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Abstract

LLM-based agents can greatly extend the abili-
ties of LLMs and thus attract sharply increased
studies. An ambitious vision — serving users
by manipulating massive API-based tools — has
been proposed and explored. However, we find
a widely accepted evaluation mechanism for
generic agents is still missing. This work aims
to fill this gap. We decompose tool use capa-
bility into seven aspects and form a thorough
evaluation schema. In addition, we design and
release an instruction dataset and a toolset —
the two sides that the agents bridge between —
following the principle of reflecting real-world
challenges. Furthermore, we evaluate multiple
generic agents. Our findings can inspire future
research in improving LLM-based agents and
rethink the philosophy of API design.

1 Introduction

Large Language Models (LL.Ms) exhibit remark-
able capabilities across a variety of tasks, such as
language, mathematics, coding, and etc (Bubeck
et al., 2023). However, they still face some limi-
tations, such as having frozen knowledge, being
bad at some specialized tasks like calculation, and
not being able to ground their generated solution
outlines to the real world. Meanwhile, there are
existing systems or models that can perform very
well on domain-specific tasks. Therefore, a mecha-
nism that links LL.Ms with the existing ecosystem
of tools can bring the ability of LLM-based Al to
another level.

To stretch the ability of LLMs, a sharply in-
creasing number of works have studied LLM-based
agents ! which can manipulate API-based tools. A
very ambitious vision is to build a new Al ecosys-
tem that connects LLMs with millions of APIs,

*Corresponding authors.

"Work was done when he interned at OPPO.

'The term agent denotes LLM-based agent by default in
this work.
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Figure 1: Agent connecting a user with massive APIs.

assessed via an API platform, for task completion.
As shown in Fig. 1, the agent acts like a super-
APP. It eases user interaction with language rather
than GUI, manipulates massive API-based tools
and thus supports a mass of functionalities. This
requires the agent to have, on one hand, rich knowl-
edge to deal with different user needs, and on the
other hand developer’s skills for manipulating APIs
given documentation and understanding the results
of API execution.

Though the research community has made an
effort to build up generic LLM-based agents, we
found that a widely accepted evaluation mechanism
for LLM-based agents on tool use is still lacking.
This prevents researchers from making fair com-
parisons between different agent systems, as well
as gaining insights into the challenges of design-
ing agents. In this work, we aim to narrow this
gap by providing an evaluation mechanism, putting
special emphasis on discovering the limitations of
existing agents as well as the problems of current
API design philosophy.

It is very challenging to evaluate an agent be-
cause of the complex process of an agent perform-
ing user tasks. Once a user issues an instruction,
the agent first decomposes it into solvable subtasks
with available tools, depending on the complex-
ity of the task. Then, it may need to collect user
needs by interacting with the user and call multiple
APIs. Eventually, it responds to the user as per
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the results of APIs. The problems this complex
process brings to agent evaluation are: (1) the pos-
sible involvement of users makes the evaluation
very hard. (2) the agent may fail in any step of the
sequential process, making the samples in the later
stage rare. (3) executing a complex process may
involve multiple aspects of capability. However,
an end-to-end performance cannot help locate the
weaknesses of agents and gain more insights. To
solve these problems, we dissect the whole pro-
cess into intermediate decision behaviors to get a
thorough view of the involved capabilities. Accord-
ing to this anatomy, we include 7 aspects of tool
use capability in our evaluation schema. Each as-
pect corresponds to one separate evaluation subtask
without involving human users.

Under the guide of our evaluation schema, we
build a toolset and a dataset of instructions, follow-
ing the principle of reflecting real-world challenges.
We construct our toolset by addressing a series of
concerns as demonstrated below rather than assem-
bling some random tools. (1) To ensure reflection
of real-world challenges, we collect tools from the
real API platform. It matters to reflect the prop-
erties of API design and documentation. (2) We
intentionally control the diversity of tools regard-
ing functionalities and API structures. According
to our observation, a tool may have a single API, a
list of APIs, or several collections of APIs. These
organizational structures can indicate the variety
of functionality and expose different difficulties in
calling. (3) We find some APIs depend on other
APIs 2. We include this kind of dependency rela-
tionship in our toolset. (4) To enable high-level
tasks applied to the toolset, we take measures to in-
crease the coherence of tools regarding application
scenarios. (5) We noticed that the affordability of
toolset can be one potential problem for individual
researchers. To avoid this problem, we devoted lots
of engineering work to make the toolset usable at
low or even no cost.

On top of our toolset, we construct a set of user
instructions that may use the contained tools to
solve. We analyze how humans ask questions and
summarize five types of instructions, varying in
user intentions and complexities. These different
types of instructions can be used to produce evalua-
tion data required by our evaluation schema. Addi-
tionally, we emphasize that the instructions should

’This is caused by the principle of API design — being
simple and general.

be in the real way of user expression. Only by
this can the evaluation data imply the mismatch be-
tween user expression and the form of information
required by APIs.

To conclude, we contribute an evaluation mech-
anism of LLM-based agents on API manipula-
tion. It is composed of several evaluation sub-
tasks supported by one toolset and one dataset. We
make these resources publicly available at https:
//github.com/OPPO-Mente-Lab/agent_eval.

2 Related Works

2.1 LLM-based Agents

LLM is the core component of an LLM-based
agent. In the LLM domain, ChatGPT (Ouyang
et al., 2022) is the most typical proprietary LLM
and represents the SOTA LLM while many open-
sourced LLMs like LLaMA (Touvron et al., 2023)
are also very competitive. These LLMs have shown
impressive language ability, rich knowledge, great
potential in reasoning, and unbelievable generality
in Question Answering tasks (Bubeck et al., 2023).

These characteristics of LLMs naturally inspire
researchers to use LLMs as the brain of agents,
which are designed to interact with complex envi-
ronments and are closer to general Al

In the surging literature of LLM-based agents,
the agents have been explored to (1) manipulate ex-
ternal tools to solve more complex tasks (Nakano
et al., 2021; Song et al., 2023; Shen et al., 2023);
(2) play games (Zhu et al., 2023; Xu et al., 2023b);
(3) form a multi-agent system which can do big
projects collaboratively (Qian et al., 2023; Talebi-
rad and Nadiri, 2023); (4) and even be embedded
in robots to interact with the physical world (Wang
et al., 2023; Ichter et al., 2022). This work focuses
on the tool use ability of agents.

Some works have explored connecting LLMs
with a pre-specified set of tools. By enabling LLMs
to manipulate tools, the LLMs can access more
information than that frozen in the weights (Nakano
et al., 2021), overcome the shortcomings of LLMs
like calculation (Schick et al., 2023), and complete
more complex tasks than QA (Zhou et al., 2023;
Shen et al., 2023). As proof of concept, these works
demonstrate that equipping LLMs with tool use
ability is a promising direction.

We distinguish between close-world settings and
open-world settings. The close-world settings usu-
ally have a few special properties: (1) the number
of tools is usually limited; (2) the design of APIs
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tends to be simplified to ease the calling by LLMs.
(3) considering the toolset will not be updated fre-
quently, optimizing LLMs for the toolset is feasible,
for example, by constructing toolset-specific train-
ing data to fine-tune the LLMs.

On the opposite, in the open-world set-
tings (Liang et al., 2023; Patil et al., 2023), (1) the
number of APIs API platform can be massive and
may keep increasing; (2) the APIs are designed in
an LLM-agnostic way and documented by follow-
ing a unified schema required by the API platform.
(3) the tools available in the API platform always
keep changing. Our work is for evaluating agents
designed for the second setting.

Different forms of tools have been considered in
the literature, such as APIs (Patil et al., 2023; Qin
et al., 2023), websites (Deng et al., 2023; Yao et al.,
2022) and mobile APPs (Zhang et al., 2023; Hong
et al., 2023; Rawles et al., 2023). We divide these
tools into two categories: API-based tools and Ul-
based APPs (e.g. websites, desktop software and
mobile APPs), as per the different challenges they
pose to the LLMs. This work aims to serve the
investigation of agents on manipulating API-based
tools.

An agent system basically consists of an LLM
and an inference pipeline. The LLM is injected
with the ability of manipulating tools by fine-
tuning (Tang et al., 2023; Qin et al., 2023; Patil
et al., 2023) or in-context learning (Shen et al.,
2023; Xu et al., 2023a). In addition, considering
the complexity of tool use tasks, the inference pro-
cess is usually enhanced with more sophisticated
reasoning (Yao et al., 2023), searching method of
solution path (Qin et al., 2023), and etc. To fa-
cilitate the creation of agent systems, a few open-
sourced frameworks have been released (Li et al.,
2023a; Qin et al., 2023).

2.2 Evaluation of LLM-based Agents

Many early works evaluated their agent systems
with their own evaluation suites, making it hard to
compare different agents. In addition, these works
usually only report the end-to-end performance,
which is inadequate for gaining insight into the
tool use ability. To address these problems, more
and more effort has been put into benchmarking
the existing agents.

T-Eval (Chen et al., 2023) is close to our work.
they designed an inference process composed of
several steps and compared the overall and step-
wise performance of several LLMs as the back-

bones. Our goal is to design a universal evaluation
mechanism which is not coupled with the design
of agents.

AgentBoard (Ma et al., 2024) created one evalu-
ation toolkit to test the generality of agents across
different types of environments, such as Embodied
environments, game environments, and tool envi-
ronments. It is not dedicated to in-depth evaluation
of tool use ability.

3 Methodology

We make our evaluation schema first to make clear
our targets. Then, we take measures to construct
a toolset inheriting real-world challenges and sup-
porting tasks with varying complexities. Extra en-
gineering work makes its usage affordable. Follow-
ing this, we design five types of instruction data and
align them to the evaluation schema. Finally, we
determine the metrics of each evaluation sub-task.

3.1 Evaluation Schema

We go through the process of an agent performing
a task and point out the capabilities involved in dif-
ferent stages. As shown in Fig. 2, the process starts
with a user sending an instruction. Depending on
its complexity , the agent may need to make a
solution outline via planning.

e Planning, i.e. decomposing a complex task into
several simple subtasks, each of which is solv-
able with a single API. Considering the varying
complexity of user instructions as well as the
mismatch between user needs and the design of
APIs, planning would be very commonly used
by agents.

When dealing with a simple task, the agent first
needs to decide whether to use external tools. If
yes, it then retrieves a few candidates of potentially
useful tools and selects one of them according to
the documentation of tools. Otherwise, it replies to
the user directly.

* Deciding whether to use tools. Failing to trigger
tool use when needed makes tasks not solved,
while misusing tools can hurt LLM’s perfor-
mance in ordinary QA tasks.

¢ Selecting useful tools. If tools are required, the
agent should be able to figure out the useful ones.

3We measure the complexity of a certain task with the
number of tools required to complete this task.
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Figure 2: The process of an agent performing a task. Seven decision behaviors can potentially be involved. We
examine the performance of an agent in each of them to gain a thorough understanding of its tool-use capability.

* Responding with intrinsic knowledge. There
is a risk that fine-tuning an LLM with tool-use
data makes it lose its original ability. Therefore,
we also check whether LLMs still retain their
intrinsic knowledge.

To call a certain tool, the agent needs to parse re-
quired parameter information from the context (i.e.
conversation). If required information is not pro-
vided, the agent should ask the user to make clarifi-
cations.

* Requesting missing parameter information.
It’s common for users to initiate a dialogue with
partial information. In this case, the agent should
have the consciousness of requesting clarification
rather than hallucinating.

* Formulating tool calls. When sufficient infor-
mation is provided, the agent should be able to
parse it and convert it to a valid format as per
the specification of APIs. Here, one challenge
to overcome is the mismatch between the user
expression and the required format of parameters.
Sometimes, commonsense reasoning is required.

Eventually, after receiving the execution results of
tools, the agent synthesizes a final response to the
user.

* Responding according to the tool returns. The
variety of tools demands the agent to have great
generality so that it can interpret the results of
APIs, which are usually in JSON instead of natu-
ral language, and eventually generate a concise
answer.
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Figure 3: The process of building our toolset. The left
side shows the steps while the right side illustrates their
corresponding details.

In summary, our evaluation schema includes
seven types of capabilities potentially involved in
the process of tool use.

3.2 Toolset

Fig. 3 illustrates the process of developing our
toolset, as detailed below.

Determining application scenarios. To achieve
high coherence of tools, we start with selecting a
few application scenarios (e.g. travel, image pro-
cessing) of agents. Within each scenario, the tools
have a relatively high chance of being combined
to solve user’s needs. In addition, having different
scenarios helps ensure the diversity of tools.

Designing classes of tools. For each scenario,
we think about the potentially useful tools. Then,
instead of collecting the tools directly, we design
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the classes of tools to provide an umbrella, under
which the tools from different sources and imple-
mented by different people can be integrated. Here,
each tool class is defined with a set of main func-
tionalities.

Collecting real-world tools with documentation.
For each tool class, we look for its real-world imple-
mentation from a well-known API platform Rap-
idAPI 4, where massive APIs are deployed and
documented with a unified schema. This is to make
sure the design and documentation of APIs can
reflect real-world problems.

In Rapid API, most tools do not only have a sin-
gle API (very typical in existing works) but mul-
tiple ones organized with a list or multiple collec-
tions. These multi-API tools may not only make the
documentation of different APIs entangled but also
comprise dependencies between APIs. For exam-
ple, an API for checking flights takes airport codes
as input, while checking these codes given airport
names need to use another API (see Appendix A
for a detailed example). This raises the difficulty
level of manipulating APIs for agents. Therefore,
we intentionally include tools with different API
structures.

Complementing tools. The dependencies be-
tween APIs occur not only within a single tool
but also across the boundary of tools. This under-
lying reason is that the philosophy of designing
APIs is to make them simple and general utilities
of many different APPs. However, for a toolset, a
certain API’s functionality will not be usable unless
its dependent APIs are also included. To avoid this
problem, we analyze the dependent APIs of already
collected APIs and collect them in our toolset.
Additionally, we add a few basic and general-
purpose tools (e.g. calculator, search engine, code
interpreter).

Development. We first wrap remote tool services
deployed on RapidAPI and develop a few local
tools, forming an initial toolset. The tool services
deployed on API platforms are usually not free.
Even though we have tried to select the tool with
the most free quota when collecting tools, a portion
of them provide very limited free requests. Fre-
quent access to the tool services can cause high
subscription fees — an obstacle for research. To
address these problems, we take the following mea-
sures: (1) developing free alternatives to some

*https://rapidapi.com/hub

tools while reusing their documentation and API
designs. (2) adding a caching mechanism to avoid
repeated requests. (3) check the validity of API
calls before sending them to the remote services.

3.3 Instruction Data

We design five types of instructions that can be
used to evaluate all aspects of tool use capability in
our evaluation schema.

Types of Instructions. Our first three types are
low-level instructions, which can be solved mainly
with the functionality of a certain API. We con-
struct these instructions for each API in turn.

Type-I: Instructions that do not need tools to solve
but may mislead agents to call tools. For ex-
ample, for the question "What’s the weather
usually like in London", one agent may call
real-time weather API if they cannot understand
the nuance caused by "usually". This type of
instruction can be used to test two abilities: de-
ciding whether to use tool, and Responding with
intrinsic knowledge.

Type-II: Instructions that need to use tools and
provide sufficient information for formulating
function calls. With this type of instruction,
we can check whether an agent can parse or
infer parameter information correctly from user
questions. Also, because this type of instruction
is relatively easy, an agent has a higher chance
of getting a final assistant response (rather than
being interrupted by invalid function calls). We
thus can check whether an agent can make a
proper response according to the return of a
tool.

Type-III: Instructions that need to use tools but
provide insufficient information for filling pa-
rameters. For example, "Can you check the
weather for me?". The agents would need to ask
the user for his location. This type of instruc-
tion is very common and thus very important
for evaluating agents. It can be used to check
whether an agent can make multi-round inter-
actions with the user consciously to solve the
user’s need.

From the Type-II and Type-III instructions, we
filter out the data produced for APIs having de-
pendencies. Then, they are used to form Type-1V
instructions.
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Table 1: Eight evaluation tasks and their used instruction data.

Type-1 | Type-1II | Type-III | Type-IV | Type-V
Task-1: Deciding whether to use tools v v
Task-2: Tool selection v
Task-3: Requesting user to clarify missing info v
Task-4: Filling parameter values v
Task-5: Responding with intrinsic knowledge v
Task-6: Responding according to tool returns v
Task-7: Planning for resolving dependency v
Task-8: Planning for high-level task v

Type-1V: instructions that are not complex but still
need to use multiple APIs to solve because of
the dependencies of APIs.

Lastly, we create high-level instructions issuing
complex tasks:

Type-V: instructions that require to be decom-
posed into solvable sub-tasks by APIs. For
example, "Plan a seven-day trip in Dubai for
me". To complete this task, an agent would,
for example, check the weather and search for
interesting spots to visit.

Generating Instructions. We generate initial in-
struction data by prompting GPT4. Apart from the
special requirements for each instruction type, we
include the following general rules: (1) the instruc-
tions should be asked in the real way of human
speaking. (2) human users do not mention API in
their questions.

For each type of instruction, we use one generator
to generate instructions first and then use one dis-
criminator to filter out invalid ones. Additionally,
human annotators double-check the instructions to
ensure high quality and avoid ethical issues °.
Aligning instructions to evaluation schema. In
Table 1, we enumerate the evaluation tasks and
the corresponding types of instructions to use. In
tasks-1,3,4,5, the agent is given an instruction and
its corresponding API specification. In task-2, the
agent is given an instruction, a correct API along
with a few perturbing APIs. In task-6, the agent is
given a conversation history including a user mes-
sage, an assistant message containing a function
call and a tool result. In task-7 and 8, the agent is
given an instruction and multiple APIs, expecting
tool use response and chat response respectively.

>Two of our authors participate in data annotation.

See Appendix C for more details on the construc-
tion of our dataset.

3.4 Assessment & Metrics

We assess the performance of an agent for each
data instance as below:

e Task-1: whether correct decision has been made
for the two types of instruction. Overall precision,
recall and macro-F1 score can be computed.

* Task-2: whether the right tool is chosen from the
given candidates.

e Task-3: whether the response is to request clarifi-
cation of missing information.

* Task-4: percentage of correct function call.

e Task-5: whether the response is related to the
question. Answer quality is our concern.

* Task-6: whether the response is based on the tool
results and whether desired information in the
results is interpreted precisely.

e Task-7: the chain of function calls is compared
with a ground-truth order of actions. The rate of
progress is used as metrics.

» Task-8: whether the solution outline is sound —
the coverage of provided APIs and whether the
functionality of each API is correctly understood.

The assessing scripts, implemented by mixing rules
and GPT-4 usage, are included in our evaluation
mechanism too.

4 Experiment

In this section, we first demonstrate more details
of our dataset and toolset. Then, we apply our eval-
uation mechanism to examine several well-known
LLMs equipped with generic tool use ability, in-
cluding ChatGPT series — GPT-3.5-turbo and GPT-
4-8k (abbreviated as GPT-3.5 and GPT-4 below),
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and Qwenl.5 series with sizes 7b, 14b and 72b
(abbreviated as Qwen-7b, Qwen-14b and Qwen-
72b) (Bai et al., 2023). The new findings can show
the value of our evaluation mechanism.

4.1 Dataset & Toolset

Dataset. The numbers of different types of in-
structions are shown in Tab. 2, while the size of
data for each evaluation task is shown in Tab. 3.

Table 2: Number of each type of instruction.

Type 1 1 1 IV V
Num 372 326 195 85 50

Table 3: Data number of each evaluation task.

Task | 1 2 3 4 5 6 7 |8
Num | 698 | 326 | 195 | 326 | 372 | 311 | 85 | 50

Toolset. Our toolset consists of 66 APIs orga-
nized into 27 tools. 83% of these APIs are im-
plemented based on API services from RapidAPI,
while the other 17% are developed from scratch.
We recognize 28 pairs of (API, dependent APIs).
In addition, we combine 9 groups of coherent APIs
for supporting high-level tasks. See Appendix B
for concrete tool classes, and functionalities.

4.2 Evaluation of Generic LLM-based Agents

In Fig. 4, we compare the performance of agents in
8 evaluation tasks.

Task-1: On the decision of tool utilization. (1)
We found Qwen-7b and Qwen-14b have the prob-
lem of misusing tools — tending to use tools once
given. This leads to relatively low precision in their
tool-use decision. (2) On the contrary, GPT-3.5 is
conservative in tool use — tending not to use tools
even needed — resulting in a low recall. (3) GPT-4
and Qwen-72b can make proper decisions, above
0.96 in macro-F1 scores.

Task-2: On tool selection. To check whether
the agents can figure out the right API to use, we
provide the agents with one correct API along with
four perturbing ones ©.

GPT-3.5 and Qwen-7b perform the worst in tool

selection, however, for different reasons. Among

We select the perturbing APIs which have top-4 highest
similarities with the target API regarding sentence embeddings
encoded with gte-base-en-v1.5 (Li et al., 2023b).

Task 7

—e— Qwen-7b —— GPT-4

—+— Qwen-14b

—s— Qwen-72b
—e— GPT-3.5

Figure 4: Comparing the performance of five generic
agents in eight evaluation tasks. Metrics values can be
found in Tab. 5.
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Figure 5: Performance of agents in tool-use decision:
precision, recall and macro-F1.

the mistakes made by GPT-3.5, 77% is because of
its conservativeness again — did not call any API,
while only 23% are incorrect selections. Qwen-7b
always selects the wrong tools, showing its weak-
ness in understanding API specifications.
Compared with GPT-4, the Qwen-14b and Qwen-
72b achieved accuracies less than 83%, having a
big gap from GPT-4.

Task-3: On the awareness of requesting clarifi-
cation. It is very often that one user initiates a
dialogue with partial information. This requires
the agent to figure out the missing parameter in-
formation for calling a certain tool and ask the
user to clarify. However, we found that the three
open-sourced LLMs — Qwen series — are bad at
this, worse than both GPT-3.5 and GPT-4. GPT-4
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performs almost perfectly while GPT-3.5 still has
big space for improvement.

In this case, some typical mistakes include: (1)
hallucinating parameter values (no evidence can
be found from the user’s questions). (2) using a
placeholder-like value (e.g. /path/to/image) instead
of a real value. (3) imprecise parameter values (e.g.
a location parameter requires a city name but is
given a country name) are used, leading to excep-
tions in executing APIs. (4) required parameters
are missing in the function calls.

Task-4: On the correctness of function calls.
When sufficient information is contained by the
user’s questions, most LLMs including Qwen-14b
have over 94% correct function calls, except Qwen-
7b achieving around 80%. These numbers are
pretty decent. We reckon the reason is most ex-
isting works focus on this setting while neglecting
the others.

Task-5: On the utilization of intrinsic knowl-
edge. We empirically notice that, in some exist-
ing works (e.g. Qin et al., 2023), fine-tuning LLMs
with tool use data makes the LLMs forget their orig-
inal capabilities in ordinary Question Answering
(QA) tasks. Fortunately, this did not happen in the
generic agents we evaluated. Intuitively, it is not
hard to achieve since QA is a more basic task for
generic LLMs. Even though, we still consider keep-
ing this aspect in our evaluation schema to remind
the phenomenon of over-fitting.

Task-6: On interpreting tool results. Overall,
these agents are good at interpreting tool results.
However, we still noticed a few typical errors by
them. In some cases, the LLMs fail to locate the de-
sired information, to some extent because of poor
readability of results. In addition, we find LLMs
have shortcomings in a kind of copy&paste capa-
bility of target information. This makes some infor-
mation that is sensitive to character-level precision
(e.g. URLs, longitude and latitude, long decimal
values, etc.) not useful anymore. Furthermore, we
find some APIs, e.g. searching APIs, return very
long results exceeding the max context length of
LLMs.

Task-7&8: On planning capability. We exam-
ine the planning ability of agents with two folds of
experiments. In the first fold of experiments, we
examine whether an agent can complete a low-level
task by manipulating APIs with dependencies. All
the evaluated agents have poor performance — even

GPT-4 has a success rate lower than 60%. We find
the Qwen models, even Qwen-72b, rarely have the
sense of starting with more basic APIs. It is very
challenging for the agents to manipulate APIs with
dependencies.

In the second fold of experiments, we check
whether an agent can outline a solid plan involving
tool use for a high-level task. We find these LLMs’
performance in decomposing a high-level task is
always decent. Though both settings require the
planning capability of LLMs, they impose very dif-
ferent challenges. For LLM-based agents, talking
is much easier than doing.

Next, we discuss a bit more from other angles.

On scaling law. Though not a new finding any-
more, the scaling law still applies in API manipu-
lation scenarios. The performance of Qwen series
reveals larger LLMs have better performance re-
garding almost every aspect of tool use capability.

On API design and quality of documentation.
The effect of API design and documentation quality
deserves more attention. A few concrete examples
are: (1) A tool with multiple APIs may introduce
its functionalities in its tool-level description while
giving very unclear API-level descriptions. (2) The
execution results of APIs have poor readability or
are too verbose. (3) The APIs with dependencies
seem too complex for the LLMs to use.

Despite getting some insights, we believe more
research on the API side needs to be done. One
question already inspired by our observations is: in
the era of LLMs, should we design new standards
for API design and documentation? It is a complex
problem and deserves dedicated research. We treat
it as future work.

5 Conclusion

The LLM community is driving towards an ambi-
tious vision: building a new Al ecosystem in which
LLM-based agents serve users by manipulating
millions of APIs. However, an evaluation mech-
anism for such agents is still missing, preventing
studies from proceeding in this area. In this work,
we narrow this gap by proposing a new evaluation
mechanism for generic LLM-based agents. We de-
signed a thorough evaluation mechanism schema
aiming to examine seven different aspects of tool
use capability. Also, we release one dataset and
one toolset, both designed to reflect real-world chal-
lenges. These resources can support the studies
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on improving LLM-based agents as well as a new
philosophy of API design. We evaluated five influ-
ential LLMs and shared findings and insights into
their tool use capability. The found weaknesses of
LLMs can indicate the future directions to go.

6 Limitations

When designing evaluation tasks, we did not in-
clude data involving multi-turn interactions with
users. Can the agents still formulate correct func-
tion calls by parsing information from multi-turn
dialogue? What the performance will be like if
the agents need to continuously request clarifica-
tion from the users? These problems cannot be
answered by our evaluation mechanism. Our eval-
uation mechanism does not provide an end-to-end
performance or an overall performance score.

In addition, in the landscape of generic agent
research, API retriever is critical. We assume the
existence of a good third-party API retriever. More
studies dedicated to API retrievers are suggested to
be done so that we can be closer to estimating the
overall performance of LLM-based agent systems.

7 Disclaimer

The toolset released by us is only for research pur-
poses. It is not for the usage of solving real-life
problems (e.g. checking flight prices).
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A An Example Illustrating Dependency
between APIs

Here, we show the specifications of three
APIs from RapidAPI - skyscanner80’ in List-
ing 1,2 and 3. Only necessary information
for showing the dependencies between APIs
is kept in these doc examples. To use API
flights_search_one_way, we need to first check
API flights_auto_complete for the IDs of the
origin and destination.  Afterwards, because
flights_search_one_way may not be able to re-
turn all the results at one time. More requests
to API flights_search_incomplete need to be
done to finalize fetching all flight data.

B Details of Toolset

The design of application scenarios, tool classes
and their functionalities can be found in Tab. 4.

C Details of Dataset Construction

C.1 Instruction data

In Fig. 6, we show the process of producing the five
types of instruction data. Taking the specification
of each API as input, the instruction data of type-I,
II, and III are initially generated with prompted
GPT#4 respectively, and then manually checked and
filtered. The type-I instructions belonging to APIs
without dependencies form the final type-I instruc-
tion data.

More complexly, the type-II and III instructions
are processed to, for example, replace placehold-
ers of files and URLs with real values. The folds
belonging to APIs without dependencies form the
final type-II and type-III instruction data, while
the other folds form the type-1V instructions after
manual selection.

To produce type-V instructions, we manually
combine some APIs that are coherent regarding po-
tential application scenarios. Then, as done for the

7https://rapidapi.com/datastore/api/
skyscanner8o

first three types of instructions, we prompt GPT4 to
generate initial instructions and follow them with
manual filtering to form the final type-V instruc-
tions.

C.2 Evaluation tasks and scoring methods

In Fig. 7, we show how the eight evaluation tasks
are synthesized from the five types of instruction
data. Some key points deserving sharing are: (1)
Most tasks except task-5 couple each instruction
with its corresponding API specification. (2) Task-
2 also has a few confusing tools according to their
semantic similarities of specifications with the cor-
rect tool. (3) Each data instance for Task 6 is a con-
versation history, consisting of an initial instruction,
a function call produced with GPT4 and double-
checked by humans, and the real execution result.
(4) Task-7 and 8 have multiple tools for each in-
struction. The dependency relationships and com-
binations are both manually crafted by analyzing
the API designs and functionalities of tools in our
toolset.

It is easy to derive the ground-truth labels for
task-1,2,3 and check the predictions of agents with
logical programs. Task-4,5,6,8 have flexible ex-
pected outputs. Thus, we prompt GPT4 to replace
human annotators for the automation of evaluation.
Task-7 is the most complex to examine. We prompt
GPT4 to check the responses of agents first. For
each failed answer, instead of simply assigning a
ZEro score, we measure its progress in solving the
task, by comparing the sequence of called tools
with a reference sequence of tools (manually la-
beled).

D Experimental settings

We access GPT-4-8K and GPT-3.5-turbo via API
and access Qwen1.5 series LLMs via local running.
We only ran the experiments of evaluating
generic agents once. The metrics values are av-
eraged within the evaluation data for each task.

E Performance of Agents

Tab. 5 contains the performance of two GPT ver-
sions and three Qwen1.5 versions in 8 evaluation
tasks.
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Listing 1: Documentation of flights_auto_complete API

"name”: "flights_auto_complete”,

"description”: "This endpoint is resposible for providing a list of

airports for the location”,

"parameters”: {

"query": {

"type": "STRING",

"description”: "Name of the location where the Airport is
situated. Ex: New York”

}

}

Listing 2: Documentation of flights_search_one_way API

"name”: "flights_search_one_way",

"description”: "This API helps to get the list of one-way flights.
Note:- In the event that the status is incomplete (data->context
->status=incomplete), you must utilize the api/vi/flights/search
-incomplete endpoint to retrieve the complete data until it's
complete (data->context->status=complete)."”,

"parameters”: {

"fromId"”: {

"type"”: "STRING",

"description”: ">fromId® can be retrieved from °
flights_auto_complete™ (data->id) Ex:
eyJzIjoiT1l1DQSIsImUiOiIyNzUzNzUOMiIsImgiOiIyNzUzNzUOMiJ9 (
New York)"

1,
"toId": {

"type": "STRING",

"description”: "“tolId"~ can be retrieved from °
flights_auto_complete”™ (data->id) Ex: eyJzIjoiTE9
ORCIsImUiOiIyNzUONDAwWOCIsImgiOiIyNzUONDAwWOCJ9 (London)”

1,
"departDate”: {
"type"”: "Date",
"description”: "Format: YYYY-MM-DD. Ex: 2024-06-01"
}
b
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Listing 3: Documentation of flights_search_incomplete API

"name" :

"description”:
flights_search_one_way,

] . {

"sessionId"”: {

n type n .

"description”:

"STRING",

"flights_search_incomplete”,

"Obtain complete data for the endpoint of

flights_search_roundtrip.
's status is complete (data->context->status=complete),
call the API multiple times”,

"parameters’

Until the item
you must

"sessionlId can be retrieved from

flights_search_one_way or flights_search_roundtrip (data->
context->sessionlId)"”

3
3
Table 4: Design of scenarios, tool classes, and API functionalities.

Scenario Tool Class Functionalities

weather realtime weather, weather forecast, astronomy info
. news news search, headlines

daily life - -
calendar public holidays, check month calendar
recipe search recipe
object detection recognize objects in image
ocr extract text in image

image processing

image translation

translate text in image

image file processing

compression, format conversion, resize

removing background

remove background

web capture

take image screenshot

travel

flight search one-way flights, search round-way flights,
check flight details and prices
accommodation search hotels, check hotel details, prices, and reviews

tourist attraction

search attractions, check details, photos and reviews
of attractions

currency exchange rate
airport check airport info
check codes language codes, country codes,
geocoding convert between address and coordinates
search web search, image search, video search, news search
python interpreter python interpreter
calculator math calculation
basic & general-purpose | translation translation
ip lookup check ip address

access user info

user profile, location

agent equipments

get current time
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Figure 7: How the evaluation tasks are synthesized and their corresponding scoring methods.

Table 5: Performance of generic agents on eight evaluation tasks.

Tasks \Agents GPT-4 | GPT-3.5 | Qwen-7b | Qwen-14b | Qwen-72b

Precision 0.98 0.96 0.53 0.75 0.96
Task 1 | Recall 0.99 0.75 0.82 0.97 0.97

F1-score 0.98 0.84 0.65 0.85 0.96
Task 2 | Accuracy 0.97 0.66 0.71 0.82 0.83
Task 3 | Percentage | 0.99 0.74 0.04 0.45 0.66
Task 4 | Precision 0.98 0.95 0.81 0.95 0.97
Task 5 | Relatedness | 0.98 0.93 0.88 0.93 0.96
Task 6 | Passing rate | 0.93 0.85 0.85 0.81 0.85
Task 7 | Progress 0.57 0.35 0.00 0.00 0.26
Task 8 | Passing rate | 0.99 0.98 0.94 0.95 0.98
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