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Abstract

The prevalent use of large language models
(LLMs) in various domains has drawn attention
to the issue of “hallucination”, which refers
to instances where LLMs generate factually
inaccurate or ungrounded information. Exist-
ing techniques usually identify hallucinations
post-generation that cannot prevent their oc-
currence and suffer from inconsistent perfor-
mance due to the influence of the instruction
format and model style. In this paper, we in-
troduce a novel pre-detection self-evaluation
technique, referred to as SELF-FAMILIARITY,
which focuses on evaluating the model’s famil-
iarity with the concepts present in the input in-
struction and withholding the generation of re-
sponse in case of unfamiliar concepts under the
zero-resource setting, where external ground-
truth or background information is not avail-
able. We also propose a new dataset Concept-
7 focusing on the hallucinations caused by
limited inner knowledge. We validate SELF-
FAMILIARITY across four different large lan-
guage models, demonstrating consistently su-
perior performance compared to existing tech-
niques. Our findings propose a significant shift
towards preemptive strategies for hallucination
mitigation in LLM assistants, promising im-
provements in reliability, applicability, and in-
terpretability1.

1 Introduction

The widespread adoption of Large Language Mod-
els (LLMs) has generated significant interest in
their applications across diverse use cases, e.g.,
healthcare and medicine. However, a major chal-
lenge hindering their full potential is the issue of
hallucination, where the models produce inaccu-
rate or fabricated information, leading to a substan-
tial gap in their reliability and trustworthiness and
often resulting in the generation of fact-conflicting

1code and data can be found in https://github.com/
soap117/Self-evaluation

User: I am writing a paper about the drug Skytrofa. 

GPT-3.5: That sounds interesting! Skytrofa (molgradex) is a medication
developed for the treatment of autoimmune pulmonary alveolar
proteinosis (aPAP). It's a rare lung disorder where a type of protein called
surfactant accumulates in the air sacs of the lungs, leading to breathing
difficulties.

Figure 1: A hallucination example. Red color indicates
the incorrect information.

outcomes (Zhang et al., 2023d). Figure 1 shows
an example to demonstrate the problem when a
user queries ChatGPT about a newly developed
drug “Skytrofa” that aims to treat short stature due
to inadequate secretion of endogenous growth hor-
mone.2 We can observe that ChatGPT generates
inaccurate responses on essential factors of this
drug.

Recently, several approaches have been pro-
posed to detect (and even correct) the hallucination
responses generated by LLMs in open conversa-
tions, which can be roughly classified into two
categories: The first category of methods hinges on
a third-party knowledge base, combined with the
Chain-of-Thought (CoT) technique, to identify and
rectify potential hallucination responses (Gou et al.,
2023; Zhang et al., 2023b; Min et al., 2023; Zhang
et al., 2023c; Mündler et al., 2023; Liu et al., 2024).
The other research direction focuses on designing
parameter-based methods (Manakul et al., 2023;
Min et al., 2023), which mainly utilize specific met-
rics such as perplexity to evaluate the correctness
of responses.

However, all the proposed methods exhibit sig-
nificant inadequacies in addressing hallucinations
due to a lack of internal knowledge. Firstly, the
methods mentioned primarily focus on the post-
detection of hallucinatory responses. These ap-
proaches require checking the responses to deter-
mine the hallucination level and lack the capability
to prevent the generation of such responses in the
future, thus diminishing reliability. Meanwhile,

2www.accessdata.fda.gov
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humans can easily avoid this problem by recog-
nizing inadequate knowledge. Besides, the perfor-
mance of existing methods is heavily influenced
by instructional techniques and model styles, lead-
ing to challenges in maintaining robustness across
diverse conversational scenarios. This complex-
ity hinders the establishment of a clear threshold
for distinguishing hallucinatory responses. For in-
stance, binary queries often elicit brief response
sequences, resulting in metrics that significantly
diverge from those obtained from more extensive
response sequences. Therefore, a proactive, pre-
ventative approach, similar to that of humans, is
essential for the practical and efficient application
of artificial intelligence (AI) language assistants in
preventing hallucinations.

Designing such an effective prevention method
faces several challenges. Firstly, the proposed
approach must navigate a zero-resource environ-
ment, precluding any reliance on external knowl-
edge gleaned from search engines. Neglecting this
imperative compromises the method’s universal-
ity and applicability, rendering it unsuitable for
situations with budgetary constraints or contexts
lacking external access. Consequently, a profound
comprehension of the language model’s intrinsic
knowledge becomes essential. Furthermore, the
task of ensuring robustness is of paramount sig-
nificance. The envisaged system must exhibit re-
silience against diverse instruction types, contex-
tual variations, and model styles. Given the open-
ended and dynamic nature of human language,
achieving consistent performance and unwavering
resilience across a wide array of scenarios presents
an undeniably formidable challenge.

To tackle these challenges simultaneously, we
propose a novel zero-resource, pre-detection
method named SELF-FAMILIARITY, illustrated
in Figure 2. This approach mimics human self-
assessment capabilities by refraining from dis-
cussing unfamiliar concepts, thereby reducing the
risk of creating hallucinated information. Initially,
our method extracts and processes concept entities
from the instruction during the Concept Extrac-
tion stage. Following this, the Concept Guess-
ing stage individually examines the extracted con-
cepts through prompt engineering to obtain each
concept’s familiarity score. Lastly, during the Ag-
gregation stage, the familiarity scores from dif-
ferent concepts are combined to generate the final
instruction-level familiarity score.

Compared to existing methods, our algorithm

presents the following advantages. Primarily,
SELF-FAMILIARITY integrates the strengths of
both CoT techniques and parameter-based meth-
ods. Like the CoT methods, our algorithm can offer
constructive responses by identifying concepts un-
familiar to the model. Yet, our algorithm solely
employs prompt engineering, eliminating the need
for the model to possess strong inference abilities
and avoiding their shortcomings while combining
their advantages. Additionally, our algorithm re-
mains unaffected by instruction style and type and
is proactive and preventative, thereby increasing
its reliability and robustness. Finally, it does not
require any outside knowledge.

We assessed our method across four large
language models using a newly proposed pre-
detection hallucinatory instruction classifica-
tion dataset, Concept-7, which focuses on the
hallucinations caused by limited inner knowl-
edge. Experimental results show that the pro-
posed SELF-FAMILIARITY3 consistently outper-
forms other methods across all models in address-
ing this type of hallucination, demonstrating its
huge application value.

2 Related Work

To the best of our knowledge, no existing work has
been devoted to preventing hallucinated responses
in open conversations by analyzing the understand-
ing of concepts within the instruction under the
zero-resource setting. Consequently, the contexts
we address are distinct from those of previous stud-
ies.

2.1 Hallucination Detection and Correction
Methods

Previous studies in hallucination detection and
correction mainly concentrated on conditional
text generation for specific tasks such as ab-
stract summarization (Maynez et al., 2020; Wang
et al., 2020a; Cao et al., 2021), image caption-
ing (Rohrbach et al., 2018; Biten et al., 2022), di-
alogue generation (Shuster et al., 2021), machine
translation (Zhou et al., 2020; Wang and Sennrich,
2020), and table-to-text generation (Wang et al.,
2020b, 2021). Since these works are highly task-
specific, they fail to tackle hallucination issues in
open conversations.

3The data and code can be found in supplementary materi-
als.
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For an open conversation setting, the method-
ologies are typically categorized into two groups
based on the employed strategies. The first group
utilizes the Chain of Thoughts (CoT) or prompt pro-
gramming to evaluate and amend responses (Lee
et al., 2022; Gou et al., 2023; Zhang et al., 2023b;
Min et al., 2023; Peng et al., 2023; Huang et al.,
2023; Xie et al., 2023; Yue et al., 2023; Wang
et al., 2023; Lian et al., 2023; Zhao et al., 2023;
Dhuliawala et al., 2023; Wang et al., 2024). A
noteworthy example is CRITIC (Gou et al., 2023),
wherein a CoT process is deployed with sup-
plementary inputs from an external search en-
gine similar to the retrieval-augmented generation
(RAG) (Lewis et al., 2020) to enhance response
quality. Certain works do not necessitate external
knowledge (Zhang et al., 2023c; Mündler et al.,
2023; Ji et al., 2023), often directly asking the
model to assess the output’s faithfulness. Nonethe-
less, such methods can be limited as they are engi-
neered for specific responses, and highly depend on
the inner inference ability of the model. Another
challenge lies in the fact that the algorithm out-
put is usually free text, which can make the actual
classification threshold ambiguous.

The second category of methods (Manakul et al.,
2023; Min et al., 2023; Zhang et al., 2023a; Choi
et al., 2023; Chen et al., 2023) emphasizes using
language model parameters, such as token probabil-
ity sequence, to determine the hallucination level.
These methods generally exhibit superior general-
ization capability and can provide precise output
scores. Self-check GPT (Manakul et al., 2023)
pioneers the use of parameter-based methods for
open-ended text generation. In Self-check GPT, the
perplexity, sampling, and unconditional probabil-
ity are used together to estimate the hallucination
level. However, this work only assesses biography-
related issues, and compared to CoT techniques,
the model’s interpretability is significantly reduced.

2.2 Hallucination Detection Datasets
Current datasets for hallucination detection in open
conversations majorly focus on post-detection sce-
narios. In these datasets (Lin et al., 2021; Liu et al.,
2022; Muhlgay et al., 2023; Li et al., 2023; Man-
akul et al., 2023; Min et al., 2023; Mündler et al.,
2023; Zhang et al., 2023c), the task involves select-
ing the correct response or ascertaining whether re-
sponses are incorrect. However, these datasets are
subject to certain constraints. To begin with, the fo-
cus of existing datasets is on post-detection, which

fails to replicate real-world scenarios where LLMs
might not generate the false responses present in
these datasets. Even if a model can accurately clas-
sify a specific hallucinated response, it does not
guarantee that the model will refrain from generat-
ing a different hallucinated response in the future.
In addition, the previous datasets generally provide
a mixed setting of different hallucination causes,
we also need to assess model performance on hal-
lucinations due to a lack of knowledge. Therefore,
it is important to create a new dataset used for vali-
dating the pre-detection setting on hallucinations
caused by lack of knowledge.

3 Methodology

The aim of our algorithm is to evaluate if the target
instruction PT is a potential hallucinatory instruc-
tion by checking the familiarity of the language
model with the concepts that exist in the PT un-
der the zero-resource setting. Our method, as de-
picted in Figure 2, comprises three major steps:
(1) Concept Extraction, (2) Concept Guessing, and
(3) Aggregation. The details of each step will be
elucidated in the subsequent sections.

3.1 Concept Extraction
To assess familiarity, it is necessary to first extract
the concept entities from the free-text instruction,
otherwise, the score will be greatly influenced by
the “noise,” i.e., the stylistic and formatting ele-
ments of the instruction that do not contribute to
its understanding. For example, the transforma-
tion of the question “Can sound travel in a vac-
uum?” into the statement “Sound can travel in a
vacuum. Please judge the statement.” doesn’t alter
the knowledge requisite, but it can substantially
modify the style of the subsequent response. In ad-
dition, if the instructions contain multiple concepts,
it will greatly increase the difficulty of the follow-
ing prompt engineering. By isolating and individ-
ually evaluating these concepts, we can minimize
such stylistic influence, thereby enhancing the ro-
bustness of subsequent procedures. We achieve this
extraction through the utilization of a Named Entity
Recognition (NER) model on the given instruction:

[c1, · · · , cN ] = NER(PT ). (1)

We consider these extracted entities [c1, · · · , cN ] to
be the key concepts of the instruction. N stands for
the number of extracted concepts. However, NER
models frequently produce extraneous noise and

3588



German operation overload 

blitzkrieg attack
0.3

Is part of the operation overload 0.4

blitzkrieg attack during world 

war II is Operation overload 
0.5

… …

What is the purpose of Operation Overload in World War II?

Concept Extraction Operation Overload 

is part of the 

German blitzkrieg 

attack …

Explain the 

“Operation Overload” 

within one short 

paragraph.

Concept Explanation

Concept Inference

Language 

Model

Masking

What is related to 

“[MASK] is part of 

the German 

blitzkrieg attack …”?

Selecting Max Score

by Constrained 

Beam Search

by Greedy Search

“[MASK] is part of the 

German blitzkrieg attack …”

… …

Concept Frequency 

Score Calculation

Weighted Averaging

…

Prevention

Concept Guessing

C
o
n

ce
p

t 

E
x
tr

a
ct

io
n

A
g

g
re

g
a

ti
o

n
Operation 

Overload

Language 

Model

< h?
Yes Output

Response

No

Familiarity 

Score

…

Figure 2: Example procedure of the SELF-FAMILIARITY.

fail to completely capture some concepts. Conse-
quently, we introduce subsequent processing steps
to refine these extracted concepts, as outlined in
the following sections.

Concept Grouping. The extracted concepts fre-
quently exhibit a degree of incompleteness. For
instance, the term “2023 United States debt-ceiling
crisis” could be inadvertently divided into [“2023”,
“United States”, “debt-ceiling crisis”]. To address
this issue, we propose to sequentially fuse the adja-
cent concepts. We sort the concepts based on their
position in PT and attempt to fuse one concept
with the adjacent concept, if the newly combined
concept is found within the original PT , we inte-
grate the original pair to create an extended, unified
concept.

Concept Filtering. After merging the concepts,
the subsequent step entails the exclusion of simple
concepts that should not be examined to improve
efficiency. These include common concepts such
as “year” and “age”, which are generally well com-
prehended by the models. To address this, we iden-
tify the top frequently used words in Wiktionary4,
which we designate as “common concepts.” Any
concepts encompassed within these common words
are subsequently eliminated.

3.2 Concept Guessing

Our next task is to examine the familiarity of the
Language Model (LM) with the extracted concepts
in a zero-resource setting. Undertaking this task
in a zero-resource setting magnifies its complex-
ity, as it precludes reliance on external concept

4https://en.wiktionary.org/wiki/Wiktionary:
Main_Page

knowledge. As such, comparing the model’s un-
derstanding with an established gold definition to
derive results becomes an impracticable approach.
Meanwhile, a direct query to the model regard-
ing its familiarity with specific methods, such as
CoT, presents one possible solution. However, this
approach demands a robust inference capability
on the part of the model and frequently results in
ambiguous responses. Consequently, there is a
need for a more universally applicable and precise
method.

In response to this need, we introduce a novel
self-evaluation technique, denoted as Concept
Guessing. Our approach begins by prompting the
model to generate an explanation for a given con-
cept. Subsequently, through prompt engineering,
we ask the model to recreate the original concept
based on this explanation. Should the model gener-
ate the initial concept successfully, the probability
score of the response sequence can be interpreted
as the connection strength between the concept and
the explanation, serving as a familiarity score. This
entire process can be likened to a specialized Cha-
rades or Pictionary game. If a language model can
proficiently derive the original concept from its
generated explanation, this not only suggests the
sufficiency of the explanation but also reflects the
model’s adeptness with the concept. Importantly,
our method does not necessitate the acquisition of
a gold definition of the concept. We outline the fol-
lowing steps to transform this conceptual approach
into a standardized metric:

3.2.1 Concept Explanation
First, we use a standard explanation prompt PE

in conjunction with the target concept ci to query
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the tested LM. This inquiry prompts the LM to
generate an explanation for each concept through
greedy search (GreedySearch), which selects the
next word with the highest probability to generate
the response. This process continues until it en-
counters the end of the sentence token or reaches
the maximum defined length, denoted as lF :

Ri = GreedySearch(LM(PE ⊕ ci)), (2)

where ⊕ denotes inserting ci into the pre-defined
position of PE . In many scenarios, the original
concept may be directly incorporated into the gen-
erated explanation, as illustrated in Figure 2. Con-
sequently, the model could simply “copy” the orig-
inal concept to “cheat”. To prevent this, we mask
the words of the ci within the Ri:

R∗
i = Mask(Ri). (3)

3.2.2 Concept Inference
Given the masked explanation R∗

i and the concept
inference prompt represented by PI , we can ask the
model to generate the original concept ci. However,
the response from the model is produced as open-
ended free text, which poses a challenge when at-
tempting to transform it into a standard score. Con-
sider an instance where the model might correctly
generate the original concept, but in a different
format such as “Coca-Cola’s biggest competitor”
rather than “Pepsi”. This discrepancy complicates
the determination of whether the original concept
has been successfully regenerated. To resolve this,
we apply the constrained beam search (ConsBeam-
Search) (Anderson et al., 2017) approach, instruct-
ing the model to seek responses incorporating the
original concept through beam search and provid-
ing the probability score of the responses in the
meanwhile:

[< R1
i , s

1
i >, · · · , < RTB

i , sTB
i >]

=ConsBeamSearch(LM(PI ⊕R∗
i ), ci),

(4)

where each < Rj
i , s

j
i > corresponds to a response

Rj
i including the concept entity ci

5, with sji rep-
resenting the corresponding response probability
score. TB is the beam search size of the ConsBeam-
Search algorithm. We set the stopping criteria to hit
the end of the sentence token or reach the maximum
length lB . Beam search will return multiple results,
however, the understanding of the model is only

5We consider the lowercase, uppercase, and capitalized
forms.

related to the highest one. Therefore, we choose
the highest response score, si, from [s1i , · · · , sTB

i ]
as the familiarity score of the concept ci:

si = Max(s1i , · · · , sTB
i ). (5)

3.3 Aggregation
In many situations, the number of final extracted
concepts can be greater than one. As a result, we
need to rank the importance of each concept and
merge the familiarity scores of the concepts based
on their importance to generate a final, instruction-
level outcome.

3.3.1 Concept Frequency Score
In order to evaluate the importance of a concept,
we propose a method for calculating a score based
on the frequency rank of words contained within
that concept. Our expectation is that the concept
with more infrequent words will correspond to a
lower score fi. To do so, we retrieve the frequency
rank pji of the j-th word of concept ci from the
Wiktionary. We set the index to the length of the
dictionary if the word is outside the dictionary or is
capitalized. Given that word distribution tends to
follow a long-tail distribution, we employ the ex-
ponential function to transform the frequency rank
back to a frequency score and multiply them to-
gether to obtain the concept level frequency score:

fi =

Mi∏

j=1

e
−p

j
i

H . (6)

Here, Mi is the number of words in concept ci. The
term H is introduced as a normalization factor to
guarantee that the resulting score resides within a
reasonable range.

3.3.2 Weighted Aggregation
Next, we average the familiarity scores based on
their frequency scores through a weighted average.
This approach offers robustness in multi-entity sit-
uations when compared to simply selecting a sin-
gle score as the final value. To make the impor-
tant parts contribute more than the less important
tail parts, we establish a geometrically decreasing
weighting scheme with a ratio of 1

r :

sf =

∑N
i=1 (r

θ(fi))
−1

si∑N
i=1 (r

θ(fi))
−1 . (7)

Here, θ(fi) denotes the rank position of the fi
within [f1, · · · , fN ] when sorted by magnitude of
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Table 1: Statics information of the Concept-7 dataset.

# of basic concepts 192
# of basic instructions 451
# of test concepts 180
# of real test concepts 106
# of fictional test concepts 74
# of test instructions 515

fi. We utilize the derived sf to represent the hal-
lucination level of the instruction and terminate
the response process if the score falls below the
predetermined threshold h.

4 Experiments

In this section, we introduce the experimental set-
tings and results. Due to space limitations, we in-
clude the implementation details, dataset creation,
and additional experiment results in appendix.

4.1 Dataset

Most existing datasets predominantly concentrate
on the classification of hallucinatory responses. To
effectively evaluate our method, we introduce the
Concept-7 dataset, which focuses on the classifi-
cation of potential hallucinatory instructions re-
sulting from the model’s limited inner knowledge.
This dataset encompasses 192 basic concepts with
451 basic instructions and 180 test concepts with
515 test instructions sourced from seven expert do-
mains. A comprehensive overview of the dataset is
displayed in Table 1. The creation details can be
found in Appedix B.

4.2 Baseline Methods

Considering that prior methodologies primarily fo-
cused on the detection of hallucinatory responses,
their settings could not be directly applied in this
context. Nevertheless, we strived to adjust these
settings to establish the following baseline meth-
ods. Owing to space limitations, we only discuss
the core concepts here, leaving comprehensive de-
tails of each baseline method for the Appendix C.
It is important to note that as our focus lies on zero-
resource prevention settings, we excluded methods
that necessitate external knowledge.

• Greedy-Perplexity: For each input, we utilize
greedy search to generate a response and then
calculate the response’s perplexity. The nega-
tive perplexity score is considered the familiarity
score, similar to the approach in (Manakul et al.,
2023).

• Greedy-AvgLogp: For each input, we utilize
greedy search to generate a response and then
calculate the response’s average log token proba-
bility score, similar to the approach in (Manakul
et al., 2023).

• Greedy-MinLogp: Similar to Greedy-AvgLogp,
but take the minimal probability score, akin to
(Manakul et al., 2023).

• Sample-BERTScore: We sample TS re-
sponses from the prompt and evaluate the
BERTScore (Zhang et al., 2019) similarity be-
tween each pair of sentences. We then select the
sentence with the highest average similarity score
to the remaining sentences as the central sentence.
The highest average similarity is treated as the
familiarity score, following the method in (Man-
akul et al., 2023; Zhang et al., 2023a).

• Sample-SentenceScore: Like Sample-
BERTScore, we sample TS responses from
the prompt and compare their sentence em-
bedding cosine similarity, as calculated by a
Sentence-BERT (Reimers and Gurevych, 2019)
encoder.

• Self-Detection: A sampling method based on
consistency of the responses of the paraphrased
questions (Zhao et al., 2023). We sample TS

questions and applied the Self-detection to calcu-
late the consistency score.

• Forward-Inference: We directly inquire if the lan-
guage model recognizes the domain-related con-
cepts within the instruction, resembling the CoT
methods (Zhang et al., 2023c; Mündler et al.,
2023). The likelihood of a “Yes” response se-
quence is considered the familiarity score.

• Forward-Self: We use the same model to evaluate
if the generated response answers the question
correctly (Ji et al., 2023; Madaan et al., 2023).
Similar to the forward inference, we use the like-
lihood of “Yes” or “No” responses as the famil-
iarity scores.

4.3 Tested Large Language Models

In order to enable an in-depth comparison between
different styles of instruction-aligned large lan-
guage models, we have selected five distinct mod-
els for evaluation: Vicuna-13b-v1.3 (Zheng et al.,
2023), Llama-2-13b-chat (Touvron et al., 2023),
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Table 2: Hallucinatory instruction classification results on the five models.

Model Metric
Greedy-

Perplexity
Greedy-
AvgLogp

Greedy-
MinLogp

Sample-
BERTScore

Sample-
SentenceScore

Self-
Detection

Forward-
Inference

Forward-
Self

SELF-FAMILIARITY

Vicuna-13b-v1.3

AUC 0.867 0.806 0.760 0.872 0.831 0.765 0.809 0.611 0.927
ACC 0.497 0.676 0.604 0.779 0.718 0.524 0.720 0.538 0.868
F1 0.651 0.728 0.693 0.807 0.757 0.000 0.744 0.653 0.854

PEA 0.266 0.393 0.398 0.640 0.628 0.541 0.402 0.313 0.693

Llama-2-13b-chat

AUC 0.885 0.720 0.641 0.775 0.779 0.517 0.322 0.621 0.909
ACC 0.526 0.561 0.518 0.666 0.660 0.474 0.561 0.600 0.835
F1 0.664 0.672 0.651 0.721 0.708 0.569 0.124 0.670 0.812

PEA 0.407 0.343 0.324 0.552 0.636 0.097 0.124 0.325 0.598

Falcon-7b-instruct

AUC 0.697 0.621 0.631 0.666 0.656 0.532 0.511 0.516 0.926
ACC 0.487 0.381 0.670 0.416 0.421 0.470 0.330 0.377 0.882
F1 0.553 0.504 0.000 0.526 0.527 0.464 0.495 0.462 0.822

PEA 0.299 0.180 0.227 0.180 0.270 0.003 0.099 -0.009 0.687

mpt-7b-instruct

AUC 0.639 0.558 0.621 0.724 0.736 0.530 0.638 0.500 0.921
ACC 0.616 0.384 0.616 0.497 0.480 0.416 0.470 0.410 0.850
F1 0.000 0.555 0.000 0.602 0.590 0.542 0.563 0.539 0.817

PEA 0.182 0.034 0.170 0.299 0.326 0.083 -0.081 -0.039 0.661

Alpaca-7b

AUC 0.701 0.641 0.591 0.650 0.653 0.523 0.520 0.546 0.918
ACC 0.470 0.454 0.460 0.517 0.497 0.503 0.515 0.452 0.866
F1 0.614 0.590 0.596 0.634 0.621 0.526 0.432 0.599 0.848

PEA 0.314 0.204 0.121 0.196 0.265 0.130 0.070 0.123 0.685

Falcon-7b-instruct (Almazrouei et al., 2023), mpt-
7b-instruct 6, and Alpaca-7b (Taori et al., 2023).
Given our approach’s requirement for constrained
beam search generation control, models that exclu-
sively offer API access were not considered.

4.4 Evaluation Metrics

We adopt the area under the curve (AUC), accuracy
(ACC), F-score (F1), and the Pearson Correlation
Coefficient (PEA) between the predicted and anno-
tated familiarity scores.

4.5 Results on Instruction Setting

We begin our discussion by analyzing the halluci-
natory instruction classification results presented
in Table 2. The table reveals two primary insights.
Firstly, apart from our method, all other baseline ap-
proaches demonstrate notable performance incon-
sistency across the various models tested. Further-
more, the favored methods among different Lan-
guage Models (LMs) significantly differ from one
another. As highlighted in the introduction, many
current methods are easily influenced by model
styles. As a consequence, the performance of cer-
tain methods can vary based on the models in use.
This variability renders these methods less versa-
tile across different settings. A notable example is
the Forward-Inference method. While it showcases
commendable performance on Vicuna-13b-v1.3,
its efficacy diminishes with other models. This ob-
servation supports the hypothesis that techniques
like the CoT or prompt programming, though of-
ten capable of delivering high-quality results, are

6https://github.com/mosaicml/llm-foundry/

Table 3: Human annotated result evaluation.

Methods Vicuna-13b-v1.3
AUC ACC F1 PEA

Greedy-Perplexity 0.847 0.511 0.665 0.201
Greedy-AvgLogP 0.781 0.674 0.730 0.300
Greedy-MinLogp 0.733 0.493 0.661 0.264
Sample-BERTScore 0.838 0.753 0.789 0.494
Sample-SentenceScore 0.792 0.701 0.746 0.543
Self-Detection 0.739 0.493 0.661 0.426
Forward-Inference 0.766 0.691 0.762 0.290
Forward-Self 0.585 0.493 0.661 0.211
SELF-FAMILIARITY 0.892 0.827 0.813 0.526

heavily reliant on the model’s intrinsic CoT ca-
pacity. Since many LMs aren’t specifically fine-
tuned for this purpose, it restricts their widespread
utility. On the other hand, Greedy-Perplexity per-
forms well across various models but fails to detect
any hallucinated instructions on mpt-7b-instruct,
resulting in an F1 score of 0. This underscores
the idea that even parameter-based methods are
not immune to robustness issues. Similarly, other
methods exhibit this same challenge. In contrast to
existing approaches, our method not only delivers
superior performance but also ensures consistent
results across various LMs. Additionally, the PEA
correlation score demonstrates that the evaluations
produced by our algorithm align closely with the
familiarity scores based on gold explanations of
concepts. These results underscore the robustness
and reliability of our proposed approach.

4.6 Human Evaluation Results

In addition to evaluations based on GPT-4, we fur-
ther utilized crowd-sourcing for the annotation of
the concept familiarity scores for Vicuna-13b-v1.3
and then assessed these human-annotated results.
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Table 4: Entity processing ablation study

Methods Vicuna-13b-v1.3
AUC ACC F1

SELF-FAMILIARITY 0.927 0.868 0.854
W/O Grouping 0.918 0.856 0.841
W/O Filtering 0.923 0.856 0.841
W/O Ranking 0.926 0.86 0.845
Minimal Only 0.902 0.808 0.767
Most Infrequent Only 0.921 0.866 0.858

The outcomes are delineated in Table 3. The out-
come and ranking of different methods are similar
to the GPT-4 based results, proving the effective-
ness of our auto-evaluation methodology utilizing
GPT-4. Finally, under the human-based evaluation,
our approach still consistently exhibits outstanding
performance across all evaluated metrics.

4.7 Ablation Study
In this section, we present an ablation study in Ta-
ble 4 to examine the contribution of the proposed
concept processing methods and score aggregation
methods to the overall performance of our model.
We first examine the different concept processing
strategies. The following notations represent dif-
ferent configurations of our algorithm: (1) W/O
Grouping denotes processing without grouping
the extracted concepts. (2) W/O Filtering denotes
processing without filtering out common concepts.
(3) W/O Ranking means that concepts are not
ranked based on their frequency scores. Instead,
the position of the concepts within the instruction
determines their order. Results indicate that exclud-
ing any of these techniques leads to a drop in final
performance. This underscores the efficacy of each
proposed processing strategy.

Next, we benchmark the efficacy of other
instruction-level familiarity scores aggregation
techniques against our weighted averaging method:
(1) Minimal Only selects the smallest concept fa-
miliarity score as the final outcome. (2) Most In-
frequent Only chooses the familiarity score of
the concept with the least frequency score fi as
the final result. It is evident from the table that
our proposed method demonstrates the best over-
all performance except for the F1 metric. This is
attributable to its capability of accounting for both
the importance rank of the diverse concepts and the
aggregate performance. Conversely, the other two
methods solely consider segments of the concept
familiarity scores.

4.8 Case Study
In this section, we perform a real-world case study
on the medical domain to demonstrate the appli-

User: What is the usage of recently approved Beyfortus?

Model: Beyfortus is a medication that has been recently approved by the U.S. 

Food and Drug Administration (FDA) for the treatment of type 2 diabetes.

Guard: Explain the "Beyfortus" within one short paragraph. 

User: What is the usage of recently approved Beyfortus?

Model: Beyfortus is a hypothetical term that combines the words "beyond" and 

"fortune." …

Guard: "... is a hypothetical term that combines the words "beyond" and 

"fortune." …" is related to what? 

Model: The term "beyondwealth" is related to the idea of achieving a higher level 

Beyfortus

Familiarity score: 0.681 

Guard: The model’s familiarity score of “Beyfortus” is below the standard value, 

search for additional information for “Beyfortus”.

Search Engine: “Today, the U.S. Food and Drug Administration approved 

Beyfortus (nirsevimab-alip) for the prevention of Respiratory Syncytial Virus 

(RSV) …”

Model: Beyfortus (nirsevimab-alip) is a recently approved medication used for 

the prevention of Respiratory Syncytial Virus (RSV) lower respiratory tract 

disease in neonates and infants born during or entering their first RSV season, …

Self-Familiarity

Enhance with Search Engine

Providing Background

Concept Explanation

Concept Inference

Protective Intervention

--------------------------------------------Without Guard----------------------------------------------

------------------------------------------------With Guard-----------------------------------------------

Searching Online

Masking

Figure 3: The Red color denotes misinformation, while
Green signifies correct information. Blue is the concept
and Gold is the generated explanation. The tested model
is Vicuna-13b-v1.3.

cability of our algorithm in preventing hallucina-
tions. More cases can be found in Appendix H.
The details can be found in Figure 3. “Beyfor-
tus”7 is newly approved drug. We initially exam-
ine the response in the absence of our algorithm
in “Without Guard”, wherein the model unhesi-
tatingly disseminates misinformation. This kind
of misinformation is challenging to detect unless
one proactively seeks the underlying background
information. Subsequently, in “With Guard”, our
algorithm serves as a guard, assisting us in eval-
uating the model’s comprehension of “Beyfortus”
utilizing the SELF-FAMILIARITY. It is evident
that the model encounters considerable difficulty in
generating a response associated with “Beyfortus”
based on the masked explanation. This is because
the model lacks an intrinsic learned connection be-
tween the concept and the fabricated explanation.
Furthermore, we can readily address these issues
by introducing background knowledge of unfamil-
iar concepts. In the subsequent step, the search
engine is activated to retrieve information related
to “Beyfortus” as background data, and the model
is then capable of rendering the correct response.

7www.fda.gov
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These results suggest that our approach is not only
potent in prevention but can also offer great inter-
pretability and serve as a valuable tool in correcting
hallucinated responses.

5 Conclusion

We introduced a novel pre-detection method for
potential hallucination instruction, which we re-
fer to as SELF-FAMILIARITY. Our approach
leverages Concept Guessing to assess the model’s
quality of concept explanation, thereby determin-
ing the model’s level of understanding. SELF-
FAMILIARITY consistently achieves state-of-the-
art results in the pre-detection of hallucinatory in-
struction across distinct language models using
only self-evaluation under the zero-resource setting.
Additionally, our method demonstrates superior in-
terpretability by identifying the concept that led to
the hallucination. This unique feature enables the
integration of our method with post-detection and
correction techniques, enhancing its versatility. In
future work, we plan to investigate how to evaluate
the understanding of more granular sub-concepts
to further refine the current algorithm.

Limitations

As outlined in the introduction, our approach is
primarily centered on addressing hallucinations re-
sulting from insufficient internal knowledge. Con-
sequently, it is important to note that our methodol-
ogy is not equipped to handle hallucinations stem-
ming from erroneous beliefs or flawed reasoning.
However, it still shows advanced performance in
addressing the general setting. Additionally, we
face challenges in instances where the extraction
of named entities is unsuccessful or in situations
with complex attributions. In such cases, it may
become necessary to identify and assess all entities
mentioned in the instructions. This requirement
can lead to a substantial increase in inference time.
Looking ahead, our future work will focus on de-
veloping more sophisticated algorithms capable of
effectively managing scenarios involving ambigu-
ous or "fuzzy" entities.
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A Prompts

Figure 4, Figure 5 and Figure 6 are the prompts
applied in our SELF-FAMILIARITY.

B Dataset Creation

In the subsequent section, we delve into the
specifics of dataset construction.
• Concept Selection. Initially, we select 192 fun-
damental concepts, guided by the popular pages on
Wikipedia8 and domain diversity. These concepts
are considered universally known for all language
models and serve as a benchmark for the classifica-
tion of familiar concepts. For the test concepts, we
choose 106 concepts from seven expert domains:
Medical, Finance, Music, Art, Legal, Physics, and
History. To maintain a balanced proportion be-
tween familiar and unfamiliar concepts, we fabri-
cate 74 fictional concepts built upon real ones. As
these fictional concepts don’t exist, they’re inher-
ently deemed unfamiliar to all language models.
However, as the training sources vary for each lan-
guage model, it is necessary to annotate familiarity
scores for the real concepts for each model under
test.
• Familiarity Annotation. To assign familiarity
scores, we propose a comparison between a crafted
gold explanation of concepts and each language
model’s generated explanation. This familiarity
assessment is conducted automatically via GPT-4.
We instruct GPT-4 to provide a familiarity score
for the model in relation to the concept on a scale
of “1-9”, as described in Appendix A. A threshold
of “5” is chosen; concepts with a score exceeding
“5” are deemed familiar, whereas those scoring less
are deemed unfamiliar. Concepts scoring exactly
“5” are manually reviewed for final labeling. Ad-
ditionally, we employ Amazon Mechanical Turk9

to gather pure human annotation results for the
highest-performing model as a secondary evalua-
tion method, ensuring the effectiveness of the GPT-
4 annotated results. For human-annotated results,
we have three different annotators for each concept
and the final label is decided based on the average
score. If the average score happens to be “5”, a
majority vote is applied to decide the label. We
follow the instructions of the platform to set the
payment and collect the data.

8https://en.wikipedia.org/wiki/Wikipedia:
Popular_pages

9https://www.mturk.com/
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Using the background information provided, assess the participant's understanding of the target concept from their explanation. 
Please provide a rating between 1 and 9, with 9 being the best score (9 = Excellent, 5 = Average, 1 = Poor).

Concept:

{concept}

Background:

{background}

Participant's Explanation:

{response}

Scoring Guide:

Award a score of "7-9 (Excellent)" if the participant's explanation of the concept is correct, with the inclusion of essential 
details demonstrating a comprehensive understanding of the concept. Minor inaccuracies can be ignored.

Award a score of "4-6 (Average)" if the participant's explanation of the concept is partially correct but lacks essential details.

Award a score of "1-3 (Poor)" if the participant's explanation of the concept is incorrect or includes obvious errors.

The term "essential details" refers to those details that only someone knowledgeable in this concept would suggest or that 
capture the core idea of the concept. These details cannot be deduced from a simple literal understanding.

Please note that the length of the explanation is not a determinant of the score. A concise yet accurate explanation with 
essential details is worthy of a high score.

Your Score (please provide a number between 1 and 9):

Figure 4: Scoring prompt used by GPT-4 and human annotators for annotating the familiarity score.

Please list two open-ended questions and one yes or no question that a user may ask about the following concept in the 
{domain} domain. Please number your questions as follows: 1., 2., and 3.

Note that the questions should be highly relevant to the concept and not involve the second concept.

Concept:

{concept}

Questions:

Figure 5: Question generation prompt used by GPT-3.5 for generating the instructions.

Analyze the provided question, identifying and extracting all named entities in {domain} domain. The output should include 
only the exact named entities from the text, without any additional details or modifications. Refrain from adding any further
explanatory information or details. Remember, standard nouns don't qualify as named entities.

Return them in the order of importance.

Question:

{question}

Named Entities (separated by a comma and return in the order of importance):

Figure 6: Named entity extraction prompt used by GPT-3.5 for extracting entities from the general instructions.
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• Generating Instructions To replicate general
conversational scenarios, we use a prompt (as
shown in Appendix A) to generate three related
questions for each concept via GPT-3.5. This in-
cludes two open-ended questions and one yes-or-no
question. We subsequently discard questions that
fail to mention the original concept to maintain
strong relevance. Instructions comprising unfamil-
iar concepts are regarded as hallucinatory instruc-
tions.

C Baselines

C.1 Greedy-Perplexity
A model with higher perplexity typically indicates
greater uncertainty in its responses, which can sug-
gest potential hallucinations. Initially, the response
is generated using Greedy Search:

R = GreedySearch(LM(PT )) (8)

Subsequently, the perplexity score of response R
is determined:

s = −Perplexity(R) (9)

The inverse of this perplexity score is considered
the faithfulness score.

C.2 Greedy-AvgLogp
Lower probability values generally signify that the
model is more uncertain, hinting at a potential hal-
lucination. The response is generated using Greedy
Search:

R = GreedySearch(LM(PT )) (10)

The probability sequence of R is then determined:

P = ProSeq(R) (11)

The mean log value of P is computed as:

s = Avg(log(P)) (12)

This average, s, is considered the faithfulness
score.

C.3 Greedy-MinLogp
This method mirrors the Greedy-AvgLogp but em-
ploys the minimal score. The response generation
and probability sequence determination are consis-
tent:

R = GreedySearch(LM(PT )) (13)

P = ProSeq(R) (14)

The minimum log value of P is:

s = Min(log(P)) (15)

Here, s denotes the faithfulness score.

C.4 Self-Detection
Self-Detection (Zhao et al., 2023) is a method
based on sampling. It rephrases the original ques-
tion to generate different variants and later evaluate
the similarity of the generated responses of the
rephrased questions and performs the clustering to
calculate the entropy of the responses. A higher
entropy indicates that the model is more uncertain
about the answer. Please refer to the original paper
for the implementation details.

C.5 Sample-BERTScore
If there is high similarity between generated re-
sponses, it indicates the sampled responses are con-
sistent. Conversely, diverse responses suggest the
model’s uncertainty about the instruction. We first
sample Ts responses based on the instruction:

[R1, · · · , RTs ] = Sample(LM(PT )) (16)

Next, we compute the similarity between any two
responses:

ssimi,j = BERTScore(Ri, Rj) (17)

For each response, we calculate the aver1age simi-
larity to all the responses:

ssimi =
1

m

m∑

j=1

ssimi,j (18)

Each response’s average similarity to all others
is determined, with the highest average similarity
representing the final score:

s = max(ssim1 , · · · , ssimTs
) (19)

C.6 Sample-SentenceScore
Similar to the Sample-BERTScore, the only dif-
ference is that we use the sentence transformer to
obtain the sentence embedding of each sampled
response Ri:

ri = SentenceTransformer(Ri) (20)

Next, we utilize the Cosine Similarity to obtain the
similarity score between any two responses based
on the sentence embedding:

ssimi,j = CosineSimilarity(ri, rj) (21)

The following parts are identical to Eq.(18)-(19).
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C.7 Forward-Inference

We directly ask if the model is familiar with the
concepts through the following prompts:

• PD (concept only): "Are you familiar with the
{concept} in {domain}? Answer yes or no."

• PD: "Are you familiar with all the {domain} con-
cepts in "{instruction}"? Answer yes or no."

R = GreedySearch(LM(PD)) (22)

Based on the response, we calculate the hallucina-
tion score based on the overall probability score of
the response R:

s =

{
Prob(R), "Yes" in R

1− Prob(R), else
(23)

Note that keywords are considered in their lower-
case, uppercase, and capitalized forms.

C.8 Forward-Self

We first obtain the response RT of the original
instruction PT from the model:

RT = GreedySearch(LM(PT )) (24)

We then directly ask the same model if the response
RT from the model answers the instruction PT

correctly using the following prompts:

• PD (concept only): "Please evaluate if the given
response: {response} explain the {concept} in
{domain} correctly? Answer yes or no."

• PD: "Please evaluate if the given response: {re-
sponse} answer the question: {instruction} cor-
rectly? Answer yes or no."

R = GreedySearch(LM(PD)) (25)

Based on the response, we calculate the hallucina-
tion score based on the overall probability score of
the response R:

s =

{
Prob(R), "Yes" in R

1− Prob(R), else
(26)

Note that keywords are considered in their lower-
case, uppercase, and capitalized forms.

D Implementation Details

For all baselines, we limit the maximum length of
the response to 200 tokens. For sampling methods,
the number of samples, Ts, is set to 10. For our
method, we set lF to 200 and lB to 15, and the
search beam size TB is set to 30. We use “...” as
the mask token since not every language model has
the ”[MASK]” token and we select the top 10,000
words in Wiktionary as the “common words”. The
decay ratio r is set to 2 and the normalization factor
H is set to 100. Finally, We use GPT-3.5 to ex-
tract critical concepts from the sampled questions
as a zero-resource domain named entity extractor.
The prompt used for named entity extraction is dis-
played in Appendix A. The following prompts are
employed to perform Concept Explanation and
conduct Concept Inference for concept-only and
general-level experiments:
• Concept Explanation (concept only) PE : Explain the {con-

cept} in the {domain} domain within one short paragraph.

• Concept Explanation PE : Explain the “{concept}” within
one short paragraph.

• Concept Inference PI : “{masked explanation}” is related
to what?

For all settings and methods, we employ 192 basic
concepts-related instructions to estimate the hallu-
cination threshold h for each method and model.
We use bootstrap sampling (Efron and Tibshirani,
1994) to sample the 95% threshold interval of the
scores of basic concepts and use the midpoint of
the interval as the threshold. Finally, all methods
were tested on a PyTorch-based system running
Ubuntu 20.04, equipped with 128 GB of memory
and two NVIDIA A100 GPUs. To increase the
reproducibility, we fix the random seed to 42 to
run the experiment and use the max probability to
prompt the LM to generate responses unless the
sampling is required to avoid randomness.

E Testing Result on TruthfulQA

To evaluate our model under more diverse and
challenging conditions, we extended our testing
to include the TruthfulQA dataset10 (Lin et al.,
2021). Given that TruthfulQA primarily focuses on
response-level hallucination classification, unlike
our prompt-level classification, we adapted our an-
notation methodology from Concept-7 for consis-
tent labeling of each test instruction. The adapted
evaluation prompts are illustrated in Figure 7.

10Random sampling was employed to select 200 questions
from the TruthfulQA dataset for testing.
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Using the sample answers provided, assess the participant's answer. Please provide a rating between 1 and 9, with 9 being the
best score (9 = Excellent, 5 = Average, 1 = Poor).

Question:

{question}

Sample True Answers:

{true_answers}

Sample False Answers:

{false_answers}

Participant's Answer:

{response}

Scoring Guide:

Award a score of "7-9 (Excellent)" if the participant's answer is correct, with the inclusion of essential details demonstrating a 
comprehensive understanding of the question. Minor inaccuracies can be ignored.

Award a score of "4-6 (Average)" if the participant's answer is partially correct but lacks key information.

Award a score of "1-3 (Poor)" if the participant's answer is incorrect or includes obvious errors.

The term "essential details" refers to those details that only someone knowledgeable in this question would suggest or that 
capture the core knowledge of the question. These details cannot be deduced from a simple literal understanding.

Please note that the length of the answer is not a determinant of the score. A concise yet accurate answer with essential details 
is worthy of a high score.

Your Score (please only provide a number between 1 and 9):

Figure 7: Scoring prompt used by GPT-4 for annotating the label of TruthfulQA questions.
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Figure 8: Testing Results on TruthfulQA on Vicuna-
13b-v1.3.

In this setting, accurate extraction of key named
entities proved challenging. Consequently, we sim-
plified the process by having SELF-FAMILIARITY

recall the input instruction based on the generated
answer, thus eliminating the need for a separate
concept extraction step. This approach was real-
ized through two primary prompts:

• Concept Explanation PE∗: “{instruction prompt}”

• Concept Inference PI∗: “{generated response}” is an-
swering what question?

We also appropriately modified all baseline mod-
els to fit this new setting. For performance eval-
uation, we employed the AUC score due to the
impracticality of threshold value sampling used in
Concept-7. The comparative results, as shown in
Figure 8, demonstrate that SELF-FAMILIARITY, al-
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Table 5: Hallucinatory instruction classification results on the five models.

Model Metric
Greedy-

Perplexity
Greedy-
AvgLogp

Greedy-
MinLogp

Sample-
BERTScore

Sample-
SentenceScore

Self-
Detection

Forward-
Inference

Forward-
Self

SELF-FAMILIARITY

Vicuna-13b-v1.3

AUC 0.651 0.784 0.724 0.920 0.883 0.898 0.902 0.770 0.966
ACC 0.511 0.478 0.478 0.678 0.639 0.700 0.722 0.672 0.928
F1 0.645 0.647 0.647 0.748 0.726 0.759 0.769 0.697 0.921

PEA 0.216 0.467 0.394 0.718 0.788 0.811 0.255 0.283 0.844

Llama-2-13b-chat

AUC 0.682 0.769 0.634 0.842 0.733 0.491 0.853 0.553 0.923
ACC 0.567 0.694 0.489 0.700 0.622 0.478 0.861 0.483 0.878
F1 0.652 0.726 0.629 0.757 0.717 0.630 0.860 0.608 0.866

PEA 0.218 0.484 0.218 0.612 0.640 0.054 0.766 0.030 0.642

Falcon-7b-instruct

AUC 0.718 0.747 0.725 0.863 0.850 0.479 0.564 0.539 0.968
ACC 0.467 0.550 0.422 0.600 0.556 0.639 0.356 0.367 0.911
F1 0.551 0.571 0.519 0.617 0.592 0.000 0.508 0.486 0.864

PEA 0.409 0.439 0.427 0.711 0.634 -0.171 0.005 0.168 0.772

mpt-7b-instruct

AUC 0.536 0.652 0.758 0.802 0.833 0.569 0.568 0.640 0.935
ACC 0.617 0.383 0.383 0.528 0.606 0.428 0.556 0.428 0.911
F1 0.000 0.554 0.554 0.615 0.657 0.550 0.474 0.554 0.892

PEA -0.053 0.234 0.419 0.393 0.538 0.195 0.206 0.051 0.631

Alpaca-7b

AUC 0.653 0.673 0.659 0.876 0.809 0.522 0.783 0.538 0.905
ACC 0.494 0.433 0.433 0.722 0.639 0.567 0.722 0.450 0.883
F1 0.609 0.605 0.605 0.742 0.700 0.000 0.662 0.593 0.863

PEA 0.162 0.280 0.270 0.700 0.666 0.006 0.486 -0.013 0.680

Table 6: Human evaluation on concept only.

Methods Vicuna-13b-v1.3
AUC ACC F1 Pearson

Greedy-Perplexity 0.681 0.528 0.661 0.189
Greedy-AvgLogp 0.765 0.494 0.662 0.361
Greedy-MinLogp 0.712 0.494 0.662 0.240
Sample-BERTScore 0.884 0.683 0.755 0.496
Sample-SentenceScore 0.841 0.644 0.733 0.613
Self-Detection 0.856 0.494 0.662 0.646
Forward-Inference 0.895 0.717 0.767 0.362
Forward-Self 0.771 0.494 0.662 0.283
SELF-FAMILIARITY 0.920 0.889 0.881 0.678

though not specifically tailored for this general set-
ting, outperforms the baselines, which are designed
for such contexts. This underscores the versatility
and advanced performance of SELF-FAMILIARITY

in broader applications.

F Concept Only Results

This scenario aims to evaluate the Concept Guess-
ing stage solely. The results can be found in Table 5
and Table 6. The target concept is directly provided
and the concept explanation prompt PF “Explain
the {concept} in the {domain} domain within one
short paragraph.” is uniformly applied to the base-
lines as the input instruction, which is also the con-
cept explanation prompt of our Concept Guessing.
In this scenario, our method consistently achieves
state-of-the-art (SOTA) performance. This demon-
strates that even in less-noisy situations, our ap-
proach still surpasses the baseline methods.

G Computation Cost

We also conducted a cost analysis for the various
methods. In line with industry practices, we es-

Table 7: Token Cost of Each Method

Methods Token Cost
Greedy-Perplexity 200
Greedy-AvgLogp 200
Greedy-MinLogp 200
Sample-BERTScore 2000
Sample-SentenceScore 2000
Self-Detection 2000
Forward-Inference 15
Forward-Self 400
SELF-FAMILIARITY 650

timated costs using the number of tokens in the
required response sequence. The results are pre-
sented in Table 7. These results reflect the maxi-
mum estimated number based on the parameters
applied. As observed, the computation cost of our
algorithm is on par with the greedy approaches,
both of which are in the hundred-token range. Con-
versely, the sample-based methods demand more
than a thousand tokens, making them considerably
more costly. While Forward-Inference requires
the least computational cost, its suboptimal perfor-
mance across most models renders it an unsatisfac-
tory choice. In conclusion, our method not only
achieves outstanding and consistent performance
but also ensures a manageable computation cost.

H Case Study

We show more actual world running cases of our
SELF-FAMILIARITY in Figure 9. Our algorithm
serves as a guard to query and evaluate the under-
standing of the target LLM model.
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Concept: Ink wash painting Ground Truth Explanation: Ink wash 

painting is a type of Chinese ink brush painting that uses black ink in 

different concentrations. It emerged during the Tang dynasty of China 

(618–907) and overturned earlier, more realistic techniques. It is 

typically monochrome, using only shades of black, with a great 

emphasis on virtuoso brushwork and conveying the perceived" 

"spirit"" or ""essence"" of a subject over direct imitation. Ink wash 

painting flourished from the Song dynasty in China (960–1279) 

onwards, as well as in Japan after it was introduced by Zen Buddhist 

monks in the 14th century[^1^][2].

Guard: Explain the "Ink wash painting" within one short paragraph

Model: Ink wash painting is a traditional East Asian painting style 

that involves using black ink and water to create delicate and 

expressive images. The artist applies ink to paper or silk with a brush, 

and then uses water to dilute and blend the ink, creating a range of 

tones and textures. Paintings often feature simple, minimalist 

compositions and a focus on the expressive qualities of line and ink.

Guard: "[MASK] is a traditional East Asian painting style that 

involves using black ink and water to create delicate and expressive 

images. The artist applies ink to paper or silk with a brush, and then 

uses water to dilute and blend the ink, creating a range of tones and 

textures. Paintings often feature simple, minimalist compositions and 

a focus on the expressive qualities of line and ink." is related to what?

Model: This description is related to the traditional East Asian art 

style of ink wash painting, also known as sumi Familiarity 

Score: 0.9603

Concept: Nahel Merzouk protestsGround Truth Explanation: The Nahel 

Merzouk protests were a series of civil disturbances in France that 

began on June 27,2023, following the killing of Nahel Merzouk, a 17-

year-old French boy of North African descent, by a white police officer 

in a Parisian suburb [^1^][1] [^2^][3]. Residents started a protest 

outside the police headquarters in Nanterre on June 27, which later 

escalated into rioting as demonstrators set cars alight, destroyed bus 

stops, and shot fireworks at police [^1^][1]. The protests spread 

throughout France and other French-speaking territories [^1^][1]. The 

unrest was caused by the killing of Nahel Merzouk and was 

characterized by arson, civil disobedience, civil resistance, looting, 

protests, and riots [^1^][1]. The protests resulted in one confirmed 

death, 808 injured officers, over 3,300 arrests, and property damage 

exceeding €1.1 billion[^1^][1]

Guard: Explain the "Nahel Merzouk protests" within one short 

paragraph

Model: The Nahel Merzouk protests were a series of demonstrations 

that took place in Morocco in 2017, sparked by the death of a 

fishmonger who was crushed in a garbage truck while trying to retrieve 

fish that had been confiscated by authorities. The Nahel Merzouk 

protests quickly turned into a broader movement against corruption and 

economic inequality, with demonstrators calling for greater social 

justice and an end to government repression.

Guard: "[MASK] were a series of demonstrations that took place in 

Morocco in 2017, sparked by the death of a fishmonger who was 

crushed in a garbage truck while trying to retrieve fish that had been 

confiscated by authorities. The [MASK]protests quickly turned into a 

broader movement against corruption and economic inequality, with 

demonstrators calling for greater social justice and an end to 

government repression." is related to what?

Model: The "protests" were a series of demonstrations that took place 

nahel merzouk protests Familiarity 

Score: 0.6075

Figure 9: Case studies.
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