162 33.9 444 56.7 398 40.6

Ours

Sparse Ret. BM25 48 28.7 81 60.8 41 28.0 689 40.4 52 40.7 202 52.6 186 41.9

Dense Ret. Contriever 68 29.2 60 62.0 61 29.1 418 41.2 69 40.8 308 57.2 164 43.2
DPR 61 33.6 74 62.9 56 27.3 517 40.1 75 40.9 309 55.9 182 43.4

Supervised Re-r. MonoT5 74 31.1 84 62.3 67 30.4 625 42.1 50 41.1 363 57.2 179 43.5
RankT5 83 29.4 69 61.7 60 30.4 475 41.6 49 40.6 337 57.2 179 43.5

Unsupervised Re-r. RG 46 33.7 76 64.1 51 29.5 534 42.5 97 38.9 291 59.5 183 44.7

Table 1: Performance comparison between the Baseline (original top-1 document) and Ours (DSLR-refined top-1 document) on
various open-domain QA datasets. The table shows the average token count (# tok) and accuracy (Acc) for both sparse and dense
retrievers, as well as for supervised and unsupervised re-rankers. Best results are in bold.
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Figure 3: Comparison between the Baseline (original documents) and Ours (DSLR-refined documents using MonoT5) in the
top-N multiple passages scenario on the NQ dataset. (Left) Accuracy (Acc) as top-N increases. (Center) Average token count (#
tok) as top-N increases. (Right) Average end-to-end latency (E2E) as top-N increases, measured in seconds.

and RQA, we use their own retrieval corpora. To be
specific, BASQ used the BEIR (v1.0.0) 2 BioASQ
corpus, specializing in biomedical information re-
trieval. For the RQA dataset, spanning from 2022
to 2023, we use the search documents provided
at the time of dataset creation through the Google
Cloud Search (GCS) API to align the periods of
the queries and answers. When implementing each
component in DSLR, we decompose passage-level
documents into sentences using the Sentencizer
from Spacy3. All predictions in our experiments
are generated via greedy decoding.

5 Experimental Results and Analyses

In this section, we show the overall experimental
results with in-depth analyses of our framework.

Main Results. First of all, Table 1 shows that
our DSLR-refined top-1 document consistently
outperforms the original top-1 document across
all datasets and scenarios, despite reduced token
counts. This confirms our hypothesis that the re-
dundant information within the fix-sized passages
adversely affects the RAG performance and high-
lights the importance of providing only query-

2https://github.com/beir-cellar/beir
3https://spacy.io/

relevant information in RAG with finer-grained
sentences.

Furthermore, DSLR also shows performance
enhancement over specialized datasets, such as
ever-evolving RQA and domain-specific SQ and
BASQ datasets. Specifically, the re-rankers based
on pre-trained models such as T5 and the LLM
demonstrate remarkable performance improvement.
Given that DSLR requires no additional training,
the robust and effective performance suggests its
applicability to diverse real-world scenarios, par-
ticularly where queries frequently change across
different timelines and domains.

DSLR in Multiple Passages. To assess the effec-
tiveness and efficiency of DSLR in multiple pas-
sages, we gradually increased the number of doc-
uments N and compared the performance, token
count, and end-to-end (E2E) latency4 of the origi-
nal top-N documents with those refined by DSLR.

As shown in the left panel of Figure 3, both
sets of documents show consistent performance
improvements as N increases. However, DSLR
consistently outperforms the original documents
across all N levels, with more notable differences

4These experiments were conducted using four V100
GPUs.
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Figure 4: Variation in accuracy and token count (# tok)
with adjustments to threshold T on the SQD dataset, with
dashed lines indicating oracle accuracy and corresponding
token count.

at lower N values. This suggests that DSLR can
significantly enhance performance in RAG, even
as the number of documents increases.

Due to the quadratic increase in memory and
time requirements with the number of tokens in
transformer-based LLMs, reducing the token count
is crucial for improving efficiency (Vaswani et al.,
2017). As depicted in the center and right panels
of Figure 3, DSLR substantially reduces the token
count compared to the original documents, with
the difference becoming more significant as N in-
creases. This reduction in tokens also decreases
E2E latency in all scenarios except top-1. Notably,
at top-10, while the performance difference is mini-
mal (39.6 vs. 39.7), the token count reduction from
1,713 to 577 (nearly 2.97 times) and the correspond-
ing E2E latency reduction from 7.382 seconds to
5.422 seconds (nearly 2 seconds) demonstrate that
DSLR can enhance both performance and efficiency
in RAG. Detailed results are available in Table 14.

Impact of Threshold Adjustment. To examine
the impact of varying T , we adjusted the threshold
in increments of 10, starting from the 10th per-
centile, and measured the resulting performance.
Additionally, to explore the theoretical maximum
performance of our method, we configured an ora-
cle setting where any correct response, regardless
of the threshold setting, was counted as correct.

As shown in Figure 4, increasing the threshold T
generally improves performance by removing irrel-
evant content, thus reducing the number of tokens.
However, our experimental results revealed that
the performance at the 90th percentile threshold
was 29.4, while a lower 80th percentile threshold
yielded better performance at 29.9. This indicates
that an overly stringent threshold can also remove
essential information, suggesting that task-specific
threshold fine-tuning could improve results.
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Figure 5: (Left) Distribution of token counts in DSLR-refined
documents on the NQ dataset. (Right) Comparison of DSLR
with document truncated to an average fixed length (P), doc-
ument processed using sentence-level re-ranking to include
only the most relevant sentences up to the average length (S),
and document using random selection of sentences up to the
average length (R).
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Figure 6: Comparative average performance of sentence-level
and passage-level re-ranking across the dataset with a context
length of 100 words.

Furthermore, in the oracle setting, accuracy sig-
nificantly improved to 34.1, and the token count
was reduced to 77. This shows a marked per-
formance improvement over the best performing
threshold (80th percentile), with a similar reduc-
tion in tokens. This result implies that dynami-
cally adjusting the threshold based on the query
could achieve substantial performance improve-
ments with a comparable number of tokens, sug-
gesting an area for future work. Detailed results are
available in Table 15.

Token Distribution and Refinement Strategies.
The left panel of Figure 5 displays the distribution
of token counts in documents refined by DSLR. Un-
like methods that trim passages to a fixed length,
DSLR reduces token counts based on a relevance
score threshold, resulting in a wide distribution of
token counts, with many instances nearly devoid of
external knowledge. The average token count post-
refinement is 46. We analyzed performance by com-
paring this approach with cases where passages are
consistently cut to 46 tokens: one where passages
are simply truncated at 46 tokens, another using
sentence-level re-ranking to select the most rele-
vant sentences up to 46 tokens, and a third where
sentences are randomly cut to 46 tokens.

As demonstrated in the right panel of Figure 5,
DSLR, which trims content based on relevance, sig-
nificantly outperforms methods that trim to a fixed
length, improving scores from 25.3 to 33.7. This
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Figure 7: Performance comparison of DSLR and RECOMP (Xu et al., 2024) across multiple open-domain QA datasets, featuring
models including Contriever, RankT5, and RG for DSLR, and extractive (Extr.) and abstractive (Abst.) models for RECOMP.
The in-domain (Hatched) results refer to models specifically trained for the dataset.

NQ TQA

DSLR (Ours) 33.7 64.1
- sentence-level re-ranking 30.6 62.0
- reconstruction (descend) 33.6 63.8
- reconstruction (ascend) 33.6 63.9
- reconstruction (random) 33.5 63.8

Baseline 25.6 58.0

Table 2: Ablation studies on the NQ, TQA datasets, comparing
DSLR with RG against the variants that exclude sentence-level
re-ranking and reconstruction. The variants are ordered by
relevance score (descend and ascend) or randomly (random).

suggests that trimming based on relevance score
thresholds, rather than a fixed length, is more ef-
fective. This method accommodates the variability
in the amount of relevant information per query,
indicating that non-essential content should be dy-
namically removed.

Effectiveness of Sentence-Level Re-ranking.
To assess the effectiveness of sentence-level re-
ranking within our framework, we compared it to
conventional passage-level re-ranking using the
same context length in RAG, under an initial
top-100 retrieval setting. Figure 6 demonstrates
that sentence-level re-ranking markedly outper-
forms passage-level re-ranking by enhancing per-
formance through increased information density
at a finer granularity. Additionally, while dense re-
trievers and fine-tuned ranking models demonstrate
improvements as re-rankers, BM25 as a re-ranker
significantly decreases the performance. This high-
lights the limitations of keyword-matching ap-
proaches for assessing low-granularity, sentence-
level relevance, underscoring the necessity for se-
mantic understanding in sentence ranking tasks.
Moreover, off-the-shelf ranking models, originally
designed for passage-level relevance assessment,
are also effective at determining relevance at the

more granular level of individual sentences. Inter-
estingly, even though it is not specifically trained
for ranking tasks, the unsupervised re-ranker using
LLMs shows remarkable performance in sentence-
level re-ranking.

Ablation Studies on the Sentence-Level Re-
ranking and Reconstruction Steps. To see how
each step in DSLR contributes to the overall per-
formance, we conduct the ablation studies, the
results shown in Table 2, for the sentence-level
re-ranking and reconstruction steps. These studies
were uniquely tailored to the variable token counts
reduced by DSLR, rather than using a fixed length.

First, we examine the impact of removing the
sentence-level re-ranking step. In this scenario, af-
ter initially retrieving the top-1 passage, the re-
sults are decomposed into sentences. Subsequently,
these sentences are randomly used as sources for
generating answers. The performance drastically
drops from 33.7 to 30.6 on the NQ, highlighting
the crucial role of sentence-level re-ranking, which
helps effectively filter out query-irrelevant informa-
tion based on relevance scores.

Furthermore, we explore the effectiveness of the
reconstruction step. The performance also drops
from 64.1 to 63.8 on the TQA. This finding is
similar to those from Choi et al. (2021), which
suggests that removing contextual coherence nega-
tively affects the performance. Therefore, in DSLR,
reconstructing the order of sentences to reflect their
original sequence within the retrieved passage is
an essential step. Interestingly, the widely used
approach of prepending external knowledge in de-
scending order of relevance scores is not effective
in our sentence-level refinement framework, show-
ing similar results to a randomly ordered setting.
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Query Original Document DSLR-Refined Document

the element which is the
most abundant in the
human body is (NQ)

[1] Nitrogen
diatomic gas with the formula N. Dinitrogen forms
about 78% of Earth’s atmosphere, making it the most
abundant uncombined element. Nitrogen occurs in
all organisms, primarily in amino acids (and thus
proteins), in the nucleic acids (DNA and RNA) and
in the energy transfer molecule adenosine triphos-
phate. The human body contains about 3% nitrogen
by mass, the fourth most abundant element in the
body after oxygen, carbon, and hydrogen. The nitro-
gen cycle describes movement of the element from
the air, into the biosphere and organic compounds,
then back into the atmosphere. Many industrially
important compounds, such as ammonia, nitric acid,

[1] Nitrogen
diatomic gas with the formula N. Dinitrogen forms
about 78% of Earth’s atmosphere, making it the most
abundant uncombined element. The human body
contains about 3% nitrogen by mass, the fourth most
abundant element in the body after oxygen, carbon,
and hydrogen.

Predict Nitrogen (X) Oxygen (O)

Table 3: Case study with the top-1 document, where we represent query-irrelevant sentences in red and query-relevant sentences
in blue.

Comparative Analysis of Document Refining
methods: Evaluating RECOMP and DSLR.
We further compare our DSLR to the concurrent su-
pervised refinement method, RECOMP (Xu et al.,
2024), which requires additional training steps for
refining the retrieved documents. To be specific,
RECOMP is designed to refine the retrieved pas-
sages by either abstractively or extractively summa-
rizing them with additional models. Note that due
to significant differences between supervised and
unsupervised schemes, directly comparing DSLR
with RECOMP on an apples-to-apples basis is dif-
ficult. However, to ensure as fair a comparison as
possible, we evaluate both refining methods under
the same conditions by adopting a two-sentence ex-
traction context length, following the extractive set-
ting used for RECOMP. Additionally, RECOMP’s
extractive compressor, which requires Contriever
to be fine-tuned on specific datasets, shares sim-
ilarities with our DSLR implementation that also
uses Contriever, though ours is not additionally
fine-tuned.

Figure 7 shows the results of the comparison be-
tween DSLR and RECOMP in both in-domain and
out-of-domain settings. While RECOMP shows ro-
bust performance on the in-domain datasets where
it is particularly trained, its performance drops dras-
tically for the out-of-domain settings, notably for
BASQ from 54 to 47.9. This indicates the chal-
lenges of dataset-specific tuning for the supervised
refinement methods. On the other hand, our DSLR
with RankT5 and RG shows robust performance
even without additional training steps for refine-
ment.

Case Study. We conduct a case study of the
DSLR framework in Table 3. Specifically, a conven-

tional fixed-size passage may contain distractors,
such as unrelated knowledge and irrelevant con-
ceptual details about Nitrogen (highlighted in red).
Note that, although the retrieved passage-level doc-
ument includes ‘Oxygen’, which is the correct an-
swer to the given query, the LLM used as the reader
fails to generate the accurate answer by being dis-
tracted by irrelevant information. On the other hand,
DSLR effectively filters out such query-irrelevant
sentences. Furthermore, DSLR also helps focus on
the information closely related to the query (high-
lighted in blue), thus correctly generating the an-
swer.

6 Conclusion

In this work, we present DSLR, a novel unsu-
pervised document refinement framework that en-
hances the performance of RAG systems. The
DSLR framework aids RAG systems to generate
more accurate answers by decomposing passages
into sentences, re-ranking them based on each
relevance score, and then reconstructing them to
preserve the continuity and coherence of the con-
text. Our comprehensive experiments on multiple
QA datasets show that DSLR consistently outper-
forms the conventional approaches of using fixed-
size passage in RAG, especially in ever-evolving
and domain-specific contexts. Our ablation stud-
ies highlight the importance of sentence-level re-
ranking and contextual reconstruction for improve-
ment on RAG. We believe that DSLR suggests
a promising research direction for refining docu-
ment retrieval without additional training, together
with potential applications across a wide range
of knowledge-intensive NLP tasks by integrating
more diverse retrieval or ranking models.
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Limitation

While our DSLR shows significant improvements in
RAG performance, it is important to recognize that
there is still room for further improvement. First,
although we aim to preserve the original contextual
integrity with the reconstruction step, there is a risk
of unintentionally removing important sentences
that might contain query-relevant information. We
believe that developing more advanced re-ranking
models to more accurately capture relevance scores
could address this, which we leave as valuable fu-
ture work. Second, since DSLR aims to refine the
set of retrieved documents, there might be a bot-
tleneck stemming from the initial retrieval step;
the overall performance can be negatively affected
by incorrectly retrieved documents. Therefore, fu-
ture work may focus on developing a more precise
retrieval module. Since the DSLR framework is
composed of off-the-shelf modules, we believe that
its overall performance will improve concurrently
with the development of these modules.

Ethics Statement

The experimental results on DSLR validate the
effectiveness of sentence-level re-ranking and re-
construction in RAG. However, since RAG re-
quires processing a large amount of textual data, we
should always be aware of the documents contain-
ing sensitive or private information when applying
it to real-world scenarios. While it is not within
the scope of our study, we believe that develop-
ing filtering strategies to mitigate such problems is
essential.

Acknowledgments

This work was supported by Institute for Informa-
tion and Communications Technology Promotion
(IITP) grant funded by the Korea government (No.
2018-0-00582, Prediction and augmentation of the
credibility distribution via linguistic analysis and
automated evidence document collection), Basic
Science Research Program through the National
Research Foundation of Korea (NRF) funded by the
Ministry of Education (RS-2023-00275747), and
the Artificial Intelligence Industrial Convergence
Cluster Development project funded by the Min-
istry of Science and ICT (MSIT, Korea) & Gwangju
Metropolitan City.

References
Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and

Hannaneh Hajishirzi. 2024. Self-RAG: Learning to
retrieve, generate, and critique through self-reflection.
In The Twelfth International Conference on Learning
Representations.

Jinheon Baek, Soyeong Jeong, Minki Kang, Jong C.
Park, and Sung Ju Hwang. 2023. Knowledge-
augmented language model verification. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2023, Sin-
gapore, December 6-10, 2023, pages 1720–1736. As-
sociation for Computational Linguistics.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,
Trevor Cai, Eliza Rutherford, Katie Millican, George
van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, Diego de Las Casas, Aurelia
Guy, Jacob Menick, Roman Ring, Tom Hennigan,
Saffron Huang, Loren Maggiore, Chris Jones, Albin
Cassirer, Andy Brock, Michela Paganini, Geoffrey
Irving, Oriol Vinyals, Simon Osindero, Karen Si-
monyan, Jack W. Rae, Erich Elsen, and Laurent Sifre.
2022. Improving language models by retrieving from
trillions of tokens. In International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Bal-
timore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 2206–2240.
PMLR.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Harrison Chase. 2022. LangChain.

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao
Yu, Kaixin Ma, Xinran Zhao, Hongming Zhang,
and Dong Yu. 2023. Dense X retrieval: What re-
trieval granularity should we use? arXiv preprint
arXiv:2312.06648, abs/2312.06648.

Sukmin Cho, Jeongyeon Seo, Soyeong Jeong, and
Jong C. Park. 2023. Improving zero-shot reader by
reducing distractions from irrelevant documents in
open-domain question answering. In Findings of the
Association for Computational Linguistics: EMNLP
2023, Singapore, December 6-10, 2023, pages 3145–
3157. Association for Computational Linguistics.

Eunsol Choi, Jennimaria Palomaki, Matthew Lamm,
Tom Kwiatkowski, Dipanjan Das, and Michael

82

https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.107
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.107
https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://github.com/langchain-ai/langchain
https://doi.org/10.48550/ARXIV.2312.06648
https://doi.org/10.48550/ARXIV.2312.06648
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.207
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.207
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.207


Collins. 2021. Decontextualization: Making sen-
tences stand-alone. Trans. Assoc. Comput. Linguis-
tics, 9:447–461.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022. Unsupervised dense informa-
tion retrieval with contrastive learning. Trans. Mach.
Learn. Res., 2022.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong C. Park. 2022. Augmenting doc-
ument representations for dense retrieval with inter-
polation and perturbation. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 442–
452. Association for Computational Linguistics.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong C. Park. 2024. Adaptive-
rag: Learning to adapt retrieval-augmented large
language models through question complexity.
arXiv.2403.14403, abs/2403.14403.

Soyeong Jeong, Jinheon Baek, Sung Ju Hwang, and
Jong Park. 2023. Phrase retrieval for open domain
conversational question answering with conversa-
tional dependency modeling via contrastive learning.
In Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14,
2023, pages 6019–6031. Association for Computa-
tional Linguistics.

Jiajie Jin, Yutao Zhu, Yujia Zhou, and Zhicheng Dou.
2024. BIDER: bridging knowledge inconsistency for
efficient retrieval-augmented llms via key supporting
evidence. arXiv.2402.12174, abs/2402.12174.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers, pages 1601–1611. Association for
Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6769–6781. Associa-
tion for Computational Linguistics.

Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi,
Ronan Le Bras, Akari Asai, Xinyan Yu, Dragomir
Radev, Noah A. Smith, Yejin Choi, and Kentaro Inui.
2023. Realtime QA: what’s the answer right now? In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Anastasia Krithara, Anastasios Nentidis, Konstantinos
Bougiatiotis, and Georgios Paliouras. 2023. BioASQ-
QA: A manually curated corpus for biomedical ques-
tion answering. Scientific Data, 10(1):170. Pub-
lished 2023 Mar 27.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452–
466.

Jinhyuk Lee, Mujeen Sung, Jaewoo Kang, and Danqi
Chen. 2021a. Learning dense representations of
phrases at scale. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pages 6634–6647. Association for Computa-
tional Linguistics.

Jinhyuk Lee, Alexander Wettig, and Danqi Chen. 2021b.
Phrase retrieval learns passage retrieval, too. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, pages 3661–3672. Association
for Computational Linguistics.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin
Wang, Michal Lukasik, Andreas Veit, Felix X. Yu,
and Sanjiv Kumar. 2023. Large language models
with controllable working memory. In Findings of
the Association for Computational Linguistics: ACL
2023, Toronto, Canada, July 9-14, 2023, pages 1774–
1793. Association for Computational Linguistics.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.

83

https://doi.org/10.1162/TACL_A_00377
https://doi.org/10.1162/TACL_A_00377
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://doi.org/10.18653/V1/2022.ACL-SHORT.48
https://doi.org/10.18653/V1/2022.ACL-SHORT.48
https://doi.org/10.18653/V1/2022.ACL-SHORT.48
https://doi.org/10.48550/ARXIV.2403.14403
https://doi.org/10.48550/ARXIV.2403.14403
https://doi.org/10.48550/ARXIV.2403.14403
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.374
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.374
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.374
https://doi.org/10.48550/ARXIV.2402.12174
https://doi.org/10.48550/ARXIV.2402.12174
https://doi.org/10.48550/ARXIV.2402.12174
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
http://papers.nips.cc/paper_files/paper/2023/hash/9941624ef7f867a502732b5154d30cb7-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://doi.org/10.1038/s41597-023-02068-4
https://doi.org/10.1038/s41597-023-02068-4
https://doi.org/10.1038/s41597-023-02068-4
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.18653/V1/2021.ACL-LONG.518
https://doi.org/10.18653/V1/2021.ACL-LONG.518
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.297
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.112
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.112


Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak,
Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang,
Keshav Santhanam, Laurel J. Orr, Lucia Zheng, Mert
Yüksekgönül, Mirac Suzgun, Nathan Kim, Neel
Guha, Niladri S. Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2022. Holistic
evaluation of language models. arXiv preprint
arXiv:2211.09110, abs/2211.09110.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin
Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. 2023. Lost in the middle: How lan-
guage models use long contexts. arXiv:2307.03172,
abs/2307.03172.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 9802–9822. Association for
Computational Linguistics.

Rodrigo Frassetto Nogueira and Kyunghyun Cho. 2019.
Passage re-ranking with BERT. arXiv, 1901.04085,
abs/1901.04085.

Rodrigo Frassetto Nogueira, Zhiying Jiang, Ronak
Pradeep, and Jimmy Lin. 2020. Document ranking
with a pretrained sequence-to-sequence model. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, Online Event, 16-20 Novem-
ber 2020, volume EMNLP 2020 of Findings of ACL,
pages 708–718. Association for Computational Lin-
guistics.

OpenAI. 2023a. Chatgpt plugins.

OpenAI. 2023b. GPT-4 technical report.
arXiv:2303.08774, abs/2303.08774.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
S. H. Lewis, Majid Yazdani, Nicola De Cao, James
Thorne, Yacine Jernite, Vladimir Karpukhin, Jean
Maillard, Vassilis Plachouras, Tim Rocktäschel, and
Sebastian Riedel. 2021. KILT: a benchmark for
knowledge intensive language tasks. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pages 2523–2544. Associa-
tion for Computational Linguistics.

Jay M. Ponte and W. Bruce Croft. 1998. A language
modeling approach to information retrieval. In SIGIR

’98: Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, August 24-28 1998,
Melbourne, Australia, pages 275–281. ACM.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 5687–5711. Association
for Computational Linguistics.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In The Twelfth International Con-
ference on Learning Representations.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu,
Donald Metzler, Xuanhui Wang, and Michael Ben-
dersky. 2023a. Large language models are effec-
tive text rankers with pairwise ranking prompting.
arXiv:2306.17563, abs/2306.17563.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu,
Donald Metzler, Xuanhui Wang, and Michael Ben-
dersky. 2023b. Large language models are effec-
tive text rankers with pairwise ranking prompting.
arXiv:2306.17563, abs/2306.17563.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383–2392.
The Association for Computational Linguistics.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

Gerard Salton and Chris Buckley. 1988. Term-
weighting approaches in automatic text retrieval. Inf.
Process. Manag., 24(5):513–523.

Min Joon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur P.
Parikh, Ali Farhadi, and Hannaneh Hajishirzi. 2019.
Real-time open-domain question answering with
dense-sparse phrase index. In Proceedings of the
57th Conference of the Association for Computa-
tional Linguistics, ACL 2019, Florence, Italy, July 28-
August 2, 2019, Volume 1: Long Papers, pages 4430–
4441. Association for Computational Linguistics.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H. Chi, Nathanael Schärli,
and Denny Zhou. 2023a. Large language models can

84

https://doi.org/10.48550/ARXIV.2211.09110
https://doi.org/10.48550/ARXIV.2211.09110
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.18653/V1/2023.ACL-LONG.546
https://doi.org/10.18653/V1/2023.ACL-LONG.546
https://doi.org/10.18653/V1/2023.ACL-LONG.546
http://arxiv.org/abs/1901.04085
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.63
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.63
https://openai.com/blog/chatgpt-plugins
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/V1/2021.NAACL-MAIN.200
https://doi.org/10.18653/V1/2021.NAACL-MAIN.200
https://doi.org/10.1145/290941.291008
https://doi.org/10.1145/290941.291008
https://aclanthology.org/2023.findings-emnlp.378
https://aclanthology.org/2023.findings-emnlp.378
https://aclanthology.org/2023.findings-emnlp.378
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://doi.org/10.48550/ARXIV.2306.17563
https://doi.org/10.48550/ARXIV.2306.17563
https://doi.org/10.48550/ARXIV.2306.17563
https://doi.org/10.48550/ARXIV.2306.17563
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/V1/D16-1264
https://doi.org/10.18653/V1/D16-1264
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.18653/V1/P19-1436
https://doi.org/10.18653/V1/P19-1436
https://proceedings.mlr.press/v202/shi23a.html


be easily distracted by irrelevant context. In Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research,
pages 31210–31227. PMLR.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen-tau Yih. 2023b. REPLUG: retrieval-augmented
black-box language models. arXiv.2301.12652,
abs/2301.12652.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
abs/2307.09288.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R. Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, Yannis Almirantis, John Pavlopoulos, Nico-
las Baskiotis, Patrick Gallinari, Thierry Artières,
Axel-Cyrille Ngonga Ngomo, Norman Heino, Éric
Gaussier, Liliana Barrio-Alvers, Michael Schroeder,
Ion Androutsopoulos, and Georgios Paliouras. 2015.
An overview of the BIOASQ large-scale biomedical
semantic indexing and question answering competi-
tion. BMC Bioinform., 16:138:1–138:28.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Yuhao Wang, Ruiyang Ren, Junyi Li, Wayne Xin
Zhao, Jing Liu, and Ji-Rong Wen. 2024. REAR:
A relevance-aware retrieval-augmented framework
for open-domain question answering. arXiv preprint
arXiv:2402.17497, abs/2402.17497.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallap-
ati, and Bing Xiang. 2019. Multi-passage BERT: A
globally normalized BERT model for open-domain
question answering. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing, EMNLP-
IJCNLP 2019, Hong Kong, China, November 3-7,
2019, pages 5877–5881. Association for Computa-
tional Linguistics.

Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md. Rizwan
Parvez, and Graham Neubig. 2023. Learning to
filter context for retrieval-augmented generation.
arXiv.2311.08377, abs/2311.08377.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, NUT@EMNLP 2017, Copenhagen,
Denmark, September 7, 2017, pages 94–106. Associ-
ation for Computational Linguistics.

Zhenyu Wu, Chao Shen, and Meng Jiang. 2024. In-
structing large language models to identify and
ignore irrelevant conditions. arXiv.2403.12744,
abs/2403.12744.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2024. RE-
COMP: Improving retrieval-augmented LMs with
context compression and selective augmentation. In
The Twelfth International Conference on Learning
Representations.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu,
Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. 2023a. Generate
rather than retrieve: Large language models are strong
context generators. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng
Jiang, and Ashish Sabharwal. 2023b. Improving lan-
guage models via plug-and-play retrieval feedback.
arXiv.2305.14002, abs/2305.14002.

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui,
Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and
Michael Bendersky. 2023. Rankt5: Fine-tuning T5
for text ranking with ranking losses. In Proceedings
of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR 2023, Taipei, Taiwan, July 23-27, 2023, pages
2308–2313. ACM.

85

https://proceedings.mlr.press/v202/shi23a.html
https://doi.org/10.48550/ARXIV.2301.12652
https://doi.org/10.48550/ARXIV.2301.12652
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.1186/S12859-015-0564-6
https://doi.org/10.1186/S12859-015-0564-6
https://doi.org/10.1186/S12859-015-0564-6
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.48550/ARXIV.2402.17497
https://doi.org/10.48550/ARXIV.2402.17497
https://doi.org/10.48550/ARXIV.2402.17497
https://doi.org/10.18653/V1/D19-1599
https://doi.org/10.18653/V1/D19-1599
https://doi.org/10.18653/V1/D19-1599
https://doi.org/10.48550/ARXIV.2311.08377
https://doi.org/10.48550/ARXIV.2311.08377
https://doi.org/10.18653/v1/w17-4413
https://doi.org/10.48550/ARXIV.2403.12744
https://doi.org/10.48550/ARXIV.2403.12744
https://doi.org/10.48550/ARXIV.2403.12744
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://doi.org/10.48550/ARXIV.2305.14002
https://doi.org/10.48550/ARXIV.2305.14002
https://doi.org/10.1145/3539618.3592047
https://doi.org/10.1145/3539618.3592047


A Additional Experimental Setups

A.1 Datasets

Dataset Number of Queries

NQ 8,758
TQA 8,837
SQD 8,886
RQA 3137
SQ 1,000
BASQ 1,235

Table 4: Detailed number of queries for each dataset
used in the experiment.

Table 4 shows the number of queries of the
datasets utilized in our experiments. Following
(Karpukhin et al., 2020), we used the development
sets of the NQ, TQA, and SQD datasets. The SQ
dev-set was also employed. For RQA, we selected
answerable queries from documents available on
GCS spanning from 2022 to 2023. In BASQ, we se-
lectively employed questions from BioASQ6 chal-
lenge (task b) that permitted either factoid or yes/no
responses to ensure accuracy.

A.2 Models

To construct the retrieval system for our RAG
model, we employed BM25 with Pyserini5, using
pre-indexed corpora provided by the framework.
To improve answer generation across datasets, we
include document titles to provide context to the
LLM, following Asai et al. (2024). Additionally,
recognizing that sentences alone may offer insuffi-
cient context, we also included document titles in
the reranking process to further ensure contextual
richness.

To select models for our re-ranking experiments,
we considered a range of realistic scenarios and
selected representative models from three key cate-
gories: dense retrieval, supervised re-ranking, and
unsupervised re-ranking. Specifically, for dense
retrieval, we chose DPR and Contriever. In the
category of supervised re-ranking, we used the
established pointwise ranking models MonoT5
and RankT5. For unsupervised re-ranking, we em-
ployed RG, a widely used pointwise re-ranking
method. Additionally, acknowledging the signifi-
cance of latency in practical settings, we favored
pointwise methods to efficiently manage the com-
putational overhead associated with processing and
decomposing passages into sentences.

5https://github.com/castorini/pyserini

Model T

BM25 7.6389
Contriever 0.9341
DPR 71.4338
MonoT5 0.098
RankT5 -3.597
RG 0.9998

Table 5: Threshold T values used for each model in the
main experiments.

A.2.1 Model Weights

All model weights were sourced from Hugging
Face, and the models were used without any addi-
tional training. Below, we list the specific Hugging
Face model names corresponding to the weights
employed in our experiments:
DPR:

- facebook/dpr-question_encoder-multiset-base

- facebook/dpr-ctx_encoder-multiset-base

Contriever:
- facebook/contriever

MonoT5:
- castorini/monot5-base-msmarco

RankT5:
- Soyoung97/RankT5-base

RECOMP:
- fangyuan/nq_abstractive_compressor

- fangyuan/nq_extractive_compressor

- fangyuan/tqa_abstractive_compressor

- fangyuan/tqa_extractive_compressor

- fangyuan/hotpotqa_abstractive_compressor

- fangyuan/hotpotqa_extractive_compressor

LLama2-13b-chat:
- meta-llama/Llama-2-13b-chat-hf

A.2.2 Threshold T for Each Model

As shown in the Figure 8, the distribution of rele-
vance scores varies significantly across models. Ex-
perimentally, we sampled 1,000 entries each from
the training sets of the NQ, TQA, and SQD datasets
to set the 90th percentile threshold T . Sentences
scoring below this threshold were removed. Al-
though it is possible to sample from the training set
in each experiment to establish new thresholds, our
experiments conducted in Section 5 across various
thresholds consistently yielded better performance
than using the top-1 documents directly. Therefore,
the thresholds established in this experiment could
be used as the standard. The specific values are
listed in the accompanying Table 5.
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Figure 8: Distribution of relevance scores for 1,000 randomly sampled documents from the NQ, TQA, and SQD
datasets for each model.

A.3 Prompt Templates

For a fair comparison, we fixed the prompt tem-
plates. In this section, we introduce these fixed
templates.

A.3.1 QA Prompt Template

We use a QA template for open-domain queries
from the publicly available llama-index6. Below is
the QA prompt template used in our experiments:

QA Prompt Template for LLMs

[INST] We have provided context informa-
tion below.
———————
{context_str}
———————
Given this information, please answer the
question: {query_str} [/INST]

A.3.2 RG Ranking Prompt Template

We use an RG Ranking Prompt Template follow-
ing (Liang et al., 2022). Below is the RG Ranking
prompt template used in our experiments:

6https://www.llamaindex.ai/

Ranking Prompt Template for LLMs

[INST] Passage:
———————
{title_str}
{document_str}
———————
Query: {query_str}
Does the passage answer the query? Answer
‘Yes’ or ‘No’ [/INST]

B Additional Experimental Results

B.1 Main Result on Top-5 documents

In Table 6, we compared the performance of DSLR-
refined documents for the top-5 settings with orig-
inal documents in RAG. While DSLR remained
effective, the margin of performance improvement
was less significant than the top-1 setting, suggest-
ing that increasing the volume of documents can
modestly enhance performance. However, DSLR
managed to maintain similar or better performance
while significantly reducing token count, thus im-
proving efficiency. In this setting, models like
MonoT5, RankT5, and RG, based on pre-trained
models, outperformed traditional models such as
BM25, Contriever, and DPR, likely due to the su-
perior capability of sentence-level re-ranking.
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Type Re-ranker NQ TQA SQD RQA SQ BASQ AVG.
# tok Acc # tok Acc # tok Acc # tok Acc # tok Acc # tok Acc # tok Acc

Baseline

- - 855 34.9 862 64.7 843 35.9 2323 42.5 825 40.9 2131 62.9 1307 47.0

Ours

Sparse Ret. BM25 204 29.9 371 62.1 172 31.6 1590 42.6 231 39.6 868 58.7 573 44.1

Dense Ret. Contriever 303 32.6 251 63.8 243 34.5 1163 44.1 301 41.7 1433 62.4 616 46.6
DPR 262 37.9 305 65.6 225 32.8 1095 42.5 334 42.3 1390 60.5 602 46.8

Supervised Re-r. MonoT5 325 36.1 353 65.0 273 36.7 1194 44.9 200 40 1640 62.3 664 47.5
RankT5 368 35.8 285 64.9 369 36.9 976 44.1 202 40.6 1458 63.0 610 47.6

Unsupervised Re-r. RG 198 37.4 320 66.8 205 35.3 1099 43.9 453 40.8 1253 63.4 588 47.9

Table 6: Performance comparison between the Baseline (original top-5 document) and Ours (DSLR-refined top-5 document) on
various open-domain QA datasets. The table shows the average token count (# tok) and accuracy (Acc) for both sparse and dense
retrievers, as well as for supervised and unsupervised re-rankers. Best results are in bold.

B.2 Detailed Results for the Comparative
Analysis of Document Refining Methods:
Evaluating RECOMP and DSLR

Table 7 provides a detailed comparison between the
RECOMP and DSLR frameworks. RECOMP fo-
cuses on minimizing token usage in RAG without
sacrificing performance, utilizing a fine-tuned Con-
triever for extractive compression and a T5-large
for abstractive compression. By contrast, DSLR en-
hances RAG performance by eliminating redundant
content. Although their different objectives pose a
challenge for direct comparison, both aim to extract
essential information effectively. To ensure a fair
comparison, we aligned the context length to two
sentences and refined the top-5 documents, mir-
roring RECOMP’s methodology. Our experiments
utilized the LLama2-13b-chat model as the reader
to maintain consistency. This analysis underscores
the importance of zero-shot refinement approaches
in advancing document refinement for RAG.

B.3 DSLR with Proprietary Models

We evaluated the performance of DSLR in propri-
etary LLMs with larger parameter sizes and undis-
closed data and training processes, specifically test-
ing on GPT-3.5-turbo7 and Claude-3-haiku8 using
the same settings for the top-1 document. As shown
in Table 8, consistent with previous findings, DSLR
significantly enhanced performance by simply elim-
inating irrelevant content at the sentence level from
the original document. Additionally, since these
models calculate API costs on a per-token basis, the
substantial reduction in token count9 is expected to

7gpt-3.5-turbo-1106
8claude-3-haiku-20240307
9Due to the unavailability of the tokenizers for gpt-3.5-

turbo and claude-3-haiku, token counts were necessarily per-
formed using the LlamaTokenizer.

significantly decrease API costs.

B.4 Sentence-Level Re-ranking Results

In DSLR, the sentence-level re-ranking step is cru-
cial for enhancing performance. We evaluated this
approach against conventional passage-level re-
ranking within the RAG framework, maintaining
identical context lengths (L). Initial retrievals were
configured for top-{20, 100}, followed by analyses
at L = {100, 500}. These settings were chosen be-
cause 100 and 500 words represent typical lengths
for segments in top-1 and top-5 passage-level re-
rankings, respectively. Notably, when counting
words, only the content is considered, excluding
titles.

B.4.1 Comparative Performance of
Sentence-Level vs. Passage-Level
Re-Ranking

The results presented in Table 9 demonstrate that
sentence-level re-ranking consistently outperforms
passage-level re-ranking across all settings, except
when using BM25.

B.4.2 Effectiveness of Sentence-Level
Re-Ranking in Varying Conditions

Table 10 shows the sentence-level and passage-
level re-ranking over various context lengths L.
Table 11 shows performance in top-{5, 10, 20, 50,
100} settings adjusted for L = 100 and L = 500.
Our experiments on the NQ dataset indicate that
sentence-level re-ranking is effective across diverse
conditions, omitting the less effective BM25 re-
ranking.
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Method Model NQ TQA SQD RQA SQ BASQ AVG.

DSLR

BM25 22.2 53 27.5 36.5 33.7 54 37.8
DPR 35 62 28.8 32.9 38.1 55.6 42.1

Contriever 24.3 56.8 28.5 34.9 37.4 54 39.3
MonoT5 34.1 62.2 38.9 28.2 38.6 47.9 38.0
RankT5 34.4 62.5 38.9 42.7 38.4 63.2 46.7

RG 37.5 64.9 35.5 41.4 41.4 63.4 47.4

RECOMP

Extr.-NQ 29.7 57.8 26 28.2 38.6 47.9 38.0
Extr.-TQA 27.5 59.9 27.6 32.1 36.7 49.4 38.9
Extr.-HQA 27.2 57.7 30.3 33.3 35.7 50.9 39.2

(Xu et al., 2024) Abst.-NQ 31 59.2 34.1 38.5 36.1 56 42.5
Abst.-TQA 35.3 64 29.2 37.3 45.1 46.8 43.0
Abst.-HQA 30.9 58.3 33.7 37.6 39.9 41.8 40.4

Table 7: Performance comparison of DSLR and RECOMP methods across multiple open-domain QA datasets. The
table presents the accuracy of each method, including BM25, DPR, Contriever, MonoT5, RankT5, and RG models
for DSLR, as well as extractive (Extr.) and abstractive (Abst.) models for RECOMP. The best performance is in
bold.

# tok gpt-3.5-turbo claude-3-haiku

Baseline 170 22.7 24.3
Ours 44 36.9 33.8

Table 8: Performance comparison of the baseline (original
top-1 document) and Ours (DSLR-refined top-1 document
using RG) on the NQ dataset within proprietary models. The
comparison includes average token count (# tok) and accuracy.

B.4.3 Effectiveness of Sentence-Level
Re-Ranking on the Gold Answer Hit
Rate

We present detailed results for the Gold Answer
Hit Rate in Table 12. The rate is binary, assigned 1
if the re-ranked context contains the gold answer,
and 0 otherwise, averaged over all dataset entries
for each L.

B.4.4 Ablation Studies on Various Models
Table 13 explores the significance of each step un-
der various models in the initial top-100 retrieval
and L=500 setting. The absence of the sentence-
level re-ranking (SR) highlights its necessity in
filtering irrelevant information, while excluding the
reconstruction (RC) step demonstrates its crucial
role in enhancing answer generation accuracy.
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Type Re-ranker Granularity NQ TQA SQD RQA* SQ BASQ AVG.
L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500

w/o Re-ranking

- - - 25.5 34.9 58 64.6 28.5 35.9 37 40.1 33.9 40.9 56.8 59.5 40.0 46.0

w/ Re-ranking

Top-20

Sparse Ret. BM25 Sentence 26.3 37.5 56.7 65.6 31.5 37.1 39.3 43.1 35.6 43.4 58.5 64.2 41.3 48.5

Dense Ret.

Contriever Passage 26.5 37.7 57.5 66.1 26.2 37.2 33.6 38 35.4 43.7 53.9 57.9 38.9 46.8
Sentence 28.5 37.2 60.9 67 32.9 38.4 38.3 42.7 39 44 60.7 63.4 43.4 48.8

DPR Passage 36.5 42.1 62.3 67.3 25.3 35.4 31.5 36 38.9 44.6 52.5 56.5 41.2 47.0
Sentence 38.5 42.5 64.3 68.2 33.1 36 35.8 40.4 41.4 45.6 59 62.7 45.4 49.2

Supervised Rer.

MonoT5 Passage 33.6 40.7 62.1 67.6 37.1 40 37.8 41.5 37.4 44.7 58.7 62.3 44.5 49.5
Sentence 37.4 42.3 64.9 68.2 39.5 39.5 42.1 44.6 41.4 44 64.2 65.1 48.3 50.6

RankT5 Passage 35.4 41.4 63.3 67.7 39.2 40 37.9 40.8 37.8 44.5 59.2 63.0 45.5 49.6
Sentence 36.9 42.1 64 67.9 39.9 39.5 42.8 43.9 40.2 45.7 65.6 66.5 48.2 50.9

Unsupervised Rer. RG Passage 35.9 41.9 65.7 68.8 34 39.3 27 30.1 40.2 45 60.9 63.5 44.0 48.1
Sentence 39.2 42.9 67.1 68.8 37.2 39.8 41.5 44.6 42.1 47.3 64.7 66.9 48.6 51.7

Top-100

Sparse Ret. BM25 Sentence 22.1 33.5 50.1 62.0 26.5 33.6 39.3 43.1 32.2 41.2 51.5 60.4 37.0 45.6

Dense Ret.

Contriever Passage 26.0 37.2 56.4 66.0 23.7 35.3 33.6 38.0 36.3 44.6 51.0 56 37.8 46.2
Sentence 28.0 37.6 59.4 67.5 32.5 39.0 38.3 42.7 40.5 45.4 58.7 63.5 42.9 49.3

DPR Passage 39.2 46.5 61.8 68.8 22.8 33.4 31.5 36 38.5 44.5 48.0 53.6 40.3 47.1
Sentence 41.9 46.7 65.3 69.8 31.8 38.0 35.8 40.4 40.7 48.1 57.0 62.1 45.4 50.9

Supervised Re-r.

MonoT5 Passage 35.4 43.9 62.8 69.1 38.3 42.3 37.8 41.5 39.3 46.8 58.4 63.2 45.3 51.1
Sentence 40.5 46.3 65.8 70.3 41.9 41.8 42.1 44.6 42.2 48.6 64.0 68.0 49.4 53.3

RankT5 Passage 38.0 44.7 64.5 70.0 41.5 43.5 37.9 40.8 39.0 46.5 59.8 64.2 46.8 51.6
Sentence 39.7 46.0 65.5 69.9 42.4 41.8 42.8 43.9 39.0 48.5 65.6 68.5 49.2 53.1

Unsupervised Re-r. RG Passage 37.6 44.9 66.3 71.0 33.5 40.8 27.0 30.1 40.2 46.9 60.8 63.4 44.2 49.5
Sentence 41.7 47.4 68.5 71.7 37.5 41.5 41.5 44.6 43.8 49.4 65.4 68.8 49.7 53.9

* RQA uses a specific GCS document from the dataset instead of the top-100, allowing for a variable number of top-N retrieved documents.

Table 9: Comparative performance of sentence-level and passage-level re-ranking methods across multiple open-
domain QA datasets. Results are presented for two context lengths (L=100 and L=500), using sparse and dense
retrievers, and both supervised and unsupervised re-rankers, for the top-20, 100 retrieved documents. The best
performances are in bold.

Re-ranker Granularity L=100 L=200 L=300 L=400 L=500

Contriever Passage 26 29.9 33 35.4 37.2
Sentence 28 32.8 35.3 36.4 37.6

DPR Passage 39.2 42.5 44 45.8 46.5
Sentence 41.9 44.5 45.8 46.4 46.7

MonoT5 Passage 35.4 39 41.6 43 43.9
Sentence 40.5 43.9 45.6 46.1 46.3

RankT5 Passage 38 41 42.6 43.9 44.7
Sentence 39.7 43.3 44.9 46.2 46

RG Passage 37.6 41 42.7 44 44.9
Sentence 41.7 44.7 46.2 47.3 47.4

AVG. Passage 35.2 38.7 40.8 42.4 43.4
Sentence 38.4 41.8 43.6 44.5 44.8

Table 10: Performance comparison across different context lengths (L = 100, 200, 300, 400, and 500) on the NQ
dataset, evaluated using top-100 retrieved documents.
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Re-ranker Granularity Top-5 Top-10 Top-20 Top-50 Top-100

L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500

Contriever Passage 26.7 35.3 26.7 37.0 26.5 37.7 26.4 37.1 26.0 37.2
Sentence 28.0 34.8 27.9 36.3 28.5 37.2 28.1 37.7 28.0 37.6

DPR Passage 32.8 35.9 34.5 39.5 36.5 42.1 38.5 45.0 39.2 46.5
Sentence 33.0 34.9 36.3 39.0 38.5 42.5 40.9 45.6 41.9 46.7

MonoT5 Passage 31.3 35.0 32.6 38.5 33.6 40.7 34.6 43.3 35.4 43.9
Sentence 32.9 34.8 35.3 38.9 37.4 42.3 39.7 44.7 40.5 46.3

RankT5 Passage 32.1 35.5 33.8 38.4 35.4 41.4 37.0 43.8 38.0 44.7
Sentence 32.5 34.9 34.9 38.7 36.9 42.1 38.8 44.8 39.7 46.0

RG Passage 33.0 35.3 34.8 39.6 33.6 41.9 34.7 44.2 35.2 44.9
Sentence 33.9 34.8 36.7 39.6 36.1 42.9 37.7 45.8 38.4 47.4

AVG. Passage 31.2 35.4 32.5 38.6 33.6 40.8 34.7 42.7 35.2 43.4
Sentence 32.1 34.8 34.2 38.5 36.1 41.4 37.7 43.7 38.4 44.8

Table 11: Performance comparison of various re-rankers at different granularity levels and context lengths (L=100
and L=500), evaluated on NQ dataset across top-{5, 10, 20, 50, 100} retrieved documents.

Type Re-ranker Granularity NQ TQA SQD RQA* SQ BASQ AVG.
L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500 L=100 L=500

Top-20

Dense Ret.

Contriever Passage 24.1 49.5 44.8 70.5 29.3 53.7 30.3 42.8 30.1 58.9 21 32.2 29.9 51.3
Sentence 25.9 47.4 50.1 71.7 39.8 56.3 34.8 48.6 37.6 61.4 19.6 32.1 34.6 52.9

DPR Passage 41.9 57.7 59.1 73.4 29.5 52.3 29.2 42.1 37.3 59.3 20.6 30.5 36.2 52.6
Sentence 46.6 59.0 64.3 74.6 42.4 58.2 32.8 49.5 44.6 61.8 24.2 34.2 42.5 56.2

Supervised Rer.

MonoT5 Passage 37.7 57.1 59 74.1 45.7 60.1 36.1 47.2 38.7 60.4 25.9 36.0 40.5 55.8
Sentence 46.2 58.3 65.6 74.4 54.2 61.5 43.9 52.6 46.5 63.1 29.7 39.2 47.7 58.2

RankT5 Passage 40.7 57.9 61 74.1 48.3 60.7 34.8 45.6 39.9 61.9 26.6 35.9 41.9 56
Sentence 44.8 57.9 64.5 73.8 54.2 61.7 43.4 52.3 44.9 63 30.5 39.4 47 58

Unsupervised Rer. RG Passage 38.1 57.7 59.9 74.7 40.3 58.9 21.1 30.9 40.5 61.6 25.8 35.1 37.6 53.2
Sentence 47.1 59.3 66.1 75.5 50.8 61.6 38.6 51.4 48.8 65.8 29.4 38.9 46.8 58.7

Top-100

Dense Ret.

Contriever Passage 23 48.9 42 70.2 25.8 51.8 30.3 42.8 29.5 59.7 19.8 30.6 28.4 50.7
Sentence 24.7 46.4 48.2 70.8 39.1 57.7 34.8 48.6 38.6 63.9 18.7 31.6 34 53.2

DPR Passage 46.5 64.9 59.3 75.3 26.9 49.2 29.2 42.1 35.2 61.6 20.1 29.5 36.2 53.8
Sentence 52.4 66.6 65.9 77.2 41.4 59.5 32.8 49.5 45.1 67.8 24.3 33.4 43.6 59

Supervised Re-r.

MonoT5 Passage 40.2 63 60.1 76.8 48 65.8 36.1 47.2 41.5 65.2 25.7 36.8 41.9 63.6
Sentence 51.1 66.2 67.8 77.9 60.1 69.6 43.9 52.6 49.4 68.2 29.4 39.9 50.3 62.4

RankT5 Passage 44.1 64.2 62.9 77.1 51.6 67.3 34.8 45.6 41.8 65.5 27.4 36.8 43.8 59.4
Sentence 49.8 65 66.8 76.9 60 69.4 43.4 52.3 49 67 31 40.5 50 61.8

Unsupervised Re-r. RG Passage 40 63.1 60.6 77.7 40.1 61.4 21.1 30.9 40.9 66.7 26.5 35.1 38.2 55.8
Sentence 51.2 66.6 67.7 79 52.8 67.6 38.6 51.4 54 71.4 29.6 39.8 49 62.6

* RQA uses a specific GCS document from the dataset instead of the top-20, allowing for a variable number of top-N retrieved documents.

Table 12: Golden Answer Hit rate of sentence-level and passage-level re-ranking methods across multiple open-
domain QA datasets. Results are presented for two context lengths (L=100 and L=500), using dense retrievers, and
both supervised and unsupervised re-rankers, for the top-{20, 100} retrieved documents.
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Model NQ TQA SQD AVG.

Sentence-Level Re-ranking

Contriever 37.6 67.5 39.1 48.1
DPR 46.7 69.9 38.1 51.6

MonoT5 46.4 70.4 41.9 52.9
RankT5 46.1 70.0 41.9 52.7

RG 47.4 71.7 41.5 53.5

w/o SR 24.1 51.0 14.4 29.8

w/o RC (descend)

Contriever 36.8 66.7 38.1 47.2
DPR 46.9 69.3 37.6 51.3

MonoT5 45.9 68.9 41.6 52.1
RankT5 46.0 69.3 41.3 52.5

RG 46.3 71.0 39.6 52.3

w/o RC (random)

Contriever 37.4 66.8 37.7 47.3
DPR 46.5 69.0 37.2 50.9

MonoT5 46.0 70.0 40.6 52.2
RankT5 45.6 69.1 40.3 51.7

RG 46.3 71.2 39.7 52.4

Table 13: Ablation studies on the NQ, TQA, and SQD datasets comparing the Sentence-Level Re-ranking performance with its
variants. This includes the baseline RG model and variants without sentence-level re-ranking (w/o SR) and without reconstruction
(w/o RC), evaluated in conditions with scores ordered by relevance (descend) and shuffled randomly (random).

N 1 3 5 7 10

Baseline

Acc 25.6 31.7 34.9 37.0 39.6
# tok 169 512 855 1198 1713
E2E 3.368 4.436 5.239 6.030 7.382

Ours

Acc 31.1 34.0 36.1 37.6 39.7
# tok 74 207 325 431 577
E2E 3.792 4.081 4.232 4.559 5.422

Table 14: Performance comparison at various N -values for Baseline vs. Ours, using Accuracy (Acc), Token count
(# tok), and End-to-End latency (E2E) on the NQ dataset.

(%) 10 20 30 40 50 60 70 80 90 Oracle

T 2.7969e-05 0.00043 0.0076 0.0826 0.65841 0.9196 0.9857 0.9981 0.9998 -
Acc 28.6 28.7 29.0 29.2 29.4 29.7 29.8 29.9 29.5 34.1
# tok 164 159 150 141 123 109 94 75 51 77

Table 15: Variation in accuracy and token count (# tok) with adjustments to relevance score percentiles, including
the set threshold values T and oracle settings on the NQ dataset.
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