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Abstract

Pre-trained Language Models (PLMs) have
achieved significant success in text classifi-
cation. However, they still face challenges
with hard samples, which refer to instances
where the model exhibits diminished confi-
dence in distinguishing new samples. Exist-
ing research has addressed related issues, but
often overlooks the semantic information in-
herent in the labels, treating them merely as
one-hot vectors. In this paper, we propose
Logits Reranking via Semantic Labels (LRSL),
a model-agnostic post-processing method that
leverages label semantics and auto detection of
hard samples to improve classification accuracy.
LRSL automatically identifies hard samples,
which are then jointly processed by MLP-based
and Similarity-based approaches. Applied only
during inference, LRSL operates solely on clas-
sification logits, reranking them based on se-
mantic similarities without interfering with the
model’s training process. The experiments
demonstrate the effectiveness of our method,
showing significant improvements across dif-
ferent PLMs. Our codes are publicly available
at https://github.com/SIGSDSscau/LRSL.

1 Introduction

Text classification tasks (Fields et al., 2024) are
traditional and crucial tasks in natural language
processing (NLP), holding significant importance
in both academia and industry.

The Multilayer Perceptron (MLP) -based meth-
ods are conventional methods that have been widely
adopted. Before the rise of pre-trained language
models (PLMs), these methods have been predom-
inantly applied in architectures such as TextCNN
(Kim, 2014), HAN (Yang et al., 2016). Even after
the emergence of PLMs, the MLP-based approach
remains prevalent. For instance, autoencoding mod-
els like BERT (Devlin et al., 2019) and RoBERTa
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datasets, while Banking-77 does not.

Figure 1: The MLP-based models struggle to handle
hard samples when learning labels implicitly.

(Liu et al., 2019) learn bidirectional context en-
coders, and subsequently, an MLP is used for down-
stream classification tasks. Similarly, in the era of
Large Language Models (LLMs), autoregressive
models such as GPT-2 (Radford et al., 2019) and
Llama (Touvron et al., 2023) utilize the represen-
tation of the final token in the input sequence for
classification through an MLP layer. Specifically,
the core idea of these methods revolves around
transforming textual data into numerical vectors
and mapping them through MLP layers to cap-
ture the intricate relationships between text vec-
tors and labels. However, MLP-based methods still
face challenges, particularly with diminished confi-
dence in distinguishing new samples, referred to as
hard samples, possibly due to noise in the text or
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long-tail distributions in the datasets. Under such
conditions, the model encounters difficulties, lead-
ing to a decline in accuracy. This shortfall arises
because MLP-based methods overlook the seman-
tic information inherent in the labels. They encode
labels as one-hot vectors, which abstractly repre-
sent labels and compel the model to implicitly learn
the relationship between the text and these abstract
labels. As depicted in Figure 1(a), one-hot encod-
ing represents all incorrect labels as zero, ignoring
the potential relationships between labels.

Recent studies have started to consider label se-
mantics in classification, giving rise to Similarity-
based classification methods. Unlike traditional
direct classification methods, they do not directly
classify text but rely on the rich semantic embed-
ding provided by PLMs for classification. For in-
stance, Vuli¢ et al. (2021) captured the intrinsic
relationships and features among texts through pro-
totype learning, and Mueller et al. (2022) incor-
porated label semantics into pre-trained generative
models. However, these approaches only use sim-
ilarity for classification, overlooking the fact that
MLP is significantly effective for classifying easy
samples.

In this paper, we combine the strengths of
both methods and propose a model-agnostic post-
processing approach called Logits Reranking via
Semantic Labels (LRSL). This plug-and-play
method enhances inference by performing logits
reranking specifically on hard samples, thereby im-
proving classification accuracy while optimizing
resource consumption. We introduce a mechanism
that allows the model to automatically identify hard
samples, enabling the MLP-based approach to han-
dle easy samples while the hard samples are jointly
processed by the MLP-based and similarity-based
approaches. Our experiments demonstrate the uni-
versality and effectiveness of our method across
seven different PLMs on three challenging datasets.

Our contributions are as follows:

* We propose an efficient model-agnostic post-
processing method, which only operates at the
logits to rerank based on semantic similarities.

* We introduce an auto detection mechanism
that lets models detect hard samples automati-
cally.

* We conduct experiments on three challeng-
ing classification datasets with seven different
models to demonstrate the universality and
effectiveness of our method.

2 Related Work

2.1 Label Semantics

Label semantics has been utilized in various set-
tings and tasks to enhance performance and robust-
ness, even before dense embedding representations
became popular. Chang et al. (2008) achieved
over 80% accuracy on binary text classification
tasks without any labeled training examples. Song
and Roth (2014) employed a dataless approach for
hierarchical and multinomial classification, demon-
strating that such methods could approach or even
surpass the performance of supervised approaches.

More recently, label semantics based on
dense embedding representations have become
widespread, especially with the rise of contex-
tualized word embeddings (Peters et al., 2018).
Gaonkar et al. (2020) utilized label embeddings
derived from BERT along with a label attention
mechanism to enhance emotion classification ac-
curacy. Vuli¢ et al. (2021) took the analogy of
‘intent’ being a latent semantic label where sen-
tences associated with the intent are diverse surface
instances of the class. Mueller et al. (2022) in-
corporated label semantics into generative models
during pre-training, which explicitly injects seman-
tic information into the model.

Our method processes hard samples by specifi-
cally targeting the reranking of logits using label
semantics, which is a novel application of label se-
mantics aimed at improving classification accuracy.

2.2 Text Embedding

Embedding models are a critical application in NLP.
They encode the textual data in the latent space,
where the underlying semantics of the data can be
expressed by the output embeddings (Reimers and
Gurevych, 2019; Ni et al., 2022).

Early approaches like one-hot encoding repre-
sented words as high-dimensional sparse vectors,
which failed to capture semantic relationships be-
tween words and led to inefficiencies in compu-
tational resources. To address these issues, dis-
tributed representations such as word2vec were
introduced, embedding words into dense, low-
dimensional vector spaces that capture seman-
tic similarities (Mikolov et al., 2013). ELMo
generated context-sensitive embeddings using bi-
directional LSTM networks, allowing word repre-
sentations to change based on their context (Peters
et al., 2018). Sentence-BERT (SBERT) optimized
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Figure 2: Overview of LRSL, which operates during the inference stage. The white sector can be replaced with any
MLP-based PLMs, such as BERT, RoBERTa, or Llama. The purple sector represents the area where our approach
operates. The first step is detecting hard samples automatically. Subsequently, for each hard sample, we calculate its
semantic distance with all labels using fine-tuned Text Embedding. The reranking of classification logits is guided

by the semantic distance.

BERT for sentence-level embeddings, enhancing
its utility in tasks such as sentence similarity and in-
formation retrieval (Reimers and Gurevych, 2019).

With the advent of LLMs, the quality of text
embeddings has been substantially improved, mak-
ing them imperative components in information re-
trieval (IR). So far, there have been many impactful
methods in this direction, like Contriever (Izacard
etal., 2022), BGE (Xiao et al., 2023), which signif-
icantly advance the usage of text embeddings for
general tasks.

We are inspired by the concept of using text em-
beddings in IR tasks, and transfer it to classification
tasks. This allows us to leverage their rich semantic
information to enhance the performance of label
semantics.

3 Methodology

MLP-based PLMs have achieved remarkable suc-
cess in text classification, but the effect is greatly
reduced when facing hard samples. As shown in
Figure 1(b), compared with the Banking-77, the
model’s classification accuracy tends to decrease
more significantly for the other two long-tailed
datasets, both of which have more hard samples,
as the range of Top-k accuracy is narrowed. Tran-

sitioning from Top-3 to Top-1 reveals a sharp de-
cline in accuracy, indicating that MLP-based mod-
els struggle to handle hard samples effectively.

Thus, we let the model detect hard samples auto-
matically and post-process these samples. Utilizing
an additional Text Embedding, we use its seman-
tic distance between each sample and labels as the
weights to rerank the logits of hard samples to en-
hance classification capabilities. This approach
presents three challenges: How to make good use
of Text Embedding? How to detect the hard sam-
ples? How to rerank the logits?

The overview of our approach is shown in Figure
2. We fine-tune an additional Text Embedding with
triplets for semantic mapping (§3.1), allowing Text
Embedding to provide a rich and accurate semantic
space where texts and labels can be directly asso-
ciated. We then propose an auto detection mecha-
nism (§3.2), enabling the model to identify its own
hard samples. For these hard samples, we use se-
mantic distance as an alternative view of the logits,
combining the two for reranking (§3.3).

3.1 Semantic Mapping

Construct Text Embedding. Following Reimers
and Gurevych (2019), we use a PLM with general
semantic information, such as RoOBERTa, to con-
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Figure 3: Fine-tuning Text Embedding with triplets. We
convert the entire training samples into triplets.

struct a general Text Embedding, which provides a
general semantic space so that we can map samples
and labels into it. The Text Embedding model is
depicted in Figure 3.

Fine-tune with Triplets. General Text Embedding
is not sufficient to distinguish hard samples, so we
construct triplets for Text Embedding to fine-tune.
Triplets consist of text #, true semantic label p, and
Top-k confused semantic labels ng. n; can be ob-
tained in the MLP layer. Given the text ¢, we can
obtain the hidden representation H using a PLM.
H is then processed through an MLP layer to ob-
tain the logits:

H = PLM(1). (1)

By removing the logits corresponding to the true
label, we derive the logits for the confused labels.
Finally, we select the indices of the Top-k most
confusing labels. The formulas are as follows:

L = max(MLP(H) — onehot(p) - 00,0), (2)

ny. = argsort(L): k], )

where L represents the logits of the confused labels,
onehot(p) represents the one-hot encoded vector
of the true label p, and [:k] refers to the operator
that selects the Top-k values from a vector.

We select Multiple Negatives Ranking Loss
(MNRL) as our fine-tuning loss function. MNRL
aims to maximize the similarity between the query
and the positive sample while minimizing the simi-
larities between the query and the negative samples.
In our method, we use the text as the query, the true
semantic label as the positive sample, and the con-
fused labels as the negative samples. Given the text
t and the true semantic label p, we aim to maximize

the similarity between ¢ and p while minimizing
the similarity between ¢ and the Top-k confused
labels {n;}X_,. The formulas are as follows:

Lpos = exp(Sim(TE(t), TE(p))), 4

k
Lxeg = »_ exp(Sim(TE(t), TE(n,))), (5)
=1

; (6)

LynrL = — log

where Sim denotes the cosine similarity (Salton
et al., 1975). TE represents the embedding of a
sample or label. Lpo is the positive term, calcu-
lated as the exponential of the similarity between
the text ¢ and the true label p. Lne, is the negative
term, calculated as the sum of the exponentials of
the similarities between the text ¢ and the Top-k
confusing labels {n; }¥_,.

3.2 Hard Sample Auto Detection

Distribution Variance for Indicating Hard Sam-
ples. Even after sufficient training, the model may
still struggle to distinctly differentiate the features
of certain samples. This results in a uniform distri-
bution of classification logits for these correspond-
ing samples, indicating the model’s lack of confi-
dence in assigning appropriate labels. To address
this issue, we use the variance of the Top-k dis-
tribution of logits as a metric for evaluating hard
samples. Similar to Ma et al. (2023), which adopts
a similar approach to identifying hard samples, our
work coincides in this aspect.

In our research, evaluating model classification

confidence through logits variance is essentially
aligned with the concept of entropy (Shannon,
1948). Specifically, low variance in the logits indi-
cates that the model struggles to differentiate be-
tween classes, leading to a more uniform distribu-
tion, which aligns with high entropy and represents
greater uncertainty. Therefore, using logits vari-
ance as a metric is grounded in the relationship
between variance, confidence, and entropy.
Auto Detection. Different models face differ-
ent hard samples when dealing with various
datasets. We advocate for allowing the model to
autonomously identify its own hard samples rather
than manually determining them. We utilize the
average variance of the Top-k logits of samples
that the model misclassifies o2 as an indicator for
identifying hard samples:

1
mis = T > Var(Top-k(z;
Umls |M‘ ZEM ar( Op k(z ))7 (7)
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where M is the set of misclassified samples, z;
represents the logits for sample ¢, and Top-k(z;)
denotes the Top-k logits of sample .

When a sample’s variance of logits is smaller
than cr?nis, it is considered a hard sample.

Our mechanism is proposed with the considera-
tion of marginal effects, ensuring that not all sam-
ples are identified as hard samples. As the number
of hard samples increases, the marginal accuracy
gain diminishes, while time and resource consump-
tion increase. To avoid unnecessary computation,
we employ an auto detection mechanism to selec-
tively identify genuine hard samples, thereby opti-
mizing resource usage and improving accuracy.

3.3 Rerank for Hard Sample

Inspired by Vuli€ et al. (2021), we conceptualize
the classification task as a sentence similarity pair-
ing task. This perspective allows us to consider
semantic labels as short texts. According to the
perspective of multi-view learning, the same en-
tity can be described from multiple approaches or
perspectives, with each different description consti-
tuting a distinct view of the entity (Li et al., 2019).
The semantic distance between text and semantic
labels can be viewed as an alternative perspective
on the logits of classification. This rationale pro-
vides sufficient grounds for reranking logits based
on semantic distance. Given a hard sample S and
all semantic labels {l1,lo,...,l,, }, we calculate their
semantic embedding es and e; = {e;,, e, ..., €1, }
by fine-tuned Text Embedding. Then, their Cosine
Similarity will be used as the weight of logits for
reranking. The calculations of the reranking are as
follows:

vs = MLP(PLM(S)), 8)

D; = Sim(es, €1), 9)

R, = Dy - softmax(vy), (10)

where v denotes the classification logits computed
by MLP-based PLM, D, denotes the semantic dis-
tance between the hard sample and semantic labels,
and R, denotes the logits of the hard sample after
reranking.

4 Experimental Setup

4.1 Datasets

CMCC-34!: This is a long-text intent detection
dataset for Chinese multi-turn customer service di-

1http://www.cips—cl.org/static/CCL2018/
call-evaluation.html

alogues. It comprises 34 classes, totaling 20,000
samples, with an average length of 379 tokens per
sample. This dataset contains significant amounts
of noise due to being transcribed from speech. It
is considered a relatively realistic dataset in the
field of intent recognition. Detailed studies on this
dataset have been conducted by Xu et al. (2022)
and Huang et al. (2024). More details are shown in
Appendix A.

iFlyTek-119%: The dataset contains more than
17,000 Chinese long text annotation data about app
application descriptions, including various appli-
cation topics related to daily life, with a total of
119 categories. It is available as part of the recently
published CLUE benchmark (Xu et al., 2020).
Banking-773: The dataset provides a very fine-
grained set of intents in a banking domain. It com-
prises 13,083 customer service queries labeled with
77 intents. It focuses on fine-grained single-domain
intent detection. It is available as part of the re-
cently published DialoGLUE benchmark (Mehri
et al., 2020).

4.2 Hyperparameters and Baselines

We train each model with five different random
seeds, and the accuracy is averaged. The batch
size is set to 24, and early stopping is employed
with a patience strategy of 4. To prevent overfitting,
dropout with a probability of 0.1 is applied. The
parameters are updated using the Adam algorithm,
with the learning rate initialized to 2e-5.

As a model-agnostic post-processing method,
we apply it across seven models. BERT-base: A
highly popular pre-trained language model (De-
vlin et al., 2019). RoBERTa-base: An improved
variant of BERT, pre-trained with more data (Liu
et al., 2019). We use RoBERTa as the backbone of
TextEmbedding. CONVBERT: Fine-tune BERT
on a large open-domain dialogue corpus with 700
million conversations (Mehri et al., 2020). AP-
HAN: An adjacency pairsaware hierarchical at-
tention Network for dialogue intent classification
(Xu et al., 2022). HLDIC: An Hierarchical Label-
Aware Dialog Intent Classification network (Huang
et al., 2024). We also apply our methods on LLMs,
Llama2-7B (Touvron et al., 2023) and Mistral-7B
(Jiang et al., 2023). Both LLMs integrate Quan-
tized Low-Rank Adapters (QLoRA), a supervised
fine-tuning method that significantly reduces mem-
ory usage during training (Dettmers et al., 2023).

2https://github.com/CLUEbenchmark/CLUE
Shttps://huggingface.co/datasets/banking77
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Model CMCC-34 iFlyTek-119 Banking-77
Origin Rerank | Origin Rerank | Origin Rerank
BERT-base (Devlin et al., 2019) 56.53 5944 | 6029 62.58 | 92.61 93.66
RoBERTa-base (Liu et al., 2019) 5792 5990 | 60.31  62.65 | 93.45 94.02
CONVBERT (Mehri et al., 2020) - - - - 92.67 93.79
AP-HAN (Xu et al., 2022) 5777 6049 | 60.31 62.46 - -
HLDIC (Huang et al., 2024) 58.36 60.59 - - - -
Llama2-7B(QLoRA) (Touvron et al., 2023) | 57.63  60.22 | 6042  62.04 | 9347 94.10
Mistral-7B(QLoRA) (Jiang et al., 2023) 59.30 61.65 | 5931  61.42 | 93.05 94.00

Table 1: Experiment results on the full test sets. Origin denotes the accuracy without using our method, Rerank
represents the accuracy after using our LRSL. ‘-’ indicates that the model is not suitable for the datasets, such as
CONVBERT for the two Chinese datasets CMCC-34 and iFlyTek-119, AP-HAN for single-sentence datasets like
Banking-77, and HLDIC for datasets other than CMCC-34 due to its hierarchical labels.

Model CMCC-34 iFlyTek-119 Banking-77
Samples | Origin Rerank | Samples | Origin Rerank | Samples | Origin Rerank

BERT-base (Devlin et al., 2019) 44.53% | 37.42 4395 | 40.12% | 38.73  39.71 9.76% | 56.00  66.74
RoBERTa-base (Liu et al., 2019) 44.05% | 38.94 4336 | 39.62% | 38.92  40.20 9.15% | 58.54  64.77
CONVBERT (Mehri et al., 2020) - - - - - - 8.56% | 54.51  67.40
AP-HAN (Xu et al., 2022) 44.33% | 38.60  44.74 | 40.77% | 38.50  41.07 - - -
HLDIC (Huang et al., 2024) 35.03% | 3629  42.66 - - - - - -
Llama2-7B(QLoRA) (Touvron et al., 2023) | 47.88% | 40.05  45.54 | 46.23% | 44.09  47.50 15.92% | 71.49 7536
Mistral-7B(QLoRA) (Jiang et al., 2023) 46.95% | 40.02 4497 | 46.19% | 4221  44.05 17.22% | 71.48  76.92

Table 2: Experiment results on the hard samples test sets. Samples represents the proportion of the hard samples in
the test set. Due to the test set answers of the iFlyTek-119 dataset being closed, we use the validation set for our

hard sample experiments.

We utilize quantization with 4-bit precision, en-
abling training on a single Nvidia RTX3090. More
implementation details are shown in Appendix B.

5 Results and Discussion

5.1 Main Experiments

5.1.1 Experiment on Full Samples

The main experimental results on full samples
shown in Table 1 demonstrate that our post-
processing method achieved varying degrees of
improvement across different models and datasets,
with particularly significant performance observed
on the CMCC dataset, surpassing the original state-
of-the-art (SOTA) result (58.36%) by up to 3.29%.
Compared with the other two datasets, CMCC has
the longest average length and the largest amount
of noise. This shows to a certain extent that our
method is more effective in processing confusing
samples. BERT was first proposed among all dis-
played models with the lowest accuracy, but after
using LRSL, it can surpass the current SOTA.

On the iFlyTek-119 dataset, LLama and Mistral
do not outperform other PLMs. This is likely due to
the nature of the text in the dataset, which consists
of app comments rather than dialogue-focused con-

tent. The training data used in the supervised fine-
tuning (SFT) and reinforcement learning from hu-
man feedback (RLHF) stages for these LL.Ms pre-
dominantly comprises question-answering datasets.
Consequently, these models are optimized for dia-
logue recognition and intention classification tasks.
Although the Banking-77 dataset has a relatively
short average token length and consists of single
sentences, the large number of intents still
leads the model to identify hard samples during
classification. Our method is effective not only for
hard samples in long texts but also for those in
short texts. This demonstrates that our approach is
relatively universal and not limited to long texts.

5.1.2 Experiment on Hard Samples

Further analysis of hard samples shown in Table 2
reveals that our method exhibits more prominent
performance under such conditions. Due to the
automatic detection, each model has its own hard
samples. Our method shows more significant
improvements on different datasets, with the
highest improvement reaching 6.53% on the
CMCC dataset, 3.41% on the iFlyTek dataset, and
12.89% on the Banking77 dataset. This proves that
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Model CMCC-34 iFlyTek-119 Banking-77
BERT-base-LRSL 59.44 62.58 93.66
X triplets 59.09 61.65 93.54
X fine-tune 56.46 61.65 92.59
RoBERTa-base-LRSL 59.90 62.65 94.02
X triplets 59.74 62.31 93.94
X fine-tune 57.85 60.96 93.43
AP-HAN-LRSL 60.49 62.46 -
X triplets 60.33 62.23 -
X fine-tune 57.67 60.00 -
HLDIC-LRSL 60.59 - -
X triplets 60.40 - -
X fine-tune 58.36 - -
CONVBERT-LRSL - - 93.79
X triplets - - 93.29
X fine-tune - - 92.67
Llama2-7B-LRSL (QLoRA) 60.22 62.04 94.10
X triplets 59.45 61.88 93.93
X fine-tune 57.65 60.35 93.54
Mistral-7B-LRSL (QLoRA) 61.65 61.42 94.00
X triplets 60.98 61.15 93.90
X fine-tune 59.43 59.54 93.05

Table 3: Ablation experiment of Semantic Mapping,
where X triplets represents fine-tuning Text Embedding
without triplets and X fine-tune represents utilizing Text
Embedding without fine-tuning.

focusing on the hard samples to rerank aligns with
the principle of marginal utility, saving resources
and concentrating on improving the accuracy of
hard samples.

5.1.3 LRSL Fits LLMs Well

In the scenario of limited GPU resources, we con-
duct fine-tuning experiments of QLoRA with 4-
bit quantization on the LLMs, which may lead
to accuracy degradation. However, by applying
our method, we successfully compensate for this
drawback and achieve substantial improvements.
Our experiments shown in Table 1 and 2 prove the
universality and effectiveness of our proposed ap-
proach. A small-parameter Text Embedding can
guide LLMs to make better choices.

5.2 Ablation Study

In this section, we conduct ablation experiments to
investigate the effects of Semantic Mapping and
Hard Sample Auto Detection.

5.2.1 Effects on Semantic Mapping

The ablation experiment of Semantic Mapping re-
sults in Table 3 show that the Text Embedding fine-
tuning and the triplets in our method significantly
improve semantic relevance, providing substantial
guidance when dealing with hard samples.

It can be observed that removing the fine-tuning
for Text Embedding results in a decline in accuracy

The marginal effects of Auto Detection
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Figure 4: Marginal effects of Auto Detection on the
CMCC-34 with Mistral. The rest is shown in Appendix
D. The blue line denotes accuracy, the red line denotes
the number of hard samples (understood as the consump-
tion of time), and the orange line denotes the choice of
Auto Detection.

across seven different models on three datasets.
Taking BERT on CMCC-34 as an example, the
model decreases by approximately 2.98% in accu-
racy. The significant decrease demonstrates that
fine-tuning injects substantial prior knowledge, al-
lowing the text embedding to construct a compre-
hensive semantic space.

We fine-tune Text Embedding without triplets,
which results in a decrease in accuracy across the
three datasets. Fine-tuning with triplets primarily
helps to distinguish between confused and true
labels, refining the semantic space for more
accurate representation. A comprehensive and
accurate semantic space is the reason for the
success of LRSL. Furthermore, we visualize the
effects of Text Embedding in Appendix C.

5.2.2 Effects on Hard Sample Auto Detection

To explore whether the Auto Detection mechanism
can optimize resource consumption while maxi-
mizing accuracy, we conducted a marginal effects
experiment. This experiment aims to evaluate the
effectiveness of the Auto Detection in balancing
the trade-off between resource usage and accuracy.
As depicted in Figure 4, when the number of
hard samples increases (green line), the time spent
also increases. Initially, the accuracy (blue line)
improves, indicating a benefit from the inclusion
of additional hard samples. However, this improve-
ment diminishes over time, suggesting diminishing
returns on additional resource investment. The
orange line demonstrates that the Auto Detection
mechanism selects an appropriate variance as the
criterion for identifying hard samples, thereby ap-
proaching the point of optimal marginal effect.
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Figure 5: Hard Samples of Top-3 classification logits on
CMCC-34. The figures compare the logits of multiple
models before and after reranking. The logits values are
scaled to a range from O to 10.

Model CMCC-34 iFlyTek-119 Banking-77
Similarity-based 57.45 58.25 93.39
MLP-based 57.92 60.31 93.45

Table 4: Similarity-based vs. MLP-based on full sam-
ples. Their base model is RoOBERTa-base.

Our mechanism enables the model to identify
suitable hard samples for reranking, rather than
applying reranking to all samples. This ensures
that accuracy and time consumption are optimized
near the point of maximal marginal effect.

5.3 Further Discussion

Visualization of Logits Reranking. To explore the
impact of Rerank on the classification logits, we
visualize the contrast between the variances of log-
its before and after reranking on CMCC-34, which
is shown in Figure 5. The visualizations for the
remaining two datasets are included in Appendix E.
After reranking, the confidence in selecting a par-
ticular class for the logits is significantly enhanced,
as evidenced by the increase in variance values.
Similarity-based vs. MLP-based. There may
be a question "Why not simply use similarity for
classification?", the experiment results in Table 4
prove that similarity-based classification does not
perform as well as MLP-based classification on
full datasets, especially for easy samples shown
in Table 5. This is why we only use the semantic
information of Text Embedding as an enhancement
step for difficult samples. Fine-tuned Text Embed-
ding has better discriminative ability and can guide
MLP-based to perform better classification.
Labels with Less Semantic. To validate the effec-
tiveness of LRSL in scenarios where label seman-
tics are limited or the number of labels is small,
we conduct an additional experiment using the
Tweet Sentiment Extraction Classification (TSEC)

Model CMCC-34 iFlyTek-119 Banking-77
Similarity-based 71.32 73.30 96.91
MLP-based 72.79 75.76 97.09

Table 5: Similarity-based vs. MLP-based on easy sam-
ples. Their base model is RoOBERTa-base.

Model Origin Rerank
BERT-base (Devlin et al., 2019) 79.43 80.09
RoBERTa-base (Liu et al., 2019) 79.91 80.32
CONVBERT (Mebhri et al., 2020) 80.50  81.21
Llama2-7B(QLoRA) (Touvron et al., 2023)  78.21 79.82
Mistral-7B(QLoRA) (Jiang et al., 2023) 78.98 80.16

Table 6: TSEC experiment on the full test sets. Origin
denotes the accuracy without using our method, and
Rerank represents the accuracy after using our LRSL.

Dataset*, which consists of only three labels: O-
Negative, 1-Neutral, and 2-Positive.

Considering the limited semantic richness of the
labels, we can employ a large language model to
augment the label semantics by transforming the
original labels into more distinctive and descriptive
terms. This semantic enhancement allows for more
nuanced differentiation among the labels, poten-
tially improving model performance on tasks with
limited label diversity.

As shown in Tables 6 and 7, LRSL further im-
proves the classification performance of all models,
with a maximum improvement of 1.61%. Addition-
ally, LRSL enables the models to adaptively select
hard samples, resulting in significant performance
gains even for these challenging cases. This demon-
strates that our method remains effective even when
label semantics are lacking.

5.4 Case Study

In this section, we select a hard sample of CMCC-
34 detected by BERT for a case study, which is
shown in Figure 6. Since the samples in CMCC-34
are Chinese speech-to-text transcriptions, we have
translated them into English, corrected any typos,
and added roles such as customer service and user
for better presentation. These annotations are not
present in the original dataset.

In Figure 6, we can observe that the original
Top-3 classification logits for this hard sample are
as follows: "Inquiry Queries Account Informa-
tion (IQAI)", "Complaint Grievances Billing Issues
(CGBID)", and "Complaint Grievances Service Pro-
cessing Issues(CGSPI)". Their respective logits are

4https: //huggingface.co/datasets/mteb/tweet_
sentiment_extraction
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[Translation] S: Hello, I'm happy to help you. Please go ahead. U: You said... never mind. Hello, I'd like to ask why, when I recharged
someone else’s phone with 30 yuan, they only received 29.94 yuan? S: Please hold on, I’ll check that for you. U: Okay. S: It’s like this:

the person received 30 yuan, but when you recharge with 30 yuan, there is a fee of 6 cents, so the total credited amount is 29.94 yuan. I

will send you the recharge record, and you can check it. Is that okay? U: Okay.
Tok-3 Logits |, Semantic Distance Reranked Logits |,
1QAI: 4.700 x IQALI: 0.023 CGBI: 0.042
CBGI: 4.677 CGBI: 0.328 CGSPI: 0.006
CGSPI: 2.705 CGSPI: 0.342 IQAL: 0.0002

Figure 6: Case study. Due to space constraints, only the Top-3 logits are displayed. S represents the Customer

Service, while

Model Samples Origin Rerank
BERT-base (Devlin et al., 2019) 25.07%  55.81 58.10
RoBERTa-base (Liu et al., 2019) 29.00% 6134  62.74
CONVBERT (Mehri et al., 2020) 25.08% 5796  60.75
Llama2-7B(QLoRA) (Touvron et al., 2023)  30.39%  59.59 64.90
Mistral-7B(QLoRA) (Jiang et al., 2023) 31.52% 61.58  65.35

Table 7: TSEC experiment on the hard samples test sets.
Samples represents the proportion of the hard samples
in the test set.

very close, especially the first two, which are 4.700
and 4.677. The small variance indicates that the
model is not confident in distinguishing the correct
intent.

We then calculate the semantic distance between
the hard sample and these labels, which will serve
as weights for the logits. We can see that the largest
original logit has a semantic distance of 0.023, indi-
cating that, from a semantic perspective, the sample
lacks a clear relationship with the intent "IQAI".
After reranking based on these semantic distances,
the largest logit is reordered to a lower position,
while the second-ranked correct intent is promoted
to the first position. It can be observed that LRSL
effectively leverages semantic labels to increase the
model’s classification confidence, thereby improv-
ing the accuracy.

6 Conclusion

We propose LRSL, a model-agnostic post-
processing method that leverages label semantics
and auto detection of hard samples to improve

represents the User. Incorrect intents are marked in red, and correct intents are marked in

classification accuracy. Our method demonstrates
that label semantics serve as an effective reranker
for hard samples in MLP-based classification. By
reranking classification logits, LRSL provides a
plug-and-play solution that does not interfere with
the original model’s training process. The results
demonstrate the effectiveness of our method.
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Limitations

To automatically detect the hard samples, we
choose the distribution’s variance of Top-k clas-
sification logits as the metric. However, this ap-
proach requires a separate dataset from the training
set or an examination of the validation set’s dis-
tribution, and it is not sufficiently comprehensive
to fully measure the difficulty of samples. Future
work will focus on adopting additional metrics to
automatically identify hard samples.

To construct an accurate semantic space for
LRSL, we chose to use an additional Text Embed-
ding model for fine-tuning. While this introduces
extra parameters, it was selected for its plug-and-
play capability. In the future, this embedding model
can be replaced with more advanced Text Embed-
ding models as they become available.
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A Details of Datasets

In this section, we provide detailed information
about the datasets used in our experiments. The
datasets include CMCC-34, iFlyTek-119, and
Banking-77. The following Table 8 summarizes
the split of the train, development (dev), and test
sets, along with the average token length and the
number of intents for each dataset.

The CMCC-34 and iFlyTek-119 datasets have
significantly longer average token lengths com-
pared to the Banking-77 dataset. Specifically, the
average token length for CMCC-34 is 379, and
for iFlyTek-119 is 276, whereas the average token
length for Banking-77 is only 14. This indicates
that CMCC-34 and iFlyTek-119 contain more com-
plex and verbose text data.

As shown in Figure 7, the label distribution in
the training sets of CMCC-34 and iFlyTek-119
is imbalanced, exhibiting a long-tail distribution,
which makes these datasets more challenging for
classification tasks. In contrast, the Banking-77
dataset has a relatively balanced label distribution,
simplifying the classification task compared to the
other two datasets.

B MLP-based Implementation Details
B.1 Non-LLM Implementation Details

We conducted experiments with five non-LLMs:
BERT, RoBERTa, CONVBERT, AP-HAN, and
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Dataset Split of train/dev/test Average Token Length Label

CMCC-34 12799 /3200 /4000 379 34

iFlyTek-119 12133 /2599 / 2600 276 119

Banking-77 8011 /2006 /3084 14 77
Table 8: Details of CMCC-34, iFlytek-119, and

Banking-77 datasets.
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Figure 7: Label distribution of 3 datasets.

HLDIC, all of which are autoencoding models.
For the non-LLMs, we adopt the relatively sim-
ple model structure illustrated in Figure 8 to focus
on exploring the effectiveness of our method. The
model first encodes the text using PLMs, extracting
the last hidden state of the [C LS| token. These
representations are then passed through a Dropout
layer to reduce the risk of overfitting. Finally, they
are fed into an MLP layer for classification.

B.2 LLM Implementation Details

For our experiments, we utilize two LLMs: Mistral-
7B-Instruct-v0.2 and Llama-2-7B-Chat. The train-
ing hyperparameters for both models were carefully
selected to ensure optimal performance. We set the

non-LLM
(e.g. BERT, RoBERTa)

v

Last Hidden State of [CLS]

v

Dropout-Layer

v

MLP-Layer

e U caun T G
| S I S—

Figure 8: Implementation Details of non-LLM.

learning rate to le-5, with a weight decay of 0.001,
and a warmup ratio of 1.0. The maximum gradient
norm was capped at 1.0 to prevent gradient explo-
sion, and a dropout rate of 0.1 was used to mitigate
overfitting.

For LoRA, we configure the LoRA rank (r) to 8
and the LoRA alpha to 32. The models are trained
with a batch size of 8 over 5 epochs. These hyperpa-
rameters are chosen to balance training efficiency
and model performance, ensuring that the mod-
els can learn effectively without overfitting. The
warmup ratio of 1.0 implies that the learning rate
linearly increases from O to its maximum value
during the entire first epoch, which helps stabilize
the training process. The LoRA parameters are
set to allow efficient fine-tuning by injecting task-
specific adaptation layers with minimal additional
parameters.

C Semantic Distance Between Labels

We visualize the effects of Text Embedding and
compare the results before and after fine-tuning.
The effects of fine-tuning is shown in Figure 9. The
heat maps are quite significant: semantic distance
between labels has a clear distinction boundary,
which means Text Embedding already has the abil-
ity to distinguish confusing samples. This demon-
strates that Text Embedding enables clear separa-
tion between distances among labels, providing
sufficient guidance for the model to rerank hard
samples effectively.

D Marginal Effects on Auto Detection

As shown in Figure 10, we conduct marginal ef-
fects experiments on CMCC-34 and Banking-77.
Because the answers of the test set of iFlyTek-
119 dataset are retained by the benchmark plat-
form, we can not access them and thus preclude
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Figure 9: Semantic distances between labels on CMCC-34, iFlyTek-119, and Banking-77 datasets. The figures
compare the semantic distances of Text Embedding before and after fine-tuning. A larger value indicates a closer

distance.
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Figure 10: Marginal effects of Auto Detection on the CMCC-34 and Banking-77 with Mistral. The blue line denotes
accuracy, the red line denotes the number of hard samples (understood as the consumption of time), and the orange
line denotes the choice of Auto Detection.
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Figure 11: Hard samples of Top-3 classification logits on iFlyTek-119 and Banking-77 datasets. The figures compare
the logits of multiple models before and after reranking. The value of logit is scaled to a range from O to 10.

11. After reranking, the classification logits of hard
samples shift from a relatively even distribution to
a pronounced preference for the first probability,
indicating a significant increase in the model’s clas-
sification confidence. This adjustment leads to a
stronger inclination towards confidently selecting a
single label rather than being indecisive.

experimentation on this dataset. Our Auto Detec-
tion mechanism can adaptively select variance for
choosing hard samples on both datasets, eliminat-
ing the need for manually setting thresholds for
each dataset. This capability has the potential to
generalize across diverse datasets.

E Visualization of Logits Reranking

In this section, we further visualize the effects of
Logits Reranking on another two datasets: iFlyTek-
119 and Banking-77, which can be shown in Figure
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