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Abstract

Visual Speech Recognition (VSR) aims to pre-
dict spoken content by analyzing lip move-
ments in videos. Recently reported state-of-
the-art results in VSR often rely on increas-
ingly large amounts of video data, while the
publicly available transcribed video datasets
are insufficient compared to the audio data. To
further enhance the VSR model using the au-
dio data, we employed a generative model for
data inflation, integrating the synthetic data
with the authentic visual data. Essentially,
the generative model incorporates another in-
sight, which enhances the capabilities of the
recognition model. For the cross-language
issue, previous work has shown poor perfor-
mance with non-Indo-European languages. We
trained a multi-language-family modal fusion
model, AudioVSR. Leveraging the concept of
modal transfer, we achieved significant results
in downstream VSR tasks under conditions of
data scarcity. To the best of our knowledge,
AudioVSR represents the first work on cross-
language-family audio-lip alignment, achieving
a new SOTA in the cross-language scenario.

1 Introduction

Visual speech recognition (VSR), also known as
lip reading, aims to recognize the content of speech
based on lip movements, without relying on the au-
dio stream. Previous work primarily utilizes video
information to build VSR models. However, for
any language, the amount of recorded audio infor-
mation far exceeds that of video information. This
raises the question: Can these audio resources be
leveraged to enhance the capabilities of VSR mod-
els? There are two methods to leverage audio
data to build a strong VSR model: combining syn-
thetic visual data with authentic visual data and
leveraging the alignment of the audio and video.

For the method of combining synthetic visual
data with the authentic visual data, previous re-
search (Azizi et al., 2023; Wang et al., 2024) has

successfully used generated data to enhance image
classification and contrastive learning capabilities.
However, the effectiveness of this method varies
from problem to problem and lacks discussion re-
garding the lip-reading task. Does the chicken-and-
egg problem apply to the task of VSR? SyncVSR
(Liu et al., 2023) applies synthetic data to VSR
tasks but does not provide an in-depth discussion
of mixing ratios and cross-language scenarios. Our
work settles these problems and validates the data
inflation method in different scenarios. The ef-
fectiveness and robustness of lip-reading can be
further enhanced with data inflation. This is essen-
tially because the addition of new data increases
the coupling of the dataset, which leads to better-
learned knowledge. Based on this, we enrich the
dataset using talking head generation (TFG) mod-
els. We compare multiple TFG models and find
that using the TFG model for data inflation needs
to be combined with the original data. Further-
more, since using generated data for data inflation
does not always work (Wang et al., 2024; Ji et al.,
2024e), we give a relatively stable mixing ratio.
Our method achieves new SOTA results on zero-
shot and full-shot VSR tasks.

For the method of leveraging the alignment of
the audio and video, previous work (Han et al.,
2024) has conducted extensive research on Indo-
European languages, proposing a cross-language
model within the language family. However, there
is a weakness when crossing language families, as
there are significant linguistic differences between
the language families. Based on this, we propose
a language-independent pre-training model for the
two major language families, and use this model to
accomplish the downstream VSR task. Specifically,
for any language, its lips and sounds always corre-
spond to each other, so we use multilingual audio
and video data to pre-train the audio-lip alignment
model. Considering that the audio data for any
language is much larger than its video data (Kim
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et al., 2021; Ren et al., 2021a; Zhao et al., 2020a; Ji
et al., 2024b,a), we transfer the knowledge of audio-
lip alignment gained in the pre-training phase to
the downstream task, using audio to augment the
capabilities of the VSR model.

Our contributions are highlighted as follows.

• We investigate the significance of synthetic
data for enhancing the capability of VSR mod-
eling and found that the ratio of synthetic data,
the generation model, and the quality of audio
data have an impact on the VSR model. We
give the optimal mixing ratio and analyze the
mechanisms behind data inflation.

• We are the first to consider the impact of
language families on Visual Speech Recogni-
tion (VSR) tasks. We utilized self-supervised
learning to train a cross-language-family
modal fusion model, AudioVSR.

• We provide solutions for challenges such as
insufficient video data and cross-language-
family problem, which enhance the robust-
ness of the VSR model. Our method achieves
state-of-the-art (SOTA) results in zero-shot,
full-shot, and cross-language scenarios.

2 Related work

2.1 Visual Speech Recognition

Visual Speech Recognition (VSR) aims to pre-
dict the spoken words through the analysis of lip
movements in video. Early works (Chung and
Zisserman, 2017; Petridis et al., 2017; Stafylakis
and Tzimiropoulos, 2017) focused on word-level
VSR by using CNN and the RNN. Large-scale lip-
reading sentence datasets (Afouras et al., 2018)
have boosted the development of sentence-level
VSR. By employing Transformer (Vaswani et al.,
2017) architecture, (Afouras et al., 2022a) pro-
posed a powerful sentence-level end-to-end VSR
model. Recent VSR technologies (Chang et al.,
2023) also employed transformer-variant architec-
tures and improved the VSR performances. In
pursuit of advanced training strategies, many re-
searchers focus on narrowing the gap between vi-
sual and audio modalities. They (Ma et al., 2021;
Ren et al., 2021b) studied how to effectively trans-
fer audio knowledge into the VSR model by using
knowledge distillation (Hinton et al., 2015) and
memory network (Becattini and Uricchio, 2022).

2.2 Data Inflation

Traditional data augmentation involves simple pro-
cessing based on the original data, for image data
augmentation includes rotation, translation, scaling,
etc., for audio data augmentation includes adding
noise, variable speed, etc.. Traditional data aug-
mentation can increase model generalization, but
for the downstream task of VSR, traditional data
augmentation does not introduce new valid infor-
mation, so we take a generative model to expand
the dataset, which is known as data inflation (Wang
et al., 2024). This approach not only increases the
amount of data but also introduces new variants
that are consistent with real-world distribution.

Enriching datasets with generative models (Fang
et al., 2024; Ji et al., 2024c,d) has been widely ex-
plored in the field of visual problems. (Azizi et al.,
2023) explored this approach on a visual catego-
rization task, and (Wang et al., 2024) combined
generated data with traditional data inflation to ex-
plore its influence on contrastive learning (Yang
et al., 2024). Building on previous studies (Wang
et al., 2024), which indicate that data inflation does
not always work, we conducted further research on
its influencing factors and the appropriate ratio.

The main TFG generative models include (Pra-
jwal et al., 2020; Wang et al., 2023; Zhou et al.,
2021, 2020). However, (Zhou et al., 2021, 2020)
focus on specific characteristics like audio and 3D,
which do not meet our requirements for the down-
stream VSR task. (Wang et al., 2023) uses a lip
supervisor, but since the model only focuses on
region of interest (ROI), too many loss functions
result in insufficient attention to non-lip regions,
which leads to abrupt edges in ROI regions. So
we focus on Wav2lip (Prajwal et al., 2020), and its
derived model Wav2lip-gan.

2.3 Audio-Video Information Interaction

AV-HuBERT (Shi et al., 2022) extends HuBERT
(Hsu et al., 2021) to the audio-visual setting by
taking the masked audio-visual stream as input and
predicting the hidden units initialized with MFCC
clusters, iteratively refining them with layerwise
features. The framework has proven effective for
multiple downstream tasks, including ASR, VSR
and AVSR. Our work adopts their modal random
dropout technique. AV-Former (Seo et al., 2023)
integrates lightweight modules into an audio-only
speech recognizer, utilizing visual information to
improve speech recognition capabilities. (Hsu and
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Shi, 2022) utilizes the audio information to enhance
the English VSR model. Recently, (Han et al.,
2024) proposed a multilingual AVSR model based
on the MuAViC dataset (Anwar et al., 2023), which
includes a total of 9 languages. Inspired by these
works, we align the audio and video and train a
cross-language-family VSR model.

3 Method

To achieve an effective VSR model in both zero-
shot and full-shot scenarios, we rethink the essence
of deep learning in Sec. 3.1. Based on these in-
sights, we employ a talking head generation (TFG)
model for data inflation in Sec. 3.2. For the cross-
language challenge, aiming for language indepen-
dence, we focus on universal applicability across
language families in Sec. 3.3. Consequently, we
utilize self-supervised learning and introduce an
audio-lip-alignment model in Sec. 3.4.

3.1 Rethinking Deep Learning

The goal of deep learning is to accurately perceive
the real world, and its essence is to learn the dis-
tribution of the real world. Utilizing a dataset for
training is based on the assumption that the dataset
can simulate the distribution of the real world. But
in practice, datasets often cannot perfectly simu-
late the objective world, and the gap between them
represents our space for optimization. Typically,
a better model leverages the current data distribu-
tion more effectively. Our work, however, aims
to alter this data distribution to better reflect the
distribution of the objective world.

In the full-shot scenario, the greater the data
coupling, the more likely it is to achieve good
results on the test set. However, does achieving
good results on the test set truly indicate a good
model? This depends on a key assumption: the
chosen dataset must accurately simulate the distri-
bution of the target language domain. In contrast,
a good outcome achieved in the zero-shot scenario
is more competitive compared to the full-shot sce-
nario, as it faces the dual challenges of architecture
and dataset. For the architecture, we choose the
AudioVSR model, which has achieved good per-
formance on VSR tasks; for the dataset, we use an
audio-to-lip model for data inflation.

3.2 Data Inflation through TFG model

Based on a sequence model, AV-HuBERT high-
lights the importance of temporal correlations in

video data for VSR tasks. Audio inherently car-
ries temporal information, so by transferring audio
knowledge to the corresponding video, the audio-
to-lip model generates a video stream that contains
the same temporal information. The model signif-
icantly enhances the semantic richness of video
content, because it utilizes the temporal informa-
tion in audio to strengthen the continuity among
video frames. Furthermore, the higher accuracy
rates of both AVSR and ASR compared to VSR
further demonstrate that audio contains a wealth
of knowledge. The audio-to-lip model serves as a
bridge for transferring the audio knowledge to the
VSR model.

Denotes M as the tokens of the real videos, M
′

as the tokens of the generated videos, the rank of
the M is less than the rank of the concate(M,M

′
),

where the rank of a matrix is the size of the largest
linearly uncorrelated set of matrix vectors. It
demonstrates that the TFG models can enrich the
semantic information of the input videos.

Denote the distribution of real data as Pd, the dis-
tribution of generative data as Pg, the real dataset
as Dd, the generative dataset as Dg, then the dis-
tribution of the synthetic data can be denoted as
Pt = β ·Pd+(1−β) ·Pg, where β = |Dd|/(|Dd|+
|Dg|). Initially, Dd : Dg = β : (1 − β), we re-
peat Dd N times to modify the value of β, i.e.,
β = N ∗ |Dd|/(N ∗ |Dd|+ |Dg|). Repeating real
data Dd does not alter the distribution Pd. Factors
affecting Pt include the proportion of generated
data β and the distribution of generated data Pg.
During this process, as the generated data remains
unchanged, the distribution Pg remains constant.
Only its influence on the overall data distribution,
β, changes, thus achieving the goal of controlling
variables.

3.3 Rethinking Cross-language VSR
The differences between language families are sig-
nificant, and their phonetic and semantic capabil-
ities vary. The Indo-European and Sino-Tibetan
language families are two of the world’s major lan-
guage families. Most current research focuses on
the Indo-European. However, research on other
language families is lacking. Recently, (Han et al.,
2024) introduced a multilingual model based on
the MuAViC dataset (Anwar et al., 2023), which
encompasses nine languages: English, Arabic, Ger-
man, Greek, Spanish, French, Italian, Portuguese
and Russian. However, it has been noted that Ara-
bic performs noticeably worse compared to other
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languages. This discrepancy is due to the fact that
the other eight languages in the dataset are from
the Indo-European family, whereas Arabic belongs
to the Semitic family. During training, Arabic data
only constituted 1% of the dataset and did not re-
ceive any additional reweighting. As a result, the
model is essentially an Indo-European model, of-
fering linguistic universality but not universality
across language families. Based on this, we pro-
pose AudioVSR, a self-supervised model designed
to be universally applicable to the two primary lan-
guage families.

3.4 AudioVSR

Regardless of the language, there is always a cor-
respondence between sound and lip movements.
Based on this, different languages will benefit from
each other rather than hinder one another, so we
conduct training across multiple languages at the
same time. In the pre-training phase, modality
dropout involves randomly masking fa

t and fv
t with

the goal of obtaining the same zt, fostering a closer
relationship and a stronger bond between audio
and video. Based on this, we propose AudioVSR,
a unified model that maps the audio and video of
all languages into the same space. With the Au-
dioVSR model, we input audio from entirely new
datasets and fine-tune on downstream tasks, devel-
oping a model suitable for VSR tasks. The pipeline
is shown in Fig. 1. During the pre-training stage,
all modules are tunable. After the audio and video
are aligned, in the fine-tuning stage, the encoder is
frozen while the decoder remains tunable. Notably,
during the fine-tuning stage, only audio is used as
input, whereas in the inference stage, video can be
used as input.

The AudioVSR model randomly masks parts of
the audio and video data, forcing the model to learn
deeper semantic connections. It binds audio and
video semantically, ensuring functionality across
diverse languages, which implies that the model
captures a universal semantic framework beyond
mere linguistic elements. As a result, whether au-
dio and video are input separately or together, the
embeddings produced are similar.

Pre-train The encoder is pre-trained using a self-
supervised method, which is the same as (Hsu
et al., 2021). Two steps are alternated during pre-
training: feature clustering and mask prediction.
The clustering phase uses a discrete latent variable
model to form {zt}Tt=1, and the model then per-

forms mask prediction through the Transformer
(Vaswani et al., 2017) architecture to learn a bet-
ter representation of the audio and video in the
semantic space fm = {fm

t }Tt=1 ∈ RT×D, where
T is the sequence length, D is the embedding di-
mension, and m means modality. Given the output
probability {pt}Tt=1, The pre-training loss is:

M = Ma ∪Mv (1)

L = −
∑

t∈M
log pt(zt)− α

∑

t/∈M
log pt(zt) (2)

where Ma and Mv denote the frames that are
masked for the audio and video. α controls the
contribution of the unmasked regions in the overall
objective.

Fine-tune Denote the features processed by
the encoder as fv = {fv

t }Tt=1 ∈ RT×D.
A tunable transformer decoder is appended to
autoregressively decode fv into probabilities
p(ωt|{ωi}t−1

i=1, f
v), where ωi is the ground-truth

transcription.
The lip-reading loss is a sequence-to-sequence

loss, which is calculated after the decoder module
using cross-entropy loss. Define S as the length
of the target text, and the lip-reading loss can be
expressed as:

Llip = −
S∑

t=1

log p(wt|{wi}t−1
i=1, f

v). (3)

4 Exprienment

4.1 Dataset
The LRS3 dataset (Afouras et al., 2018) consists of
obtained from TED talks covering a large number
of speakers and background noise environments.
These videos contain sentences in the English lan-
guage, which is beneficial for lip-reading and visual
speech recognition research. The LRS3 dataset is
widely used in research on lip-reading techniques
due to its diversity and size. The LRS2 dataset
(Afouras et al., 2022b) is from BBC, which consists
of video, audio, and text for each sample, where
the sample rates are 16 kHz for audio and 25 fps for
video. The dataset contains more than 1,000 speak-
ers, nearly 150,000 utterance instances, and nearly
63,000 different words, which makes the dataset
extremely rich in data. The LRS2 dataset is particu-
larly suitable for studying how to perform effective
lip-reading in long video sequences, as it covers
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Figure 1: The pipeline of the AudioVSR. During the pre-training phase, random dropout is employed to align audio
and video. In the fine-tuning stage, the encoder is frozen to maintain this alignment and prevent corruption, and it
will be unfrozen before the end of the process. Throughout the fine-tuning process, audio is used as the primary
input. During inference, the model uses video input to generate labels.

continuous natural conversations. The VoxCeleb2
dataset (Nagrani et al., 2017) contains over 1 mil-
lion video clips from YouTube videos. These clips
are from over 6,000 celebrities and cover multiple
languages, accents, and background noise condi-
tions. VoxCeleb2 is often used to train cross-modal
recognition systems, especially those that combine
visual and audio information. We only use the En-
glish portion of the VoxCeleb2. The CMLR (Zhao
et al., 2019, 2020b) dataset consists of 102, 072
spoken sentences and each sentence is up to 29
Chinese characters in length.

4.2 Metrics

The word error rate (WER) is used as the evaluation
index of speech recognition, which is defined as
WER = (S +K + I)/N , where S denotes the
number of words replaced, K denotes the number
of words deleted, I denotes the number of words
inserted, and N denotes the total number of words
in the reference text.

4.3 Data Inflation through TFG model

Full-Shot Scenario In the full-shot scenario,
both the training and testing datasets are in the
same domain. Consider a scenario where a large
amount of video and audio data is available for a
certain language. How can we improve lip-reading
effectiveness without introducing new data? To
solve this problem, an audio-to-lip model is used
to generate the videos. These videos would then be
integrated with the original footage for combined
training efforts.

As shown in the Tab. 4, the LRS3 video scores
28.6, while the video generated from LRS3 audio
scores 32.1. However, combining them results in a
performance that outperforms both. What is the rea-
son for this enhanced performance? This is because
the training of the generative model represents a
process of acquiring knowledge from an entirely
new perspective, introducing fresh insights. It’s
similar to two people with distinct ways of thinking
studying the same complex topic. Their research
perspectives and focal points differ, and although
they previously had an incomplete understanding
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Table 1: The main results for the zero-shot scenario. The model is trained on LRS3, and tested on LRS2. The
TFG model utilized in the table is Wav2Lip. We tested the effectiveness of raw data, generative data, and their
combination. To further demonstrate the capability of the method, we also conducted tests on a large data scale.

Experiment Method Authentic data (hrs) Sythetic data (hrs) WER(%)↓
Low-Resource

I

AudioVSR

30 - 43.3

II - 29 109.2

III 30 29 40.8

High-Resource

IV

AudioVSR

433 - 38.9

V - 224 108.4

VI 433 224 37.6

of the matter, their collaborative discussions spark
a collision of thoughts, resulting in an enhancement
of knowledge.

Zero-Shot Scenario The traditional lip-reading
task trains with video and infers with video. How-
ever, in scenarios where video information is lack-
ing, this traditional method faces limitations. Con-
sider this scenario: In a language setting where
audio information is abundant but lacks video re-
sources necessary for lip-reading, the TFG model
is utilized to synthesize video data. Remarkably,
the model is trained exclusively on audio inputs,
making this a zero-shot task, as no video data in
the target domain is involved in the training phase.

The (Shi et al., 2022) introduces a model that
leverages audio information to enhance recognition
capabilities. As shown in Tab. 1, our approach
achieves performance on par with (Shi et al., 2022)
in Visual Speech Recognition (VSR) and surpasses
it in Audio-Visual Speech Recognition (AVSR).

Table 2: The comparison with Opensr. Our approach
was compared with Opensr in Visual Speech Recog-
nition (VSR) and Audio-Visual Speech Recognition
(AVSR) tasks.

Method
Training Inference

WER
a v a v

Opensr ✓ ✓ 39.2

Opensr ✓ ✓ ✓ 6.3

Our Method ✓ ✓ 39.8

Our Method ✓ ✓ ✓ 5.4

Table 3: The influence of the model. On the same
dataset, different models produce different results.

Dataset TFG Model WER

TFG: LRS2 Wav2Lip-Gan 95.0

LRS3+TFG: LRS2 Wav2Lip-Gan 41.4

TFG: LRS2 Wav2Lip 108.2

LRS3+TFG: LRS2 Wav2Lip 40.8

The Effectiveness of TFG Data Inflation To
verify the effectiveness of data inflation using the
audio-to-lip model, we conducted tests on two
datasets, LRS2 and LRS3, at two different scales,
as detailed in Tab. 1. From experiments II and
V, we can find that using only generated data for
lip-reading tasks yielded poor results, whereas com-
bining synthetic with real data exceeded the perfor-
mance of using real data alone. When tested within
the LRS3 domain—aligned with the training en-
vironment, the outcomes were favorable, whereas
a significant drop in performance in the LRS2 do-
main, which demonstrates that even in the same
language, knowledge from different datasets is not
universally applicable. Experiments I and III reveal
that leveraging only the 29-hour audio data from
LRS2 with the aid of the audio-to-lip generative
model, along with the LRS3 dataset, resulted in a
2.3% improvement in lip-reading tasks on LRS2
(29-hour) videos. Furthermore, by comparing Exp.
V, VI, we find that data inflation is also effective
on large-scale datasets. As shown in Tab. 2, our
result is on par with Opensr, which is trained on
the English dataset.
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Figure 2: The distribution and effectiveness of different proportions of generated data. We tested different
proportions of generative data, specifically 10%, 30%, 50%, and 70%. For each proportion, We randomly selected
features four times and visualized their distribution using T-SNE, as demonstrated in A-D in the left picture. On the
right, the performance improves compared to the original in all four samplings when the proportion is 50%, which
demonstrates its stability.
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Figure 3: The influence of the proportion of the gen-
erated data. We explore various data proportions by
choosing N=0, 1/3, 1/2, 1, 2, 5, 7, 10, 20, ∞ and fitting
a curve to these values. It is determined that a β value of
0.5 is optimal for both zero-shot and full-shot scenarios.

Factors affecting the TFG data Inflation The
performance of the model is influenced by the pro-
portion of generated data β, data quality Q, and
the type of model S, expressed as: WER =
F (β,Q, S). The data distribution Pt varies by
model and task, which is proved by Tab. 3 and

(Wang et al., 2024). For the TFG model applied to
VSR tasks, β is typically around 0.5, and classic
TFG models like Wav2lip can be used as S. As
demonstrated by the fitting curve in Fig. 3, both
models achieve better lip-reading outcomes when
β is approximately 0.5, compared to the results
obtained from the original dataset. Moreover, dif-
ferent sampling strategies affect the data quality
Q. In Fig. 2, we examine multiple values of β,
illustrating how different sampling strategies af-
fect the resulting distributions, with β around 50%
being relatively stable. In order to control vari-
ables, we keep the proportion of generated data(β)
unchanged and only modify its distribution by em-
ploying random sampling, which will change the
data quality Q. In practical applications, heuristic
algorithms can optimize performance, but each step
involves a complete training and inference process,
making it time-consuming.

4.4 Audio-visual Alignment

Consider a situation where there is a lack of video
information for the target language, making it
impossible to train a VSR model using conven-
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Table 4: The main results for the full-shot scenario. There is a phenomenon where the effects of mixed data outweigh
the effects of raw data as well as generated data.

Exp Method Authentic Data (hrs) Synthetic Data (hrs) WER(%)↓
I RNN-T AVSR (Makino et al., 2019) 31000 - 33.6

II VSR-MLW (Ma et al., 2022) 1459 - 31.5

III VSD (Prajwal et al., 2022) 2676 - 30.7

IV AV-HuBERT (Seo et al., 2023) 433 - 26.9

V

AudioVSR

433 - 28.6

VI - 433 32.1

VII 433 433 26.0

Table 5: The main results of the AudioVSR Exp. I and Exp. II are pre-trained on the Indo-European family of
languages, but Exp. III and Exp. IV are pre-trained on the Sino-Tibetan language family.

Exp pre-train Finetune Inference WER(%)↓
I LRS3 + VoxCeleb2 LRS2 Audio LRS2 Video 25.0

II LRS3 + VoxCeleb2 CMLR Audio CMLR Video 132.9

III CMLR + LRS3 + VoxCeleb2 LRS2 Audio LRS2 Video 25.6

IV CMLR + LRS3 + VoxCeleb2 CMLR Audio CMLR Video 50.6

tional methods. In addition to the data inflation
techniques mentioned in Sec. 3.2, we propose
a language-independent pre-trained model, Au-
dioVSR. We pre-train AudioVSR on many differ-
ent datasets, and the results are shown in the Tab. 5.
The dataset we use for the Sino-Tibetan languages
contains only 61 hours of data, while the Indo-
European dataset exceeds 1700 hours. To balance
the representation between the Sino-Tibetan and
Indo-European languages, we replicate the Sino-
Tibetan data 30 times to equalize their weights. We
pre-trained our model on an Indo-European dataset
for five iterations, and then alternately trained on
the Indo-European dataset and the processed Sino-
Tibetan dataset for six iterations.

As shown in Tab. 5, we conducted four experi-
ments to demonstrate the capabilities of AudioVSR.
Comparing Exp. I and Exp. II, it was demon-
strated that there are significant differences in lip
shapes among different languages, highlighting the
necessity to train using multiple language datasets
simultaneously. This approach is based on the uni-
versal alignment of audio and video across many
different languages. Comparing Exp. I and Exp.
III, we observe that our model maintains good per-
formance within the English domain. Additionally,
comparing Exp. II and Exp. IV, there is a notice-

able enhancement in lip-reading effectiveness on
the CMLR dataset.

5 Limitation

For zero-shot and full-shot scenarios, there is a
possibility that the model may not perform effec-
tively. For cross-language scenarios, the results
of AudioVSR still need improvement in the Sino-
Tibetan setting compared to the Indo-European set-
ting. Furthermore, our model only includes the
two major language families and is not universally
applicable to all language families. In the future,
we will explore the effectiveness of our method in
noisy scenarios.

6 Conclusion

We enhanced the performance of VSR across multi-
ple scenarios. In zero-shot and full-shot situations,
we employed an audio-to-lip model for data infla-
tion, leveraging the knowledge learned from the
generative model to enhance the lip-reading model.
For cross-linguistic scenarios, we considered the
impact of different language families on lip-reading
tasks and trained an audio-lip-alignment model us-
ing self-supervised learning. We provided solutions
for challenges such as insufficient video data and
cross-linguistic scenarios. Our method achieved
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state-of-the-art (SOTA) results in zero-shot, full-
shot, and cross-language tasks.
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