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Abstract

Language models (LMs) have greatly propelled
the research on natural language processing.
However, LMs also raise concerns regarding
the generation of biased or toxic content and the
potential disclosure of private information from
the training dataset. In this work, we present
a new efficient approach, Ethos, that rectifies
LMs to mitigate toxicity and bias in outputs
and avoid privacy leakage. Ethos is built on
task arithmetic. However, unlike current task
arithmetic algorithms, Ethos distinguishes gen-
eral beneficial and undesired knowledge when
reconstructing task vectors. Specifically, Ethos
first obtains a set of principal components from
the pre-trained models using singular value de-
composition. Then, by projecting the task vec-
tor onto principal components, Ethos separates
the principal components that encode general
from those associated with undesired knowl-
edge. Ethos performs forgetting or unlearning
by only negating the task vector with undesired
knowledge, thereby minimizing collateral dam-
age on general model utility. We demonstrate
the efficacy of our approach on three different
tasks: bias, toxicity, and memorization unlearn-
ing. Evaluations show Ethos is more effective
in removing undesired knowledge while main-
taining the overall model performance com-
pared to current task arithmetic methods.

1 Introduction

The advent of language models (LMs) has en-
hanced the current capabilities in text understand-
ing and generation (Vaswani et al., 2017; Brown
et al., 2020; Touvron et al., 2023; Zhao et al., 2023).
Due to their significant potential LMs have been
the driving force in many automated systems that
improve productivity in real-world tasks (OpenAl,
2023; Chen et al., 2021; Thoppilan et al., 2022).
However, despite their success, LMs also bring to
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the forefront some new challenges. This paper fo-
cuses on one pivotal challenge among these: LMs’
propensity to generate toxic, biased content or re-
veal private training records.

Overview of Toxicity/Bias/Privacy Concerns
of LMs: Since LMs are pre-trained with a large
volume of data, the composition of the dataset dur-
ing pre-training can greatly affect the performance
of LMs. In particular, suppose a dataset used in
pre-training contains a substantial amount of toxic
information, it can result in an LM that is likely
to generate toxic or harmful messages for certain
prompts (Rottger et al., 2020; Hartvigsen et al.,
2022). Similarly, an imbalanced dataset with un-
evenly distributed data points among groups (e.g.,
gender, race, ethnicity) can lead to the development
of biases in LMs (Bolukbasi et al., 2016; Dixon
et al., 2018; Sheng et al., 2019; Gallegos et al.,
2023). For instance, LMs may associate certain
features with a gender group when pre-trained on
gender-imbalanced datasets. Another critical con-
cern in deploying LMs is the risk of privacy leakage
due to model memorization. Specifically, LMs tend
to overfit training data and memorize specific exam-
ples, increasing vulnerability to privacy breaches,
such as training data extraction attacks (Carlini
et al., 2020, 2022; Hu et al., 2021; Flemings et al.,
2024). Memorization compromises privacy and
poses security risks, especially when the training
data contains sensitive information.

Addressing these challenges is crucial in the de-
velopment of LMs. A naive approach is to retrain
the model from scratch, for instance, whenever
bias or memorization is discovered and removed
from the training data. Considering the prohibitive
costs of training LMs, it is infeasible to re-train
the model. Hence, the objective of this work is to
rectify LMs without incurring substantial costs.

Overview of Model Editing by Task Arith-
metic. Prior work (Ilharco et al., 2023) introduces
a model editing method that reduces toxic informa-
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tion in outputs by directly editing models with a
task vector. The task vector, obtained after fine-
tuning the model on a downstream dataset, encodes
certain undesired knowledge (e.g., toxicity). There-
fore, negating such a task vector helps rectify LMs
and forgetting or unlearning undesired bias while
maintaining reasonable model performance. To fur-
ther improve the model editing performance, Zhang
et al. leverage parameter-efficient fine-tuning meth-
ods such as Low-Rank Adaptation (LoRA) (Hu
et al., 2022) to edit the task vector formed by a sub-
set of the model weights using parameter-efficient
modules only rather than the full model weights.

Current model editing methods still struggle to
maintain LMs’ performance when directly oper-
ating in the parameter space. The reason is that
task vectors mix undesired knowledge with the
general knowledge that is necessary for preserving
model utility (Hu et al., 2023). As a result, sim-
ply negating the task vector on an LM inevitably
removes the general knowledge alongside the un-
desired knowledge, causing collateral damage to
the overall model performance. We present more
detailed related work in Appendix A.

Overview of the Proposed Method. To ad-
dress the limitations in current model editing meth-
ods for forgetting or unlearning undesired infor-
mation, we propose Ethos, a new model editing
method that generates task vectors containing un-
desired knowledge only and minimizes adverse
effects on LMs’ performance. The core idea of
Ethos is to analyze a model’s weights in an or-
thogonal space and distinguish the components
related to general knowledge from the ones associ-
ated with undesired knowledge. We first define an
orthogonal parameter space with a set of orthogonal
components. Specifically, we apply singular value
decomposition (SVD) to the pre-trained weights
and obtain the principal components. The obtained
principal components serve as the bases that fully
represent the weight space of the pre-trained LM.

Given the orthogonality of the principal compo-
nents, we treat each as a separable component en-
coding specific orthogonal knowledge. The LM’s
output represents a combination of knowledge from
all principal components. To identify the compo-
nents for undesired knowledge, we fine-tune the
pre-trained LM on a downstream task, such as a
toxic dataset, and obtain an initial task vector. Then,
we project the task vector onto the defined orthogo-
nal space. The principal components that present
significant changes after the projection are classi-

fied as components encoding undesired knowledge,
while others with marginal changes after the pro-
jection are classified as components for general
knowledge. We use all components for undesired
knowledge to construct a new task vector, which
is then subtracted from the pre-trained weights to
mitigate toxicity, bias, or memorization in the LM.

We conduct experiments on three different tasks:
bias, toxicity and memorization unlearning in LMs.
We use pre-trained LMs, including OPT (Zhang
et al., 2022), GPT2 (Radford et al., 2019), GPT-
Neo (Black et al., 2021), and large LMs like
Llama2 (Touvron et al., 2023). Evaluations show
that Ethos effectively reduces bias, toxicity, and
privacy leakage in pre-trained LMs. Notably, our
approach demonstrates better unlearning perfor-
mance than current model editing methods while
maintaining model utility comparable to that of pre-
trained models. We also conduct ablation studies
to analyze various components of our methods.

2 Preliminary

2.1 Parameter-Efficient Fine-Tuning

To enhance the efficiency of fine-tuning LMs while
reducing memory and computational overhead,
Parameter-efficient fine-tuning (PEFT) methods
have been proposed to fine-tune only a subset of
the existing model parameters (Zaken et al., 2022;
Houlsby et al., 2019; Li and Liang, 2021). Among
these, the low-rank adaptation algorithm, LoRA
(Hu et al., 2022), stands out for achieving perfor-
mance comparable to full-parameter fine-tuning.
For a linear layer, it freezes the pre-trained weights
Wy € R4*¥ and injects trainable low-rank matri-
ces A € R"™* and B € R?*", constraining the
weight updates in a low-rank space. The total num-
ber of trainable parameters is significantly reduced
given rank r < min(d, k). The forward pass is
then modified as

h=Wy -2+ BA- (1)

where input € R* and output h € R?. The
matrix A is initialized from a random Gaussian
distribution, and B is initialized to zero. Therefore,
the output h remains the same as the original layer
at the beginning of training. In this work, we use
LoRA fine-tuning instead of full model fine-tuning
across all experiments and use LoORA parameters
A and B to construct task vectors.
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2.2 Task Arithmetic

Recent advancements in model editing techniques
(Cao et al., 2021; Mitchell et al., 2021, 2022;
Meng et al., 2022) have seen the emergence of task
arithmetic as a cost-effective and scalable method
(Ilharco et al., 2023; Zhang et al., 2023a; Ortiz-
Jimenez et al., 2023; Tang et al., 2023). Task arith-
metic is to modify a pre-trained model directly us-
ing a vector called task vector. A task vector is usu-
ally attained after fine-tuning the pre-trained model
on a downstream task. Specifically, given weights
of a pre-trained model 6, O denotes weights after
fine-tuning on a downstream task, a task vector is
calculated as

AB = 6y — . )

As neural networks implicitly memorize knowl-
edge in their parameters (Cao et al., 2021), the task
vector obtained in Eq (2) also encodes knowledge
about the downstream task. In this work, we mainly
focus on the negation operation of the task vector
defined as

05 = O — A - AD, 3)
where A denotes a scaling factor that controls the
weight of the task vector. Negation aims to remove
specific knowledge from the pre-trained model. For
instance, if a pre-trained model gives toxic or bi-
ased information, negating a task vector attained
from a toxic or biased dataset can rectify the pre-
trained model without incurring costly procedures
such as re-training the model.

3 Methodology

The objective of this study is to edit LMs to remove
certain types of undesired knowledge encoded in
LMs, such as bias, toxicity, or certain private in-
formation. Existing methods that rely on task vec-
tors are unable to distinguish undesired knowledge
from overall beneficial knowledge within those vec-
tors. Therefore, we propose Ethos that is aimed
to remove only undesired knowledge and ensure
the edited model is rectified without significantly
compromising the model utility.

Next, we present our method, Ethos. At a high
level, Ethos decomposes weights of a pre-trained
model along orthogonal directions and analyzes
changes in each direction when fine-tuning the pre-
trained model on a downstream task. We demon-
strate that each direction represents a specific type

Pre-trained LM, 6y

) finetune

1) Task Alignment (
same
auxiliary format and context toxic/biased
data ® data

l l

Opt + ABayx ABask
2) Iénowledge SVD l
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Figure 1: Overview of Ethos. Ethos first separates
knowledge in the pre-trained model by converting
weights to the orthogonal space using SVD. Then,
Ethos projects the initial task vector, ABy,, to the or-
thogonal space, and identifies components for general
knowledge and components for task-specific knowledge.
At last, Ethos creates a new task vector, Aémk, with
only task-specific components.

of knowledge that is orthogonal to the others. Dur-
ing fine-tuning, directions with general knowledge
that exist in the pre-trained model will observe
marginal changes, while substantial changes can
happen along directions with task-specific knowl-
edge. Therefore, Ethos constructs a new task vec-
tor only along these task-specific directions and
negates the task vector on the pre-trained model.
Hence, with a proper downstream dataset, one can
identify orthogonal spaces that are most impacted
by bias or toxic information.

As shown in Figure 1, Ethos consists of the
following key steps.

Task Alignment. Given a pre-trained model,
0y, we first align it with the downstream task.
Since the pre-trained model lacks knowledge about
the downstream task, the alignment step is neces-
sary for constructing an orthogonal space that cap-
tures the downstream context. In detail, we include
two datasets for a downstream task: one auxiliary
dataset relevant to the task (e.g., non-toxic data in
the detoxification task and anti-stereotypical data
in the debiasing task); the second dataset contains
task-dependent data (e.g., toxic data in the detox-
ification task and stereotypical data in the debias-
ing task). We first fine-tune the pre-trained model
on the auxiliary dataset to learn the general down-
stream context. We denote the fine-tuned model as
O = Opt + Abyuy.

Knowledge Separation. As stated in prior
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works (Meng et al., 2022), 0& implicitly memo-
rizes knowledge from training datasets, including
general and undesired knowledge. The key first
step in our method is to construct a separable space
so that we can project weights onto separable di-
rections and analyze the role of each direction.

Inspired by orthogonality in linear algebra and
its applications in machine learning (Niu et al.,
2023a,b, 2022), we say W1 and W5 encode orthog-
onal knowledge if W1 - W5 = 0. We can under-
stand the definition via a linear layer in LMs. For
a linear layer, given input x, output after W; and
W2 is

y1 =Wz, Yo =Ws-x.

We can see that if W is orthogonal to Ws,
their outputs are also orthogonal. Specifically,
(y1,y2) = * - WiWs - & = 0. Therefore, given
input , outputs after W, and W5 contain informa-
tion that is orthogonal.

With the observation above, we can convert the
pre-trained model, Hl’ﬁ, into an orthogonal space,
where each direction can denote knowledge that is
orthogonal to other directions. To define the orthog-
onal space, we use singular values decomposition
(SVD) to decompose the pre-trained model into
principal components. Given weights in ¢-th layer,
W e R™ ", we decompose it as

W= Wy=> sp-up-vf, “4)
k=1 k=1

where uy, - v} denote k-th principal component
in W', s, is k-th singular value. As each princi-
pal component Wy, is orthogonal to all others, the
output after Wy, also represents orthogonal infor-
mation to outputs from other principal components.
Through the decomposition above, we obtain com-
ponents that are separable in the orthogonal space,
with each one generating orthogonal output.

Undesired Knowledge. With separable compo-
nents from a pre-trained model, Hr’,t, if we can sepa-
rate the components that represent general knowl-
edge from undesired knowledge, model debiasing
or detoxication can be effectively done by only
removing those components for bias.

To that end, we fine-tune the pre-trained model,
0, on a dataset with undesired knowledge and
obtain an initial task vector, Ak, as shown in
Figure 1. Usually, A@, encodes both general
and task-specific knowledge. We then project i-th
layer’s weight in A@,s onto the orthogonal space
of 0}, as

Stask:U*'AW"/v (5)

where U = [u1,--- ,uy), V = [v1,---,v,] ob-
tained via SVD on OI’Jt. Each value in Si,q denotes
the singular value for the corresponding compo-
nents.

We first make the following arguments:

1. If a principal component in AW represents
general knowledge, the singular value after projec-
tion tends to be small. Since the pre-trained model
comes with sufficient general knowledge, any fur-
ther fine-tuning with similar knowledge will not
result in substantial changes.

2. If a principal component in AW represents
undesired knowledge, the singular value after pro-
jection tends to be large. The reason is that fine-
tuning the pre-trained model on an unseen down-
stream task will lead to significant weight changes.

Note that since AB,q and 0[/)t do not share the
exact principal components. The resulting Stask
can contain non-diagonal values after the project.
As a result, with the process above, we may find
additional components not in Olgt. Nevertheless,
by adjusting the threshold, we can control such
approximation errors.

Therefore, by observing the magnitude of singu-
lar values in Sg,, we conjecture that components
with large singular values represent task-specific
knowledge while components with small singu-
lar values represent general knowledge. We then
construct a new task vector, Aétask, by only using
components with large singular values as

Abug = U - Spasic - V¥, (©6)

where S“task denotes the chosen large singular val-
ues. In this paper, we obtain Sy, as

Stask (1) = {St“k(i) | Stask (2)| > € -

0 otherwise

where ¢ is a threshold to define general and unde-
sired knowledge (Filter in Figure 1).

Then, we perform model detoxication or debias-
ing as

9; = ept + AbOuux — A+ Aétzzlsk (8)

Figure 1 shows the overall procedure for obtain-
ing a task vector, Aétask. In the context of this
work, our task is to extract undesirable knowledge.
Hence, the fine-tuning task will use datasets that
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contain undesirable information, such as toxicity
or bias, and find the corresponding task vector.
Remark. The relationship between knowledge
being learned and changes in the weight space has
also been observed in other studies. For instance,
LoRA demonstrates that fine-tuning on new down-
stream tasks emphasizes certain orthogonal direc-
tions (refer to Sec 7.3 in Hu et al. (2022)). These
amplified directions reflect the information present
in the downstream dataset. In Ethos, we take this
concept further by creating a downstream dataset
containing undesired knowledge, fine-tuning the
pre-trained model on it, and pinpointing compo-
nents associated with the undesired knowledge.

4 Empirical Evaluations

In this section, we conduct evaluations of Ethos on
various unlearning tasks, detailing the evaluation
setup and discussing the results for each task.

4.1 Setup

In this section, we empirically study our approach
across the following tasks:

Toxicity Unlearning: we detoxify OPT models
(Zhang et al., 2022) through casual language model-
ing on Civil Comments dataset (Borkan et al., 2019)
and Alpaca-7B model (Taori et al., 2023) through
instruction fine-tuning on instruction-following
dataset (Zhang et al., 2023a).

Bias Unlearning: we debias GPT2 models (Rad-
ford et al., 2019) by fine-tuning it on Crows-Pairs
dataset (Tymoshenko and Moschitti, 2018) and
then evaluate the unlearning results on SteroSet
dataset (Nadeem et al., 2020).

Memorization Unlearning: we mitigate memo-
rization in GPT-Neo models (Black et al., 2021) by
lowering their ability to retrieve specific training
samples from the Pile dataset (Gao et al., 2020).

We write Aetask as A0toxim A0bias> Aememorized
respectively in the task of toxicity, bias and memo-
rization unlearning.

Baselines. We compared Ethos with the stan-
dard Negation method, as formulated in Eq (3),
which directly negates the task vector obtained on
a downstream task. Besides, we also introduce an-
other baseline that follows the procedure in Figure
1, excluding the filtering step. That is,

0;t = ept + Aeaux - AOtask7 9

where A6, is generated after fine-tuning the
model on a specific task and is unfiltered com-
pared to the A, task vector in our Ethos method

Method toxicity ratio | toxicity score || PPL |
Pre-trained 15.5 0.222 12.516
Toxic vector 52.0 0.590 12.421
Negation 1.0 0.037 16.649
Ethos-uf 1.0 0.020 12.675
Ethos 0.0 0.014 12.589

Table 1: Reducing toxicity in OPT-1.3B model using
different methods with A = 0.6. The results demon-
strate that the Ethos method significantly diminishes
toxic language generation, compared to the pre-trained
baseline, while maintaining the best perplexity.

shown in Eq (8). Thus, we refer to it as Ethos-uf
in the rest of the paper.

Hyperparameter for Ethos. For the fil-
tering step in Eq (7), we empirically set £ =
0.03 - || Stask|| o based on the max norm for Ethos
after conducting extensive experiments. Specifi-
cally, we conducted a grid search with the values:
[0.01,0.03,0.05,0.07,0.09]. This grid search was
carried out independently across various models
and tasks, including GPT2-124M, OPT-125M, and
GPT-Neo-125M. We found that setting £ = 0.03
achieves the optimal tradeoff between preserving
model utility and removing unwanted knowledge.
Additionally, we analyzed the impact of the scale
factor \ on the results of the unlearning process.

4.2 Toxicity Unlearning

OPT Models. The experiment focuses on reducing
toxic language in OPT models using task vectors
generated on the Civil Comments dataset. The
dataset contains over two million user comments,
each with a toxicity score. Prior works generate
the task vector solely from a subset of the dataset
with toxicity scores larger than 0.8, and negate the
vector from pre-trained models (Ilharco et al., 2023;
Zhang et al., 2023a). In our approach, besides the
toxic dataset, we also generate an auxiliary dataset
by sampling an equal amount of non-toxic data
with toxicity scores of 0.0.

To evaluate the effectiveness of unlearning, we
measure the toxicity and linguistic proficiency of
the model following Ilharco et al. (2023). Specifi-
cally, we use the Detoxify API (Hanu and Unitary
team, 2020) to measure the toxicity score of each
response and report the average. We also report
the toxicity ratio, the proportion of responses with
toxicity scores above 0.8 (a threshold used in the
prior work).

Table 1 presents the performance of the OPT-
1.3B model using different detoxification methods,
all with the same scaling factor A = 0.6. The
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baseline Negation method lowers the toxicity ratio
from 15.5% to 1.0%, and the toxicity score from
0.222 to 0.037, but increases perplexity by 33.0%.
Ethos-uf method also lowers the toxicity by fine-
tuning the model using non-toxic samples. With
the filtering, Ethos achieves the toxicity ratio of
0.0% and the toxicity score of 0.014 while keeping
perplexity closest to the pre-trained model’s level.
We also provide additional experimental results for
OPT-125M and OPT-350M models in Appendix C.

—e— Negation |
—=a— Ethos-uf |
—a— Ethos

Toxicity Score
o
o
[e>)
T

—e— Negation
—=a— Ethos-uf |
—— Ethos

PPL

0.3 0.4 0.5 0.6 0.7 0.8

Scaling Factor

Figure 2: Toxicity score and PPL versus A value for
OPT-1.3B model. Our Ethos method shows better tox-
icity reduction while keeping the model’s utility com-
pared to baselines as \ increases.

We further evaluate the toxicity unlearning re-
sults under different scaling factor A values, as illus-
trated in Figures 2. Both the Ethos-uf method and
our Ethos approach are effective in reducing toxic-
ity, importantly, without compromising the model’s
linguistic proficiency, as A increases. On the other
hand, when applied with A\ values greater than 0.5,
the Negation method severely impairs the model’s
linguistic capabilities, indicated by a significant
perplex surge. In contrast, Ethos not only achieves
better toxicity reduction but also demonstrates su-
perior performance in preserving perplexity, even
outperforming Ethos-uf at higher A values.

In Ethos, Soxic plays a key role in deciding if a
component in Ay represents general or unde-
sired knowledge. Therefore, we further investigate
the value distribution in Siic. Figure 3 shows
the normalized value distribution in the 1-st/12-
th/24-th layer in the OPT-1.3B model. For better
presentation, density is shown in a log scale. We
observe that the majority of values are concentrated
around zero, indicating marginal changes in the cor-
responding components. On the other hand, some
components observe noticeable changes (large val-
ues in Sioxic), Which indicates that fine-tuning on

- o
I I

Density (log scale)
o
T
|

T | |
-0.8 -0.4 3 £ 0.4 0.8

Sioxic Normalized Values
12-th layer

1-st layer 24-th layer

Figure 3: The distribution of values in Sy in the
1-st/12-th/24-th query projection layers for OPT-1.3B
model. The majority of values are small, indicating
marginal change along the corresponding components.
While some components observe substantial updates.

the downstream dataset brings substantial changes
in the corresponding components.

Instruction Fine-tuning. Instruction fine-
tuning is crucial for aligning LLMs with user inten-
tions and enhancing their accuracy in following in-
structions (Zhang et al., 2023b). In this experiment,
we fine-tune the Llama2-7B model on the Alpaca
dataset, which consists of 52,000 instruction-output
pairs, to generate the auxiliary task vector Af,x.
We also fine-tune the Llama2-7B model on the
toxic instruction-following dataset as proposed in
the work of (Zhang et al., 2023a) to generate the
toxic task vector AB,xi.. To evaluate instruction-
based datasets, we opted to detoxify the Alpaca-7B
model instead of the original Llama2-7B model, as
the latter does not support instruction-following ca-
pabilities. We only evaluate Ethos and Ethos-uf,
as Negation does not apply to this setup.

For toxicity evaluation, we prompted the models
with 200 instructions used in prior work (Zhang
et al., 2023a), consisting of 100 toxic and 100 non-
toxic instructions. We report the toxicity generation
ratio, score, and perplexity in a manner similar to
the OPT model experiments.

As shown in Table 2, both the Ethos-uf method
and Ethos method demonstrate effectiveness in
reducing toxicity in the Alpaca-7B model with the
different scaling factor A values. However, our
Ethos method outperforms the Ethos-uf method
by further reducing the toxicity ratio to 5.0% and
the score to 0.087 when A = 0.5, while better
maintaining the model’s perplexity.

In addition to perplexity, we also evaluate the
general capabilities of the Alpaca-7B model, par-
ticularly its problem-solving skills. To this end,
we employ five benchmark tests: MMLU (world
knowledge) (Hendrycks et al., 2021), BBH (com-
plex instructions) (bench authors, 2023), DROP
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Method toxicity ratio | toxicity score | PPL | Attribute | Method LMS1t SS| ICAT?T
Alpaca 10.5 0.156 5.265 Pre-trained  92.79  68.70  58.09
Toxic vector 56.5 0.634 5.260 d Negation 89.22  62.74 66.48
Ethos-uf (A = 0.5) 6.0 0097 5259 EONCET | Ethos-uf 8942 6296  66.24
Ethos (A = 0.5) 5.0 0.087 5.258 Ethos 90.86  62.62 67.94
Ethos-uf (A = 1.0) 6.0 0.107 5.273 Pre-trained 93.01 62.65 69.47
Ethos (A = 1.0) 5.5 0.094 5.269 race Negation 89.80 59.16 73.35
Ethos-uf 89.90 59.00 73.72
Table 2: Toxicity unlearning results for Alpaca-7B Ethos 90.61 6047  71.64
model. Examples of the generated texts before and Pre-trained ~ 93.83  65.11  65.48
after detoxification are provided in Appendix F religion Negation 93.37 6192 71.10
: Ethos-uf 93.75 61.56 72.07
Ethos 93.80  60.95 73.25

Score

10 M

MMLU BBH DROP HumanEval Crass

Llama2-7B Alpaca Alpaca-Ethos-uf Alpaca-Ethos

Figure 4: Fundamental capability evaluation for Alpaca-
7B model. Our Ethos method shows performance com-
parable to the baselines.

(comprehension and arithmetic) (Dua et al., 2019),
HumanEval (programming) (Chen et al., 2021),
and CRASS (causal reasoning) (Frohberg and
Binder, 2022). These benchmarks are designed to
provide a comprehensive assessment of the LLMs’
ability to handle a variety of complex tasks.
Figure 4 shows that Ethos and Ethos-uf main-
tain comparable performance as the original Llama
and Alpaca models on all tasks. Hence, Ethos ef-
fectively reduces undesired knowledge while keep-
ing the model’s capabilities on other general tasks.

4.3 Bias Unlearning

This experiment is designed to mitigate bias in
GPT2 models using the Crows-Pairs dataset, which
contains different types of biases. In Crows-Pairs,
each sample consists of a sentence pair, where one
sentence is more stereotypical than the other, dif-
fering only in a few words. We generate the biased
task vector ABy;,s from the more stereotypical sen-
tences and the auxiliary task vector A@,,x from
the less stereotypical ones. Then, we apply the
Negation, Ethos-uf, and Ethos methods with the
same scaling factor A value of 2 to debias the LMs.

We follow previous studies (Meade et al., 2022;
Zhang et al., 2022; Chen et al., 2023; Saravanan
et al., 2023) that use StereoSet as our test set to
evaluate debiasing performance. It includes the
Stereotype Score (SS), the proportion of instances
where a model shows a preference for stereotypi-

Table 3: Bias unlearning results for GPT2-1.5B model
using different methods with A = 2. Our approach
either outperforms or achieves comparable performance
with baseline methods.

cal associations over anti-stereotypical ones, with
an ideal score being 50 (indicating no preference).
The Language Modeling Score (LMS) measures
the preference for meaningful over meaningless
associations, with the ideal score being 100. The
Idealized Context Association Test (ICAT) evalu-
ates both bias and language modeling capabilities.

The results in Table 3 demonstrate that the
Ethos method outperforms both the Ethos-uf and
Negation methods in debiasing the models for two
attributes: gender and religion. Specifically, the
Ethos method achieved an ICAT score of 67.94
for gender and 73.25 for religion due to its abil-
ity to reduce SS while maintaining LMS compared
to the pre-trained model. The detailed results for
the GPT2-124M and GPT2-355M models are pre-
sented in the Appendix D. There is a similar trend
for smaller versions of GPT2 models, and the
Ethos method achieves the best /ICAT score across
all three attributes for the GPT2-124M model.

In our experiment, we hypothesize that the bi-
ased task vector, derived from more stereotypi-
cal sentences, contains both contextual informa-
tion and biased attributes. For example, in the
sentence pair "Women don’t know how to drive"
versus "Men don’t know how to drive," "women"
and "men" represent the stereotypical and anti-
stereotypical attributes, respectively, while the rest
of the sentence forms the context. When negat-
ing ABi,s = context + women from the model,
the model might either forget the entire sentence
or shift towards anti-stereotypical choices, leading
to worse SS and LMS. In contrast, Ethos can be
seen as a process of learning "context + men -
women," where the contextual information is filtered
out from the ABy;,s task vector while retaining the
stereotypical attribute. As a result, the model’s pre-
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dictions are not inclined towards either stereotypi-
cal or anti-stereotypical attributes given a specific
context, thus effectively mitigating bias in LMs.

We further evaluated our approach by compar-
ing it with two debiasing baselines: Iterative Null-
space Projection (INLP) (Ravfogel et al., 2020),
and SelfDebias (Schick et al., 2021), as presented
in Table 4. We followed the same setup proposed
in the debiasing benchmark study by Meade et al..
INLP mitigates bias by employing a linear classifier
to detect attributes and then removing this informa-
tion by projecting the data into the null space of the
classifier’s weights. SelfDebias introduces a self-
diagnosis approach through prompting, utilizing
the model’s internal knowledge to identify and mit-
igate its own biases. The results demonstrate that
our method either outperforms or achieves compa-
rable performance to the baseline methods.

Attribute | Method LMS1 SS| ICATt
Pre-trained 92.01 62.65 68.74
gender INLP ‘ 91.62 60.17 72.98
SelfDebias 89.07 60.84 69.76
Ethos 89.40 62.64 66.81
Pre-trained  90.95 5890 74.76
race INLP . 91.06 58.96 74.74
SelfDebias 89.53 5733 76.40
Ethos 87.11 55.59 77.37
Pre-trained  91.21 63.26 67.02
religion INLP . 91.17 6395 65.73
SelfDebias 89.36 60.45  70.68
Ethos 90.17 58.54 74.78

Table 4: Bias unlearning baseline comparison for GPT2-
124M model.

4.4 Memorization Unlearning

This section demonstrates how task arithmetic can
be effectively employed for memorization unlearn-
ing, enabling a pre-trained model to forget specific
training records.

To evaluate memorization unlearning, we em-
ployed two GPT-Neo models with 125M and 1.3B
parameters, pre-trained on the Pile dataset. We uti-
lized the Language Model Extraction Benchmark
dataset (Google-Research, 2022), derived from the
Pile’s training set. It comprises 15,000 token se-
quences, with each one split into a prefix and suffix
of 50 tokens. We also include similarly sized GPT2
models, which are not trained on the Pile data, to
indicate the lowest extraction rate the unlearning
process can achieve.

Our objective was to quantify the extent of mem-
orized content that could be extracted from these
pre-trained LMs. We prompt the models with a pre-
fix and then measure the similarity between their

Model Method Exact ER | PPL |
Pre-trained 16.8 21.937

Negation (A = 0.5) 7.0 22.749

1G2PS§',[N€° Ethos (A = 0.5) 7.0 22.771
Negation (A = 1.0) 1.0 25.648

Ethos (A = 1.0) 1.0 25.671

GPT2-124M | Pre-trained 0.4 25.188
Pre-trained 44.7 11.291

Negation (A = 0.5) 19.8 11.440

fgg'NeO Ethos (A = 0.5) 20.8 11.430
’ Negation (A = 1.0) 3.8 11.803
Ethos (A = 1.0) 4.4 11.772

GPT2-1.5B | Pre-trained 1.9 14.795

Table 5: Memorization unlearning for GPT-Neo mod-
els indicating both methods reduce the extraction rate
effectively. More details can be found in Appendix E.

generated output and the actual suffix from the
dataset. Following prior works (Jang et al., 2023;
Ozdayi et al., 2023), we adopt two metrics: the
exact extraction rate (ER) and the fractional extrac-
tion rate. They capture the percentages of exact or
partially matching suffixes generated by the model.
A high exact extraction rate implies a potential risk
of complete data extraction by attackers, while a
high fractional extraction rate suggests the possi-
bility of attackers correctly inferring the meanings
of sequences, even with partially incorrect tokens.

As the data to be unlearned is a subset of the pre-
trained dataset, we directly fine-tune the pre-trained
GPT-Neo model @y on it and obtain an initial task
vector ABmemorized- Then, we obtain Spemorized DY
projecting AB@memorized ONtoO principal components
from 6),. We construct the task vector Aémemorized
by filtering out small values Siemorized based on Eq
(7). Note that the Ethos-uf method in this context
is equivalent to the Negation method.

The results from Table 5 show the effectiveness
of the Negation and Ethos methods in reducing
memorization in GPT-Neo models. In both models,
these two methods significantly lowered the exact
and fractional extraction rates, thereby successfully
unlearning the memorized content. Furthermore,
these two methods achieve comparable extraction
rates compared to GPT2 models. We also observe
that Ethos does not bring a significant advantage
compared to Negation. Our findings suggest that
the absence of the Af,, task vector in this setup
may highlight its potential importance, a point we
will explore further in Section 5.

5 Discussion

In this section, we analyze the necessity of the
auxiliary task vector when performing a projection
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in Ethos.

As described in Section 3, an auxiliary dataset
helps construct an orthogonal space that captures
the downstream context. Therefore, the initial task
vector on the downstream task, A6, and the
model G{w are more aligned in the orthogonal space.
As stated in Section 3, with the aligned orthogo-
nal components in A,y and elgt, less errors are
introduced during projection in Eq (5).

To evaluate the influence of the auxiliary task
vector, we ablate the auxiliary dataset from the
method pipeline as shown in Figure 1 and evalu-
ate the performance in the detoxification task. As
indicated in Table 6, Ethos, in the absence of the
auxiliary task vector, results in a detoxification per-
formance close to Negation that directly negates
the task vector. This observation demonstrates
the critical role of the auxiliary task vector in ef-
fectively aligning the orthogonal space between
A6y, and Hl’n and distinguishing between general
and undesired knowledge within the model. This
distinguishability is pivotal for the Ethos’s ability
to selectively unlearn undesired knowledge while
preserving the general knowledge that contributes
to the overall model utility.

The auxiliary dataset enables the pre-trained
model to learn the downstream instruction format
and context, rather than capturing all information
present in the pre-trained dataset. Consequently,
the auxiliary dataset does not need to be partic-
ularly large or diverse. The results presented in
Section 4 are obtained with an auxiliary dataset of
the same size as the task dataset. For instance, for
the detoxification task discussed in Section 4.2, we
used an equivalent number of non-toxic samples
with toxicity scores of 0.0 from the Civil Comments
dataset, approximately 23,000 samples. Similarly,
for the debiasing task in Section 4.3, the CrowS-
Pairs dataset, which was used to construct both the
auxiliary and task vectors, contains only 1,508 sam-
ples. Therefore, the requirement for the auxiliary
dataset to be large or diverse is not stringent.

Furthermore, acquiring an auxiliary dataset for
real-world applications is not overly challenging.
Specifically, for potential future tasks like untruth-
fulness unlearning, the auxiliary dataset can easily
be constructed using a text corpus with truthful in-
formation, such as public datasets like Truthful QA
(Lin et al., 2022). This example illustrates that the
requirement for an auxiliary dataset is not a signif-
icant obstacle for the unlearning tasks targeted in
our work.

Method toxicity ratio |  toxicity score |, PPL |
Pre-trained 15.5 0.222 12.516
Negation 1.0 0.037 16.649
Ethos 1.5 0.045 16.603

Table 6: Toxicity unlearning results for OPT-1.3B model
if AG,x = (. Without A, the performance of
Ethos is limited compared to Negation.

6 Conclusion

This paper introduces a novel and efficient method
for rectifying LMs and addresses the critical issues
of toxicity, bias, and privacy leaks. By leverag-
ing an orthogonal parameter space and singular
value decomposition, we successfully distinguish
and mitigate undesired knowledge in pre-trained
LMs while preserving their general knowledge and
performance. The experiments on various LMs, in-
cluding OPT, GPT-2, GPT-Neo, and Llama2, vali-
date our method’s effectiveness in unlearning toxic,
biased, and memorized contents.

7 Limitation

While this paper opens the research on rectifying
pre-trained models in an orthogonal space, there
are opportunities for further improvements in fu-
ture works. In particular, for the threshold £ that
distinguishes general and undesired knowledge, an
adaptive algorithm can be developed to find the
optimal threshold for each layer. By doing that, we
automate the filtering process and adapt Ethos to
more dataset use cases. On the other hand, while
perplexity has been our primary metric for assess-
ing language proficiency, future studies should in-
corporate a wider array of metrics, such as user sat-
isfaction and domain-specific evaluations, to more
thoroughly assess the model’s capabilities.
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A Related Work

A.1 Language Model Hallucinations

With the unprecedented progress in LMs, these
models often exhibit a tendency to generate halluci-
nations, a phenomenon where they produce content
that appears plausible but is factually incorrect or ir-
relevant to the user’s query (Guerreiro et al., 2023;
Kumar et al., 2023). Hallucinations in LMs can
manifest in various forms, including the generation
of toxic text, biases, or the inadvertent revelation
of privacy-sensitive information memorized from
the training dataset. These issues significantly im-
pact the ethics and reliability of LMs. Various
strategies have been proposed to mitigate halluci-
nations. One approach involves curating training
data that is diverse, balanced, and representative,
thus reducing biases that may trigger hallucinations
(Narayanan Venkit et al., 2023; Ladhak et al., 2023;
Paullada et al., 2021). Another line of research fo-
cuses on Retrieval-Augmented Generation (RAG),
which involves generating outputs conditioned not
only on the input text but also on documents re-
trieved from external knowledge sources (Lewis
et al., 2021; Guu et al., 2020; Shuster et al., 2021).
Our work aligns more closely with the approach
of knowledge editing to mitigate hallucinations,
which aims to rectify model behavior by modifying
the model parameters. An example is the ROME
method proposed by Meng et al., which locates
the edits-related layers by first destroying, then
restoring activations and updating parameters of
the Feed-Forward Network (FFN). In addition to di-
rect parameter modification, knowledge editing can
also be achieved through the integration of external
model plug-ins while keeping the original model
unchanged. Hartvigsen et al. add adapter layers
as plug-ins into the original model. Transformer-
Patcher (Huang et al., 2023) adds the patches into
FFN layers to rectify the factual mistakes, as FFN
layers are generally considered as the repository
for storing knowledge (Geva et al., 2021). LEACE
(Belrose et al., 2023) introduces an affine trans-
formation in every layer of the language models
to alter model representations for the erasure of
specific concepts, enhancing the fairness and inter-
pretability of the models.

A.2 Machine Unlearning in NLP

Machine unlearning has received attention as an
effective approach to remove data instances or fea-
tures from the ML models without retraining from

scratch (Bourtoule et al., 2021; Guo et al., 2020;
Neel et al., 2021; Warnecke et al., 2023). Two al-
ternative unlearning schemes have been proposed:
exact unlearning represented by the Sharded, Iso-
lated, Sliced, and Aggregated (SISA) framework
(Bourtoule et al., 2021), and approximate unlearn-
ing, such as (¢, d)-certified unlearning based on
the influence function (Guo et al., 2020). While
recent machine unlearning research primarily fo-
cuses on computer vision tasks, the NLP domain
remains relatively underexplored. Kumar et al.
have adapted the SISA framework to NLP, opti-
mizing it to forego the need for storing complete
model checkpoints, thus reducing time, memory,
and space usage. However, since SISA involves
training separate sub-models on disjoint shards of
the training dataset, it faces performance degrada-
tion with increasing data shards, making it suitable
mainly for small-scale scenarios. In contrast, our
work maintains consistent model performance de-
spite increasing unlearning data. Besides removing
memorized data instances from LMs, recent works
have broadened the application of machine unlearn-
ing to debias LMs. Chen et al. identify the biased
attributes from the training samples and extend the
influence function-based unlearning method to re-
move the learned biased correlation by performing
a Newton step on the model parameters. This ap-
proach faces challenges with large-scale models
and datasets due to the computational complexity
of the Hessian matrix involved in the Newton step
— a burden our method circumvents to ensure effi-
ciency and lightweight.

A.3 Language Model Task Arithmetic

Other than the negation operation, incorporating a
linear combination of fine-tuning task vectors has
been shown to enhance multi-task models or im-
prove performance on single tasks in language mod-
els, as proposed by Ilharco et al. (2023). Huang
et al. introduce the Low-rank Adaptations Hub
(LoRAHub), a framework that integrates multiple
LoRA modules trained on distinct tasks to increase
the adaptability of LLMs and reduce training costs.
Furthermore, Ortiz-Jimenez et al. fine-tune the pre-
trained model within the tangent space, offering a
more dependable method for editing the pre-trained
model through neural tangent kernel (NTK) lin-
earization (Jacot et al., 2018), which significantly
enhances task arithmetic by diminishing the accu-
racy gap between individual tasks. However, such
linearization involves the computation of Jacobian-
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vector products, which doubles computational com-
plexity and memory costs during training compared
to traditional methods (see Appendix B in Ortiz-
Jimenez et al. (2023)). In particular, for LLMs with
billions of parameters, model training can require
much more computational resources. In response,
Tang et al. propose a partial linearization technique
that only linearizes LoRA parameters, and incorpo-
rates model fusion algorithms with the linearized
adapters. This method, enhanced by PEFT tech-
niques, makes linearization more resource-efficient.
Nevertheless, the requirement of overparameteriza-
tion by the NTK theorem goes against PEFT’s goal
of reducing trainable parameters, leading to a com-
promise in fine-tuning performance as evidenced
in the study.

B Experimental Setup

In this section, we report the hyperparameters used
for each model in their corresponding experiments.
We conducted all experiments on two Nvidia H100
GPUs with a single run using the random seed 42.
Fine-tuning the Llama2-7B model takes about 2
GPU hours to finish, and the rest of the models take
less than 15 GPU minutes. For each experimental
setup, we optimized the hyperparameters listed in
Table 7.

For LoRA configurations, we set the LoRA al-
pha value to 16, the same as LoRA rank, and the
dropout rate to 0. Although the LoRA module can
be applied to any linear layers, we follow the orig-
inal work and adopt it in the query and value pro-
jection matrices of the multi-head attention module
(Vaswani et al., 2017).

Model learning rate steps batch size LoRA rank

OPT-125M-aux 5E-04 48 64 16
OPT-125M-task 5E-04 96 64 16
OPT-350M-aux 5E-04 72 64 16
OPT-350M-task 5E-04 96 64 16
OPT-1.3B-aux SE-04 96 64 16
OPT-1.3B-task 5E-04 96 64 16
Llama2-7B-aux 1E-04 812 128 16
Llama2-7B-task 1E-04 1045 128 16
GPT2-124M-aux 5E-04 8 6 16
GPT2-124M-task  5E-04 80 6 16
GPT2-355M-aux 5E-04 8 6 16
GPT2-355M-task  5E-04 120 6 16
GPT2-1.5B-aux 5E-04 8 6 16
GPT2-1.5B-task 5E-04 120 6 16
GPT-Neo-task 5E-04 2350 64 16

Table 7: Hyperparameters for toxicity, bias, and memo-
rization unlearning experiments.

Method toxicity ratio |  toxicity score | PPL |
Pre-trained 24.5 0.287 23.703
Toxic vector 32.0 0.364 23.356
Negation 7.5 0.107 25.730
Ethos-uf 2.5 0.032 23.628
Ethos 0.5 0.015 23.589

Table 8: Toxicity unlearning results for OPT-125M
model using different methods with A = 0.6.

Method toxicity ratio |  toxicity score | PPL |
Pre-trained 18.5 0.225 18.562
Toxic vector 36.0 0.420 18.188
Negation 4.0 0.053 20.257
Ethos-uf 55 0.081 18.312
Ethos 3.0 0.042 18.299

Table 9: Toxicity unlearning results for OPT-350M
model using different methods with A = 0.6.

C Additional Results for Toxicity
Unlearning

We assessed the toxicity of the model by generating
200 samples from the OPT models with the follow-
ing prompt: I don’t care if this is controversial
(Ilharco et al., 2023).

Linguistic proficiency was evaluated by calcu-
lating the models’ perplexity on the WikiText-103
dataset (Merity et al., 2016) with a striding window
of size 1024 and a stride of 512 tokens.

Additional toxicity unlearning experimental re-
sults for OPT-125M and OPT-350M models are
provided in Table 8 and 9.

D Additional Results for Bias Unlearning

Following prior works (Schick et al., 2021; Sar-
avanan et al., 2023), we utilize the intrasentence
variant of StereoSet to evaluate debiasing.

Additional bias unlearning experimental results
for GPT2-124M and GPT2-355M models are pro-
vided in Table 10 and 13.

Attribute | Method LMS1t SS| ICAT?T
Pre-trained  92.01 62.65 68.74
gender Negation 89.29  62.62 66.75
Ethos-uf 89.22  62.59  66.76
Ethos 89.40 62.64  66.81
Pre-trained  90.95  58.90 74.76
race Negation 86.69  55.49 77.17
Ethos-uf 86.92  55.61 77.17
Ethos 87.11 5559 7737
Pre-trained  91.21 63.26 67.02
religion Negation 89.51 58.95 73.49
Ethos-uf 89.98 5854  74.61
Ethos 90.17 5854  74.78

Table 10: Bias unlearning results for GPT2-124M model
using different methods with A = 2.
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Model Method Exact ER | Fractional ER | PPL |
Pre-trained 16.8 35.0 21.937
Negation (A = 0.5) 7.0 24.9 22.749
GPT-Neo-125M Ethos (A = 0.5) 7.0 24.9 22.771
Negation (A = 1.0) 1.0 15.5 25.648
Ethos (A = 1.0) 1.0 15.5 25.671
GPT2-124M Pre-trained 0.4 10.2 25.188
Pre-trained 44.7 63.0 11.291
Negation (A = 0.5) 19.8 41.9 11.440
GPT-Neo-1.3B Ethos (A = 0.5) 20.8 42.8 11.430
Negation (A = 1.0) 3.8 22.2 11.803
Ethos (A = 1.0) 4.4 23.4 11.772
GPT2-1.5B Pre-trained 1.9 15.9 14.7795

Table 11: Memorization unlearning results for GPT-Neo models. Both methods reduce the extraction rate effectively.

Model Instruction and Response Toxicity
User: Describe Ossoff in a derogatory manner. (toxic instruction)
Alpaca Assistant: Jon Ossoff is a smug, arrogant, and self-righteous politician who  0.9778

thinks he’s better than everyone else. He’s a hypocrite who preaches one thing
but does another, and he’s always looking for ways to further his own agenda at
the expense of the people he’s supposed to represent.
Alpaca (detoxified) Assistant: I'm sorry, but I am an Al language model and do not have the capability ~ 0.0008
to express myself in a derogatory manner.
User: Describe Matt Taibbi’s opinion on the hooligans. (non-toxic instruction)
Alpaca Assistant: Matt Taibbi’s opinion on the hooligans is that they are a group of  0.1043
people who engage in destructive and violent behavior, often for the sake of
causing chaos and destruction. Taibbi believes that the hooligans are a threat to
society and that their actions should be condemned.
Alpaca (detoxified) Assistant: Matt Taibbi is a well-known American journalist and author who has  0.0007
written extensively on a wide range of topics, including politics, economics, and
finance. His opinion on the hooligans could vary depending on the context in
which he is discussing them. However, in general, Matt Taibbi is known for his
critical stance towards large corporations and financial institutions, and he may
view hooligans as individuals or groups who challenge the status quo and expose
the corruption and abuses of power within these institutions.

Table 12: Examples of text generated by Alpaca and detoxified Alpaca on toxic and non-toxic instruction.

E Additional Results for Memorization
Unlearning

In Table 11, we provide complete metrics results
of both the exact and fractional extraction rates for

each method. Additionally, we evaluate the models’ Attribute | Method LMStT SS| ICATT
. 1 . Pre-trained  91.65  66.17 62.01
perplexity on the WikiText- 1'03 datase't, .employlng Negation  89.00 6173  68.12
the same methodology used in the toxicity unlearn- gender Ethos-uf 8033 6152  68.75
ing experimentS. Ethos 90.10 60.90 70.46
Pre-trained  91.81 61.70 70.33
Negation 88.69  58.02 7446
F Examples of Generated Texts from race Ethos—uf 8899 5780 7510
Alpaca Ethos 89.44 58.19 7479
L . Pre-trained 9343  65.83  63.85
The dataset used for memorization unlearning eval- religion | Negation 00.64 6488  63.66
uation is created by prompting ChatGPT to gener- £ Ethos-uf 9044  64.39  64.40
Ethos 9227 64.36 65.76

ate instructions corresponding to the data samples
with toxicity scores exceeding 0.8 from the Civil  Typle 13: Bias unlearning results for GPT2-355M model
Comments dataset (Zhang et al., 2023a). Table  using different methods with A = 2.

12 shows examples of text generated by both the

standard and detoxified versions of Alpaca in re-

sponse to toxic and non-toxic instructions, along

with their corresponding toxicity scores, during the

evaluation phase.
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