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Abstract

Self-Consistency, a widely-used decoding strat-
egy, significantly boosts the reasoning capa-
bilities of Large Language Models (LLMs).
However, it depends on the plurality voting
rule, which focuses on the most frequent an-
swer while overlooking all other minority re-
sponses. These inconsistent minority views
often illuminate areas of uncertainty within the
model’s generation process. To address this
limitation, we present Mirror-Consistency, an
enhancement of the standard Self-Consistency
approach. Our method incorporates a ‘reflec-
tive mirror’ into the self-ensemble decoding
process and enables LLMs to critically exam-
ine inconsistencies among multiple generations.
Additionally, just as humans use the mirror to
better understand themselves, we propose us-
ing Mirror-Consistency to enhance the sample-
based confidence calibration methods, which
helps to mitigate issues of overconfidence. Our
experimental results demonstrate that Mirror-
Consistency yields superior performance in
both reasoning accuracy and confidence cal-
ibration compared to Self-Consistency.

1 Introduction

Large Language Models (LLMs) have substantially
influenced diverse sectors with their advanced ap-
plications (Chowdhery et al., 2022; Schick et al.,
2023; Wu et al., 2023; Shen et al., 2023; Zhang
et al., 2023). To further bolster LLMs’ reason-
ing ability, Self-Consistency (Wang et al., 2023a)
initially generates a wide range of reasoning path-
ways, then performs a marginalization to determine
the most consistent response. Although generally
effective, this approach relies primarily on the plu-
rality voting rule, which focuses only on the most
frequent answer, thereby neglecting other minority
responses. Consequently, the crucial inconsisten-
cies in the resampled answers, which could reveal
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Figure 1: Mirror-Consistency vs. Self-Consistency.
While Self-Consistency overlooks minority responses,
Mirror-Consistency takes them into account by reflect-
ing on inconsistencies during the sampling process.

uncertainties and potential errors of LLMs, often
do not receive the attention they merit.

To address this limitation, we introduce Mirror-
Consistency, which enables the LLM to analyze
and learn from discrepancies in its resampled re-
sponses. The complete process is illustrated in
Figure 1. We sequentially resample new responses.
Each new response is then compared to the pre-
vious majority voting result. If the new response
deviates from the majority’s decision (i.e., it repre-
sents a minority opinion), we position the LLM to
act as an arbitrator. In this role, the LLM reflects
on the differences between the new response and
the previous majority opinion and offers a feed-
back, which is then utilized to guide the generation
of subsequent responses. This process effectively
equips the standard Self-Consistency method with
a ‘mirror’, enabling the LLM to learn from incon-
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sistencies observed during the sampling process.
We then delve into another application of

Mirror-Consistency: the confidence calibration of
LLMs (Desai and Durrett, 2020; Geng et al., 2023).
Recent studies leverage the consistency of multi-
ple generations to assess the LLM’s confidence
in its responses (Xiong et al., 2023; Wang et al.,
2023a; Manakul et al., 2023; Xiong et al., 2023;
Portillo Wightman et al., 2023). Following this
idea, we find that Mirror-Consistency, which in-
volves repeatedly comparing and reflecting on the
discrepancies between the majority and the minor-
ity opinions, provides a more robust quantification
of uncertainty, particularly in cases of overconfi-
dence. Our motivation for using mirror consistency
in confidence calibration stems from the idea that
answers that consistently emerge as the majority
after several rounds of comparisons with other can-
didate answers are likely more reliable.

We conduct experiments on four reasoning
datasets with four different LLMs to compare
the performance of Mirror-Consistency with Self-
Consistency. The results confirm the efficacy of re-
flecting on the inconsistencies during the sampling
process, showing improvements in both reasoning
accuracy and confidence calibration.

2 Mirror-Consistency

This section details the implementation of Mirror-
Consistency. Self-Consistency depends on the plu-
rality voting rule, which tends to overlook minority
responses that may be inconsistent yet informative.
To address this gap, we introduce a reflective form
of consistency, termed Mirror-Consistency.

Mirror-Consistency and Self-Consistency share
procedural similarities, as both methods generate
multiple responses and use majority voting to de-
termine the final output. The key distinction is that
Mirror-Consistency examines the inconsistencies
within the sampling process, rather than merely
repeat sampling independent answers. The Mirror-
Consistency process begins with an initial sampling
phase to produce the first response, denoted as r0.
This is followed by a series of iterations that al-
ternate between Reflection on Inconsistency and
Conditional Resampling, as shown in Algorithm 1.
We next introduce these two steps in detail. The cor-
responding prompts are provided in Appendix D.

Reflection on Inconsistency During the kth Re-
flection on Inconsistency, the model compares the
newly resampled response rk with the majority

voting result mk−1 from previous rounds. If the
responses align, the process moves to the next re-
sampling phase. Otherwise, the model analyzes
the causes of the discrepancies and formulates a
suggestion for additional checks, as the inconsis-
tencies of multiple reasoning pathways often reveal
uncertainty and potential mistakes within the gen-
eration. This suggestion is incorporated into the
existing checklist Ck−1, updating it to Ck for use
in the subsequent Conditional Resampling.

Conditional Resampling In this phase, the feed-
back obtained from the previous round is utilized
to guide the generation of subsequent responses.
During the kth round of Conditional Resampling,
the checklist Ck, derived from earlier rounds, is
integrated into the prompt, facilitating the genera-
tion of a new response rk+1. This method ensures
that the LLM concentrates on areas of uncertainty
exposed by inconsistencies noted during prior sam-
plings.

Algorithm 1 Mirror-Consistency

Require: prompts {psample, psample w/ fb, pcontrast},
modelM, input x

1: r0 ←M(psample∥x) ▷ Initial response
2: C0 ← ∅ ▷ Initial checklist
3: m0 ← r0 ▷ Initial majority vote
4: for k ∈ {1, . . . ,K} do
5: rk ←M(psample w/ fb∥Ck−1∥x)

▷ Conditional Resampling
6: Ck ←M(pcontrast∥mk−1∥rk∥Ck−1∥x)

▷ Reflection on Inconsistency
7: mk ← majority-vote(r0, . . . , rk)

▷ Update majority vote
8: end for
9: return mK

Comparison with Self-Reflection Standard in-
trinsic self-correction methods directly generate
feedback for the initial responses, which frequently
exhibit overconfidence and difficulty in identify-
ing errors (Huang et al., 2023; Tyen et al., 2023).
In contrast, Mirror-Consistency identifies poten-
tial errors by critically analyzing the inconsisten-
cies across multiple reasoning pathways. This con-
trastive strategy is generally more practical than
directly generating feedback (Zhang et al., 2024).

3 Calibration with Mirror-Consistency

In this section, we introduce the application of
Mirror-Consistency to the calibration of LLMs. Re-
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Model Method # Ans # Call GSM8K SVAMP StrategyQA Date

GPT-3.5-turbo Standard COT 1 1 75.9 77.3 73.6 67.3
Self-Consistency 10 10 85.2 ↑9.3 84.2 ↑6.9 77.9 ↑4.3 72.4 ↑5.1
Self-Consistency 20 20 85.4 ↑9.5 84.5 ↑7.2 77.8 ↑4.2 73.0 ↑5.7

Mirror-Consistency 10 19 86.7 ↑10.8 86.1 ↑8.8 78.4 ↑4.8 72.6 ↑5.3

Qwen-turbo Standard COT 1 1 74.5 76.9 71.9 62.7
Self-Consistency 10 10 77.4 ↑2.9 79.1 ↑2.2 73.8 ↑1.9 63.5 ↑0.8
Self-Consistency 20 20 77.9 ↑3.4 79.1 ↑2.2 73.6 ↑1.7 63.5 ↑0.8

Mirror-Consistency 10 19 79.7 ↑5.2 83.0 ↑6.1 74.7 ↑2.8 64.3 ↑1.6

Llama3-8B Standard COT 1 1 78.7 80.8 71.6 76.9
Self-Consistency 10 10 85.9 ↑7.2 89.0 ↑8.2 72.0 ↑0.4 83.8 ↑6.9
Self-Consistency 20 20 86.5 ↑7.8 89.6 ↑8.8 72.8 ↑1.2 84.1 ↑7.2

Mirror-Consistency 10 19 87.2 ↑8.5 90.4 ↑9.6 72.8 ↑1.2 83.5 ↑6.6

Llama3-70B Standard COT 1 1 92.7 91.8 72.9 90.6
Self-Consistency 10 10 95.3 ↑2.6 93.5 ↑1.7 73.7 ↑0.8 94.2 ↑3.6

Self-Consistency 20 20 95.6 ↑2.9 94.0 ↑2.2 73.7 ↑0.8 94.2 ↑3.6

Mirror-Consistency 10 19 95.8 ↑3.1 93.2 ↑1.4 74.7 ↑1.8 94.2 ↑3.6

Table 1: Performance comparison between Mirror-Consistency and Self-Consistency on Arithmetic Reasoning and
Commensense Reasoning tasks. The best scores are bolded. Multiple identical scores are indicated with underlining.

cent studies have shown that consistency across
multiple model generations serves as a reliable in-
dicator of confidence (Portillo Wightman et al.,
2023; Manakul et al., 2023). While effective, these
methods rely on the Self-Consistency logic (i.e.,
‘independent’ repeated sampling) and overlook the
analysis of inconsistencies among responses. In
contrast, Mirror-Consistency employs a reflective
form of consistency: responses maintaining consis-
tency after numerous comparisons and reflections
are deemed more reliable; while responses that
vary upon comparison and reflection highlight the
LLM’s inherent uncertainties. Hence, we propose
using the distribution of responses generated by
Mirror-Consistency as a measure of confidence.

Next, we introduce two fundamental types of
sample-based confidence metrics. A comprehen-
sive analysis of five existing sample-based confi-
dence metrics is provided in Appendix A. The most
commonly employed strategy is the agreement-
based metric (Lyu et al., 2024). For each input
x, we generate n candidate outputs, r̂1, . . . , r̂n.
We then apply majority voting across the an-
swers to determine the most-voted answer r̄ =
argmaxr

∑n
i=1 1(r̂i = r). The agreement-based

confidence score is then defined as the percentage
of answers that agree with the most-voted answer:

Agree(r̄) =
1

n

n∑

i=1

1(r̂i = r̄)

Agree solely relies on the most voted answer. First-
Second-Distance (FSD) (Lyu et al., 2024) provides
another option by considering the top two most-

voted answers, denoted as r̄1 and r̄2. FSD(r̄) is the
difference in their agreement rates:

FSD(r̄) = Agree(r̄1)− Agree(r̄2)

Further experiments, as detailed in subsection 4.2
and Appendix A, demonstrate that this reflective
form of consistency provides more reliable calibra-
tion than standard sample-based methods.

4 Experiments

In this section, we assess the efficacy of Mirror-
Consistency from two distinct angles: First, we
evaluate its reasoning accuracy in comparison to
Self-Consistency across four reasoning datasets.
Second, we demonstrate how the reflective form
of consistency embodied by Mirror-Consistency
improves the sample-based calibration methods.

4.1 Reasoning Accuracy

Benchmarks We evaluate our models using four
distinct datasets: GSM8K (Cobbe et al., 2021) and
SVAMP (Patel et al., 2021), which focus on arith-
metic reasoning; StrategyQA (Geva et al., 2021)
and Date Understanding (BIG-Bench collaboration,
2021), which belong to Multi-hop QA. We follow
the same split setting as Lyu et al. (2023).

LLMs We utilize four different large language
models: GPT-3.5-turbo-0613, Qwen-turbo, and the
newly released Llama-3 family (8B/70B). More
details can be found in subsection C.2.
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Figure 2: Comparison of calibration curves on GSM8K and SVAMP with Agree and FSD. We omit the bins if their
size is less than 1% of the total dataset. The point size is proportional to the square root of its corresponding bin size.

Baselines We compare our method with Stan-
dard CoT Prompt (Kojima et al., 2022) and Self-
Consistency (Wang et al., 2023b). To ensure fair-
ness in our comparison, we evaluate two scenarios:
equivalent number of responses (10 vs. 10), and
comparable number of calls (19 vs. 20).

Prompting and Sampling Strategies Through-
out our experiments, we consistently use the same
COT prompt, which is detailed in Appendix D with
a temperature T = 0.4, following Lyu et al. (2024).

Main Result The main results are presented in
Table 1. Mirror-Consistency outperforms Self-
Consistency, even with the latter doubling its
number of responses. We observe that Mirror-
Consistency generally yields greater improvements
in arithmetic reasoning datasets. This can be at-
tributed to the fact that, whereas errors in common
sense are more likely constrained by the inherent
limitations of LLMs, arithmetic errors are more
amenable to correction through reflective methods.

4.2 Confidence Calibration

Experiment Setup We compare the performance
of Mirror-Consistency and Self-Consistency, each
using a comparable number of calls (19 vs. 20).
We consider two LMs, GPT-3.5-turbo and Qwen-
turbo, on two tasks, GSM8K and SVAMP, with the
same settings in subsection 4.1. We use Expected
Calibration Error (ECE) (Guo et al., 2017) as the
evaluation metric. We first consider two confidence
metrics, Agree and FSD, as introduced in section 3.

Main Result Table 2 presents the ECE com-
parisons across two different confidence metrics.

Agreement FSD

Model & Method G S G S

GPT-3.5-turbo
Self-Consistency 0.081 0.044 0.170 0.127
Mirror-Consistency 0.039 0.042 0.138 0.082

Qwen-turbo
Self-Consistency 0.154 0.196 0.127 0.173
Mirror-Consistency 0.102 0.103 0.089 0.100

Table 2: ECE ↓ results of Mirror-Consistency and Self-
Consistency. G denotes GSM8K and S denotes SVAMP.

Mirror-Consistency consistently yields superior re-
sults relative to Self-Consistency. This finding
suggests that reflecting on inconsistencies during
the sampling process leads to more accurate confi-
dence estimations, offering a novel approach to
calibration tasks. Figure 2 presents the corre-
sponding calibration curves. We find that Mirror-
Consistency significantly mitigates the overconfi-
dence issues encountered with Self-Consistency.
For instance, when using responses generated by
Self-Consistency, the curve of Qwen-turbo tends to
the bottom right. In contrast, the curve of Mirror-
Consistency is clearly closer to the ideal line.

Additional Results We consider five different
sample-based calibration metrics in Appendix A.
Table 3 presents a complete comparison. The corre-
sponding calibration curves are shown in Figure 3.

5 Conclusion

Mirror-Consistency effectively remedies a crucial
limitation in the standard Self-Consistency method:
the disregard for minority viewpoints during sam-
pling. Our approach examines the discrepancies
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across various responses to identify uncertainties
within the generative process. The experimental
results demonstrates that Mirror-Consistency not
only achieves higher reasoning accuracy compared
to Self-Consistency but also enhances model cal-
ibration, especially when standard sample-based
calibration methods face issues of overconfidence.

6 Limitations

We acknowledge several limitations that invite fur-
ther investigation: Firstly, while Self-Consistency
can generate multiple answers in parallel, Mirror-
Consistency, due to the fact that each generation
of a new answer needs to be compared with the
previous majority opinion, must generate answers
sequentially. Secondly, our experimental setup
solely utilizes Chain-of-Thought (Wei et al., 2022)
as the prompt strategy for sampling. Exploring
a broader array of prompt strategies could pro-
vide deeper insights into their interactions with the
Mirror-Consistency approach. Thirdly, the central
motivation behind Mirror-Consistency is to effec-
tively harness the inconsistencies that emerge dur-
ing repeated sampling processes. This requires the
responses to exhibit enough diversity. To enhance
this diversity, we could enable the large language
model to automatically generate prompts that vary
across different dimensions (Zhang et al., 2024).
Fourthly, we fix the temperature parameter through-
out our study. Future work could experiment with
varying the temperature to assess the robustness of
Mirror-Consistency under different settings. Lastly,
since Mirror-Consistency relies on prompting to
encourage reflective thinking, it necessitates strong
instruction-following capabilities within the model.
While the four models considered in our experi-
ments demonstrate adequate ability in this regard,
this strategy may not be as effective with smaller-
scale or lower-performing models.

7 Ethical Considerations

We recognize several ethical Considerations. Our
approach, Mirror-Consistency, improves LLM ro-
bustness by addressing inconsistencies but cannot
fully negate the risks of errors or biases from the
underlying data and model structures. Additionally,
the method’s iterative process, involving repeated
resampling and reflection, presents concerns about
computational costs and environmental impacts. Fi-
nally, it’s crucial to clearly convey the limitations
of Mirror-Consistency, informing users about possi-

ble failure scenarios and the potential repercussions.
This transparency is vital for setting appropriate ex-
pectations for real-world applications.
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Agreement Entropy FSD Ans-Num Pairwise # Win

Model & Method G S G S G S G S G S

GPT-3.5-turbo
Self-Consistency 0.081 0.044 0.291 0.223 0.170 0.127 0.056 0.049 0.090 0.057 2
Mirror-Consistency 0.039 0.042 0.279 0.196 0.138 0.082 0.078 0.068 0.053 0.051 8

Qwen-turbo
Self-Consistency 0.154 0.196 0.104 0.137 0.127 0.173 0.145 0.163 0.099 0.194 2
Mirror-Consistency 0.102 0.103 0.138 0.104 0.089 0.100 0.039 0.057 0.150 0.101 8

Table 3: Summary of ECE ↓ results across different calibration metrics. G denotes GSM8K and S denotes SVAMP.
We show the statistics of the comparison in the last column.

A Additional Calibration Results

In this section, we explore the impact of various
metrics on calibration results based on Mirror-
Consistency and Self-Consistency approaches. Re-
cently, numerous studies have adopted sample-
based methods to assess the confidence of Large
Language Models (LLMs) (Wang et al., 2023a;
Manakul et al., 2023; Xiong et al., 2023; Por-
tillo Wightman et al., 2023). These studies have
proposed different metrics to derive corresponding
confidence scores from the varying resampled re-
sponses. Again, for each input x, we generate n
candidate outputs, r̂1, . . . , r̂n. We then apply ma-
jority voting across the answers to determine the
most-voted answer r̄ = argmaxr

∑n
i=1 1(r̂i = r).

We consider the following five metrics:
• Agreement-based (Lyu et al., 2024):
The agreement-based confidence score, which is
the most common metric and has been introduced
in section 3, is defined as the percentage of answers
that agree with the most-voted answer:

Agree(r̄) =
1

n

n∑

i=1

1(r̂i = r̄)

• Entropy-based (Lyu et al., 2024):
We first derive a set of unique answers from the
model’s output, denoted as r̂, by eliminating dupli-
cates. The entropy-based consistency, Ent(r̄), is
then defined as follows:

Ent(r̄) = 1−


− 1

log |̂r|

|̂r|∑

i=1

pi log pi




Here, |̂r| represents the number of unique answers,
and pi is the normalized frequency of each unique
answer r̂i in the dataset. This formulation inversely
relates the entropy measure to the consistency of
the answer distribution, where a lower entropy im-
plies a more uniform and certain response pattern.

• FSD-based (Lyu et al., 2024):
FSD stands for First-Second-Distance. To calcu-
late the FSD-based consistency, we first identify
the top two most-voted answers, denoted as r̄1 and
r̄2. We then calculate the agreement rates for these
two answers, denoted as Agree(r̄1) and Agree(r̄2),
respectively. The FSD-based consistency, FSD(a),
is computed as the difference in their agreement
rates:

FSD(r̄) = Agree(r̄1)− Agree(r̄2)

• Answer-Number-based (Wang et al., 2024):
Again we derive a set of unique answers from the
model’s output, denoted as r̂. The answer-number-
based , Ans-Num(r̄), is then simply defined as:

Ans-Num(r̄) = 1− |̂r|
n

• Pairwise-Comparison-based (Wang et al., 2024):
We count the number of times each different an-
swer is repeated, denoted as n1 . . . n|̂r|. Specially,
we denote the index of the majority voting re-
sult as ir̄. Then the pairwise-comparison-based,
Pairwise(r̄), metric is defined as:

Pairwise(r̄) =

|̂r|∏

j ̸=ir̄

nir̄

nir̄ + nj

We evaluate the performance of Mirror-
Consistency and Self-Consistency on the task
of confidence calibration using the five distinct
metrics described above. Our experiments span
two datasets, GSM8K and SVAMP, and consider
two models: GPT-3.5-turbo and Qwen-turbo.

Main result As shown in Table 3, we find that
Mirror-Consistency outperforms Self-Consistency
most of the time. Additionally, we provide the
corresponding calibration curves in Figure 3. We
set the number of bins as 10. We do not plot bins
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with a bin size smaller than 1% of the total data set.
The size of the points is proportional to (the square
root) of the bin size. We find that in most cases
Mirror-Consistency’s calibration curve is closer to
the ideal curve. It is noteworthy that when meth-
ods based on Self-Consistency encounter issues of
overconfidence (where the calibration curve tends
toward the bottom right), Mirror-Consistency can
significantly mitigate the phenomenon of overcon-
fidence. This indicates that multiple comparisons
and reflections against minority opinions can al-
leviate the overconfidence that arises from solely
relying on majority opinions.

B Related Works

B.1 Self-Correction in Languages Models

Recent advancements in large language models
have shed light on their advanced cognitive intel-
ligence, notably their ability for self-correction.
This attribute enables LLMs to amend their ini-
tial responses by integrating both external and self-
generated feedback, thus improving previous out-
puts (Xi et al., 2023; Pan et al., 2023; Nathani et al.,
2023). The concept of self-correction encompasses
a variety of techniques that have been extensively
surveyed and categorized based on the source of
feedback and the timing of correction (Pan et al.,
2023). These techniques range from using ex-
plicit error messages in tasks, such as code exe-
cution, to human feedback and model-generated
prompts (Miao et al., 2024; Chen et al., 2023a;
Huang et al., 2023; Kim et al., 2023). While iter-
ative prompting techniques have shown promise,
recent research has raised concerns about LLMs’
capacity for independent reflection, revealing lim-
itations in modifying responses without external
feedback (Huang et al., 2023; Stechly et al., 2023;
Liang et al., 2023; Tyen et al., 2023).

B.2 Confidence Calibration

In the realm of machine learning, uncertainty quan-
tification methods are crucial for assessing the
risk associated with model predictions (Rüping,
2006; Desai and Durrett, 2020). Traditional calibra-
tion approaches, including probabilistic, ensemble-
based, and density-based methods, although effec-
tive, require extensive computational resources and
access to model internals, making them less viable
for closed-source LLMs (Guo et al., 2017; Lak-
shminarayanan et al., 2017; Gal and Ghahramani,
2016; Lee et al., 2018; Yoo et al., 2022). Further-

more, some post-hoc strategies have emerged, fo-
cusing on eliciting model-estimated probabilities
of correctness or directly verbalized confidence lev-
els (Kadavath et al., 2022; Lin et al., 2022; Mielke
et al., 2022). And recently, inspired by the sample-
based methods, calibration through sample consis-
tency, which relies solely on model input and out-
put, has been explored. (Wang et al., 2023a; Man-
akul et al., 2023; Xiong et al., 2023; Portillo Wight-
man et al., 2023).

B.3 Refined Problem-Solving Strategies
Existing prompting strategies engage in two forms
of reasoning: exploring various perspectives
(breadth) and refining ideas to reduce errors (depth).
Self-consistency and related methods (Wang et al.,
2023b; Huang et al., 2022; Yoran et al., 2023; Jain
et al., 2023) promoting breadth through diverse
reasoning sampling. In contrast, strategies like
self-reflection and abstraction (Shinn et al., 2023;
Madaan et al., 2023; Paul et al., 2023; Zheng et al.,
2023) focus on the depth of reasoning by iteratively
refining prompts.

C More Implementation Details

C.1 Dataset Details
Math Word Problems (MWP). This category
includes challenges where the objective is to com-
pute numeric solutions to problems framed in nat-
ural language. Our analysis incorporates several
datasets, each selected to evaluate distinct aspects
of mathematical reasoning. For GSM8K (Cobbe
et al., 2021), participants engage with a diverse set
of elementary math questions, testing their ability
to apply basic arithmetic operations and logical rea-
soning. Meanwhile, SVAMP (Patel et al., 2021)
is specifically designed to probe the robustness of
models against changes in question phrasing and
structural complexity, offering a stringent test of
comprehension and adaptability.

Multi-hop QA. Tasks in this section demand an-
swers to intricate questions via a series of logical
deductions, necessitating a nuanced understanding
of the content. Answers may be in the form of
Boolean values or specific textual responses. Strat-
egyQA (Geva et al., 2021) dataset presents science
questions that require an implicit strategy for multi-
step reasoning, challenging the model’s ability to
form and execute complex inferential chains. Date
Understanding (BIG-Bench collaboration, 2021)
tests temporal reasoning by asking participants to
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Figure 3: Visualization of confidence calibration results across different calibration metrics. We set the number of
bins as 10. We omit the bins if their size is less than 1% of the total dataset. The point size is proportional to the
square root of its corresponding bin size.

calculate dates based on relative time information,
thus assessing both numerical and chronological
reasoning skills.

C.2 Model Details

Closed-Source Language Models We utilize
two advanced closed-source language models,
GPT-3.5-turbo and Qwen-turbo. For GPT-3.5-
turbo, the API is accessible at platform.openai.
com. Qwen-turbo, another potent large language
model, is available via the DashScope provided
by Alibaba Cloud (alibabacloud.com). Detailed
guidance about DashScope and its integration can
be accessed here. Further information about utiliz-
ing Qwen-turbo through Alibaba Cloud, including
API instructions, can be found here.

Open-Source LMs We use the newly released
Llama-3 Family (llama.meta.com). We con-
duct experiments using Nvidia A100 80GB GPUs.
Specifically, Meta-Llama-3-70B-Instruct requires
two GPUs per inference, whereas Meta-Llama-3-
8B-Instruct operates with a single GPU.

C.3 Other Details
Evaluation Metrics We use Expected Calibra-
tion Error (ECE) (Guo et al., 2017) as the cali-
bration metric. Predictions are first binned into
M = 10 intervals based on model confidence. For
each bin Bm, we calculate the average accuracy
acc(Bm) and average confidence conf(Bm). ECE
is defined as their weighted absolute differences:

ECE =
M∑

m=1

|Bm|
N
|acc(Bm)− conf(Bm)|
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Split Setting In order to save computational re-
sources without loss of generality, we select the
first 768 examples from the test split of GSM8K
and SVAMP for our experiments. We use the full
split of Date. For StrategyQA, we test on the first
490 samples following Shridhar et al. (2023).

D Prompt Template

In this section, we outline the three crucial prompts
required for the future realization of Mirror-
Consistency: 1) Prompt for Simple Resampling,
denoted as psample, 2) Prompt for Reflection on
Inconsistency, denoted as pcontrast, 3) Prompt for
Conditional Resampling, denoted as psample w/ fb.

It is important to note that our implementation
adopts the Chain-of-Thought (COT) approach to re-
sample multiple answers. However, it is feasible to
explore a variety of other prompt methods, such as
Least-to-Most (LtM) (Zhou et al., 2023), Program
of Thoughts (PoT) (Chen et al., 2023b) and Faith-
ful CoT (FCoT) (Lyu et al., 2023). Furthermore, in
our experiments to validate the generality of Mirror-
Consistency, we apply the same prompts across di-
verse datasets, including arithmetic, symbolic rea-
soning, and commonsense reasoning. Nonetheless,
future work may tailor prompts specifically to the
characteristics of different datasets, thus enhanc-
ing reflection and contrast, to potentially improve
Mirror-Consistency.

D.1 Prompt for Simple Resampling psample

The following template is employed in a simple
resampling process. During its use, [QUESTION]
must be substituted with the specific question at
hand. This template is designed for initial sampling
in Mirror-Consistency and for instances when the
Checklist is empty, as well as serving as a baseline
in our experiments with Self-Consistency.

Simple Resampling Prompt

Solve the following problem step by step.
Begin each step with "Step :" and ensure
each step is separated by "\n\n". Conclude
with the phrase "So the answer is", followed
by the answer.

Question: [QUESTION]

Answer:

D.2 Prompt for Contrast pcontrast

The template for reflecting on inconsistencies is
as follows. In practice, [QUESTION] should
be replaced with the actual question, [PRE-
MAJORITY-VOTE] should be replaced with the
majority vote answer from all previous rounds
(in cases of multiple identical responses, one is
randomly selected as the majority vote answer),
[CUR-RESPONSE] should be substituted with
the most recently generated response of the current
round, and finally [PRE-CHECKLIST] should be
replaced by the checklist from the last round. This
template facilitates the reflection of inconsistencies
within the Mirror-Consistency approach.

Reflection on Inconsistency Prompt

Given two candidate solutions for a
question, carefully analyze and compare
the differences in their reasoning steps.
Consider: 1) The specific differences in
their reasoning steps and final answers; 2)
The reasons behind these disparities.

Question: [QUESTION]

Two solutions:
Solution 1: [PRE-MAJORITY-VOTE]
Solution 2: [CUR-RESPONSE]

If no differences exist, output <STOP!>.
If differences are identified, describe them,
determine errors, and explain why. Ex-
tract a key suggestion to prevent such er-
rors and combine it with the previous check-
list [PRE-CHECKLIST] to formulate a
new checklist. Begin the checklist with
<CHECKING>.

Feedback:

D.3 Prompt for Conditional Resampling
psample w/ fb

In the conditional resampling process, the fol-
lowing template is utilized. It requires replacing
[QUESTION] with the specific question and sub-
stituting [CHECKLIST] with the latest checklist
derived from the previous contrast phase. This
template is used in Mirror-Consistency for resam-
pling new responses based on reflective feedback
addressing inconsistencies.
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Conditional Resampling Prompt

Solve the following problem step by step.
Begin each step with "Step :" and ensure
each step is separated by "\n\n". Conclude
with the phrase "So the answer is", followed
by the answer.

Consider integrating the previous advice:
[CHECKLIST], into your solution process.

Question: [QUESTION]

Answer:

E URLs and Licenses

Table 4 provides license information for the
datasets we utilize in our experiments. We employ
all the above datasets solely for research purposes,
in accordance with their designated uses.
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Dataset Reference URL License

Math Word Problems
GSM8K Cobbe et al. (2021) (Cobbe

et al., 2021)
https://github.com/
openai/grade-school-math

MIT License: https:
//github.com/openai/
grade-school-math/blob/
master/LICENSE

SVAMP Patel et al. (2021) (Patel et al.,
2021)

https://github.com/
arkilpatel/SVAMP

MIT License: https:
//github.com/arkilpatel/
SVAMP/blob/main/LICENSE

Multi-hop QA
StrategyQA Geva et al. (2021) (Geva et al.,

2021)
https://github.com/
google/BIG-bench/tree/
main/bigbench/benchmark_
tasks/strategyqa

Apache License v.2:
https://github.com/
google/BIG-bench/blob/
main/LICENSE

Date Understanding BIG-Bench Collaboration
(2021) (BIG-Bench collabora-
tion, 2021)

https://github.com/
google/BIG-bench

Apache License v.2:
https://github.com/
google/BIG-bench/blob/
main/LICENSE

Table 4: Summary of URLs and Licenses
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