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Abstract

The integration of sentences poses an intrigu-
ing challenge within the realm of NLP, but
it has not garnered the attention it deserves.
Existing methods that focus on sentence ar-
rangement, textual consistency, and question
answering are inadequate in addressing this is-
sue. To bridge this gap, we introduce Insert-
GNN which conceptualizes the problem as a
graph, and employ a hierarchical Graph Neural
Network (GNN) to comprehend the interplay
between sentences. Our approach was rigor-
ously evaluated on a TOEFL dataset, and its
efficacy was further validated on the expan-
sive arXiv dataset using cross-domain learning.
Thorough experimentation unequivocally estab-
lishes InsertGNN’s superiority over all compar-
ative benchmarks, achieving an impressive 70%
accuracy—a performance on par with average
human test scores.

1 Introduction and Related Work

Sentence insertion (SI), initially introduced
by Barzilay and Lapata (2008), stands as a cru-
cial task for evaluating human linguistic prowess.
However, with the advent of deep learning (DL), it
has received scant attention over the past decade
compared to other NLP domains like machine trans-
lation and text generation. As a result, the realm of
DL lacks a standardized solution tailored to this par-
ticular challenge. To address this void, we curate a
dataset sourced from the TOEFL exam, an English
proficiency test that archives test-takers’ compre-
hensive accuracy scores. Through this dataset, we
investigate whether contemporary NLP techniques
can surpass the performance of nonnative English
speakers 1.

Sentence ordering (SO) and question answer-
ing (QA) constitute the two closely intertwined
subdomains that share relevance with SI. On the

1Our compiled dataset is accessed
at https://anonymous.4open.science/r/
TOEFL-Sentence-Insertion-Dataset-899D/README.md

one hand, SO initiates its approach by employ-
ing multi-layer perceptrons (MLPs) to facilitate
pairwise order ranking (Chen et al., 2016) but can
inadvertently propagate errors to a significant de-
gree. To mitigate this concern, the pointer network
(PN) (Gong et al., 2016) integrates an attention
mechanism to enhance model capacity, building on
subsequent advances such as the incorporation of
attention and the deepening of the architecture (Lo-
geswaran et al., 2016; Cui et al., 2018). However,
the direct applicability of the PN framework to SI
is hindered by the differing nature of its input. As
a remedy, recent studies solve SO by plugging a
coherence verifier (Jia et al., 2023) or through a
non-autoregressive manner (Bin et al., 2023). An-
other line (Putra and Tokunaga, 2017) presents an
unsupervised graph method that approaches the
problem through the lens of sentence coherence and
similarity within text. This method claims superior-
ity when applied to the supervised entity grid and
unsupervised Entity Graph scenarios. Yet, this ap-
proach, while effective, relies on a non-parametric
structure and necessitates the construction of all
potential graphs containing the extracted sentence.
Meanwhile, QA provides a more universal path-
way for our context. Notable works (Joshi et al.,
2020; Abdel-Nabi et al., 2023) have established
QA as a potent framework. In our scenario, the
removed sentence and the paragraph at large can
be likened to the question and context, respectively.
These components are seamlessly amalgamated
and channeled through a network to produce the
sought-after position. However, this linear fusion
poses challenges for cutting-edge models such as
Transformers in comprehending the inherent logic
connecting the concatenated paragraph and its des-
ignated slots.

In this paper, we represent SI as a directed graph,
where each node represents a sentence, and the
edge depicts their relative potential order. This
pattern imitates the way people tackle SI, that is,
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Figure 1: The architecture of our proposed InsertGNN.

putting the new sentence in each slot and checking
the coherence. Then, we introduce a novel global-
local fused GNN dubbed InsertGNN with deli-
cately designed components to extract both global
and local semantic information. Experiments on
the TOEFL dataset with and without cross-domain
learning convincingly show that InsertGNN sur-
passes all baselines and achieves competent perfor-
mance compared to human examinees.

2 Methodology

2.1 Preliminary
As the TOEFL SI question has four options
(A,B,C,D), we divide the input paragraph into
five parts as {ci}5i=1 to accommodate this setting.
Then we pad the paragraph to make the graph com-
plete if there is no leading sentence before the slot
A or no ending sentence after the slot D. A graph
G = (V, E) (see Fig. 1) is built to describe all po-
tential orders of the inserted sentence, where each
node vi represents a sentence, and the directed edge
eij represents the relative order. If two sentences
are connected, there is a directed edge between
them. After that, we feed {ci}5i=1 from the split-
ted context paragraph and the taken-out sentence q
into a sentence encoder, obtaining representation
vectors {Sci}5i=1 and Sq. These vectors serve as
node features, where Sq corresponds to features of
node {A,B,C,D}.

2.2 Global Graph Attention Networks
Contextual semantics play a vital role in the deter-
mination of insertion positions. To begin with, we
apply an L-layer Global Graph Attention Network
(GGN) (Veličković et al., 2017) to aggregate this
global contextual information. The input feature is
formulated as:

H0 = {Sc1, ...,Sc5︸ ︷︷ ︸
paragraph

,Sq,Sq,Sq,Sq︸ ︷︷ ︸
slots

}. (1)

Then for a center node i and its neighbor j, the
attention score at layer l is computed as:

eij = ρ(αT · (WHl
i ⊕WHl

j)), (2)

where ρ is the activation function and W is a train-
able parameter. Attention weight is obtained by
softmax as αij =

exp eij
Σk∈Ni

(exp eik)
. After that, αij are

used to update node features as:

Hl
i = σ(Σj∈NiαijH

l−1
j Wl). (3)

The representations for four slots in the last layer
{HL

A,H
L
B,H

L
C ,H

L
D} are fed into an MLP shared

by the global-local fusion stage to obtain the pre-
diction ŷ. Then for a batch with N samples, the
binary cross-entropy (BCE) loss is calculated as:

LG = − 1

N

N∑

i=0

[ŷ log y+(1−ŷ) log (1− y)], (4)

where y ∈ {0, 1} is the ground truth label.

2.3 Local Graph Convolutional Networks
However, GGN is insensitive to local de-
tails (Zhang et al., 2020). Undeniably, the answer
can sometimes be concluded by immediately read-
ing the two sentences nearby the slot rather than
the whole paragraph. Toward this goal, we utilize
a Local Graph Network (LGN) to focus on local
sentence interactions (see Fig. 2).

Concisely, we create four subgraphs with only
the slot and its two surrounding sentences, whose
features are the output of the previous GGN. Sub-
graphs are then fed into an M -layer parameter-
shared GCN (Kipf and Welling, 2016), which
is followed by a Weisfeiler-Lehman (WL) algo-
rithm (Weisfeiler and Leman, 1968) to extract the
multi-scale sub-tree features. The output of each
layer Zm is treated as WL’s fingerprint. Similarly
to DGCNN (Phan et al., 2018), we horizontally
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concatenate these fingerprints {Z1, ...,ZM} rather
than calculating the WL graph kernel. Then we
apply a 4× 4 pooling along with a fully-connected
layer for subgraph classification. Finally, we com-
pute the BCE loss LL for these four subgraphs.

2.4 Global-local Fusion
At the fusion stage, HL and ZM are combined
to integrate global and local information. We
take a mean value of ZM if node i is contained
in more than one subgraph. The fused features
E = HL +mean(ZM ) go through another GGN,
and the output for four slots is fed into the shared
MLP to attain the final prediction ŷ′, which is used
during the inference period. After that, a BCE loss
LG′ is calculated. The total loss is the sum of three
BCE losses as L = αLG + βLL + γLG′ , where α,
β and γ are loss weights of LG, LL and LG′ .

3 Experiment

3.1 Configurations and Datasets
Setups. We use the Sentence Trans-
former (Reimers and Gurevych, 2019) as
the encoder to summarize the content of sentences,
which makes sentences with similar meanings
closer in vector space. It is first trained on Natural
Language Inference (NLI) and then fine-tuned on
the Semantic Textual Similarity benchmark (STSb)
train set. Furthermore, we use BERT (Devlin et al.,
2018) and its two variants DistillBERT (Sanh
et al., 2019) and RoBERTa (Liu et al., 2019) for
QA architecture. Notably, we neither fine-tune
the baseline Transformers nor the Sentence
Transformer, and only use them as an embedding
layer. More details are in Appendix C.

TOEFL exams. TOEFL is one of the largest ex-
ams to test the English level of nonnative speakers
hosted by the Educational Testing Service (ETS)
globally. We chose it for two main reasons. First,
all TOEFL questions are extracted from academic
articles, designed by language experts and there-
fore are high quality. Second, ETS annually offers
score data reports of examinees. According to the

latest summary, the average precision in the reading
section is 70.67%.

Every year, ETS releases merely a few articles
in TOEFL Practice Online, which prevents us from
building a large-scale dataset. We collected all
questions since 2011 and got 156 samples with
a relatively equal label distribution of 32%, 25%,
22%, and 21%.

ArXiv abstracts. We construct another dataset
from arXiv to enrich the training samples and
choose the abstract as the contextual paragraph,
since it is independently readable and well-edited
with strong logic clues. We abandon abstracts
containing less than 5 sentences or 300 words to
keep them more informative. Besides, we par-
tially abandon categories that are not in the TOEFL
scope. Moreover, several categories have tremen-
dous mathematical formulations. These terms have
no meaningful corresponding pretrained embed-
dings and should not be included in our supplemen-
tary dataset. 5965 abstracts remain after selection.

NLTK (Loper and Bird, 2002) is used to break
the paragraph into sentences and randomly choose
one as the sentence to be inserted. Then three
other positions are selected to form a TOEFL-like
problem. This operation can be repeated multiple
times for each abstract since there are dozens of
nonredundant combinations. The key statistics of
these two datasets are listed in Appendix A.

3.2 Baselines

Unsupervised text coherence model. Putra and
Tokunaga (2017) propose three algorithms to build
coherence graphs. The main difference is the deter-
mination of the edges (see Appendix B).

In the Preceding Adjacent Vertex (PAV), a
weighted directed edge is established from each
sentence to the preceding adjacent sentence. Single
Similarity Vertex (SSV) discards the constraints of
precedence and adjacency. Multiple Similar Ver-
tex (MSV) even relaxes the singular condition and
allows multiple outgoing edges for each sentence
as long as their corresponding similarity score ex-
ceeds a threshold θ. In the experiment, we use the
same sentence encoder as our InsertGNN for the
graph instead of GloVe (Pennington et al., 2014).

Topological sort. A research line (Prabhumoye
et al., 2020; Sun et al., 2023) regard SI as a con-
straint learning problem. Sentences between two
slots are represented as nodes with a known con-
straint between them. An MLP is used to predict
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Method Acc_TOEFL (%)

PAV 41.66
SSV 34.62
MSV 37.18

Table 1: Unsupervised learning accuracy. The best and
second best are in bold and underlined, respectively.

the remaining constraints of the relative order be-
tween the taken-out sentence and other sentences.
Lai et al. (2021) extend Sentence-Entity Graph
Recurrent Network (SE-GRN) (Yin et al., 2019)
and utilize two graph-based classifiers to iteratively
make pairwise predictions for pairwise sentences.

QA methods. Here we formulate two types of
QA architecture. The P-type (Plain) linearly com-
bines the dependent sentence and the paragraph
as the input and extracts the output vector of the
[CLS] character as the final representation. The
A-type (Altered) puts the new sentence in all four
possible slots and classifies those differently filled
paragraphs. The final prediction will be the one
with the highest probability.

Large language models (LLMs). LLMs (Zhao
et al., 2023) are posing a significant impact on
the AI community. Here, we evaluate ChatGPT-
3.5 with different prompts and report the best one.
More details are listed in Appendix C.1.

3.3 Results

TOEFL. We test the unsupervised text coherence
model first. PAV attains the highest accuracy of
41.66% on our TOEFL dataset (see Table 1), in ac-
cord with Putra and Tokunaga (2017)’s evaluation.
It indicates that local cohesion is more important
than long-distance cohesion, in line with our moti-
vation for LGNs.

Next, we test the performance of supervised ap-
proaches with different proportions of validation.
Experiments are repeated three times with different
seeds, and we report the mean value. The result
shows our InsertGNN observably improves upon
other baselines including ChatGPT-3.5 in all cases.
To be specific, InsertGNN reaches the highest accu-
racy of 71.5% with abundant training samples (see
Table 2). It is comparable to the average human
accuracy of 70.67%, suggesting that our model can
do at least as well as non-native English speakers.
We also conducted an ablation study to examine
the contribution of each loss , and it can be discov-
ered that all components are non-redundant (see
Appendix D).

Method Acc_TOEFL (%)
(dev=0.05)

Acc_TOEFL (%)
(dev=0.5)

BERT
P 42.86 38.46
A 42.86 32.05

DistillBERT
P 57.14 35.89
A 57.14 29.49

RoBERTa
P 42.86 35.89
A 42.86 28.61

Topological Sort 57.14 34.62
SE-GRN 57.14 46.15

ChatGPT-3.5 61.52 53.84

InsertGNN 71.43 55.12

Table 2: Supervised learning accuracy under different
validation split ratios of 0.05 and 0.5. P and A refers to
the P-type and the A-type QA structure.

Method Acc_arXiv (%) Acc_TOEFL (%)

BERT
P 34.74 33.97
A 32.63 30.13

DistillBERT
P 35.22 33.97
A 31.33 30.76

RoBERTa
P 33.56 32.69
A 3255 3141

Topological Sort 43.62 28.85
SE-GRN 44.96 36.53

ChatGPT-3.5 – 60.76

InsertGNN 46.31 39.10

Table 3: Cross-domain learning accuracy from the arXiv
dataset to the TOEFL dataset. The left and right columns
correspond to the accuracy in the arXiv test set and the
whole TOEFL dataset, respectively.

From ArXiv to TOEFL. We further evaluate
InsertGNN using cross-domain learning. Specifi-
cally, models are first trained on the arXiv dataset
(source domain) with a validation splitting ratio of
0.05 and then directly tested on the TOEFL dataset
(target domain). InsertGNN still stands out with an
accuracy of 39.1% (see Table 3), outperforming
all baselines except ChatGPT-3.5.

Moreover, the accuracy in TOEFL is generally
lower than in arXiv because the contents of the two
datasets are slightly different. ArXiv abstracts are a
brief summarization and therefore very condensed.
In contrast, the TOEFL paragraphs are an expanded
narrative of a sub-point or a detailed explanation,
which is more elaborate with a stronger inner logic.
This manner of writing causes a decrease in accu-
racy when models are cross-domain.
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4 Discussion

It is worth mentioning that the SI problem shares
similarities with existing pretraining objectives like
BERT’s Next Sentence Prediction (NSP) and AL-
BERT’s Sentence-Order Prediction (SOP). Specifi-
cally, NSP concatenates two masked sentences as
inputs during pretraining. Sometimes they corre-
spond to sentences that were next to each other
in the original text, sometimes not. The model
then has to predict if the two sentences were fol-
lowing each other or not. SOP primary focuses on
inter-sentence coherence and is designed to address
the ineffectiveness of the next sentence prediction
(NSP) loss proposed in the original BERT.

5 Conclusion

In the paper, we propose a new sentence insertion
framework called InsertGNN and build a TOEFL
benchmark data set. Strong empirical evidence
demonstrates the effectiveness of InsertGNN over
existing language language models like ChatGPT
in this interesting NLP task.

6 Limitations and Future Work

Despite the superior performance of our model,
there are still some limitations left for future work.
Most importantly, the TOEFL sentence insertion
is small in size. Though we offer a compensatory
dataset curated from the arXiv abstracts, more ef-
fort is needed to collect a larger and high-quality
SI dataset. In addition, more powerful GPT mod-
els such as ChatGPT-4.0 are emerging, and it is
worth evaluating these more advanced tools in our
TOEFL sentence insertion task. Also, we believe
more effective prompts can be mined to solve this
specific task and we leave this for future study.
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A Details of Datasets

There we give an example of the SI problem in the TOEFL efficiency test (see Table 4).

Context Paragraph

[A] The age of rock art in Australia has been revised several times,
with earlier dates suggested recently after new discoveries.
[B] Accurate scientific proof has dated the first appearance of
surface rock in Australia to approximately 30,000 to 50,000 years ago.
[C] This lengthy and astounding history of rock art in Australia
makes it the oldest art tradition known today in the world. [D]

New Sentence Thanks to radiocarbon dating and technological development in studying
evidence, researchers can now give a more precise age on this type of art.

Answer
[B] is the correct answer. Here, we need to match back “this type of art”
to what it is referencing in order to correctly place the prompt sentence.
It’s referencing rock art, named in the first sentence, making the answer [B].

Table 4: An example of TOEFL sentence insertion problem. It is extracted from questions of the third reading
passage named "Rock Art of the Australia Aborigines" from TOEFL Practice Online 23.

In the experiments, we use two sorts of datasets, one is the collected TOEFL dataset, and the other is
the arXiv abstract dataset. We summarize their statistics of them in Table 5.

Dataset Size Sentences Words Topics

TOEFL 156 7.31 133.94
Anthropology, Architecture, Astronomy, Economics, Biology,

Chemistry, Communication, North America, Physics,
Political Science, Psychology Sociology, World History

arXiv 5965 7.24 121.36

Astrophysics, Computer Vision and Pattern Recognition,
Cryptography, Economics, General Relativity

High Energy Physics-Theory, Information Theory,
Networking and Internet Architecture, Quantum Physics

Table 5: Dataset statistics, including the sample size, average number of sentences inside each paragraph, the
average number of words of each paragraph, and their main topics (categories).

B Some Baseline Models

There we provide a visualization of how the unsupervised text coherence method (Putra and Tokunaga,
2017) processes the SI problem in Fig. 3.

S1 S2 S3 S4 S5
q

0.72 0.76 0.92 0.91 0.88

PAV

S1 S2 S3 S4 S5
q

0.72 0.76 0.92 0.91 0.88

0.72

SSV

S1 S2 S3 S4 S5
q

0.72 0.76
0.92 0.91 0.88

0.44

MSV

0.72 0.76

0.44

Figure 3: Three graph construction algorithms. PAV only allows edges between a sentence and its preceding
sentence. SSV allows for edges between a sentence and any other sentence. MSV allows multiple edges.
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C Experimental Details

There we explicitly describe the experimental configurations. All learnable models are trained on a single
A100 GPU. Regarding MSV, we choose a threshold θ of 0.3. For both GGNs and LGNs, we utilize
leaky Relu and Relu as the activation function, respectively, and include the dropout mechanism between
layers with a dropout rate of 0.5. They both have one hidden layer and four hidden units. For GGN, we
choose 16 hidden attention heads and four output attention heads with an attention dropout of 0.6 and a
0.2 negative slope of leaky Relu. They all have a residual connection. For all MLPs, we utilize Tanh as
the activation function with no dropout. We adopt an Adam optimizer with a weight decay rate of 0.0005
and a random seed of 1234. After a grid search algorithm, we set α = 0.2, β = 0.2 and γ = 1.0, where
LG′ is given more weights so that the model can focus more on the global-local fusion information. We
train 100 epochs for InsertGNN with a learning rate of 0.0001 and 200 epochs for BERT-based models
with a learning rate of 0.01.

C.1 Implementation of ChatGPT-3.5
For the powerful toolkit ChatGPT 2, prompt engineering is a key factor. We tried three different prompts
to obtain the answer, which are listed below. We also provide the response template provided by ChatGPT-
3.5. The empirical result shows that performance varies significantly according to different prompt inputs.
The precision of prompts 1, 2, and 3 are 53.82%, 61.52%, and 30.76%, respectively, and we can find that
prompt 2 is optimal.

Prompt 1. Please do the following sentence insertion problem, which has four choices denoted as
A/B/C/D. The context paragraph is xxx and the sentence to be inserted is xxx. What is the answer?

Prompt 2. Given a sentence xxx, which place should it be inserted in the following paragraph xxx?

Prompt 3. Which paragraph is the most fluent? xxx, xxx, xxx, or xxx.

ChatGPT-3.5’s answer for prompt 1. The most appropriate insertion point for the given sentence is
before sentence [A/B/C/D]. Here is the revised paragraph: xxx.

ChatGPT-3.5’s answer for prompt 2. The sentence xxx fits best after the sentence [A / B / C / D] in
the paragraph. Here is the revised paragraph: xxx.

ChatGPT-3.5’s answer for prompt 3. The most fluent paragraph is the first/second/third/fourth one:
xxx.

D Additional Results

We implement ablation studies in the TOEFL data set with a 0.5 validation split ratio to verify the
contributions of each constituent of our InsertGNN in Table 6. It can be observed that the LGN significantly
promotes the model performance.

LG LL LG′ Accuracy

1 ✓ - - 0.4487
2 ✓ ✓ - 0.5256
3 ✓ ✓ ✓ 0.5512

Table 6: Ablation studies.

2https://openai.com/blog/chatgpt/
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