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Abstract

Retrieval-augmented generation (RAG) has
emerged as a popular solution to mitigate the
hallucination issues of large language models.
However, existing studies on RAG seldom ad-
dress the issue of predictive uncertainty, i.e.,
how likely it is that a RAG model’s prediction
is incorrect, resulting in uncontrollable risks
in real-world applications. In this work, we
emphasize the importance of risk control, en-
suring that RAG models proactively refuse to
answer questions with low confidence. Our
research identifies two critical latent factors af-
fecting RAG’s confidence in its predictions: the
quality of the retrieved results and the manner
in which these results are utilized. To guide
RAG models in assessing their own confidence
based on these two latent factors, we develop
a counterfactual prompting framework that in-
duces the models to alter these factors and an-
alyzes the effect on their answers. We also
introduce a benchmarking procedure to collect
answers with the option to abstain, facilitating
a series of experiments. For evaluation, we
introduce several risk-related metrics and the
experimental results demonstrate the effective-
ness of our approach. Our code and benchmark
dataset are available at https://github.com/ict-
bigdatalab/RC-RAG.

1 Introduction

Large language models (LLMs) have gained con-
siderable attention across a wide range of language
tasks (Brown et al., 2020; Kandpal et al., 2023; Li
et al., 2023b; Touvron et al., 2023). Despite the
exciting performance, LLMs may suffer from hal-
lucination issues (Ye et al., 2023; Azamfirei et al.,
2023), due to limited memorization abilities or out-
dated pre-training corpora (Longpre et al., 2021;
Xie et al., 2023). Recently, retrieval-augmented
generation (RAG) has emerged as a promising so-
lution to enhance factual accuracy (Kandpal et al.,
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Figure 1: Illustration of risk control for RAG. Given a
question, a risk controlled RAG model is expected to
provide the correct answer if it has knowledge of the
question, or alternatively, refuses to answer the question.

2023; Xie et al., 2023; Gao et al., 2023), by syn-
thesizing text snippets retrieved from external re-
sources into final responses (Zhu et al., 2023; Ram
et al., 2023; Izacard et al., 2023; Petroni et al., 2021;
Ai et al., 2023).

However, directly applying existing RAG tech-
niques, particularly for knowledge-intensive tasks
(Thorne et al., 2018; Yang et al., 2018; Petroni et al.,
2021) such as factoid question answering (Aghae-
brahimian and Jurcícek, 2016; Aghaebrahimian,
2018), introduces significant risks in practice.
When confronted with noisy search results, even
the most advanced RAG models are prone to pro-
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ducing unreliable answers, often exhibiting over-
confidence in these erroneous responses (Yang
et al., 2023; Ren et al., 2023). Such unreliable an-
swers may severely undermine the user’s question
answering (QA) experience. Therefore, for prac-
tical applications, especially in sensitive domains
like healthcare and legal assistance, it is crucial that
RAG systems confidently provide answers when
they know and state “I don’t know” when they do
not, as illustrated in Figure 1. This calls for the in-
vestigation on the risk control issue of RAG, a core
research problem we want to tackle in this work.
This approach reflects wisdom, as it involves RAG
models proactively refusing to answer questions
when predictions are uncertain.

Unfortunately, most previous research on risk
control has focused on LLMs (Tian et al., 2023; Lin
et al., 2023; Feng et al., 2024). There has been little
work addressing the predictive uncertainty issue of
RAG. Compared to the uncertainty assessment of
LLMs, which concentrates on internal knowledge
boundaries, the assessment for RAG requires ad-
ditional consideration of external knowledge from
retrieved results. In this work, we identify two crit-
ical factors during the uncertainty assessment of
RAG: the quality of the retrieved results and the
manner in which they are used. This raises an im-
portant research question: how can we assess the
predictive uncertainty of RAG based on these two
retrieval results-related factors to determine when
to discard or keep the generated answers?

In this work, we propose a new task of risk con-
trol for RAG (RC-RAG) to decide whether to keep
or discard the RAG outputs based on confidence
assessment. We then introduce a novel counter-
factual prompting framework for RAG under the
zero-shot scenario, leveraging the counterfactual
thinking for confidence assessment based on two la-
tent factors. Counterfactual (Pearl, 2009) describes
the human capacity to learn from prior experiences
by imagining the outcomes of alternative actions
that could have been taken. For a language model,
we can inject counterfactual thinking into prompt,
like “what if...” or “assume that”, to imagine or
simulate the consequences of changing a factor.
Here, we induce the model to imagine scenarios
where the quality of the retrieved results and their
usage are poor, then measure its confidence based
on the effect of these imagined scenarios on the
answers. Specifically, our framework consists of
three major modules, i.e., a prompting generation
module, a judgment module, and a fusion mod-

ule: (i) the prompting generation module generates
answers under two scenarios that challenges the im-
proper use and poor quality of the retrieved results,
respectively; (ii) the judgment module determines
whether to discard or keep the generated answers
for both scenarios; and (iii) the fusion module com-
bines the judgment results from both scenarios to
produce the final decision for selective output. It
is important to note that our method is a general
post-processing technique, making it applicable to
almost any existing RAG method.

For evaluation, traditional metrics like Exact
Match and F1 score typically focus on the effec-
tiveness of RAG. In this work, we propose four
risk-related metrics - risk, carefulness, alignment,
and coverage - for risk-aware RAG evaluation. Due
to the limited availability of datasets directly appli-
cable to RC-RAG, we have constructed a novel risk
control benchmark based on two publicly available
QA datasets. Extensive experiments on RAG with
Mistral (Jiang et al., 2024) and ChatGPT (Roumeli-
otis and Tselikas, 2023) as backbones demonstrate
that the proposed framework can effectively ab-
stain, outperforming baselines in 3 out of the 4
settings in terms of carefulness and risk, with up to
a 14.76% improvement in carefulness and a 2.88%
reduction in risk on average.

2 Related work

Retrieval-augmented generation. The typical
retrieval-augmented generation (RAG) method fol-
lows a retrieve-then-generate pipeline, first retriev-
ing relevant documents from a grounding corpus
and then generating the final answer by the frozen
generators (Shi et al., 2023; Ram et al., 2023). The
retrieval augmentation is performed for all the ques-
tions through a single round (Lewis et al., 2020;
Guu et al., 2020; Izacard and Grave, 2021; Shi et al.,
2023) or multiple rounds (Borgeaud et al., 2021;
Ram et al., 2023; Trivedi et al., 2023; Jiang et al.,
2023; Liu et al., 2024). However, such practice
sometimes hurt generation performance, due to the
unsatisfactory retrieved results (Mallen et al., 2023;
Ren et al., 2023; Yoran et al., 2023; Tan et al., 2024).
The reason may lie in the inconsistency between
the relevance judgments in retrieval stage and the
utility judgments in generation stage (Zhang et al.,
2024). Besides jointly optimization of the retriever
and generator (Guu et al., 2020; Lewis et al., 2020;
Singh et al., 2021; Izacard et al., 2023),

another solution is adaptive retrieval augmenta-
tion (Jiang et al., 2023; Asai et al., 2023; Wang
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et al., 2023), which actively determines when to
retrieve based on internal knowledge boundaries.

Knowledge boundary. Detecting what LLMs
know and do not know measures the boundary of
models’ internal knowledge, which can be applied
to determine when to abstain it (Kadavath et al.,
2022; Yang et al., 2023). The basic realization
involves prompting one LLM to either verify in
advance or to self-reflect on its response afterward
(Ren et al., 2023; Li et al., 2024). It works for
almost all LLMs, but there is a problem of overcon-
fidence (Yin et al., 2023). Self-consistency between
multiple inference also reflects the models’ answer-
ing ability (Manakul et al., 2023), which is widely
applicable but of high cost. Calibration-based meth-
ods obtain uncertainty or confidence scores of an-
swers based on factors such as entropy, and token
probability (Lin et al., 2023; Yang et al., 2023). A
threshold is set to reject answers with low scores.
Besides, some work elicits self-knowledge by refer-
ring to existing cases, which needs labeled samples.
Through instruction tuning (Ouyang et al., 2022)
or applying a small trainable model as classifier
(Slobodkin et al., 2023; Azaria and Mitchell, 2023),
LLMs can choose to abstain the answer when fac-
ing new questions. However, the limitation of the
aforementioned work is that it only examines confi-
dence when using internal knowledge, without con-
sidering the confidence when integrating external
knowledge under the RAG setting. Though some
work deals with knowledge conflict between the in-
ternal knowledge and external knowledge (Li et al.,
2023a; Xie et al., 2023; Qian et al., 2023; Tan et al.,
2024), it seldom rejects the RAG results, under the
assumption that at least one kind of knowledge is
true. This assumption is not conducive to risk con-
trol of RAG, since the retrieval results may contain
noise. Therefore, in this work, we explore possible
ways to control risk by discarding the RAG results,
especially designed for external knowledge from
retrieval results.

Counterfactual thinking. As the third level of
the causal ladder after association and interven-
tion, counterfactual reflects causality by imagining
“what would the outcome be had the variable(s)
been different” (Pearl, 2009; Nan et al., 2021).
Counterfactual inference helps model unchanging
causal mechanisms for better generalization and
debias, which can be utilized for text classification,
visual question answering, recommendation sys-
tem and so on (Qian et al., 2021; Niu et al., 2021;

Wei et al., 2021; Wang et al., 2022; Deng et al.,
2023). It can calibrate causal effects through me-
diation analysis, by estimating the total effect and
then eliminating the undesired effect (Xie et al.,
2021). Different from these works, we focus on
injecting counterfactual thinking into the prompt
to better apply retrieval-augmented LLMs.

3 Problem statement

3.1 Task description
The RC-RAG task aims at assessing confidence or
uncertainty of RAG answer to enable risk control
in RAG. Formally, given a question Q and a group
of retrieved passages P , the task outputs the answer
A along with a judgment label J ∈ {0, 1}. For the
samples with high confidence, the judgment label J
is set as 1, indicating that the RAG answer could be
kept. Oppositely, J = 0 is set for those uncertain
output of RAG, which should be discarded. Ideally,
the assessment of confidence should align with
the extent to which RAG knowledge supports the
correct answer.

3.2 Benchmark

Data. To our best knowledge, there is limited avail-
able dataset that can be directly used for risk con-
trol for RAG. Therefore, we construct a RC-RAG
benchmark composed of quadruple <Q,P,A, J>
through automatic annotation. In the following, we
introduce the data source and collection process of
this benchmark.
Data source. In this work, we focus on factoid
question answering (FQA) (Aghaebrahimian and
Jurcícek, 2016; Aghaebrahimian, 2018), which typ-
ically provides a limited number of short answers,
such as entities or numbers, and therefore carries a
higher risk compared to non-factoid QA. We collect
questions from two widely used datasets including
Natural Questions (NQ) (Kwiatkowski et al., 2019)
and TriviaQA (TQ) (Joshi et al., 2017). Since we
focus on a zero-shot scenario, we collect question
Q from their test sets.
Data collection. We further collect P,A, J based
on questions Q in the data source.

• Passage collection. For each question q ∈ Q,
we utilize a dense retriever to retrieve top-k rel-
evant passages p = {p1, ..., pk} from external
resources.

• Answer generation. Then, we prompt the LLM
f to generate the answer âf for each question-
passage pair {q, p}, by feeding them as model
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RC-TQ (7785) RC-NQ (3610)

TQ-A TQ-U NQ-A NQ-U

ChatGPT 5551 2234 1785 1825
Mistral 5553 2232 1830 1780

Table 1: Statistics of the full test sets and annotated re-
sults of answerable (A) and unanswerable (U) samples.

input (prompts can be found in Appendix C.1):

âf = f(q, p). (1)

• Judgment annotation. After that, we annotate j
for each tuple of {q, p, âf}. As mentioned above,
this judgment label indicates whether the RAG
answer could be kept depending on confidence
assessment. To align with the supporting degree
of given knowledge, we measure whether a sam-
ple is answerable approximately according to the
correctness of the RAG answer âf , i.e.,

j =

{
1, if âf is correct,
0, otherwise.

(2)

The correctness can be measured based on the
ground-truth answer a, through Exact Match
(EM) score, F1 score and so on. Details can
refer to Appendix A.

Finally, we obtain two RC-RAG datasets, i.e.,
RC-TQ and RC-NQ. The dataset statistics is shown
in Table 1.
Evaluation. According to our RC-RAG bench-
mark, the samples could be divided into two cases,
which are answerable (A) and unanswerable (U).
Answerable ones refer to the samples whose RAG
answer is correct, while unanswerable ones are the
opposite. At the same time, there are two predic-
tion results for RAG answers based on the designed
judgment strategy, i.e., keep (K) and discard (D).

By combining above situations, the output
of RAG would fall into one of the four
folds, i.e., AK, AD, UD or UK, as shown
in the Table 2. Specifically, AK/UK denotes
the answerable/unanswerable samples with an-
swers kept, while AD/UD denotes the answer-
able/unanswerable samples with answers discarded.
Noted that samples answered wrongly are labeled
as unanswerable ones based on our annotation, thus
there is no case of keeping the wrong answer in the
answerable samples.

Among these four folds, we further analyze
which one causes the real risk in RAG. (i) It is

Judgment result

Keep (K) Discard(D)

Answerable (A) AK AD
Unanswerable (U) UK UD

Table 2: Categorization of the RAG output.

intuitive that the AK and UD folds pose no risk, as
the judgment results are consistent with the labels.
(ii) For AD fold, although the judgment result is in-
consistent with the label, it poses no real risk since
the user’ behaviour may not be influenced when
the RAG provides a null answer. (iii) Thus, only
the UK fold exists risk, where the RAG sample is
unanswerable but its answer is not discarded.

For evaluation, we propose four risk-aware eval-
uation metrics from various aspects, i.e., risk, care-
fulness, alignment and coverage.

• Risk (%) measures the percentage of risky cases
(UK) among kept samples, i.e.,

risk =
|UK|

|AK|+ |UK| ,

where || represents the number of samples.

• Carefulness (%) representing the percentage of
incorrect samples being discarded, which is recall
for unanswerable samples, i.e.,

carefulness =
|UD|

|UK|+ |UD| .

• Alignment (%) represents the percentage of sam-
ples where the judgment results are consistent
with the labels, i.e.,

alignment =
|AK|+ |UD|

|AK|+ |AD|+ |UK|+ |UD| .

• Coverage (%) measures the percentage of sam-
ples to be kept, i.e.,

coverage =
|AK|+ |UK|

|AK|+ |AD|+ |UK|+ |UD| .

Note that a lower risk score is better, whereas
higher scores are better for the other metrics.

4 Counterfactual prompting framework

Overview. To achieve risk control for RAG, we
propose a novel counterfactual (CF) prompting
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Figure 2: Overview of counterfactual prompting framework for RAG, in which the counterfactual (CF) prompts
challenge the initial RAG answer in terms of the quality or usage of retrieved results. The final judgment result is
derived from both aspects. Details refer to Sec. 4.

framework that assesses predictive uncertainty of
RAG. The overview is illustrated in Figure 2, con-
sisting of a prompting generation module, a judg-
ment module, and a fusion module: (i) a prompting
generation module, which utilizes counterfactual
thinking to induce answer regeneration effected
by two changing factors; (ii) a judgment module,
which makes judgment based on uncertainty as-
sessment by analyzing the effect of each changing
factor on their answer; and (iii) a fusion module for
the final judgment result.
Prompting generation module. In this work, we
assume that two latent factors can affect RAG un-
certainty, i.e., the quality and the usage of retrieved
results. Thus, we argue about each of them and ask
for answer regeneration, respectively. Specifically,
we implement each prompt as shown in Figure
2, where CF-quality prompt challenges the poor
quality of retrieved results and CF-usage prompt
challenges the improper usage. By imagining two
scenarios that challenge each factor, the model ad-
justs the way it gets answers depending on its con-
fidence level.
Judgment module. This module decides whether
to keep or discard the answer according to uncer-
tainty assessment for both scenarios. Specifically,

we compare the regenerated answer with the ini-
tial RAG answer to analyze the effect of changing
factors. There are two kinds of comparison results,
i.e., same or different. Accordingly, the decision is
made as follow: (i) Keep: Answer remaining the
same indicates that the RAG answer is of relatively
high confidence, which can be kept; (ii) Discard:
Answer changing indicates that the RAG answer is
uncertain, which should be discarded.

To reduce the likelihood of overestimating con-
fidence, the prompting generation and judgment
modules can be executed iteratively for N rounds
to validate the decision for each scenario. A deci-
sion is made as keep only if the answer remains
consistent across all N rounds. To balance compu-
tational efficiency, we have set N to 1.
Fusion module. We aggregate above judgment
results as below. (i) If the two judgment results
are consistent (both are keep or discard), we fol-
low this judgment directly; (ii) Otherwise (one is
keep, the other is discard), make the final judgment
according to following prompts-based strategies
(prompts can be found in Appendix C.3):

• Direct selection: We prompt the LLM to make
a final decision, by telling it potential reasons re-
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sulting in wrong answers chosen from [improper
use or poor quality] of retrieval results, accord-
ing to the scenario in which the discard judgment
was made in the previous judgment module.

• Probability comparison: We prompt the LLM
to derive the probabilities of their respective judg-
ments under two scenarios. By comparing the
two probabilities, we select the judgment with the
higher probability as the final judgment results.

After fusion, we change the judgment result of a
special case from keep to discard: when the result
is keep and the RAG output is "unknown". In this
case, keeping the result of "unknown" is equivalent
to discarding.

More details and the complete form of all the
prompts can refer to Appendix B, C.

5 Experiment settings

Baselines. We compare our proposed CF prompt-
ing framework with three prompt-based baselines:
(i) If-or-Else (IoE) prompting framework (Li
et al., 2024), facilitating self-corrections based on
LLMs’ confidence. To adapt to the RC-RAG, we
classify the case of answer correction as discard.
(ii) Calibration-based framework (Tian et al.,
2023), verbalizing confidence scores after obtain-
ing answers, with a threshold set over verbalized
scores. If the score is below the threshold, then
choose to discard the output. (iii) Priori judge-
ment framework (Ren et al., 2023), perceiving
the factual knowledge boundary by self-judgment
in the normal or RAG setting, which discards an
answer by saying "unknown". More information
about the baselines and their prompts can be found
in Appendix D,E.
Backbones. We leverage two LLMs as backbones:
Mistral (Jiang et al., 2024) and ChatGPT (Roume-
liotis and Tselikas, 2023), which belong to open-
source models and black-box models respectively.
Note that these methods are general and can be
extended to other LLMs.
Implementation details. For LLMs, we call Ope-
nAI’s API1 to achieve ChatGPT (version gpt-3.5-
turbo-0301), while we choose Mistral-7b2 to imple-
ment Mistral. The max sequence length of LLM
output is set to 256, and the temperature is set to 0.
All the others are set as default. For the retrieved

1platform.openai.com
2huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

results, we conduct dense retrieval and sparse re-
trieval following Ren et al. (2023), and provide
top-3 passages for each question following Wang
et al. (2023). Most of the experimental results of
our method use the direct selection fusion strategy,
unless otherwise stated. More details refer to Ap-
pendix B. According to the analysis on the iteration
number, as shown in Figure 3 in Appendix B, we
report all results derived from a single run.

6 Experiment results

We aim to answer six research questions: (RQ1)
Does our CF prompting framework efficiently con-
trol the risk of RAG compared with the baseline
methods? (RQ2) Does the ability of LLMs af-
fect the effectiveness of RC-RAG? (RQ3) Does
the difficulty of QA task affect the ability of RC-
RAG? (RQ4) Does the quality of retrieval results
affect the effectiveness of RC-RAG? (RQ5) How
does two CF-prompts affect the effectiveness of
RC-RAG respectively? (RQ6) Are our risk control
framework interpretable?

6.1 Main results

As shown in Table 3, we present the performance
of different RC-RAG methods on two datasets. We
have the following observations for RQ1-3.
Our approach effectively reduces risk and main-
tains carefulness compared to baselines. Base-
lines without a clear indication of the possible
source of error struggle to reject uncertain RAG an-
swers: (1) IOE has the worst rejection performance.
For example, when using ChatGPT as a generator,
it had the highest risk score and the lowest careful-
ness score on both datasets. This suggests that di-
rectly judging confidence in the answer is difficult
to overcome the LLM’s overconfidence problem
in the RAG setting, due to reliance on retrieved
results. (2) The calibration-based approach also
suffers from overconfidence, resulting in the worst
scores for risk and carefulness on both datasets
when using Mistral as a generator. This shows
that LLMs tend to output high confidence scores in
the RAG setting without considering the potential
misdirection of retrieved results. (3) The priori ap-
proach performs better on both metrics, particularly
on the risk score of RC-NQ, achieving the lowest
risk score of 34.72% with ChatGPT. This improve-
ment is due to the prompt’s mention of "based on
the given information," leading the LLM to focus
more on the quality of the retrieved results.

2385



Backbone Method RC-TQ RC-NQ

risk↓ carefulness↑alignment↑coverage↑ risk↓ carefulness↑alignment↑coverage↑

Mistral

IoE 24.88 20.97 74.41 91.06 45.59 20.22 56.93 86.29
Calibration24.79 20.92 74.80 91.47 45.65 17.36 57.06 89.25

Priori 21.95 33.87 77.14 86.38 42.61 28.60 61.52 82.63
Ours 19.00 52.87 72.78 71.14 38.22 52.98 63.60 60.66

ChatGPT

IoE 21.59 33.53 78.88 88.34 41.79 31.14 64.29 83.38
Calibration19.71 42.51 79.45 83.75 40.97 35.34 64.96 79.78

Priori 16.23 57.30 79.68 75.49 34.72 55.23 70.55 65.26
Ours 14.94 65.37 75.38 66.55 35.22 62.86 66.23 53.24

Table 3: Main results of RC-RAG on the test set of two datasets and two LLMs with dense retriever. Best results in
bold and second best in underline.

Method risk↓ carefulness↑alignment↑coverage↑
Sparse retrieval

IoE 65.18 30.55 47.73 75.18
Calibration65.10 28.98 47.31 76.98

Priori 60.43 43.15 56.70 66.37
Ours 56.30 65.80 65.15 42.85

Dense retrieval
IoE 45.59 20.22 56.93 86.29

Calibration45.65 17.36 57.06 89.25
Priori 42.61 28.60 61.52 82.63
Ours 38.22 52.98 63.60 60.66

Table 4: Results of RC-RAG on the RC-NQ test set and
Mistral with sparse retriever and dense retriever.

Our method outperforms the baselines in 3 out of
the 4 settings (2 models and 2 datasets), achieving
an average reduction of 2.88% on risk scores and
an average improvement of 14.77% on carefulness
scores. The results show that uncertainty prediction
based on retrieval results explicitly can effectively
help risk control. At the same time, alignment
scores are not significantly inferior, especially on
the RC-NQ dataset. However, as trade-off, the per-
formance of coverage is inferior to the baseline
method. It demonstrates how to balance risk con-
trol with coverage remains a difficult task.
Risk control ability is dependent on the LLM
ability. We compare the performance of RC-RAG
when using different LLMs as generators. We find
that risk control works better with ChatGPT than
with Mistral. Benchmark statistics (Table 1) show
that Mistral outperforms ChatGPT on both datasets,
particularly on RC-NQ. This indicates that risk con-
trol is more effective with weaker LLMs, under-
scoring the necessity of risk control methods. The

Method risk↓ carefulness↑alignment↑coverage↑
Ours 13.56 75.75 76.00 59.00

CF-usage 18.31 60.61 78.00 71.00
CF-quality10.48 83.33 74.50 52.50

Table 5: Ablation study results of RC-RAG on the subset
of RC-TQ test set and ChatGPT with dense retriever.

underlying reason is that more capable models are
more confident in both their internal knowledge and
retrieved results. Consequently, Mistral achieves
higher coverage scores, demonstrating that stronger
LLMs tend to retain answers, which is consistent
with the reasons for the above results.

Task difficulty has limited influence on risk con-
trol ability. We compared the effect of RAG risk
control methods on different tasks. According to
the risk and alignment scores, we find that the risk
control methods perform worse in RC-NQ than in
RC-TQ. The statistics of the benchmark (Table 1)
show that RC-NQ is significantly more difficult
than RC-TQ, as both ChatGPT and Mistral have
a lower percentage of answerable samples on the
RC-NQ dataset. We find that the more difficult the
task to answer, the more difficult the risk control.
For coverage scores, the performance in RC-NQ is
also weaker. However, the performance in terms of
carefulness scores was largely flat. The conclusion
drawn from the above phenomenon is that the diffi-
culty of the task has a limited effect on the ability
of the risk control method to accurately identify
unanswerable samples. As the proportion of sam-
ples that cannot be answered is larger in tasks with
higher difficulty, the proportion of samples (UK)
that cannot be answered but are retained will also
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Question: What was the purpose of a revival meeting during the second great awakening?
Ground-truth answer: Evangelizing.
Passage: [Passage-1]: Title: Second Great Awakening Content: a sense of personal salvation. Upon their return home, most
converts joined or created small local churches, which grew rapidly. Calvinists emphasized the inability of men to save
themselves. The only way to be saved was by God’s electing grace. The Revival of 1800 in Logan County, Kentucky, began
as a traditional Presbyterian sacramental occasion. ... [Passage-2]: ... [Passage-3]: ...

RAG answer: The purpose of a revival meeting during the Second Great Awakening was to inspire individuals to seek
personal salvation and join or create small local churches. Evidence: Passage-1

IOE: The purpose of a revival meeting during the Second Great Awakening was to inspire individuals to seek personal
salvation and join or create small local churches. Evidence: Passage-2, Passage-1 (Keep)
Calibration: Probability: 0.95 (Keep)
Priori: To inspire personal salvation and encourage individuals to turn to Christ.(Keep)
CF-usage: The purpose of a revival meeting during the Second Great Awakening was to inspire individuals to seek personal
salvation and join or create small local churches, as well as to provide an opportunity for settlers to encounter organized
religion and socialize with others. (Keep)
CF-quality: Sorry, there is no information provided in the given passages about the purpose of a revival meeting during the
Second Great Awakening. (Discard)
Fusion: Discard

Table 6: An example (No.135) from the RC-NQ test data, to analyze the generated answers and judgments of
different risk control method for RAG. We mark the correct judgments in red and wrong ones in blue.

be larger, and the risk and coverage scores will be
correspondingly increased.

6.2 Impact of retriever

To answer RQ4, we compared the performance of
risk control of RAG with different retriever. Results
are shown in Table 4, conducted on the RC-NQ test
set using Mistral as a generator.

By comparing the results using different retriev-
ers, we observe that the risk control method is more
cautious with the sparse retriever in terms of care-
fulness. However, the sparse retriever results in
significantly more unanswerable samples than the
dense retriever (Table 7 in Appendix A), leading
to a higher risk score. Additionally, the experi-
mental results show that our method outperforms
all baselines using both retrievers in terms of risk,
carefulness, and alignment.

6.3 Analysis of CF prompt and fusion strategy

To answer RQ5, we conduct ablation study to in-
vestigate the effects of the two CF prompts sepa-
rately. The experiment was conducted on a subset
of the RC-TQ test set using ChatGPT as a genera-
tor. We used CF-quality and CF-usage separately
in prompting generation module, followed by the
judgement module. The experimental results are
shown in the Table 5, from which we have the
following observations.
Only CF-usage prompting. The effect of risk con-
trol decreases while the coverage score increases,
indicating that the model tends to stick to its answer
when confronted with challenge about the usage of

retrieved results. This shows that the model is con-
fident about the usage of retrieved results, which
is essentially the internal knowledge of the LLMs,
consistent with their characteristics of overconfi-
dence.
Only CF-quality prompting. In contrast to the
above, the risk score decreases significantly, indi-
cating that the model tends to modify its answers
when confronted with challenge about the quality
of retrieved results. This shows that the model is
sensitive to the challenge of the quality of retrieved
results, which belongs to external knowledge, and
the model itself does not have the ability to judge
the quality of external knowledge.
Fusion strategy. The comparison results using two
different fusion strategies are shown in Table 8 in
Appendix F. Our complete approach with fusion
module can effectively balance the two situations,
considering both risk and coverage. Specifically,
the direct fusion strategy can identify the unanswer-
able samples more effectively.

6.4 Case study

To answer RQ6, we conduct a case study to illus-
trate the working mechanism of our method, based
on ChatGPT augmented with dense retrieval.

As shown in Table 6, the RAG answer and its
referred passages inaccurately address the ques-
tion, yet no baseline methods reject to answer. Our
approach, while unable to detect errors when the us-
age of retrieved passages is challenged, recognizes
their quality limitation and abstains from providing
an answer.
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7 Conclusion

In this work, we propose a counterfactual prompt-
ing framework for assessing the uncertainty of
RAG results, based on the quality of the retrieved
results and the manner in which they are used.
We construct a benchmark and design risk-related
evaluation metrics. Experimental results with two
LLMs on two datasets show that our method can
effectively reject unanswerable samples and has
a certain interpretability. In the future, we will
explore other factors that may affect predictive un-
certainty in RAG, such as conflicts between inter-
nal and external knowledge. Additionally, we will
attempt to design objective functions based on risk-
related metrics to guide the joint learning of the
risk control framework and the RAG model.

Limitations

Firstly, the two latent factors influencing RAG’s
confidence are human-defined, which may not en-
compass the full spectrum of risk sources. Future
work could explore more diverse factors identified
by LLMs, combined with statistic analysis.

Methodologically, our prompting generation ap-
proach is computationally intensive. Further explo-
ration is needed to develop more efficient prompt-
ing strategies. The judgment module currently
struggles with long answers, which requires a more
sophisticated matching function. Additionally, the
current fusion strategy is heuristic. Future enhance-
ments could include semantic information to better
integrate the two judgments.

Furthermore, we have focused solely on risk con-
trol in a zero-shot scenario. How to improve RAG
answers in this scenario deserves further investiga-
tion. Also, designing objective functions based on
risk-related metrics for joint training with the RAG
framework could be explored, aiming for a bal-
anced trade-off between risk control and response
quality.
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A Details about annotation

At the judgment annotation stage, we define the
following criteria: Given the ground-truth answer
a and the RAG answer â, if EM(a, â) = 1, F1 >
τ,RougeL > τ , or the a appears in â, the RAG
answer can be judged as correct, and the sample
can be annotated as answerable. We set τ = 0.7.

Sparse-RC-NQ Dense-RC-NQ

S-NQ-A S-NQ-U D-NQ-A D-NQ-U

Mistral 1063 2547 1830 1780

Table 7: The statistics of the full test sets of RC-NQ and
annotated results of answerable (A) and unanswerable
(U) samples, utilizing Mistral as the generator with both
sparse and dense retrievers.

B Implementation details

Details of judgment module. The criteria for de-
termining that the answers remain unchanged are
consistent with the criteria for matching the an-
swers in the judgment annotation stage (Appendix
A). If the regenerated answer matches the RAG
answer, it can be judged as same and thus keep.
Details of iterative process. The number of our
iterative process N is chosen from [1,2,3,4,5].
Specifically, we explored the performance of risk
control when the number of iterations increased
from 1 to 5, and the experimental setting was the
same as Sec. 6.3. The results are shown in the
figure 3, we can find that: with the increase of
iterations, risk and coverage score showed a down-
ward trend, carefulness score increased, while the
alignment index was basically flat. In order to save
the computational cost, we chose the number of
iterations to be 1 to carry out the rest of our experi-
ments.

C Prompt for CF prompting framework

C.1 Prompt for basic RAG setting

RAG prompt. Answer the following question
based on the given passages with one or few words.
Provide your evidence between two ## symbols
at the end of your response, either the passage
id or your internal knowledge. For example, pro-
vide "Answer: apple. Evidence: ## Passage-0,
Passage-1 ##." if you are referring to Passage-0
and Passage-1 to obtain the answer "apple". If
there is no information in the passages, explain the
answer by yourself.
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Figure 3: The change of risk-related metrics with the
increase of iteration number.

Question: {question}
Passages: {passage}

C.2 Prompt for prompting generation

CF-quality prompt. Assume that your answer is
wrong because the quality of your referred pas-
sages is poor. Please re-select the passages, to
regenerate the answer with one or few words and
your referred passage id as evidence.
CF-usage prompt. Assume that your answer is
wrong due to your improper use of the retrieved
passages. Please read the given passages carefully
to regenerate the answer with one or few words.

C.3 Prompt for fusion

Direct selection prompt.

• Your answer is likely to be wrong because of the
poor quality of retrieval passages, please choose
to keep or discard this output. Generate $$ keep
$$ if you choose to keep this answer, otherwise,
generate $$ discard $$.

• Your answer is likely to be wrong because of the
improper use of retrieval passages, please choose
to keep or discard this output. Generate $$ keep
$$ if you choose to keep this answer, otherwise,
generate $$ discard $$.

Probability comparison prompt. Provide the
probability that your regenerated answer is cor-
rect. Give ONLY the probability, no other words or
explanation.

For example:
Probability: <the probability between 0.0 and

1.0 that your specific answer is correct, without any
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Backbone Method RC-TQ RC-NQ

risk↓ carefulness↑ alignment↑ coverage↑ risk↓ carefulness↑ alignment↑ coverage↑

Mistral Ourspro 21.23 43.37 72.68 76.48 41.72 44.49 60.17 65.60
Oursdir 19.00 52.87 72.78 71.14 38.22 52.98 63.60 60.66

ChatGPT Ourspro 16.30 59.96 79.26 70.55 36.24 57.87 66.65 58.70
Oursdir 14.94 65.37 75.38 66.55 35.22 62.86 66.23 53.24

Table 8: Comparison results of our methods using two different fusion strategies, on the test set of two datasets
and two LLMs with dense retriever. The subscripts dir and pro represent the use of direct selection strategy and
probability comparison strategy, respectively.

extra commentary whatsoever; just the probabil-
ity!>

D Baselines

Among the three baseline methods, IoE and
calibration-based framework are post-processing
methods, while priori judgment framework is a
pre-processing method.

IoE method was originally used for answer cor-
rection, requiring the model to update the answer
of low confidence. If the model updates the answer,
guide it to choose a final answer. Based on the
matching results between the final answer and the
RAG answer, we decide whether to keep or discard
the RAG answer.

Calibration-based framework requires a
threshold to discard answers. We set the thresh-
old as 0.6 based on the experimental results.

Priori judgment framework requires prompt
input only once, which explicitly mentions "given
information" and "internal knowledge" in its
prompt.

E Prompt for baselines

IOE prompt.

• If you are very confident about your answer,
maintain your answer. Otherwise, update your
answer.

• You give two different answers in previous re-
sponses. Check the problem and your answers
again, and give the best answer.

Calibration prompt. Provide the probability that
your answer is correct. Give ONLY the probability,
no other words or explanation.

For example:
Probability: <the probability between 0.0 and

1.0 that your specific answer is correct, without any

extra commentary whatsoever; just the probabil-
ity!>
Priori prompt. Given the following information:

{passage}
Can you answer the following question based on

the given information or your internal knowledge,
if yes, you should give a short answer with one or
few words, if no, you should answer "Unknown".

Question: {question}

F Analysis of fusion strategies

We show the comparison results of our methods
using two different fusion strategies in Table 8.

G AI Tool Usage Instructions

We utilized ChatGPT to assist in refining the ex-
pressions and wording of the paper.
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