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Abstract

This work proposes a simple training-free
prompt-free approach to leverage large lan-
guage models (LLMs) for the Chinese spelling
correction (CSC) task, which is totally differ-
ent from all previous CSC approaches. The
key idea is to use an LLM as a pure language
model in a conventional manner. The LLM
goes through the input sentence from the be-
ginning, and at each inference step, produces
a distribution over its vocabulary for deciding
the next token, given a partial sentence. To
ensure that the output sentence remains faith-
ful to the input sentence, we design a minimal
distortion model that utilizes pronunciation or
shape similarities between the original and re-
placed characters. Furthermore, we propose
two useful reward strategies to address prac-
tical challenges specific to the CSC task. Ex-
periments on five public datasets demonstrate
that our approach significantly improves LLM
performance, enabling them to compete with
state-of-the-art domain-general CSC models.

1 Introduction

Given a Chinese character, there may exist many
others with the same or similar pronunciations,
or with similar shapes. This similarity can lead
to incorrect character selection when using cer-
tain keyboard input methods. It is worth noting
that nowadays most Chinese users rely on Pinyin-
based input methods. Besides, optical character
recognition (OCR) and automatic speech recog-
nition (ASR) systems may also introduce errors
during image/speech-to-text conversion. Such in-
correct characters in texts degrade communication
efficiency, and sometimes even lead to misunder-
standing.

As illustrated in Figure 1, the task of Chinese
spelling correction (CSC) aims to correct each in-
correct character in a sentence (Yu and Li, 2014),
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jiǔ shí gēn péng yǒu chū qù wán le

ninety root

Input Sentence:

休息
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Figure 1: An illustration of our approach. The correct
sentence should be “明天就是周末了，又可以跟朋
友出去玩了。” (Tomorrow is the weekend, allowing
for going out to play with friends again.).

and has attracted a lot of attention in recent years
(Bao et al., 2020; Xu et al., 2021; Li et al., 2022;
Wu et al., 2023; Dong et al., 2024).

Recently, witnessing the success of large lan-
guage models (LLMs), researchers try to leverage
LLMs for the CSC task. These approaches fall
into two categories: prompt-based and supervised
fine-tuning (SFT). However, their performance lags
behind non-LLM approaches by large margin.

The prompt-based approach relies on carefully
designed prompts, using instructions with no exam-
ple (zero-shot) or a few examples (few-shot), and
requires a capable LLM (typically ChatGPT) to
perform CSC (Li et al., 2023a; Dong et al., 2024).
However, spelling errors can sometimes make it
very difficult for the LLM to correctly understand
the original meaning of the sentence. As a result,
the LLM either ignores errors or replace an erro-
neous character to another erroneous one. More-
over, extra strategies are required to help ChatGPT
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ensure that the length of the output sentence is con-
sistent with the input sentence.

The SFT approach also uses prompts but, in con-
trast to the prompt-based approach, it continues
tuning the parameters of an LLM using CSC train-
ing data (Li et al., 2023a). However, we argue that
the SFT approach has two weaknesses. First, the
fine-tuned LLM is limited to the CSC task. Sec-
ond, the fine-tuning procedure requires significant
computational resources, even when only a small
fraction of parameters are trained.

This work proposes a simple training-free
prompt-free framework to leverage LLMs for the
CSC task, consisting of two components: an LLM
and a distortion model, as shown in Figure 1. The
key idea is using the LLM as a pure language model
in a conventional manner. The LLM goes through
the input sentence from the beginning, and at each
inference step, produces a distribution over its vo-
cabulary for deciding the next token, given a partial
sentence. The distortion model ensures that the
resulting sentence is faithful to the input sentence,
i.e., remaining the same meaning, by capturing pro-
nunciation or shape similarity between the original
and replaced characters.

Our contributions are summarized as follows:
‚ We for the first time propose a simple yet

effective training-free prompt-free framework to
leverage LLMs for the CSC task, which is totally
different from all previous approaches.

‚ Tokens in the output vocabulary of LLMs vary
in length, i.e., a token may consist of one or multi-
ple characters. To accommodate this, we propose a
length reward, which is very useful and can work
well with beam search decoding.

‚ LLM tends to prefer high-frequency tokens,
leading to the over-correction issue. We propose a
faithfulness reward, which further encourages the
model to be faithful successfully.

‚ Experiments on five public datasets demon-
strate that our approach significantly improves the
performance of LLMs in the CSC task and exhibits
remarkable domain generalization capabilities.

Our code is available at https://github.com
/Jacob-Zhou/simple-csc.

2 Our Approach

Given an input sentence x “ x1, x2, ¨ ¨ ¨ , xn,
where xi denotes a character, a CSC model out-
puts a sentence of the same length, denoted as
y “ y1, y2, ¨ ¨ ¨ , yn. The key to the CSC task is

Type Example Proportion
Identical 机 (jı̄) 0.962
Same Pinyin 基 (jı̄) 0.023
Similar Pinyin 七 (qı̄) 0.008
Similar Shape 仉 (zhǎng) 0.004
Unrelated 能 (néng) 0.003

Table 1: Examples of the different distortion types of
the corrected token “机” (jı̄). The distribution of the
types is calculated from the development set.

how to model the score of the input and output
sentence pair, i.e., scorepx,yq.

Under a perspective of probabilistic modeling,
ppx,yq can be decomposed into two parts:

ppx,yq “ ppx | yq ppyq
“ pDMpx | yq pLLMpyq (1)

The first part corresponds to a distortion model,
which captures the relationships between x and
y. In other words, it interprets how spelling errors
transform y to x. Another important function of
the distortion model is to make sure that y repre-
sents the same “meaning” as x, i.e., faithfulness.

The second part corresponds to a large language
model, which makes sure that y is fluent and cor-
rect from the language use perspective.

Please note that our use of LLMs is prompt-free.
We do not provide CSC-related instructions and
examples as the prompt. More importantly, we do
not give the input sentence to LLMs. We use LLMs
as pure traditional language models for evaluating
next-token probabilities.

2.1 A Minimal Distortion Model
Our distortion model adopts character-level factor-
ization:

log pDMpx | yq “
ÿ

i

log pDMpxi | yiq (2)

To further simplify the model, we do not com-
pute distortion probabilities for specific charac-
ter pairs, i.e., pc1, c2q. Instead, we first classify
pc1, c2q into one of five distortion types, denoted
as typepc1, c2q. Then we use the probability of the
type as the distortion probability of the character
pair:

pDMpc1 | c2q “ pptypepc1, c2qq (3)

Table 1 illustrates the distortion types. The pro-
portions are obtained from small subsets of popular
CSC training data, described later in §3.1, and used
directly as distortion probabilities.
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Please note that we claim our approach as
training-free, since the LLMs are used in an off-
the-shelf manner and the distortion model only re-
lies on several frequency values, which can be eas-
ily counted from a small dataset.

Given pc1, c2q, we implement a simple rule-
based tool to decide the distortion type. Among
the five types, “Similar Pinyin” and “Similar
Shape” are more complex to handle. More details
are given in Appendix B.

2.2 Next-token Probabilities from LLM
Typically, the output vocabulary of an LLM con-
tains both single- and multi-character tokens. In
other words, given a sentence y “ y1...yn, there
exists many ways to segment it into a sequence of
tokens. We use t “ t1...tm to denote a specific
token-level segmentation of y, i.e., a path for the
LLM to generate the character sequence, where
tj “ c1 . . . ck and k ě 1. Then, the log probability
of y can be decomposed as:

log pLLMpyq “
ÿ

j

log pLLMptj | tăjq (4)

After combining the distortion model, the proba-
bility of a partial output sentence is:

log ppx, tďjq “ log ppx, tăjq
` log pLLMptj | tăjq

`
kÿ

r“1

log pDMpcr | xl`rq
(5)

where k“lenptjq and l“lenptăjq are the lengths
(i.e., character number) of tj and tăj , respectively.

2.3 Beam Search Decoding
During inference, the basic operation at step j is to
select a token tj and append it to the current partial
sequence tăj . We follow the standard practice,
and adopt beam search decoding, that only retains
the top-K candidates at each decoding step for
computational efficiency.

In particular, one technical detail is closely re-
lated with our length reward strategy and thus wor-
thy of further discussion. As discussed above, most
LLMs generate sentences at token-level and one
token may contain either a single character or mul-
tiple characters. This implies that the beam search
procedure is aligned according to token numbers
rather than character positions. In other words, at
any given inference step, candidates in the beam
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Figure 2: A real example of the decoding process for the
input sentence “要求师公单位对...” (Requesting the
master unit to ...). Here, “施工” (shı̄gōng, construction)
is misspelled as “师公” (shı̄gōng). Without the length
reward, the correct character “施” is fail to be select into
the beam.

may varies greatly in the number of characters gen-
erated so far. For instance, one candidate contains
5 characters, whereas another candidate contains 8.

2.4 Length Reward
Our preliminary experiments show that the vanilla
approach, as described in Equation 5, produces un-
satisfactory results. Detailed analysis shows that
the paths explored in the beam search space are
dominated by single-character tokens, as shown in
Figure 2a. As we all know, multi-character tokens
are created by merging characters that frequently
occur together, capturing the most common pat-
terns in the language. LLMs are trained for and,
in turn, very good at generating multi-character to-
kens. Therefore, it is counter-intuitive to deprive
such capability from LLMs.

To handle the issue, we design a simple length
reward so that the model favors and keeps multi-
char tokens during beam search:

scorepx, tďjq “ scorepx, tăjq
` log pLLMptj | tăjq

`
kÿ

r“1

log pDMpcr | xl`rq

` α ˆ plenptiq ´ 1q

(6)

where α is a hyperparameter for balancing the
weight of the length reward, considering that
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小明 想去

买 (Unrelated)

书店 (Unrelated)

¨ ¨ ¨
苏州

¨ ¨ ¨
宿州

¨ ¨ ¨

Xiaoming Wants to go

to buy

0.064

Bookstore

0.029

Suzhou, Jiangsu0.0039

Suzhou, Anhui0.000003

✘: Over-correction

✔

Figure 3: A real example of the probabilities for the
next token, given the partial sequence “小明想去” from
the sentence “小明想去宿州” (Xiaoming wants to go
to Suzhou, Anhui).

the other two components use log probabilities,
whereas the length reward uses numbers directly.
Please note that we use scorep¨q instead of pp¨q,
since the values are no longer probabilities.

As shown in Figure 2b, thanks to the length re-
ward, the correct token “施工单位” (construction
unit) is now ranked within the top-K candidates.

2.5 Faithfulness Reward

Under our prompt-free use, the LLM component is
unaware of the input sentence, and only focuses on
the fluency and correctness of the output sentence
from the language use perspective.

We observe that our approach, even with the
length reward, tends to over-correct the input sen-
tence, i.e., changing its original meaning. Figure 3
gives an example. Given the partial output sen-
tence, i.e., “小明想去” (Xiaoming wants to go to),
the LLM component gives a probability of 0.0039
to “苏州” (sūzhōu), which is a very famous city
in Jiangsu Province. In contrast, it gives a much
lower probability of 3 ˆ 10´6 to the original input
token, i.e., “宿州” (sùzhōu), which is a less famous
city in Anhui Province. The distortion model fails
to remedy such great gap. As the result, our ap-
proach adopts the “correction”. However, under
such circumstances, it is better to reserve the origi-
nal tokens.

To mitigate this issue, we introduce a faithful-
ness reward:

scorepx, tďjq “ scorepx, tăjq
` log pLLMptj | tăjq

` p1 ` HLLMp¨qq ˆ
¨
˝

řk
r“1 log pDMpcr | xl`rq

`
α ˆ plenptiq ´ 1q

˛
‚

(7)
where HLLMp¨q denote the entropy of next-token

probabilities.1 If the entropy is high, meaning
that the LLM is uncertain about the next token,
the distortion model, along with the length reward,
will play a more important role in deciding the
next token. From Table 1, we can see that the
“Identical” type has a much higher probability
than others. That is, the distortion model always
favors the original input tokens.

3 Experimental Setup

3.1 Datasets.

Pseudo development set Since there is no pub-
licly available, manually labeled, domain-general
development set for CSC, we have chosen to split a
small portion of the existing synthetic training data
for hyperparameter tuning, naming it Pseudo-Dev.
Specifically, we use 1,000 sentences each from the
synthetic training data of Hu et al. (2024) and Wang
et al. (2018) as our development set.

Real-world test sets We perform experiments
across five distinct CSC datasets: Sighans (Wu
et al., 2013; Yu et al., 2014; Tseng et al., 2015),
CSCD-NS (Hu et al., 2024), MCSCSet (Jiang
et al., 2022), ECSpell (Lv et al., 2023), and Lemon
(Wu et al., 2023), covering a broad spectrum of
domains and genres. The details and statistics of
these datasets can be found in Appendix C.1. For
Sighans, we utilize the revised versions released
by Yang et al. (2023b), which have been manu-
ally verified and corrected for errors of the original
datasets, and name them as rSighans for clarity.

Selected datasets for analyses Given the ab-
sence of a domain-general development set for
CSC and the potential limitations of the Pseudo-
Dev set in representing real-world data, we conduct
in-depth analyses on three distinct datasets to cover
a broad spectrum of language use. These include
errors made by Chinese learners (rSighan 15), col-
loquial and diverse text from novels (Lemon Nov),
and formal and standard text from official docu-
ments (ECSpell Odw).

3.2 Evaluation Metrics.

We follow the convention to use the sentence-level
correction F1 (S-F) score as the main evaluation
metric. Besides, we also report character-level

1Since LLMs have different output vocabularies V , we
divide the entropy by log |V|, which can be understood as the
maximum entropy, and the value will fall into r0, 1s.
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S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç

69.3 80.7 10.1 41.4 44.2 27.6 17.8 27.6 12.0 34.9 45.4 13.7 28.2 31.6 19.1
– – – 74.4 76.6 – – – – – – – – – –
– – – – – – 80.9 – – – – – – – –
– – – – – – – – – 85.7 – 5.4 – – –

47.5 57.5 16.9 52.0 53.9 25.7 35.3 48.5 7.5 57.1 64.9 6.4 48.0 49.3 13.1
47.7 57.4 15.1 51.0 53.4 28.5 35.3 48.5 8.1 57.6 66.2 7.6 47.2 48.8 13.1
47.3 56.9 9.6 49.5 51.6 29.3 37.8 50.2 6.8 59.3 68.4 8.6 50.2 51.3 11.8

ZSP 19.0 18.4 49.1 22.6 14.5 35.3 13.6 8.0 77.5 34.5 22.3 30.3 17.5 9.8 40.9
FSP 31.8 38.5 21.4 35.7 32.7 10.5 42.6 47.1 4.4 56.8 53.1 5.8 35.1 25.2 9.5
OUR 59.1 70.9 10.4 63.2 66.2 16.5 66.0 76.9 1.7 84.5 89.8 4.9 53.2 56.2 9.1
ZSP 29.0 31.4 41.1 34.3 31.3 24.5 40.2 45.4 3.8 50.9 49.0 14.4 31.8 26.8 16.1
FSP 34.3 37.9 26.2 42.9 38.7 10.4 40.5 44.3 3.1 59.0 58.2 5.9 37.2 30.2 9.9
OUR 54.4 68.0 17.2 52.6 57.7 25.8 61.1 72.6 3.1 81.6 88.2 6.5 46.3 50.8 14.1
ZSP 31.0 30.4 57.3 34.9 29.2 40.6 19.0 12.5 80.5 45.2 37.5 31.6 32.8 26.5 27.8
FSP 35.2 38.8 31.7 39.4 35.1 22.4 33.6 32.6 20.4 54.3 49.8 15.7 35.9 28.9 17.3
OUR 57.1 70.0 12.6 60.7 64.1 19.7 63.2 72.9 2.6 82.4 88.8 5.1 49.8 53.7 10.7

System rSighans CSCD-NS MCSCSet ECSpell Lemon

Domain-Specific SOTAs (Trained on in-domain gold-standard data of each dataset)
ReaLiSe:
Hu et al. (2024)
Jiang et al. (2022)
Liu et al. (2024)
Domain-General SOTAs (Trained on about 34M synthetic CSC data)
Finetuned BERT
Softmasked BERT
ReLM

LLMs (without CSC-specific training)

Baichuan2
(13B)

Qwen1.5
(14B)

InternLM2
(20B)

Table 2: Main Results. :: We reran the released code of ReaLiSe (Xu et al., 2021), along with their released
models, to obtain the results. ReaLiSe, was trained on the in-domain, gold-standard data of the Sighans dataset and
represents a SOTA model for it. The numbers in gray represent the out-of-domain results for ReaLiSe. Detailed
results of each sub-domain are provided in Appendix E.1.

correction F1 (C-F) and sentence-level false posi-
tive rate (FPR) to provide a more complete view
of the model performance. Details of the evaluation
metrics can be found in Appendix D.

3.3 Baselines

We compare our approach against prompt-based
method under two settings: zero-shot prompting
(ZSP) and few-shot prompting (FSP). For few-shot
settings, we select 10 examples from the Pseudo-
Dev. The details of the prompts can be found in
Appendix C.2, and the example selection strategy
is described in Appendix C.3. During inference,
we adopt the greedy decoding strategy.2

To provide a more comprehensive compari-
son, we also present results from state-of-the-art
domain-general CSC models trained on 34 million
pairs of synthetic CSC data for reference. These
models include Finetuned BERT (Devlin et al.,
2019), Softmasked BERT (Zhang et al., 2020),
and ReLM (Liu et al., 2024).3

Additionally, for datasets that have in-domain

2We observe that the improvement of beam search is
marginal and sometimes even detrimental.

3The results of these models were obtained by running
the released code along with the corresponding checkpoints
provided at https://github.com/gingasan/lemon.git.

manually annotated data, we report results from
models specifically trained on it, serving as another
reference point.

3.4 Selection of LLMs

We conduct experiments on three open-source
LLMs: Baichuan2 (Yang et al., 2023a), Qwen1.5
(Bai et al., 2023), and InternLM2 (Cai et al., 2024).
For the main results, we select models with param-
eter sizes ranging from 10B to 20B to ensure that
the LLMs have sufficient zero-shot and few-shot
capabilities for meaningful comparisons. Addi-
tionally, we report the ZSP and FSP results of the
widely recognized best-performing LLM family,
GPT, including GPT-3.5 and GPT-4.

To simplify the analysis, we select the Bai-
chuan2 7B as a representative model to investigate
the impact of components in our approach.

3.5 Hyperparameters of Our Approach

We use the “Base” version of each LLM family.
The distortion probabilities of distortion model
were derived from the statistics of the Pseudo-Dev
dataset. We tuned α on Baichuan2 7B using the
Pseudo-Dev dataset. Eventually, α was set to 2.5
for all experiments. During inference, we adopt
beam search with a beam size of 8.
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S-Fæ S-Pæ S-Ræ C-Fæ C-Pæ C-Ræ FPRç

ReLM 55.5 61.1 50.8 61.0 78.5 49.9 9.5
ZSP 42.0 41.7 42.3 47.8 42.5 54.6 25.8
FSP 41.7 42.0 41.4 48.4 44.5 53.2 23.4
ZSP 43.5 38.1 50.8 49.9 40.2 66.0 47.5
FSP 48.7 44.2 54.4 52.9 44.0 66.3 38.8

BC2 13B┌┐ 59.6 66.5 54.0 67.3 78.3 59.0 8.3
Q1.5 14B OUR 57.6 62.5 53.4 66.0 74.1 59.4 10.2
IL2 20B└┘ 60.5 67.2 55.0 67.8 78.7 59.6 8.3

ReLM 36.4 46.7 29.8 36.0 49.2 28.3 14.3
ZSP 19.1 20.8 17.7 19.8 17.9 22.3 29.2
FSP 25.5 31.4 21.4 24.9 27.2 23.0 19.6
ZSP 30.6 28.4 33.1 33.4 26.9 44.1 33.5
FSP 42.7 41.4 44.0 43.1 38.9 48.3 27.4

BC2 13B┌┐ 45.3 53.7 39.1 49.1 57.0 43.2 13.1
Q1.5 14B OUR 38.2 41.7 35.3 43.7 44.5 43.0 21.8
IL2 20B└┘ 42.8 49.9 37.5 46.4 52.8 41.4 15.3

ReLM 66.5 67.5 65.6 73.0 86.4 63.1 7.1
ZSP 58.2 62.5 54.5 61.0 62.7 59.3 4.6
FSP 59.3 64.1 55.2 60.7 62.4 59.0 2.4
ZSP 73.1 73.0 73.3 77.3 75.5 79.2 5.0
FSP 73.2 73.5 72.9 78.5 78.3 78.7 5.0

BC2 13B┌┐ 92.0 94.4 89.7 93.8 95.6 92.1 0.4
Q1.5 14B OUR 87.4 88.6 86.3 91.6 91.8 91.3 2.9
IL2 20B└┘ 91.1 92.9 89.3 93.8 95.9 91.8 0.4

System
rSighan 15

GPT3.5

GPT4

Lemon Nov (1000)

GPT3.5

GPT4

ECSpell Odw

GPT3.5

GPT4

Table 3: The comparison to GPT family on the rSighan
15, Lemon Nov, and ECSpell Odw datasets. The
version of GPT3.5 is ‘gpt-3.5-turbo-0125’, GPT4 is
‘gpt-4-0613’. BC2 is short for Baichuan2, Q1.5 for
Qwen1.5, and IL2 for InternLM2.

4 Main Results

We present the main results in Table 2 and the com-
parison to the GPT family in Table 3. Conducting a
comprehensive evaluation of the GPT family is ex-
pensive, so we limit the comparison to a small-scale
study, focusing on the three datasets mentioned in
Section 3.1.4 Moreover, several qualitative exam-
ples are provided in Appendix E.2 to illustrate the
performance of our approach.

After applying our approach, all three LLM fam-
ilies outperforms their prompt-based counterparts
on all five datasets by a large margin.

Compared to the recent state-of-the-art domain-
general CSC models, which are trained on 34M
synthetic CSC data, our approach also achieves
competitive or even superior performance on most
datasets, especially on the MCSCSet and ECSpell

4The original Lemon-Nov dataset includes 6,000 sentences,
which is excessively large for our scope. Therefore, we se-
lected the first 1,000 sentences for this comparison.

S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç
7B 59.8 68.2 8.0 43.2 47.7 13.6 89.7 93.0 1.3

13B 59.6 67.3 8.3 43.5 47.9 13.0 92.0 93.8 0.4
0.5B 56.3 63.5 10.0 33.2 40.2 22.2 84.7 89.9 3.8
1.8B 58.3 65.3 10.3 35.6 42.3 19.9 90.3 92.8 1.7
4B 58.4 66.8 10.0 35.9 42.3 21.1 88.4 91.1 3.4
7B 59.4 67.0 8.5 39.0 44.7 19.0 87.1 91.4 3.4

14B 57.6 66.0 10.2 36.4 42.6 21.2 87.4 91.6 2.9
32B 57.2 65.8 10.0 36.6 42.2 19.4 88.2 91.9 2.9
1.8B 55.3 64.0 12.2 33.2 40.1 22.6 88.3 91.0 2.1
7B 58.1 65.5 10.2 38.8 44.2 18.0 89.3 92.0 2.1

20B 60.5 67.8 8.3 40.5 45.3 15.1 91.1 93.8 0.4

System rSighan 15 Lemon Nov ECSpell Odw

BC2

Q1.5

IL2

Table 4: Ablation results of model size.

datasets. The results indicate that our approach
has a better generalization across different domains
and genres than the current domain-general SOTAs.
However, our approach still largely lags behind
the domain-specific SOTAs trained on the gold-
standard labeled data of each dataset.

Compared to the GPT family, our approach con-
sistently outperforms GPT3.5 on all three datasets,
and achieves better performance than GPT4 in most
cases. However, our approach may exhibit a lower
C-R compared to GPT4, indicating that we might
miss some errors that GPT4 can correct.

5 Discussion

5.1 Impact of the Size of the LLM

First, we investigate the impact of the LLM size on
the performance of our approach.

As shown in Table 4, in general, larger LLMs
tend to perform better than smaller ones within
the same model family. However, the Qwen1.5
model family is an exception: the performance
improvement becomes marginal when the model
size exceeds 1.8B parameters and even decreases
when the model size reaches 7B.

When comparing the performance of models of
the same size across different model families, we
find that the Baichuan2 family generally outper-
forms the other two model families.

5.2 Effectiveness of the Distortion Model

To investigate the effectiveness of the minimal dis-
tortion model, we first remove the distortion model
pDMpx | yq from the decoding process. Alter-
natively, we adopt a constrained text generation
(CTG) approach to correct the input sentence. For
each step, we limit the vocabulary to tokens that
are related to the corresponding characters in the
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S-Fæ S-Pæ S-Ræ C-Fæ C-Pæ C-Ræ FPRç

CTG 6.7 5.3 9.1 7.7 4.2 47.7 90.0
OUR 59.8 66.0 54.7 68.2 77.8 60.6 8.0
- DT -7.7 -12.6 -3.9 -7.1 -15.7 -0.3 +9.4
- DT: -12.3 -18.2 -7.5 -9.8 -20.5 -1.2 +11.1

CTG 0.7 0.5 1.1 1.4 0.7 22.5 96.2
OUR 43.2 52.2 36.9 47.7 55.5 41.9 13.6
- DT -12.3 -20.5 -6.8 -10.0 -20.8 -0.7 +13.9
- DT: -11.7 -20.5 -5.5 -9.7 -21.8 -1.6 +14.7

CTG 29.3 24.5 36.3 21.4 12.4 79.5 52.9
OUR 89.7 91.6 87.8 93.0 95.3 90.8 1.3
- DT -4.0 -4.6 -3.4 -3.9 -5.8 -2.2 0.0
- DT: -16.3 -16.9 -15.7 -12.7 -14.5 -10.9 +2.5

System
rSighan 15

Lemon Nov

ECSpell Odw

Table 5: Ablation results of distortion model on
Baichuan2 7B. “CTG” means constrained text gener-
ation. “-DT” represents that we do not distinguish
Same Pinyin, Similar Pinyin, and Similar Shape,
and treat them as Related distortion. “-DT:” represents
using the confusion set from Wang et al. (2018) to iden-
tify the Related distortion.

input sentence,5 and let the model select the most
likely token from the constrained vocabulary. The
results are shown in the “CTG” column in Table 5.
We can see that the CTG performs poorly on all
datasets. This is because a Chinese character may
have many similar characters. Without the distor-
tion model, the model is prone to replacing the
original character with a higher-frequency similar
character, leading to a large number of errors.

Next, we investigate the impact of the distortion
type by treating three types of related but not identi-
cal distortions as a single distortion type. As shown
in the “- DT” column in Table 5, the performance
drops significantly but not as severely as when re-
moving the distortion model. This performance
drop is mainly due to a decrease in precision.

We also examine the effectiveness of our rule-
based tool for identifying related distortions. We
replace our rule-based tool with the confusion set
from Wang et al. (2018) to identify the related dis-
tortion. The results in the “- DT:” column in Table 5
show that the confusion set from Wang et al. (2018)
is less effective than our rule-based tool, leading to
more severe performance degradation.

5.3 Impact of Two Rewards
In this work, we propose two rewards to optimize
the decoding process: the length reward and the

5Classified as Identical, Same Pinyin, Similar Pinyin,
or Similar Shape.

S-Fæ S-Pæ S-Ræ C-Fæ C-Pæ C-Ræ FPRç

Vanilla 18.0 15.9 20.6 20.7 14.3 37.6 52.9
w/ LR +39.4 +43.4 +35.0 +43.7 +53.3 +23.9 -38.4
w/ FR +3.8 +6.2 +0.8 +5.4 +8.3 -6.6 -19.3
w/ Both +41.9 +50.1 +34.1 +47.4 +63.5 +23.0 -44.8

Vanilla 19.4 18.0 20.9 23.6 17.1 38.3 38.5
w/ LR +17.1 +19.5 +14.6 +19.0 +21.9 +8.6 -13.7
w/ FR +9.0 +13.5 +4.7 +8.5 +13.5 -4.5 -18.8
w/ Both +23.9 +34.2 +16.0 +24.1 +38.4 +3.6 -25.0

Vanilla 65.3 65.3 65.3 70.4 65.4 76.2 10.1
w/ LR +25.4 +26.9 +24.0 +22.5 +28.5 +15.6 -9.7
w/ FR +4.7 +11.2 -0.8 +7.5 +19.7 -4.5 -6.7
w/ Both +24.4 +26.4 +22.5 +22.6 +29.9 +14.6 -8.8

System
rSighan 15

Lemon Nov

ECSpell Odw

Table 6: Ablation results of Baichuan2 7B. “LR” and
“FR” represent “length reward” and “faithfulness reward”
respectively. “Both” means using both length reward
and faithfulness reward.

faithfulness reward. The ablation study results of
the two rewards are shown in Table 6.

The results show that the length reward signifi-
cantly improves performance on all three datasets.
This improvement can be attributed to increases in
both precision and recall, indicating that the length
reward is crucial to our approach. The faithful-
ness reward mainly contributes to improving preci-
sion, and it may slightly reduce recall. Overall, the
faithfulness reward balances the trade-off between
precision and recall, leading to a higher F1 score.

The combination of the two rewards can achieve
better performance than using them separately, es-
pecially when datasets contain less formal text,
more colloquial expressions, and more diverse
named entities.

5.4 Does Our Approach Work Well on
Simpler LMs?

Though our primary focus is on the performance
of our approach on LLMs, the language model
term of Equation 1 can be substituted with simpler
models, such as n-gram models, masked language
models, or small-scale causal language models. In
this subsection, we investigate the performance of
our approach using these simpler language models.

The LMs we investigate include: n-gram LM:
KLM,6 a 5-gram language model trained on the Chi-
nese Gigaword corpus; Masked LM: BERT,7 a
bidirectional language model pre-trained using the

6shibing624/chinese-kenlm-klm
7bert-base-chinese
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S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç

BC2 13B 59.6 67.3 8.3 43.5 47.9 13.0 92.0 93.8 0.4
Q1.5 14B 57.6 66.0 10.2 36.4 42.6 21.2 87.4 91.6 2.9
IL2 20B 60.5 67.8 8.3 40.5 45.3 15.1 91.1 93.8 0.4
KLM 29.3 38.9 33.8 5.8 9.4 65.8 58.3 65.3 23.5
BERT 110M 31.3 34.0 0.2 13.3 12.5 0.6 59.1 63.6 0.0
GPT2 102M 55.0 64.7 8.1 26.1 30.8 28.4 78.6 85.0 5.4

System rSighan 15 Lemon Nov ECSpell Odw

Table 7: Results of applying our approach to simpler
LMs.

mask filling task and next sentence prediction task;
Small causal LM: GPT2,8 a small-scale causal lan-
guage model (about 102M parameters) trained on
the CLUECorpusSmall (about 5B characters).

The results are shown in Table 7. From these
results, we can see that our approach also works
with simpler LMs. In the ECSpell-Odw dataset, our
approach enables simpler language models (LMs)
to achieve sentence- and character-level correction
F1 scores higher than 50% and 60%, respectively.
However, the performance of our approach on sim-
pler LMs still lags significantly behind that of the
large language models (LLMs), highlighting the
importance of the scale of pre-training data and
model size.

5.5 How to Introduce New Knowledge into
Our Approach?

The LLM part of our approach offers a straightfor-
ward way to incorporate new knowledge without
the need for further training, by adding some
text that describes the new knowledge as an in-
put prefix.

Given the new knowledge k, Equation 1 can be
adjusted from ppx,yq to ppx,y |kq. We then have:

ppx,y | kq “ ppx | y,kq ppy | kq
« pDMpx | yq pLLMpy | kq, (8)

where, by assuming x and k are conditionally in-
dependent given y, we approximate ppx | y,kq as
pDMpx | yq. The second term, pLLMpy | kq, can be
calculated by the LLM using the input prefix k.

To illustrate this point, we conducted a simple
experiment introducing domain and text format
information as new knowledge into our approach.
We chose the MCSCSet for this experiment, as the
sentences in it share a common characteristic: they
are questions from patients. We can introduce this

8uer/gpt2-chinese-cluecorpussmall

S-Fæ C-Fæ FPRç

ORI 35.3 48.5 7.5
w/k +0.7 +1.7 +0.1

ORI 35.3 48.5 8.1
w/k +1.2 +2.1 -0.5

ORI 37.8 50.2 6.8
w/k +0.9 +1.9 -0.2

OUR 66.0 76.9 1.7
w/k +5.1 +5.4 -0.2

OUR 61.1 72.6 3.1
w/k +9.1 +8.8 -1.0

OUR 63.2 72.9 2.6
w/k +4.8 +5.4 -0.0

System

Finetuned BERT

Softmasked BERT

ReLM

Baichuan2 13B

Qwen1.5 14B

InternLM2 20B

Table 8: The results of introducing new knowledge by
adding a prefix k to the input on the MCSCSet. “ORI”
denotes the original input without any prefix.

knowledge into the LLM by adding a simple input
prefix k “ “患者提问：” (“A patient asks:”).

The results in Table 8 demonstrate that introduc-
ing new knowledge into the LLM by merely modi-
fying the input prefix can significantly improve the
model’s performance on the CSC task.

We provide a real case from the MCSCSet to
explain why this method works.

Consider the sentence “未挨前兆” (wèi āi qián
zhào, “without being near any prior warnings”),
which should be corrected to “胃癌前兆” (wèi ái
qián zhào, “early symptoms of stomach cancer”)
in the medical domain. This sentence contains
only four characters, insufficient to provide enough
context for accurate correction, even for humans.

CSC models fail to correct this sentence or sug-
gest incorrect corrections, such as “未提前兆”
(wèi tí qián zhào, “did not provide prior warn-
ings”) or “未按前兆” (wèi àn qián zhào, “not ac-
cording to the prior warnings”). However, if we
add the prefix “患者提问：” (“A patient asks:”),
which provides the knowledge that the sentence is
a patient’s question about a medical condition, the
model can correctly predict “胃癌前兆”.

In addition to this simple experiment, we also
provide an experiment in Appendix F.6 to show
that we can use the context as new knowledge to
improve the performance of the CSC model in real-
world applications.

5.6 More Discussions

Due to space constraints, some interesting discus-
sions have been moved to the Appendix. These
include: a discussion on how the pre-training data
of the LLM affects the performance (F.1); a compar-
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ison between our approach and the SFT approach
(F.2); an analysis of the influence of beam size on
the performance (F.3); an exploration of whether
the imperfect estimation of the distortion model
impacts the performance (F.4); and a brief runtime
analysis (F.5).

6 Related Works

6.1 Chinese Spelling Check

Previous research on the CSC task can be divided
into three eras, accompanied with paradigm shift.

The Early Unsupervised Era Early CSC ap-
proaches mainly utilized unsupervised pipeline sys-
tems (Yeh et al., 2013; Yu et al., 2014; Yu and Li,
2014; Huang et al., 2014; Xie et al., 2015). These
systems typicaly act in three main steps: error de-
tection, candidate correction generation from a con-
fusion set, and candidate ranking using a statistical
n-gram language model.

The Supervised Learning Era By 2018, the ad-
vent of techniques for automatically generating
pseudo-labeled data had begun to address the chal-
lenge of data scarcity in CSC (Wang et al., 2018),
marking a shift in the paradigm of CSC research to-
wards a supervised learning era dominated by deep
neural networks. This era saw researchers explor-
ing various avenues to enhance CSC performance.
Some focused on finding better model architectures
(Zhang et al., 2020; Zhu et al., 2022), while oth-
ers delved into more effective training strategies
(Liu et al., 2022; Wu et al., 2023; Liu et al., 2024).
Additionally, there was an effort to enrich models
with information beyond text, such as phonetic or
visual features (Cheng et al., 2020; Xu et al., 2021;
Li et al., 2022; Liang et al., 2023).

Similar to our work, Wu et al. (2023) also decom-
posed ppx | yq into two parts to improve CSC per-
formance. However, they achieved this by adding
an auxiliary training loss. Our work stands out by
using an off-the-shelf LLM as the backbone and
a minimal distortion model to achieve good CSC
performance without any additional training.

The Era of LLMs Our work represents an ini-
tial foray into what can be considered the third era
of CSC research: the era of LLMs. This phase
explores the potential of LLMs in addressing the
CSC task. As discussed in the introduction, related
studies in this era fall into two main categories:
prompt-based and supervised fine-tuning. Li et al.

(2023a) were the first to investigate the prompt-
based approach under various settings. Building
on this work, Dong et al. (2024) proposed enrich-
ing prompts with additional information, such as
pronunciation and character glyphs. Compared
to the prompt-based approach, the SFT-based ap-
proach has been shown to be more effective (Li
et al., 2023a). However, the performance of SFT-
based LLMs still falls significantly behind pre-
LLM methods. Li et al. (2024) argue that this
underperformance is due to the mixed character-
word tokenization used by LLMs for Chinese text.
To address this issue, they suggest replacing mixed
tokenization with character-level tokenization be-
fore training LLMs on the CSC dataset.

In contrast to these methods, our approach re-
quires neither prompts nor additional training.

6.2 Decoding Methods of LLMs

Intervening in the decoding process is a common
approach to improve LLMs’ task-specific perfor-
mance. There are two popular approaches in this
category: Contrastive decoding and Constrained
decoding. Contrastive decoding (Li et al., 2023b)
refines the output probabilities by comparing the
output probabilities of expert and amateur mod-
els (O’Brien and Lewis, 2023; Shi et al., 2023).
Constrained decoding, on the other hand, uses con-
straints to guide the decoding process, making the
output more aligned with the task-specific require-
ments (Wang et al., 2023; Geng et al., 2023).

Our work is closely related to the constrained
decoding approaches, where a distortion model is
used to influence the LLM decoding process.

7 Conclusion

In this work, we propose a simple, training-free,
and prompt-free approach to leverage LLMs for
the CSC task. Two components, a large language
model and a minimal distortion model, co-operate
to correct spelling errors. We alleviate the local
optima problem and over-correction issue, with
two simple strategies, length reward and faithful-
ness reward, respectively. Our comprehensive
experiments have shown that our approach sig-
nificantly improves LLM performance. Through
our approach, LLMs demonstrate remarkable do-
main generalization capabilities, surpassing SOTA
domain-general CSC models, that are trained on
extensive synthetic CSC data, on most datasets.
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Limitations

Feasibility The scope of this study is limited to
the task of Chinese spelling correction, which is a
subset of text error correction. Most of our design
choices are tailored to the characteristics of Chinese
and the specific requirements of the CSC task.

However, our approach has the potential to be
directly applied to some other languages. For ex-
ample, in Japanese and Korean, we can also cate-
gorize errors into phonetic similarities, such as (や,
ya)-(な, na) in Japanese or (후, hu)-(부, bu) in Ko-
rean, and shape similarities, like (ュ, yu)-(ェ, e) in
Japanese. For languages using a phonetic writing
system, like English, minor adjustments such as
adding INSERT, DELETE, and REORDER operations
will be sufficient to make it work.

Comparatively, handling complex text errors that
involve grammar, semantics, or pragmatics, are
more challenging. To tackle these errors, one could
design an appropriate distortion model, though it
might necessitate the adoption of more intricate
rules or the implementation of a model based on
neural networks. In our future work, we aim to
explore ways that would allow our approach to
handle these complex errors.

Computational Cost Our approach requires the
use of LLMs, which introduces additional com-
putational costs. However, many existing tech-
niques, such as quantization (Frantar et al., 2022;
Lin et al., 2024), pruning (Ma et al., 2023; Zhu
et al., 2024), distillation (Hsieh et al., 2023), and
more efficient framework implementations (Dao,
2023; Yang et al., 2024), can be directly applied to
our method to reduce these costs.
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B Implement of Distortion Model

B.1 Standard of Transformation Types

Identical Transformations An identical distor-
tion occurs when the input character is the same as
the correct character.

Same Pinyin Characters that share the same pro-
nunciation, disregarding tone, undergo a “Same
Pinyin” distortion. Due to the existence of het-
eronyms in Chinese, such as “和”, which can be
pronounced in multiple ways including “hé”, “hè”,
“huó”, “huò”, and “hú”, we classify two charac-
ters as undergoing a same pinyin distortion if they
share at least one pronunciation. The pypinyin9

library is utilized to determine character pronun-
ciations, with the ktghz2013 and large_pinyin
from pypinyin-dict10 providing a more accurate
pronunciation for these determinations.

Similar Pinyin We categorize distortions as
“Similar Pinyin” when two characters have pro-
nunciation that is recognized as similar by prede-
fined rules, which are based on Yang et al. (2023b).
For instance, ‘qı̄” and “jı̄” are considered similar

9https://github.com/mozillazg/python-pinyin
10https://github.com/mozillazg/pypinyin-dict

j Ñ ● q x z ■✕ ■✕ ■✕ ■✕ ■✕

q Ñ j ● x ■✕ c ■✕ ■✕ ■✕ ■✕

x Ñ j q ● ■✕ ■✕ s ■✕ ■✕ ■✕

z Ñ j ■✕ ■✕ ● c s zh ■✕ ■✕

c Ñ ■✕ q ■✕ z ● s ■✕ ch ■✕

s Ñ ■✕ ■✕ ■✕ z c ● ■✕ ■✕ sh
zh Ñ ■✕ ■✕ ■✕ z ■✕ ■✕ ● ch sh
ch Ñ ■✕ ■✕ ■✕ ■✕ c ■✕ zh ● sh
sh Ñ ■✕ ■✕ ■✕ ■✕ ■✕ s zh ch ●

r Ñ ● l ■✕ ■✕ ■✕ ■✕ ■✕ ■✕

l Ñ r ● n d t ■✕ ■✕ ■✕

n Ñ ■✕ l ● d t ■✕ ■✕ ■✕

d Ñ ■✕ l n ● t b ■✕ ■✕

t Ñ ■✕ l n d ● ■✕ p ■✕

b Ñ ■✕ ■✕ ■✕ d ■✕ ● p m
p Ñ ■✕ ■✕ ■✕ ■✕ t b ● ■✕

m Ñ ■✕ ■✕ ■✕ ■✕ ■✕ b p ●

g Ñ ● k h ■✕

k Ñ g ● h ■✕

h Ñ g k ● f
f Ñ ■✕ ■✕ h ●

Corrected Ñ Input

Table 9: Consonants with similar pronunciation.

due to the common mispronunciation of the con-
sonant “q” as “j”. A list of consonants and vowels
considered similar can be found in Tables 9 and 10,
respectively.

Similar Shape The similarity in the shape of
characters is evaluated by combining their four-
corner code with their radical and component infor-
mation. For example, the characters “机” and “仉”
have the four-corner codes “47910” and “27210”,
respectively. Given that the last digit primarily
serves to distinguish characters with identical pre-
ceding digits and that “机” and “仉” share two of
these digits, their four-corner code similarity is cal-
culated as 2 ˆ 1

4 “ 0.5. Considering their radical
and component (“木,几” for “机” and “人,几” for
“仉”), which share the component “几” but differ
in radicals, their similarity is 1 ˆ 1

2 “ 0.5. Thus,
the overall similarity is averaged to 0.5. With a
similarity threshold set at 0.45, these characters are
considered to undergo a similar shape distortion.
Furthermore, character pairs where one is a radical
or component of the other, such as “机” and “几”,
are also classified under similar shape distortions.

All non-Chinese characters are only allowed to
be transformed into themselves.
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an Ñ ● ang uan uang ian ■✕

ang Ñ an ● uan uang ■✕ iang
uan Ñ an ang ● uang ian ■✕

uang Ñ an ang uan ● ■✕ iang
ian Ñ an ■✕ uan ■✕ ● iang
iang Ñ ■✕ ang ■✕ uang ian ●

en Ñ ● eng un ■✕

eng Ñ en ● ■✕ ■✕

un Ñ en ■✕ ● ong
ong Ñ ■✕ ■✕ un ●

in Ñ ● ing
ing Ñ in ●

o Ñ ● uo
uo Ñ o ●

ü Ñ ● u
u Ñ ü ●

Corrected Ñ Input

Table 10: Vowels with similar pronunciation.

B.2 Type Priority

In scenarios where a character can be classified un-
der multiple distortion types, for example, “机” (jı̄)
and “玑” (jı̄), which can be classified as both having
the same pinyin and a similar shape, we prioritize
the distortion type according to the following or-
der: 1) Identical; 2) Same Pinyin; 3) Similar
Pinyin; 4) Similar Shape; 5) Unrelated.

B.3 Using an Inverted Index for Efficient
Distortion Model Calculation

During each decoding step, the distortion model
calculates the probability of transforming the input
sequence xa:b into a candidate token ti:

gpx, tiq “
kÿ

r“1

log pDMpcr | xl`rq, (9)

where the function gpx, tiq must be computed for
each candidate token ti in the vocabulary V , result-
ing in a huge computational cost.

To address this challenge, we propose the use
of an inverted index to reduce the calculation pro-
cess, by only considering relevant tokens, and ig-
noring irrelevant tokens. For a token, we can pre-
construct indexed entries to represent it, such as
<0,ji,SamePinyin>, <1,kou,SimilarPinyin>,
and <0,仉,SimilarShape> for “机构” (jı̄ gòu).
Upon receiving an input sequence, the index en-
ables rapid retrieval of relevant tokens, thereby lim-
iting probability calculations exclusively to these

tokens. As the subset of relevant tokens is sub-
stantially smaller than the complete token set, em-
ploying an inverted index considerably reduces the
computational burden.

B.4 Small Tricks for Distortion Model

We adopt three small tricks to enhance our distor-
tion model. First, for character pairs commonly
misused in everyday writing, such as “的”, “地”,
and “得”, we categorize these as “Identical” dis-
tortions, allowing the model to correct these errors
with lower difficulty.

Second, we found that, although the previously
described rules adequately cover most similar re-
lationships between characters, a few exceptions,
approximately 0.01% of total character pairs, still
persist. To identify these outliers, we leveraged
tools from previous studies (Wu et al., 2023; Hu
et al., 2024) by incorporating their structure con-
fusion sets and spelling similarity matrices. We
classify character pairs found within the structure
confusion set or those with a spelling similarity
matrix distance of less than 1 as “Other Similar”
distortions.

Finally, we have chosen not to entirely exclude
unrelated distortions. Instead, we allow each to-
ken to possess up to one unrelated character dis-
tortion, to which we assign a very low probability
(log pDM “ ´15).

Employing these tricks has led to marginal yet
consistent improvements in our approach’s perfor-
mance.

C Details of Experiments

C.1 Details of Real-world Test Sets

This section details the test sets used in our study,
providing insights into their composition and rele-
vance to real-world Chinese text.

‚ Sighan series: This series of datasets is one
of the most widely used benchmark datasets for
Chinese spelling correction (Wu et al., 2013; Yu
et al., 2014; Tseng et al., 2015). However, it faces
criticism for two main reasons: firstly, it consists
of essays written by Chinese learners, which may
not accurately represent typical Chinese texts. Sec-
ondly, its limited diversity could hinder the eval-
uation of models’ generalization capabilities. De-
spite these concerns, we include it in our evaluation
to allow for comparison with prior studies. How-
ever, we utilize the revised version by Yang et al.
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Datasets
Subsets Y13 Y14 Y15 Test Test Law Med Odw
#Sentence 1,000 1,062 1,100 5,000 19,650 500 500 500
Erroneous Sentence Ratio 97.70 56.69 56.18 46.06 50.00 51.00 45.20 52.40
Average Length 74.33 50.01 30.64 57.63 10.91 29.74 49.60 40.51
Average Error/Sentence 1.48 0.88 0.78 0.51 0.93 0.78 0.71 0.81

Identical 98.01 98.25 97.45 99.12 91.47 97.38 98.56 98.01
Same Pinyin 1.62 1.30 1.83 0.74 6.60 1.82 1.15 1.55
Similar Pinyin 0.28 0.40 0.66 0.13 1.05 0.51 0.19 0.28
Similar Shape 0.05 0.01 0.03 0.00 0.39 0.25 0.08 0.13
Unrelated 0.04 0.04 0.02 0.00 0.45 0.04 0.01 0.02

Recall Upper Bound 97.24 97.18 98.71 99.70 90.82 97.65 98.67 98.47

rSighans CSCD MCSC ECSpell

Distortion Type Proportion (%)

Datasets
Subsets Car Cot Enc Gam Med New Nov –
#Sentence 3,410 1,026 3,434 400 2,090 5,892 6,000 2,000
Erroneous Sentence Ratio 51.09 46.20 50.99 38.75 50.38 50.00 50.23 93.55
Average Length 43.44 40.12 39.83 32.99 39.28 25.16 36.24 36.94
Average Error/Sentence 0.56 0.47 0.52 0.41 0.49 0.55 0.57 1.42

Identical 98.64 98.78 98.63 98.73 98.64 97.80 98.43 96.15
Same Pinyin 0.90 0.75 0.93 0.89 0.94 1.50 0.95 2.34
Similar Pinyin 0.31 0.25 0.28 0.26 0.27 0.51 0.43 0.78
Similar Shape 0.02 0.07 0.06 0.01 0.02 0.05 0.02 0.40
Unrelated 0.12 0.14 0.09 0.11 0.12 0.13 0.16 0.31

Recall Upper Bound 91.38 89.34 94.28 90.54 92.82 93.98 89.08 88.03

Lemon Pseudo-Dev

Distortion Type Proportion (%)

Table 11: The statistics of the datasets used in the experiments. Recall Upper Bound represents the sentence-level
upper bound of the recall under the distortion model that we use in this work.

(2023b), which has manually verified and corrected
the errors in the original dataset.

‚ CSCD-NS: A real-world Chinese social me-
dia corpus collected and annotated by Hu et al.
(2024). It can better represent the variety of texts
found in real-world settings and includes a broad
spectrum of errors.

‚ MCSCSet: A large-scale corpus from the
medical domain, collected and annotated by Jiang
et al. (2022). It features numerous errors specific
to medical terminology, making it an excellent re-
source for evaluating models’ generalization capa-
bilities in this area.

‚ ECSpell: A small-scale, multi-domain corpus
annotated by Lv et al. (2023). It encompasses three
domains: legal documents, medical treatments, and
official document writing.

‚ Lemon: The most recent and largest multi-
domain corpus to date, collected and annotated by
Wu et al. (2023). It spans seven domains: law,
medicine, encyclopedia, gaming, automotive, con-

tracts, news, and novels. The original dataset also
includes sighan 15 as a subset, which we have con-
sidered as a part of the Sighan series and excluded
from Lemon.

The detailed statistics of these datasets are shown
in Table 11.

The recall upper bound in the statistics is ob-
tained by calculating the number of sentences
that can potentially be fully corrected out of the
total number of sentences in the dataset. A
sentence has the potential to be fully corrected
if all the distortion types between each pair of
source and target characters can be categorized into
Identical, Same Pinyin, Similar Pinyin, and
Similar Shape.

C.2 Implementation Details of Prompt-based
Method

In this work, we use the prompt-based method to
activate the CSC ability of the baseline LLMs. The
task-specific instructions are adopted from Li et al.
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System and User Prompts for baselines

System Prompt:
你是一个优秀的中文拼写纠错模型，中文拼写纠错模型即更正用户输入句子中的拼写错
误。
User Prompt:
你需要识别并纠正用户输入的句子中可能的错别字并输出正确的句子，纠正时必须保证改
动前后句子必须等长，在纠正错别字的同时尽可能减少对原句子的改动(不添加额外标点符
号，不添加额外的字，不删除多余的字)。只输出没有错别字的句子，不要添加任何其他解
释或说明。如果句子没有错别字，就直接输出和输入相同的句子。

Figure 4: Prompt templates used in our FSP and ZSP baselines.

(2023a). The prompt used for the baselines are
shown in Figure 4. We disable the sampling mecha-
nism and set the temperature to 0.0 to ensure deter-
ministic decoding. For few-shot prompting meth-
ods, where the example selection strategy involves
random selection, we conduct three runs and report
the average results. The only exception is the GPT4
model, which we run only once due to the high cost
of using the model.

C.3 Few-shot Examples Selection Strategy for
Baselines

Li et al. (2023a) proposed three selection strategies
for CSC few-shot prompting methods: 1) Random:
randomly select m examples; 2) Balanced: ran-
domly select m examples with a balanced distribu-
tion of correct and error examples; 3) Similarity:
select the m most similar in-context examples for
each input sentence using the BM25 and Rouge sim-
ilarity metrics.

They found that the performance of few-shot
prompting depends on the selection of in-context
examples. Different selection strategies may lead
to distinct results. Among the three strategies,
Similarity was found to be the most effective.

However, the Similarity strategy is not always
the optimal choice. In preliminary experiments,
we observed that this strategy sometimes causes
GPT family models to perform worse than the zero-
shot prompting method. Upon analyzing the re-
sults, we found that GPT models are particularly
sensitive to discrepancies in the proportion of erro-
neous sentences between the few-shot prompting
examples and the target data. The examples se-
lected using the Similarity strategy tend to have
a similar proportion of erroneous sentences as the
dataset used for selection. In our work, we use
Pseudo-Dev dataset to select few-shot prompting

Model Version Strategy
Baichuan2 13B Base Similariy
Qwen1.5 14B Base Balanced
InternLM2 20B Chat Similariy
GPT3.5 – Balanced
GPT4 – Balanced

Table 12: The model version and examples selection
strategy we used for few-shot baseline.

examples, which contains a higher proportion of
erroneous sentences (87%–94%) compared to the
target data (50%–56%). This discrepancy causes
the GPT models to be more aggressive in correcting
errors.

To ensure the effectiveness of the few-shot
prompting method, we conducted experiments to
determine the optimal strategy for each LLM we
used. For open-source LLMs, which include both
‘Base’ and ‘Chat’ versions, we experimented with
both versions and selected the best one for each
LLM. The final choice of selection strategy is
shown in Table 12.

C.4 Pre- & Post-processing for Baselines
In this study, we employ several pre- and post-
processing techniques to mitigate the errors intro-
duced by the limitations of baseline systems. This
ensures a fair comparison between our approach
and the baselines.

BERT-based baselines Most current CSC mod-
els utilize BERT as the backbone. However,
BERT presents challenges that can degrade per-
formance during evaluation: 1) Full-width Punctu-
ation: BERT’s tokenization process may normalize
full-width punctuation to half-width, leading to nu-
merous unnecessary punctuation replacements. To
counter this, we prevent the model from modify-
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Datasets
Subsets Y13 Y14 Y15 Law Med Odw Car Cot Enc Gam Med New Nov

70.1 64.0 73.9 38.9 23.1 42.8 32.5 40.1 29.1 12.6 31.8 31.2 20.2
– – – 91.2 82.4 83.6 – – – – – – –

50.6 40.4 51.6 58.5 47.8 65.1 52.0 63.1 45.3 32.8 50.7 56.1 35.8
51.6 40.2 51.3 58.5 48.5 65.9 52.3 63.8 44.1 28.3 48.9 55.6 37.7
45.8 40.6 55.5 60.4 50.9 66.5 53.3 66.7 47.7 33.7 53.8 58.8 37.1

ZSP 26.4 12.0 18.5 37.6 23.0 43.0 15.3 14.9 24.0 12.7 21.6 19.8 14.1
FSP 41.1 23.1 31.3 60.2 50.4 60.0 32.2 45.3 38.9 24.6 39.0 39.7 26.4
OUR 63.6 54.1 59.6 82.6 78.9 92.0 52.7 62.9 51.9 37.1 60.1 63.9 43.5
ZSP 41.6 17.4 28.1 53.3 38.9 60.7 28.5 42.0 33.8 20.5 35.3 37.3 25.3
FSP 45.9 25.4 31.6 61.4 49.1 66.5 35.0 47.6 43.4 27.9 38.6 38.7 29.2
OUR 56.9 48.6 57.6 84.1 73.2 87.4 46.0 59.9 44.6 28.3 52.9 55.8 36.4
ZSP 42.3 20.9 29.7 47.7 31.9 55.9 29.8 42.6 34.3 21.2 40.0 34.7 27.2
FSP 55.9 27.7 32.9 45.9 38.2 65.3 31.3 46.7 37.1 25.4 43.4 37.9 29.3
OUR 57.8 53.1 60.5 83.9 72.3 91.1 49.7 59.0 48.2 31.8 55.9 63.3 40.5

rSighans ECSpell Lemon

Domain-Specific SOTAs (Trained on in-domain gold-standard data of each dataset)
ReaLiSe
Liu et al. (2024)
Domain-General SOTAs (Trained on about 34M synthetic CSC data)
Finetuned BERT
Softmasked BERT
ReLM

LLMs (without CSC-specific training)

Baichuan2
(13B)

Qwen1.5
(14B)

InternLM2
(20B)

Table 13: The detailed sentence level correction F1 score.

Datasets
Subsets Y13 Y14 Y15 Law Med Odw Car Cot Enc Gam Med New Nov

85.0 76.3 80.9 48.7 34.4 53.0 37.4 42.7 32.9 16.3 33.8 35.1 23.2

64.3 51.0 57.2 66.3 59.0 69.5 53.0 64.1 46.0 35.6 52.3 57.5 36.3
65.6 49.3 57.3 67.2 61.3 70.0 53.6 63.3 45.4 31.6 51.0 57.9 38.5
58.6 51.1 61.0 68.3 63.9 73.0 54.4 66.1 48.2 37.5 55.1 60.5 37.1

ZSP 29.6 11.2 14.5 20.5 16.6 29.8 7.8 7.4 12.5 4.1 11.9 14.2 10.6
FSP 51.8 29.7 34.0 54.9 52.5 51.8 14.0 35.3 23.0 9.5 29.5 39.0 26.2
OUR 79.1 66.3 67.3 88.8 86.7 93.8 57.5 64.0 56.5 39.6 61.7 66.2 47.9
ZSP 48.8 18.9 26.5 53.5 35.4 58.1 27.1 26.8 32.0 12.7 32.1 35.1 21.5
FSP 51.0 29.5 33.2 63.3 44.4 66.9 22.7 39.8 34.7 14.3 34.9 36.5 28.4
OUR 75.2 62.8 66.0 88.6 84.5 91.6 52.4 62.9 49.6 34.3 54.6 59.5 42.6
ZSP 46.0 18.1 27.3 40.5 22.8 49.3 24.7 31.9 29.7 12.3 31.0 29.2 26.6
FSP 46.8 25.5 33.4 56.7 40.0 66.3 24.5 34.2 30.4 10.4 40.9 32.9 28.9
OUR 76.8 65.5 67.8 88.9 83.6 93.8 54.6 62.0 53.1 36.7 57.9 65.9 45.3

rSighans ECSpell Lemon

Domain-Specific SOTAs (Trained on in-domain gold-standard data of each dataset)
ReaLiSe

Domain-General SOTAs (Trained on about 34M synthetic CSC data)
Finetuned BERT
Softmasked BERT
ReLM

LLMs (without CSC-specific training)

Baichuan2
(13B)

Qwen1.5
(14B)

InternLM2
(20B)

Table 14: The detailed character level correction F1 score.

ing the original punctuation; 2) Special Tokens:
BERT-based models may predict a special ‘[UNK]‘
token in some cases, resulting in the removal of
the original character. In these instances, we retain
the original character when a special token is pre-
dicted; 3) Input Length Limitation: BERT-based
models show limited generalization beyond their
maximum training length. We truncate inputs to a

maximum length of 128 characters and concatenate
the remaining characters to the output.

LLM baselines The outputs of LLMs some-
times fail to align with evaluation, primarily due
to their inadequate instruction-following capabil-
ity. To address this, we apply specific rules for
post-processing: 1) Redundant Phrases: We re-
move redundant phrases such as “修改后的句
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Datasets
Subsets Y13 Y14 Y15 Law Med Odw Car Cot Enc Gam Med New Nov

13.0 9.6 7.7 10.6 18.6 11.8 20.9 13.4 20.8 22.5 16.5 16.7 22.6
– – – 7.4 6.5 2.2 – – – – – – –

21.7 16.5 12.5 4.9 11.3 2.9 12.3 8.3 13.9 22.5 8.3 9.4 17.3
13.0 17.6 14.5 6.1 11.7 5.0 12.4 7.1 14.8 20.4 9.6 10.6 16.6
4.4 15.0 9.5 7.8 11.0 7.1 12.1 5.6 12.6 20.8 5.7 8.4 17.5

ZSP 34.8 58.3 54.4 26.9 43.1 21.0 40.6 54.2 35.9 41.6 35.4 41.1 37.6
FSP 21.7 19.4 23.2 7.8 9.1 0.4 8.3 7.4 10.2 20.0 4.6 8.3 7.7
OUR 8.7 14.1 8.3 4.5 9.9 0.4 5.9 6.9 8.9 19.2 3.9 5.7 13.0
ZSP 34.8 54.4 34.2 5.7 35.4 2.1 18.5 15.8 13.5 18.4 11.8 14.0 20.7
FSP 15.9 30.9 31.7 5.3 11.6 0.8 8.9 12.7 10.1 14.7 9.5 7.8 5.5
OUR 21.7 19.6 10.2 4.9 11.7 2.9 11.2 6.3 14.8 29.4 5.4 10.1 21.2
ZSP 65.2 58.0 48.8 26.5 50.7 17.7 28.8 23.7 30.0 30.6 23.0 34.0 24.2
FSP 21.7 39.8 33.6 13.9 30.7 2.5 18.2 12.3 18.1 23.7 10.0 22.4 16.1
OUR 13.0 16.5 8.3 2.5 12.4 0.4 8.5 6.9 12.2 22.5 3.7 6.1 15.1

rSighans ECSpell Lemon

Domain-Specific SOTAs (Trained on in-domain gold-standard data of each dataset)
ReaLiSe
Liu et al. (2024)
Domain-General SOTAs (Trained on about 34M synthetic CSC data)
Finetuned BERT
Softmasked BERT
ReLM

LLMs (without CSC-specific training)

Baichuan2
(13B)

Qwen1.5
(14B)

InternLM2
(20B)

Table 15: The detailed sentence level false positive rate.

子是：” (The corrected sentence is:), identified
through common patterns input in the model out-
put; 2) Redundant Punctuation: Many sentences
in the dataset lack terminal periods, yet some mod-
els inappropriately add them. To prevent incorrect
evaluations due to this discrepancy, we remove any
added terminal period if the original sentence did
not have one.

D Details of Evaluation

D.1 Evaluation Metrics

In this work, we use the following metrics to evalu-
ate the performance of our approach and the base-
lines.

Sentence-level Correction F1 (S-F) S-F consists
of two parts: precision (S-P) and recall (S-R):

S-F “ 2 ˆ S-P ˆ S-R
S-P ` S-R

. (10)

where S-P represents the proportion of correctly
corrected sentences among all sentences modified
by the model, and S-R represents the proportion of
correctly corrected sentences among all sentences
need to be corrected.

A sentence is considered correctly corrected if
and only if all errors in the sentence are fixed and
no new errors are introduced. This strict definition
makes the sentence-level F1 score rigorous, but

also makes it vulnerable when the number of eval-
uation samples is limited, such as ECSpell dataset,
which contains only 500 sentences for each sub-
domain, and lacks of ability to detect subtle dif-
ferences between models when evaluating on the
same dataset, which a sentence contains multiple
errors.

Character-level Correction F1 (C-F) Different
from the sentence-level F1 score, the character-
level F1 score focuses on the correctness of each
character in the sentence. Similar to the sentence-
level F1 score, the character-level F1 score also
consists of two parts: precision (C-P) and recall
(C-R). C-P is the proportion of correctly corrected
characters among all characters modified by the
model, and C-R is the proportion of correctly cor-
rected characters among all characters need to be
corrected.

Conventional character-level metrics of CSC are
based on point-wise evaluation, which fall short
when models insert or delete characters, as they
can inaccurately mark all subsequent characters as
incorrect due to a single addition or deletion. To
overcome this, we implement Levenshtein algo-
rithm to align the model output with the target
sentence and calculate the character-level metrics
based on the aligned results. This alignment-based
method provides a more reasonable evaluation of
character-level performance.
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Input 商务部前头，11月底完成

Reference 商务部牵头，11月底完成

ReLM 商务部牵头，11月底完成

BC2 13B ZSP 商务部前面，11月底完成

BC2 13B FSP 商务部日前，11月底完成

BC2 13B OUR 商务部牵头，11月底完成

Input 虎珀酸索莉那新片主要功能是什么

Reference 琥珀酸索利那新片主要功能是什么

ReLM 琥珀酸索莉那新片主要功能是什么

BC2 13B ZSP 琥珀酸索利那新片主要功能是什么

BC2 13B FSP 虎珀酸索莉那新片主要功能是什么

BC2 13B OUR 琥珀酸索利那新片主要功能是什么

Table 16: Qualitative examples of our approach and the
baselines. Corrections marked in “Blue” are correct,
while those in “Red” are incorrect.

Sentence-level False Positive Rate (FPR) Both
sentence-level F1 score and character-level F1

score overlook the cases where the model intro-
duces unnecessary modifications to a de-facto cor-
rect sentence. To fill this gap, sentence-level False
Positive Rate (FPR) is proposed to measure the
proportion of sentences that are initially correct but
modified by the model.

D.2 Evaluation Settings and Conventions

During evaluation, we remove all whitespaces and
convert all full-width punctuation to half-width
from the input and output sentences to guarantee a
fair comparison.11

When evaluating the Lemon dataset, we ignore
all sentences where the input and output sentence
lengths do not match, following the dataset’s con-
vention.

E More Results

E.1 Detailed Results

Due to the space limitation, we only present the
average results of each dataset in the main text.
The detailed results of each dataset are shown in
Table 13, Table 14, and Table 15.

E.2 Qualitative Examples

We provide two qualitative examples to illustrate
the performance of our approach in Table 16.

In the first case (“Led by the Ministry of Com-
merce, to be completed by the end of November”),

11BERT-based models often remove whitespaces during
tokenization and may convert full-width punctuation to half-
width when correcting spelling errors (e.g., ReLM).

the word “牵头” (qiāntóu, led by) is misspelled as
“前头” (qiántóu, front) in the input sentence. Both
the ZSP and FSP baselines mistakenly put their at-
tention on the character “前” (front) and incorrectly
correct “前头” to “日前” (a few days ago) and “前
面” (front), respectively. Such corrections are not
only implausible but also linguistically awkward.
In contrast, the domain-general model ReLM and
our approach successfully correct the misspelling.

In the second case (“What are the main functions
of Solifenacin Succinate Tablets”), the name of the
drug “琥珀酸索利那新片” (Solifenacin Succinate
Tablets) is misspelled. To correct the misspelling,
the knowledge of the medical domain is required.
In this case, the ReLM model fails to correct the
misspelling, while the zero-shot prompting base-
line and our approach successfully correct it. It is
worth noting that the few-shot prompting baseline
also fails to correct the misspelling, which indicates
that the inclusion of inappropriate examples may
lead to worse performance.

F More Discussions

F.1 Impact of the Pre-training Data

There are two main factors that differentiate LLMs
from simpler LMs: the scale of pre-training data
and the model size. The impact of model size on
the performance of LLMs has been discussed in
§5.1. In this subsection, we aim to investigate the
impact of pre-training data on the performance of
our approach.

We compare Qwen1.5, a recent LLM family,
with GPT2, which also has a causal LM (decoder-
only) architecture. The GPT2 model family par-
tially overlaps in model size with the Qwen1.5
model family, but it was trained on a much smaller
dataset, CLUECorpusSmall. The CLUECorpusS-
mall dataset contains only about 5 billion characters
and has limited diversity in text sources, including
only news, Wikipedia, forums, and comments.

As shown in Table 17, when the model sizes
are similar, the Qwen1.5 model family outperforms
the GPT2 model family on all three datasets. The
largest performance gap is observed on the Lemon-
Nov dataset, where a smaller 463M Qwen1.5 model
even outperforms a larger 1.5B GPT2 model by
7.1% in the sentence-level correction F1 score.
This is because the Lemon-Nov dataset contains
texts from the novel domain, which is not included
in the CLUECorpusSmall dataset. These results
indicate that the scale and diversity of the pre-
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S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç

GPT2 1.5B Small 56.6 64.4 10.4 26.1 31.8 31.4 82.8 85.8 5.5
Qwen1.5 463M 56.3 63.5 10.0 33.2 40.2 22.2 84.7 89.9 3.8
Qwen1.5 1.8B 58.3 65.3 10.3 35.6 42.3 19.9 90.3 92.8 1.7

System Data
Amount

rSighan 15 Lemon Nov ECSpell Odw

Large

Table 17: A brief comparison of the performance of LLMs of different sizes and pre-training data amounts on three
datasets.

CSCD-NS
Law Med Odw Test

34M-ft 60.4 50.9 66.5 51.0
Id-ft 91.2 82.4 83.6 66.2 (73.6)
Id-ft 71.2 35.6 53.8 –
OUR 66.4 60.0 78.6 –
Id-ft 86.0 73.2 82.6 56.4 (64.4)
OUR 82.1 79.7 89.7 62.7

System Method ECSpell

BERT-based

GPT2 110M

Baichuan2 7B

Table 18: The S-F of models supervised fine-tuned and
those from our approach. Id-ft denotes the model fine-
tuned on the in-domain training data of either ECSpell
or CSCD-NS. Scores in parentheses represent the S-F
of the model, which was pre-trained on 2M carefully
crafted synthetic CSC data prior to being fine-tuned on
the in-domain training data.

training data are crucial for the performance of
our approach.

F.2 Comparison to the Supervised
Fine-tuning Method

In this subsection, we compare our approach with
the supervised fine-tuning method.

However, we did not fine-tune the LLMs our-
selves, as fine-tuning an LLM on the 34M synthetic
CSC data would be extremely time-consuming and
computationally expensive. Additionally, the super-
vised fine-tuning method typically requires careful
hyperparameter tuning to achieve the best perfor-
mance, further increasing the computational cost.

Instead, we leverage the findings from Li et al.
(2023a), who fine-tuned the Baichuan2 7B and
GPT2 models on the ECSpell dataset, and Hu et al.
(2024), who fine-tuned the Baichuan2 7B model
on the CSCD-NS dataset.

The results are shown in Table 18. Compared
to the BERT-based models, the supervised fine-
tuning method is less effective in improving the
performance of causal LMs like GPT2 and recent
LLMs such as Baichuan2.

Our training-free approach even outperforms the
supervised fine-tuning counterpart on the Med and
Odw sub-domains of the ECSpell dataset. This

Dev True Dev True Dev True

Idt. -0.04 -0.03 -0.04 -0.02 -0.04 -0.02
Sa.P. -3.75 -4.00 -3.75 -4.66 -3.75 -4.17
Si.P. -4.85 -5.02 -4.85 -5.45 -4.85 -5.87
Si.S. -5.40 -8.63 -5.40 -8.04 -5.40 -6.66
S-Fæ 59.8 +0.9 43.2 0.0 89.7 -0.8
C-Fæ 68.2 +1.4 47.7 +0.2 93.0 -0.3
FPRç 8.1 0.0 13.6 +0.3 1.3 0.0

rSighan 15 Lemon Nov ECSpell Odw

Distortion Model: log pDM

Table 19: The impact of distortion model on the per-
formance of Baichuan2 7B. “True” denotes that the
distortion model is derived from the true distortion dis-
tribution of each dataset. “ Dev” represents the distortion
model from the Pseudo-Dev.

phenomenon can be attributed to the characteristics
of the ECSpell dataset, which, as pointed out by Wu
et al. (2023), contains a high proportion (more than
70%) of error-correction pairs that never appeared
in the training data. The supervised fine-tuning
method is not effective in handling these unseen
error-correction pairs, whereas our approach can
still correct them.

F.3 Influence of Beam Size

During searching the most likely correction se-
quence, the beam search algorithm is used to avoid
the exponential growth of the search space and the
local minimum caused by greedy search. Knowing
the impact of the beam size on the performance
helps researchers to choose a proper beam size to
balance the trade-off between the performance and
the computational cost. The results are shown in
Figure 5. Though the larger beam size consistently
leads to better performance, the improvement be-
comes marginal when the beam size is larger than 6.

F.4 Effectiveness of the Estimated Distortion
Model

The distortion model is a key component in our
approach. In this work, we utilize a minimal dis-
tortion model and directly estimate the distortion
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Figure 5: The scores of Baichuan2 7B with different beam sizes. The solid lines represent the results of our
approach, and the dashed lines represent the results of the few-shot baseline. We can observe that larger beam sizes
may lead to worse C-F scores in few-shot settings.

per Sent. per Char.
ReLM 14.4 0.4

ZSP 899.8 22.2
FSP 1,057.4 26.1
OUR 1,541.0 38.0

System Inference Speed (ms)

Baichuan2 13B

Table 20: The inference speed of different models.

probabilities from the statistics of the Pseudo-Dev
dataset. Obviously, this estimation will be different
from the true probabilities.

To verify the effectiveness of the estimated dis-
tortion model, we conduct experiments comparing
the estimated distortion model with the true distor-
tion model. The results are presented in Table 19.
The upper part of the table shows the difference
between the estimated distortion model and the
true distortion model. We can see that the esti-
mated one is quite close to the true one, except for
the Similar Shape distortion type. The lower part
shows that the difference between the performance
is marginal, indicating that the estimated distortion
model is sufficient for our approach to achieve a
good performance, and has good generalization
ability across different datasets.

F.5 Inference Speed
We conducted a brief runtime analysis to evaluate
the inference speed of our approach. The analysis
was performed using a single NVIDIA A100 40GB
GPU with an Intel Xeon Gold 6248R (3.00GHz)
CPU. The batch size was set to 1 for all models,
and other hyperparameters were set to the same
values as in the main experiments.

The average inference speed of each model on
the ECSpell-Odw dataset is shown in Table 20. Due
to the large model size and the autoregressive de-
coding process, LLMs are significantly slower than
the BERT-based ReLM model. Compared to the

Ctx. S-Fæ C-Fæ FPRç CERç CERRæ

– – – 4.83 –

✗ – – – 4.16 13.9
✗ – – – 4.11 14.9
✗ – – – 3.57 26.1

✗ 23.7 25.7 5.3 4.39 9.1
✓ 18.2 19.5 1.8 4.43 8.3
✗ 22.6 25.5 5.4 4.43 8.3
✓ 19.8 21.4 1.9 4.39 9.1
✗ 24.7 27.5 4.7 4.30 11.0
✓ 17.7 18.6 2.5 4.50 6.8

✗ 34.8 43.1 3.8 3.68 23.8
✓ 41.7 51.3 3.0 3.29 31.9
✗ 28.7 37.4 7.1 4.10 15.1
✓ 38.0 48.5 4.4 3.44 28.8
✗ 33.8 42.6 4.1 3.70 23.4
✓ 40.4 51.3 3.0 3.29 31.9

System
No correction
Domain-Specific SOTAs
Leng et al. (2021a)
Leng et al. (2021b)
Leng et al. (2023)
Domain-General SOTAs

Finetuned BERT

Softmasked BERT

ReLM

LLMs

Baichuan2
(13B)

OUR

Qwen1.5
(14B)

OUR

InternLM2
(20B)

OUR

Table 21: Results of contextual enhanced spelling cor-
rection on AISHELL-1 dataset. ✓ denotes the results of
models taking 3 preceding sentences as the input prefix.
All the preceding context are also predicted by the same
ASR model.

ZSP and FSP baselines, our approach is slower
(1.71ˆ and 1.45ˆ, respectively), primarily due
to our immature implementation of the distortion
model, which can be further optimized to improve
inference speed.

F.6 Context as New Knowledge

In Section 5.5, we used a toy example to demon-
strate that our approach can introduce new knowl-
edge into the LLM by merely modifying the input
prefix. However, in real-world scenarios, it is dif-
ficult to automatically extract the key characters
as we did in the toy example and ensure they are
suitable for the input prefix. Luckily, sentences
in real-world contexts are not isolated but are part
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of a paragraph, and their preceding sentences can
provide valuable information for error correction.
Thus, we can treat the preceding context as new
knowledge and introduce it into the LLM.

Since existing datasets for CSC are composed of
isolated sentences, it is impossible to validate the
effectiveness of using the preceding context as new
knowledge on them. Therefore, we utilize the ASR
error correction dataset derived from AISHELL-1
(Bu et al., 2017), where the sentences are consecu-
tive and part of coherent passages. In this dataset,
(Leng et al., 2021a) used an ASR model to tran-
scribe the speech data, introducing spelling errors
naturally caused by the ASR system.

In addition to conventional CSC metrics, we
also report the Character Error Rate (CER)12

and Character Error Rate Reduction (CERR)13

to compare with the baseline models (Leng et al.,
2021a,b, 2023).

Specifically, we take the three preceding sen-
tences from the source side as the new knowledge:

k “ x´3 ‘ x´2 ‘ x´1. (11)

where x´i denotes the i-th sentence preceding the
current one.

The results in Table 21 clearly show that our
method can effectively utilize the preceding con-
text as new knowledge to improve the performance
of ASR error correction. Meanwhile, we observe
that the BERT-based baselines cannot effectively
utilize the preceding context to achieve better per-
formance.

12CER calculates the number of insertions, deletions, and
substitutions edits required to transform the predicted se-
quence into the target sequence:

CER “ ninsert ` ndelete ` nreplace

ntarget
.

13CERR represents the percentage of CER reduction com-
pared to the baseline model:

CERR “ 1 ´ CERours

CERbaseline
.
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