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Abstract

With the recent emergence of powerful
instruction-tuned large language models
(LLMs), various helpful conversational
Artificial Intelligence (AI) systems have
been deployed across many applications.
When prompted by users, these AI systems
successfully perform various tasks as part
of a conversation. Such approaches typi-
cally condition their output on the entire
conversational history to provide some sort of
memory and context. Although this sensitivity
to the conversational history can often lead
to improved performance on subsequent
tasks, we find that performance can in fact
also be negatively impacted, if there is a
task-switch. To the best of our knowledge, our
work makes the first attempt to formalize the
study of such vulnerabilities and interference
of tasks in conversational LLMs caused by
task-switches in the conversational history.
Our experiments across 5 datasets with 15 task
switches using popular LLMs reveal that many
of the task-switches can lead to significant
performance degradation.1

1 Introduction

Recent advancements in Natural Language Pro-
cessing (NLP) (Brown et al., 2020; OpenAI, 2023),
have led to their widespread deployment of large
language models (LLMs) across various applica-
tions (Bubeck et al., 2023; Anil et al., 2023; Singhal
et al., 2022). One of the popular NLP tasks includes
conversational systems where LLMs are capable of
engaging in dialogues that mimic human interac-
tions (Manyika and Hsiao, 2023; Bai et al., 2022).
A typical interaction involves a series of conver-
sation turns starting with the user and the LLM
responds to the user. This interaction is however
focused on a specific topic or a task (Hosseini-Asl
et al., 2020; Lee et al., 2022).

1Code available on GitHub.

  Give sentiment of this review.
 "The food was terrible."

   The sentiment is Negative

 Give sentiment of this review.
 "The brunch menu is amazing..."

   The sentiment is Positive

 Solve the problem. "John has
five delicious apples. He eats
two. How many are left?"

   The sentiment is Positive

Algebra problem
Task Switch

Sentiment Prediction

 Solve the problem. "John has
five delicious apples. He eats
two. How many are left?"

Three apples left.

No Conversation History

Figure 1: An illustrative example where the chat history
is based on sentiment prediction. Algebra word prob-
lem introduces task-switch which results in an incorrect
prediction.

The performance of LLMs is further boosted by
leveraging in-context examples or few-shot exam-
ples of a particular task (Brown et al., 2020; Smith
et al., 2022; Thoppilan et al., 2022). In-context
learning, by utilizing examples within the conver-
sation history, enables LLMs to generate responses
that are relevant and tailored to the contextual con-
versation. The auto-regressive nature of popular
instruction-tuned (LLMs) suggests that the LLM-
generated response is conditioned on the entire con-
versation history. This underscores the sequential
dependency and contextual awareness embedded
within these models. While prompt sensitivity has
been exploited by in-context learning to improve
downstream performance, this sensitivity has also
opened the door to vulnerabilities, where malicious
actors can exploit prompt sensitivity for adverse
purposes (Greshake et al., 2023; Liu et al., 2023;
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Jiang et al., 2023b; Xu et al., 2023).
In this paper, we investigate the sensitivity and

the impact of LLM performance on past conversa-
tional interaction. To do so, we introduce the con-
cept of task-switch. A task-switch is characterized
by a conversational objective, moving from one dis-
tinct task to another within the same conversation
thread, for example: Figure 1 illustrates a task-
switch from sentiment prediction to math algebra
which confuses the model to output erroneously.
Designing LLMs that can seamlessly switch be-
tween tasks without degradation in performance
can influence the reliability of LLMs in realistic
scenarios.

In this work, we systematically study the impact
of predictive performance and the sensitivity of
LLMs in the presence of different task-based chat
histories. Our key contributions and takeaways can
be summarised as:

• We formalize the risk of performance degra-
dation of LLMs due to task-switch.

• We present the impact of task-switch on di-
verse datasets with more than 15 different task-
switches.

• We measure the task-switch sensitivity for
popular LLMs of different sizes, where we
observe that LLMs of different sizes (7B to
175B) could be susceptible to performance
degradation from the task-switch.2

2 Related Work

Large Language Models (LLMs) are becoming a
crucial building block of conversation-based virtual
assistants (OpenAI, 2023; Touvron et al., 2023;
Jiang et al., 2023a; Anil et al., 2023). Leverag-
ing in-context or few-shot examples, LLMs have
demonstrated remarkable capabilities for down-
stream tasks (Brown et al., 2020). In contrast to the
resource-intensive fine-tuning process (Gao et al.,
2020), in-context learning eliminates the need for
parameter updates, while achieving state-of-the-art
performance (Rae et al., 2021; Smith et al., 2022;
Thoppilan et al., 2022; Von Oswald et al., 2023;
Chan et al., 2022; Akyürek et al., 2022; Hahn and
Goyal, 2023). However, despite its advantages, in-
context learning tends to suffer from sensitivity to
prompts, input distribution, and formats, which can
potentially impact the model’s performance (Liu
et al., 2021; Zhao et al., 2021; Lu et al., 2021; Min

2Note that in some rare cases, the task-switch can lead to
marginal performance improvements.

et al., 2022; Liu and Wang, 2023; Chang and Jia,
2023). Chang and Jia (2023) observe that the in-
context examples implicitly bias the model. In our
work, we aim to study the bias that may arise due
to chat history (in-context examples) when a user
switches the task. Furthermore, recent works (Liu
et al., 2023; Greshake et al., 2023) have looked
at the vulnerability of LLM to prompt injections
and adversarial attacks. Unlike prompt injection,
where a malicious prompt may be added to the con-
versation of LLM, our setting, is concerned with
non-malicious task-switches. While a few recent
works have investigated the reliance on shortcuts
in conversation history (Tang et al., 2023; Si et al.,
2022; Weston and Sukhbaatar, 2023), our work
aims to evaluate the influence of the conversation
on a new task. Our work is also differentiated from
the study topic change in Task-oriented Dialogue
systems (Xie et al., 2021; Xu et al., 2021; Yang
et al., 2022) as we consider a stronger shift of task-
switch from open dialogue LLMs.

3 Conversational Task-Switch

This work introduces and formalizes task-switch in
a conversation for LLMs. A conversation between
a user and the LLM consists of multiple conversa-
tion turns. Now consider (uk, rk) as the k-th turn
of the conversation where uk corresponds to the
k-th user prompt and the model’s corresponding
response rk. Each user prompt uk can be viewed
as an instance of a specific task request, e.g. sen-
timent classification or mathematical reasoning.
A conversation history of L turns can be defined
as h = {(uk, rk)}Lk=1. Subsequently, the next re-
sponse, rL+1 for model θ is given as:

rL+1 = argmax
r

Pθ(r|uL+1,h). (1)

In this work, we consider conversations with a
single task-switch, where all user requests in the
conversation history h belong to the same task, and
the final user request uL+1 is a different task. We
refer to the task associated with h as the conversa-
tion history task (CH task) Th where h ∈ Th and
the switched task associated with the final user re-
quest uL+1 as the target task Tt where uL+1 ∈ Tt.

When the tasks Th and Tt are sufficiently differ-
ent (as per human understanding of language and
tasks), the conversation history h ideally must not
impact the response, rL+1. For a model robust to
such task-switches, Th → Tt, its response rL+1
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is conditionally independent of the conversation
history,

rL+1 ⊥ h|uL+1 h ∈ Th, uL+1 ∈ Tt. (2)

However, in practice, models can be sensitive to the
conversation history, h, which can harm the quality
of the response rL+1 after a task-switch, Th → Tt.
We define τ(·), as a reference-free metric for the
task-switch sensitivity of a model θ, to measure
the extent of this vulnerability. Theoretical and
empirical implications of other definitions for task-
switch sensitivity are considered in Appendix E.

τ(Th, Tt; θ) = EuL+1∈Tt,h∈Th
[log ρ] (3)

ρ =
Pθ (r

∗|uL+1)

Pθ (r∗|uL+1,h)
(4)

r∗ = argmax
r

Pθ(r|uL+1). (5)

The task-switch sensitivity metric can be inter-
preted as:

1. τ(·) > 0: The model is impacted by the task-
switch in the conversation history and is less
confident in zero-shot prediction.

2. τ(·) = 0: The task-switch has no impact on
the model’s zero-shot prediction, suggesting a
level of task-switch robustness.

3. τ(·) < 0: The task-switch gives the model
more confidence in its zero-shot prediction.

To simulate a setting where the model has perfect
performance on the CH-task, Th we adopt teacher-
forcing, s.t. h = {(uk, r̂k)}Lk=1, where r̂ is the
reference ground-truth response.

4 Experiments

4.1 Experimental Setup
Data. We evaluate five different datasets cov-
ering a range of tasks: Gigaword (Graff
et al., 2003); abstract algebra subset of Measur-
ing Massive Multitask Language Understanding
(MMLU; Hendrycks et al. (2021)), named MMLU
AA; TweetQA (Xiong et al., 2019); Rotten Toma-
toes (RT; Pang and Lee (2005)); and human-aging
subset from the MMLU dataset (MMLU HA) in
the Appendix I.

Models. We explore the task-switch sensitivity of
four popular models. We consider two open-source
small models, Llama2-7b-chat (Touvron et al.,
2023) and Mistral-7b-chat (Jiang et al., 2023a);

Data Task

Gigaword Summarization
MMLU AA Math Multiple Choice Question
TweetQA Social Question Answer
RT Sentiment classification
MMLU HA Social Multiple Choice Question

Table 1: Datasets Summary.

and two larger closed models, GPT-3.5 (Brown
et al., 2020) and GPT-4 (OpenAI, 2023). Zero-
shot, absolute model performances are presented
in Appendix B.

4.2 Results
We assess performance changes between the pre-
dictions in the presence of history and task-switch
vs zero-shot. Table 2 and Table 3 showcases the
impact of conversational task-switch with MMLU
AA and Rotten Tomatoes as the target tasks, Tt re-
spectively3. As would be expected with in-context
examples, the performance change in accuracy is
generally positive. The negative trend for change
in accuracy from Th → Tt, suggests that the task-
switch causes performance degradation. For exam-
ple, in the Gigaword summarization task as Th and
MMLU AA as Tt, most models (GPT-3.5, Llama-
7B and Mistral-7B) see a performance drop. Inter-
estingly, for some models, the task-switch may in-
crease performance; most prominently for Mistral-
7B with Rotten Tomatoes as Th and MMLU AA as
Tt.

In practice, where there is no access to ground-
truth reference responses, the performance degra-
dation of deployed models cannot be computed
for real conversational task-switches, but instead
the sensitivity of different models to different task-
switches can be predicted using the reference-free
task-switch metric, τ(·), as introduced in Equa-
tion 3. The larger the value of τ(·), the greater a
model’s sensitivity to a specific task-switch. In Ta-
ble 2 and Table 3, Llama-7B usually has the high-
est sensitivity to task-switches with for example
τ = 3.37 for a switch from MMLU AA to Rotten
Tomatoes and τ = 9.91 for task-switch from Rot-
ten Tomatoes to MMLU AA. We observe a general
trend between the change in accuracy and τ(·) for
task-switch scenarios for Tt = Rotten Tomatoes
where a negative change in performance also sug-
gests very high task-switch sensitivity. In Figure 2,
we plot the change in performance with increasing

3The impact of task-switch for other datasets as the target
tasks is given in Appendix C.1

14635



0 2 4 6

−20

0

20

40

A
cc

u
ra

cy
%

C
h

an
ge

GPT-3.5

Conversation History Task

Gigaword MMLU Abstract Algebra Rotten Tomatoes TweetQA

0 2 4 6

−20

0

20

40
GPT-4

0 2 4 6

−20

0

20

40
Llama-7B

0 2 4 6

−20

0

20

40
Mistral-7B

Conversation History Length L

Figure 2: Target Task: MMLU Abstract Algebra. % change in accuracy relative to zero-shot performance.

CH-Task Model % Change τ(·)
MMLU AA GPT-3.5 16.19±5.51 *

GPT-4 0.26±3.12 *
Llama-7B −1.41±14.93 31.51
Mistral-7B 32.91±12.08 1.12

Gigaword GPT-3.5 −10.37±11.34 *
GPT-4 −7.55±4.54 *
Llama-7B −19.33±1.17 5.23
Mistral-7B −22.56±7.32 3.13

Rotten GPT-3.5 1.77±3.81 *
Tomatoes GPT-4 −9.21±3.08 *

Llama-7B −13.07±4.56 9.91
Mistral-7B 12.24±5.58 0.83

TweetQA GPT-3.5 −14.14±11.87 *
GPT-4 −7.55±2.65 *
Llama-7B −12.28±4.44 6.37
Mistral-7B −8.48±5.95 2.78

Table 2: Task-switch impact from CH-tasks (TH ) to
target (Tt): MMLU AA and conversation length L = 6.
Sensitivity not calculable for ∗.

CH-Task Model % Change τ(·)
Rotten GPT-3.5 3.00±1.41 ∗
Tomatoes GPT-4 1.74±1.14 ∗

Llama-7B 2.54±0.55 4.02
Mistral-7B 3.17±0.47 2.65

Gigaword GPT-3.5 0.11±1.63 ∗
GPT-4 −0.98±2.39 ∗
Llama-7B 1.82±0.18 1.98
Mistral-7B −0.79±0.55 3.04

MMLU AA GPT-3.5 −0.22±1.25 ∗
GPT-4 0.76±0.69 ∗
Llama-7B −5.33±0.22 3.37
Mistral-7B 1.33±0.23 1.39

TweetQA GPT-3.5 −0.33±3.35 ∗
GPT-4 −0.98±1.49 ∗
Llama-7B 2.72±0.53 2.77
Mistral-7B −1.23±0.23 3.01

Table 3: Task-switch impact from CH-tasks (Th) to
target (Tt): Rotten Tomatoes and conversation length
L = 6. Sensitivity not calculable for ∗.

Th examples for MMLU AA dataset. Performance
fluctuations for conversation history, h, can stem
from two primary factors: a significant drop in the
predicted probability for the zero-shot response,
r∗, or a notable increase in the probability for an
alternative response, r. The latter can result in
substantial performance change while maintaining
low sensitivity, τ(·). By analyzing both perfor-
mance changes and task-switch sensitivity, we gain
deeper insights into the models’ adaptability to task-
switches and the underlying dynamics influencing
these shifts.

4.3 Discussion

Task-switch is demonstrably a threat to model per-
formance in conversational contexts. The reference-
free task-switch sensitivity metric, τ(·) offers a
powerful tool to predict the extent to which a model
may be vulnerable to an observed task-switch in a
real conversation for a deployed model. However,
it is further useful to understand why certain mod-
els and certain task-switches lead to greater per-
formance degradation than others. In this section,
two natural hypotheses are explored. First, it is
posited that there may be a relationship between the
average length of a response for the conversation-
history task, Th and the performance degradation
for a particular target task, Tt. The length metric
behaves as a single-value proxy metric for char-
acterizing the difference between different tasks.
This is evaluated empirically in Appendix F.1 and
no such correlation is found unfortunately. Con-
sidering the average task response length can be
viewed as an attempt to measure the distance be-
tween the conversation-history task, Th and the
target task, Tt. Therefore, a second natural hypoth-
esis is that a more formal distance measure can
better explain the extent of performance degrada-
tion for different task-switches. Experiments in
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Appendix F.2 explore a ranking based approach as
per a range of powerful Large Language Models
(LLMs) to obtain some measure of the distance
between tasks. The empirical results show a weak
correlation, which perhaps leads to the conclusion
that the performance degradation cannot be simply
explained by the specific task-switch but is also
a function of the specific model. Future work is
required to further understand comprehensively the
components that explain the variations in perfor-
mance degradation for different task-switches and
different models..

5 Conclusions and Future Work

This work formalizes and investigates the sensi-
tivity of large language models (LLMs) to task-
switch scenarios within conversational contexts.
We introduce a task-sensitivity as a reference-free
metric that can explain a model’s behavior to task-
switches along with the performance change. By
experimenting with various task-switch settings,
we observe that even advanced models like GPT-4
can exhibit vulnerabilities to task-switches. Our
work additionally lays the foundation for future
work on ‘side-channel’ vulnerabilities of LLMs to
undesired information leakage/bias from the con-
versation history. Further work will focus on de-
veloping adaptive context management strategies
within LLMs to mitigate the risk of task-switch
sensitivity.

6 Limitations

Although both GPT-3.5 and GPT-4 show degra-
dation in performance, given the closed nature of
OpenAI models, we were not able to perform task
sensitivity analysis. We were additionally limited
by the maximum token length, hence analysis over
extremely long conversations was not feasible. Fu-
ture work could also look into alignment between
humans and the model as a metric which was out
of the scope for this paper.

7 Ethics and Risks

All of the datasets used are publicly available. Our
implementation utilizes the PyTorch 1.12 frame-
work, an open-source library. We obtained a li-
cense from Meta to employ the Llama-7B model
via HuggingFace. Additionally, our research is con-
ducted per the licensing agreements of the Mistral-
7B, GPT-3.5, and GPT-4 models. We ran our ex-
periments on A100 Nvidia GPU and via OpenAI

API.
Our work may be built upon to identify vulner-

abilities of LLMs. Overall, there are no ethical
concerns with this work.
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Appendix

Appendix A gives more details about the datasets,
Appendix B reports the zero-shot absolute perfor-
mance of all models on all tasks, Appendix C
presents an ablation study on the conversation his-
tory length (with multiple seeds), Appendix D
discusses the prompt templates, Appendix E dis-
cusses other definitions for task-switch sensitivity,
Appendix F discusses correlations, Appendix G
tabulates confusion matrices for each model, Ap-
pendix H investigates task-switch without teacher-
forcing the responses in the history, and Appendix I
studies the impact of a randomly generated conver-
sation history.

A Datasets and Metrics Summary

Data #Train #Test Task

MMLU HA 26 222 Social MCQ
MMLU AA 14 99 Math MCQ
RT 8.53k 1.07k Sentiment class
Gigaword 3.8M 1.95k Summarization
TweetQA 4.54k 583 Social QA

Table 4: Dataset Summary. QA: Question-Answering.
MCQ: Multiple Choice Question

In Section 4.2 of the main paper, we present re-
sults evaluated on two different datasets: MMLU
Abstract Algebra (MMLU AA) multiple choice
questions and Rotten Tomatoes (RT) sentiment clas-
sification. In Appendix B, C, we present results
evaluated on all of the datasets covering a range of
tasks: MMLU Human Aging (MMLU HA) multi-
ple choice questions, Gigaword for summarization,
and TweetQA question-answering. The train-test
splits of these datasets are shown in Table 4. The
train set is randomly sampled to form prompts to
produce a conversation history h of L turns, and
the test set is used to evaluate model performance
on the (L+ 1)-th turn. The prompt templates used
for each dataset are discussed in Appendix D.

For classification tasks performance is mea-
sured using accuracy, whilst for generative tasks
it is measured using ROUGE (Lin, 2004) or ME-
TEOR (Banerjee and Lavie, 2005).

B Absolute Performance

When evaluating the target task with a conversation
history, it is useful to compare the performance
against a baseline with no conversation history

(h = Ø, L = 0). This is equivalent to evaluat-
ing in a zero-shot setting. This section reports the
zero-shot performance for all the target task (Tt)
datasets: MMLU HA in Table 5, MMLU AA in
Table 6, RT in Table 7, Gigaword in Table 8 and
TweetQA in Table 9. Also note that for the classi-
fication tasks (MMLU HA, MMLU AA, RT), we
also report the number of responses for which we
were unable to extract the answer (# Format Er-
rors), which is further discussed in Appendix D.
We evaluate on the test set with four LLMs (GPT-
3.5, GPT-4, Mistral-7B, Llama-7B), which were
all set to Temperature 0 for reproducability.

Model Accuracy # Format Errors

GPT-3.5 66.22 18
GPT-4 84.68 0
Llama-7B 45.50 12
Mistral-7B 55.41 0

Table 5: Zero-shot performance on MMLU HA.

Model Accuracy # Format Errors

GPT-3.5 31.31 7
GPT-4 58.59 0
Llama-7B 28.28 3
Mistral-7B 21.21 0

Table 6: Zero-shot performance on MMLU AA.

Model Accuracy # Format Errors

GPT-3.5 89.90 0
GPT-4 91.80 4
Llama-7B 87.43 1
Mistral-7B 86.68 1

Table 7: Zero-shot performance on RT.

Model ROUGE-1 ROUGE-2 ROUGE-L

GPT-3.5 17.37 4.79 14.78
GPT-4 15.76 4.07 13.34
Llama-7B 11.61 3.13 9.90
Mistral-7B 18.60 5.19 15.84

Table 8: Zero-shot performance on Gigaword.
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Model ROUGE-1 ROUGE-L METEOR

GPT-3.5 30.66 30.39 44.18
GPT-4 28.03 27.68 43.41
Llama-7B 17.91 17.67 33.84
Mistral-7B 25.35 25.01 40.71

Table 9: Zero-shot performance on TweetQA.

C Conversation History Length Ablation

This section presents an ablation study on the per-
formance change after a task-switch for varying
conversation history lengths. For each dataset in
Table 4 we select four datasets (including itself),
from which we use the training set as conversation
history. The details of the prompt structure are
presented in Appendix D.

C.1 Task-switch Performance Change

We compare the percentage change in metrics rel-
ative to zero-shot performance (h = Ø, i.e. no
conversation history) as a function of conversation
history length L and for different LLMs. Results
are plot in Figures 3, 4, 5, 6, 7 for MMLU HA,
MMLU AA, RT, Gigaword and TweetQA respec-
tively. When there is not a task switch, we would
expect a performance increase (assuming the train-
ing examples are representative of the test set). As
per our discussion in Section 4.2, we observe that
different models degrade on different task-switches
and this is not limited by the model size.

C.2 Format Failure Rate

Typically, classification tasks (MMLU HA, MMLU
AA, RT) are evaluated using logits, however we
use a generative approach for consistency: we are
evaluating the model in a conversational setting,
and we do not have access to the logits exactly.
Thus, we must post-process the model output to
determine the class. In this, we try to give the
LLM the benefit of the doubt and do our best
to extract the class. For example, although the
prompt requests the model to output within an-
swer tags like "<Answer> positive </Answer>",
we also accept "positive", but we do not accept
"positive/negative". Due to the imperfect na-
ture of this setup, either we may not detect the
correct format, or the model generates erroneous
text.

Importantly, models may become more suscepti-
ble to these errors when performing a task-switch,
causing performance degradation. We capture this

by reporting the percentage % change in the num-
ber of examples that the model failed on (relative
to zero-shot) as the context history length increases.
These are plot in Figures 8, 9, 10 for MMLU HA,
MMLU AA and RT respectively. Figures 8 and 9
show that GPT-3.5 and Mistral-7B are susceptible
to format errors in task-switches when evaluating
on multiple choice questions, whereas Figure 10
shows that GPT-4 and Llama-7B are more suscep-
tible in sentiment classification.

D Prompt Template

In each conversation turn, the user prompts the
model uk. The prompts are shown in Table 10.
We chose these prompts after careful research and
experimentation. We began with popular templates
and refined them for our purpose.

Additionally, since we do not have access to the
logits for all models, we take a generative approach
to the classification tasks (MMLU HA, MMLU
AA, RT). Since the model may fail to output an
answer in the desired format, we post process the
text to extract the answer (which we count as a pos-
itive result it matches the reference). We report and
discuss the effect of format failures further in C.2.
Furthermore, we note that the standard evaluation
method used in the Open-LLM leaderboard code
(available on GitHub) is to see if the response starts
with A,B,C or D(Gao et al., 2023). We modified
the prompt to ensure a more consistent output for-
mat (across the different models) resulting in fewer
mistakes made.

For the classification tasks, we structure the
prompt such that we request the model to output
their final answer within answer tags. We note that
giving an example of how to use the answer tags
always helped, however, this can bias the model
towards a particular answer. Instead, we found
for MMLU to just leave the answer tags empty,
whereas for RT to have the all the sentiment classes
inside the tags (see Table 10 for further details).
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Figure 3: Target Task: MMLU HA. Percentage % change in accuracy relative to zero-shot performance (no
conversation history) for increasing conversation history length L and various models.
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Figure 4: Target Task: MMLU AA. Percentage % change in accuracy relative to zero-shot performance (no
conversation history) for increasing conversation history length L and various models.
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Figure 6: Target Task: Gigaword. Percentage % change in accuracy relative to zero-shot performance (no
conversation history) for increasing conversation history length L and various models. Note that we focus on the
effect of task-switching by clipping the y-axes at +75%.
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Figure 7: Target Task: TweetQA. Percentage % change in accuracy relative to zero-shot performance (no conversa-
tion history) for increasing conversation history length L and various models. Note that we focus on the effect of
task-switching by clipping the y-axes at +75%.
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Figure 8: Target Task: MMLU Human Aging. Percentage % of examples where format failed.
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Figure 9: Target Task: MMLU Abstract Algebra. Percentage % of examples where format failed.
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Figure 10: Target Task: Rotten Tomatoes. Percentage % of examples where format failed.
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MMLU {Topic} You have a multiple choice question on {Topic}. Only one of
the options is correct: A, B, C, or D. Give your answer in
the following format with the tags provided: <Answer> </Answer>.
Please read the following question and options and answer the
question
Question: {Question}
(A) {A}
(B) {B}
(C) {C}
(D) {D}

Rotten Tomatoes Can you choose only one sentiment [‘negative’, ‘positive’] for
this review.
review: {Review}
Return only the sentiment label without any other text. Make sure
to follow the format otherwise your answer will be disqualified:
<Answer> positive / negative </Answer>.
Do not output neutral.

Gigaword Please summarize the following article.
{Article}

TweetQA Read the given tweet and answer the corresponding question.
tweet: {Tweet}
question: {Question}

Table 10: Prompt templates for each dataset. Note that the MMLU {Topic} can be either Human Aging or Abstract
Algebra. Other {words} enclosed in curly braces are replaced by the corresponding field in the datasets.

14646



(a) Zero-shot Sensitivity
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(c) Loss Sensitivity
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Figure 11: Empirical investigation of various sensitivity metrics on the target task Rotten Tomatoes as a function of
the conversation history length L for Llama-7b and Mistral-7b. Note that we omit the line for the in-context dataset
as this is not relevant to the investigation.
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E Task-Switch Sensitivity Metrics

In Section 3, we introduced and formalized evalua-
tion of a model’s sensitivity to task-switch, namely
the task sensitivity τ . This metric aims to cap-
ture the vulnerability of a model prompt to its chat
history after a task-switch. Formally, it compares
the zero-shot prediction r∗|u,h = Ø to the proba-
bility of the model outputting the same zero-shot
response after a task switch P (r∗|u,h ̸= Ø). In
this section, we compare the theoretical and empir-
ical implications of different task switch sensitivity
metrics.

Formally, given a conversation history h of
length L and the next user prompt u, the prob-
ability of a model’s response rL+1 is given by
Pθ(rL+1 | u,h). We consider the probability of
three possible responses:

1. r∗: zero-shot response

2. rL+1: model’s actual response

3. r̂L+1: reference response

We posit that after a task-switch, a robust
model’s likelihood of the zero-shot response re-
mains high. Naturally, this gives us the formulation
for the aforementioned sensitivity metric

ρ1 =
Pθ(r

∗|u)
Pθ(r∗|u,h)

, (6)

which we call zero-shot sensitivity.
Additionally, after a task-switch, we posit that

a robust model’s likelihood of the actual response
should be similar to that of the zero-shot response,
because the irrelevant history should be largely
ignored. This gives us

ρ2 =
Pθ(r

∗|u)
Pθ(rL+1|u,h)

, (7)

which we call the confidence sensitivity.
Lastly, we posit that if a model is well aligned to

a task, then both the zero-shot and model’s actual
response should be close to the reference response:

ρ3 =
Pθ(r̂L+1|u)

Pθ(r̂L+1|u,h)
, (8)

where each probability is essentially a measure of
the loss, hence we label this as the loss sensitivity.

The above are sensitivity per example, which
we can use to estimate the task-switch sensitivity

τi = E[log ρi] as per Equation 3, where the expec-
tation is calculated over the examples and histories
(for a given length L). We evaluate these metrics
on the target task RT (rotten tomatoes) as shown
in Figure 11. Figure 11a shows that the zero-shot
sensitivity metric trends upwards for both mod-
els. This is expected for a model which does not
handle task-switch well as the probability of the
output with an increased conversation length de-
creases in comparison to the zero-shot probabil-
ity. For the confidence sensitivity in Figure 11b,
we observe that Mistral-7B behaves as we expect,
whereas Llama-7B becomes less confident in its
output compared to having no conversation his-
tory. For the loss sensitivity metric in Figure 11c,
we observe that Llama behaves as we expect as
the sensitivity remains relatively flat: as the con-
versation history increases, there is no significant
change in the probability of outputting the refer-
ence. However, for Mistral-7B, the probability falls
immediately and plateaus showing that the model
was giving a very low probability mass to the ref-
erence with no conversation history. Intuitively, it
is clear that both models agree in their trends only
for the zero-shot sensitivity τ1 in Figure 11a, hence
in the main paper, we report zero-shot sensitivity
as the task-switch sensitivity. Note finally that a
further major advantage of the zero-shot sensitivity
is that it is reference-free and so can be used in
practice to predict the vulnerability of deployed
models to different task-swithches when there is
no access to the correct, reference response.
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F Correlations Models, Datasets and
Performance

We rank model performance against various met-
rics to see if there is any correlation that may help
explain model performance more generally.

F.1 Task Conversation History Length

CH Task Length Llama-7B Mistral-7B

Gigaword 75 -21.35 -15.94
TweetQA 93 -15.10 -4.35
RT 108 -13.02 10.87
MMLU AA 143 -1.79 37.68

Table 11: Target Task: MMLU AA. Average length of
response (length) in Conversation History (CH) com-
pared to the performance degradation of models in the
task-switch.

CH Task Length Llama-7B Mistral-7B

Gigaword 76 1.98 -0.72
TweetQA 93 2.70 -1.28
RT 108 2.38 2.83
MMLU AA 143 -5.42 1.19

Table 12: Target Task: RT. Average length of response
(length) in Conversation History (CH) compared to the
performance degradation of models in the task-switch.

In Table 11 and Table 12 we compare the model
performance against the mean conversation history
task, Th length, which is the average number of
tokens per response in a turn in the conversation
history. The model performance is taken for three
different seeds with conversation history lengths
L ∈ {3, 6}. There is no observed correlation be-
tween the average length of responses for a task
in a conversation and the performance degradation
observed for different models.

F.2 Task Distance

In this section we aim to assess the hypothesis
that the ‘distance’ between tasks can explain the
extent of performance degradation in different task-
switches, from the conversation history task, Th

to the target task, Tt. Measuring distance between
tasks is a multi-faceted and complex metric. Given
the lack of formal task distance measures, we in-
stead use a consensus ranking approach, where
multiple powerful Large Language Models (LLMs)
are required to rank the different tasks on how simi-
lar they are. For the target task RT, we queried four
of the largest and most powerful models to rank

the closest tasks, based on the description of each
task. We consider the following LLMs: ChatGPT;
Gemini Ultra (Team et al., 2024), Claude 3 Sonnet
from Anthropic; and Perplexity AI. The rankings
by the LLMs are given in Table 13 relative to RT.
We then select an overall ranking with the greatest
consensus - in this case three of the four LLMs
agree perfectly in the ranking. This gives a consen-
sus vote of ranks (relative to RT): RT (1); MMLU
AA (3); TweetQA (2); and Gigaword (3). The
equivalent ranks are given in Table 14 with MMLU
AA as the reference task. In this case, three of the
four models perfectly agree in their rankings.

Dataset ChatGPT Gemini Claude Perplexity

RT 1 1 1 1
MMLU AA 4 4 4 4
TweetQA 2 3 2 2
Gigaword 3 2 3 3

Table 13: Rank given by LLM for different datasets on
how similar they are to the target task RT.

Dataset ChatGPT Gemini Claude Perplexity

RT 4 4 4 4
MMLU AA 1 1 1 1
TweetQA 2 3 2 2
Gigaword 3 2 3 3

Table 14: Rank given by LLM for different datasets on
how similar they are to the target task MMLU AA.

The following tables compare the rank of the
dataset distance against the mean model per-
formance. The model performance is the %-
percentage accuracy change relative to zero-shot,
and the mean is taken over three seeds and over
conversation history lengths L ∈ {3, 6}.

CH-Task Rank Llama-7B Mistral-7B

RT 1 2.38 2.83
TweetQA 2 2.70 -1.28
Gigaword 3 1.98 -0.72
MMLU AA 4 -5.42 1.19

Table 15: Target Task, Tt: RT. Performance degradation
(with different conversation history tasks) compared to
the task rank, measuring similarity to Tt.

Overall, there appears to be only a weak corre-
lation in some settings between the task distance
and the performance degradation. This suggests
that performance degradation is not only a func-
tion of the task distance, but is also an attribute of
the specific model. Further analysis would be re-
quired to understand the aspects of specific models
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CH-Task Rank Llama-7B Mistral-7B

MMLU AA 1 -1.79 37.68
TweetQA 2 -15.10 -4.35
Gigaword 3 -21.35 -15.94
RT 4 -13.02 10.87

Table 16: Target Task: MMLU AA. Performance degra-
dation (with different conversation history tasks) com-
pared to the task rank, measuring similarity to Tt.

for certain task-switches that influence the level of
performance degradation.

G Performance Confusion Matrix

In this section, we summarize the performance
change for every pairing of task-switches from con-
versation history task (Th) to target task (Tt). We
present the results here for a conversation length
of L = 6 for each model separately. Tables 17,
18, 19, 20 report the results for models GPT-3.5,
GPT-4, Llama-7B, Mistral-7B respectively. Each
row is the performance change in the Target Task
Tt. Please note that the metric for the tasks are: ac-
curacy for MMLU AA, RT, MMLU HA, METEOR
for TweetQA, and RougeL for Gigaword.

Conversation History Task
Target Task AA RT TQ GW HA

MMLU AA 19.35 6.45 6.45 -3.13 *
RT -0.22 3.00 -0.33 0.11 *
Tweet QA -13.78 -3.55 24.81 -5.69 *
Gigaword -12.10 -6.59 -3.48 67.85 *
MMLU HA * 4.73 -12.84 -8.11 20.41

Table 17: Model: GPT-3.5. Percentage % change in
model performance.

Conversation History Task
Target Task AA RT TQ GW HA

MMLU AA 8.62 -13.11 -3.39 0.00 *
RT 0.76 1.74 -0.98 -0.98 *
Tweet QA 3.69 25.58 35.80 5.06 *
Gigaword 12.52 * 14.18 59.07 *
MMLU HA * 0.53 1.59 2.14 5.85

Table 18: Model: GPT-4. Percentage % change in
model performance.

H Free-run Performance

In this section, we investigate the performance
change for task-switch without teacher-forcing the
response, rk, in the conversation history (men-
tioned in our methods at the end of Section 3).

Conversation History Task
Target Task AA RT TQ GW HA

MMLU AA 3.57 -15.63 0.00 -10.71 *
RT -5.69 1.82 3.76 1.82 *
Tweet QA 1.68 13.37 50.74 10.17 *
Gigaword 11.76 * 11.73 158.79 *
MMLU HA * 13.86 -3.96 -0.99 25.74

Table 19: Model: Llama-7B. Percentage % change in
model performance.

Conversation History Task
Target Task AA RT TQ GW HA

MMLU AA 28.57 18.18 -4.76 -19.05 *
RT 0.97 3.79 -0.87 -1.30 *
Tweet QA -0.78 7.62 30.56 9.26 *
Gigaword -3.81 2.61 3.44 78.71 *
MMLU HA * 1.63 0.81 -11.38 12.20

Table 20: Model: Mistral-7B. Percentage % change in
model performance.

We call this “free-running”. The results of the free-
running experiments are shown in Fig 12.

Similar to the teacher-forced experiments, we
observe that the “free-running” experiments show
that model performance changes in the presence of
a task-switch. We note that the results are indeed
not identical because these models are not perfect
at responding to the history tasks, Th. In Fig 12,
we observe that the performance can degrade based
on the combination of model and task-switch. In-
terestingly, some task-switches allow the model to
perform better than in-context examples, evident
in Llama-7B for Rotten Tomatoes as Tt and Tweet
QA as Th.

I Random Conversation History

In this section, we study the impact on the task-
switch performance with a random conversation
as the history, as opposed to a specific single
conversation-history task, Th. This evaluation of-
fers a baseline measure of a model’s general sen-
sitivity to a change from the conversation history.
This allows us to assess the extent to which the ob-
served performance degradation from a task-switch
is due to the explicit change in task, as opposed to
the presence of an unrelated conversation history.

To perform this experiment we generate K = 20
random conversation pairs (uk, rk) as follows:

• Model generates the random user utterance,
uk, starting from the <BOS> (beginning of se-
quence) token.
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• Model generates the system response, rk, in a
conversational setting.

This gives us a set of user-system conversation
pairs, which we can use to create a ‘random’ con-
versation history of length L by sampling pairs
from this dataset.
These experiments are evaluated on the models:
Llama-7B and Mistral-7B, for the target tasks
(Tt): MMLU Abstract Algebra (MMLU AA) and
Rotten Tomatoes (RT). The results are shown in
Fig 13. We observe that both models have no task-
switch performance change with Tt = RT. How-
ever, both models have some performance change
with MMLU AA as Tt; noticeably, Llama-7B suf-
fers the most. We hypothesize that these results can
be explained by the task-switch sensitivity metric
τ reported in Tables 2, 3. Table 3 shows a com-
paratively lower task-switch sensitivity compared
to MMLU AA as Tt in Table 2. Moreover, with
MMLU AA as Tt (Table 2), Llama-7B consistently
has a higher task-switch sensitivity than Mistral-7B,
which could explain the large performance change
observed in Fig 13. Overall, these results confirm
that observed performance degradation due to task-
switches are primarily due to the change in task
and not due to the presence of random/unrelated
noise in the conversation history.
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Figure 12: Percentage % change in accuracy without teacher-forcing i.e. free-running, relative to zero-shot
performance (no conversation history) for increasing conversation history length L and various models. The target
tasks are (MMLU Abstract Algebra, Rotten Tomatoes and MMLU Human Aging).
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Figure 13: Percentage % change in accuracy with a random conversation history for increasing conversation history
length L. Please note that in this Figure, the plotted lines correspond to the target task, not the conversation history
task.
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