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Abstract

Recent advances in fine-tuning Vision-
Language Models (VLMs) have witnessed
the success of prompt tuning and adapter
tuning, while the classic model fine-tuning on
inherent parameters seems to be overlooked.
It is believed that fine-tuning the parameters
of VLMs with few-shot samples corrupts
the pre-trained knowledge since fine-tuning
the CLIP model even degrades performance.
In this paper, we revisit this viewpoint, and
propose a new perspective: fine-tuning the
specific parameters instead of all will uncover
the power of classic model fine-tuning on
VLMs. Through our meticulous study, we
propose ClipFit, a simple yet effective method
to fine-tune CLIP without introducing any
overhead of extra parameters. We demonstrate
that by only fine-tuning the specific bias terms
and normalization layers, ClipFit can improve
the performance of zero-shot CLIP by 7.27%
average harmonic mean accuracy. Lastly,
to understand how fine-tuning in CLIPFit
affects the pre-trained models, we conducted
extensive experimental analyses w.r.t. changes
in internal parameters and representations. We
found that low-level text bias layers and the
first layer normalization layer change much
more than other layers. The code is available at
https://github.com/minglllli/CLIPFit.

1 Introduction

Large pre-trained Visual-Language Models
(VLMs) have been developed a lot in recent years.
For example, CLIP (Radford et al., 2021) and
ALIG (Jia et al., 2021) demonstrated remarkable
performance for various tasks, e.g., image recog-
nition in a zero-shot fashion. To further improve
the performance on the specific downstream tasks,
prompt tuning (Lester et al., 2021; Yao et al., 2023;
Zhu et al., 2023; Zhou et al., 2022a) and adapter
tuning (Gao et al., 2023; Zhang et al., 2021)
methods have been proposed. As shown in Fig.

1, prompt tuning methods proposed to introduce
a set of learnable prompt vectors as the input of
the text encoder while adapter tuning approaches
adopted an additional bottleneck layer to learn new
features. During the fine-tuning procedure, both
of these two strategies keep CLIP’s parameters
fixed. The performance of prompt tuning and
adapter tuning methods are superior on various
tasks (Zhou et al., 2022b; Gao et al., 2023), so
research on fine-tuning the inherent parameters of
VLMs has been barely touched.

For language models, fully fine-tuning with
downstream data can achieve promising results
(Zaken et al., 2021; Liu et al., 2022). Moreover,
recent works in language model fine-tuning (e.g.,
BitFit (Zaken et al., 2021)) have demonstrated that,
without introducing any external parameters, fine-
tuning only the bias terms in a pre-trained model
can perform competitively on downstream tasks
compared with fine-tuning the entire model. For
VLMs, however, it is believed that fine-tuning the
parameters of VLMs corrupts the inherent pre-
trained knowledge as fully fine-tuning degrades
performance (Zhou et al., 2022b). In this paper,
we revisit this viewpoint and ask if, without in-
troducing any external parameters, fine-tuning the
inherent parameters of VLMs can achieve competi-
tive performance compared with prompt tuning.

We start with directly applying BitFit to fine-
tuning the CLIP model. We explore two strategies:
(i) applying BitFit to the text encoder alone, and (ii)
applying BitFit to both the text and image encoder.
We found that both two strategies can acquire task-
specific knowledge but their performance to unseen
class data can be poor (more discussed in Sec. 4.4),
implying that directly fine-tuning the bias terms
of a text or image encoder may harm the model’s
generalization ability. These findings motivate us
to develop more effective and efficient fine-tuning
techniques for VLMs.

In light of this, we propose CLIPFit, a simple yet
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Figure 1: Comparison of (a) prompt tuning methods, (b) adapter tuning methods, and (c) our proposed CLIPFit
method. Prompt tuning methods introduce a set of learnable external parameters as input to learn task-specific
knowledge. Adapter tuning methods introduce extra learnable networks following the image encoder to learn
task-specific features. Unlike these two methods, our CLIPFit does not introduce external parameters and fine-tunes
only a small portion of the CLIP model.

effective method for efficiently fine-tuning VLMs.
CLIPFit is orthogonal to previous prompt tuning
and adapter tuning methods, as shown in Fig. 1 (c).
For the text encoder, instead of fine-tuning all the
bias terms, CLIPFit proposes to tune only the bias
terms of projection linear layers in feed-forward
networks (FFNs). Fine-tuning only the bias terms
of projection linear layers in FFNs will reduce the
number of training parameters compared with fine-
tuning all the bias terms. Moreover, empirically,
we discovered that our bias term tuning strategy can
generalize better than BitFit (Zaken et al., 2021),
as shown in Sec. 4.4. For the image encoder, as
mentioned before, it may harm the model’s per-
formance if directly applying BitFit. In the im-
age encoder, layer normalization (LayerNorm) (Ba
et al., 2016) aims to normalize the distributions of
intermediate layers. Since the distributions of pre-
training and downstream data might be divergent,
pre-trained LayerNorm might lead to sub-optimal
performance for downstream data inference. There-
fore, CLIPFit proposes to further update only the
parameters of the image encoder’s LayerNorm. Up-
dating LayerNorm can yield a better image encoder
for downstream data. Lastly, previous studies (Yao
et al., 2023) have shown that generic pre-trained
knowledge is easily forgotten in the fine-tuning
stage. Therefore, we explored two different regu-
larization strategies for alleviating forgetting: (i)
using the knowledge distillation (KD) loss (Hinton
et al., 2015) to guide CLIPFit to learn from the
zero-shot CLIP; (ii) using the mean squared error
(MSE) loss in bias terms to penalize changes in
text encoder. We empirically found that both two
strategies can alleviate forgetting problems and the
KD loss performs better, thus we used the KD loss
as the final solution for CLIPFit.

Fine-tuning is an empirical and black-box pro-
cess. So, understanding how fine-tuning affects
the pre-trained models is important for uncovering
the black-box fine-tuning process. Previous works
(Zhou and Srikumar, 2022; De Vries et al., 2020;
Merchant et al., 2020) explored this for language
models fine-tuning. However, very little work ex-
plored the internal black-box fine-tuning process
for VLMs. In this paper, we conducted an initial
exploration to analyze VLM fine-tuning process of
CLIPFit, focusing on changes in internal param-
eters and representations. We found that for bias
terms in the FNN of the text encoder, as the number
of layers increases, the change in bias decreases,
which means that during the fine-tuning process,
low-level features in the text encoder change more
than high-level features. For LayerNorm in the
image encoder, we found that the first layer (patch
embedding) changes much more than other lay-
ers. Experimentally, we showed that more changed
layers play a more important role in adapting down-
stream knowledge than less changed layers. More-
over, we explored how KD loss affects the fine-
tuning process for alleviating forgetting. We found
that KD loss will reduce the changes for the more-
changed low-level bias terms and enhance changes
in less-changed high-level layers, which implies
that penalizing changes for low-level bias terms is
important for avoiding overfitting. Lastly, we found
that tuning LayerNorm will form a better image
feature space compared with zero-shot CLIP.

We conducted extensive experiments on 11
datasets in 4 different settings to show the effective-
ness of the proposed CLIPFit. Overall, our main
contributions can be summarized as follows:

• We propose a CLIPFit method for efficiently
fine-tuning the CLIP model to uncover the
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power of classic model fine-tuning on VLMs.
Unlike existing prompt tuning or adapter tun-
ing methods, CLIPFit does not introduce any
external parameters and only fine-tunes a
small specific subset of CLIP’s inherent pa-
rameters.

• To analyze how CLIPFit affects the pre-
trained models, we conducted extensive analy-
ses during the fine-tuning process, focusing on
the changes in parameters and representations.
These analyses help us better understand the
black-box fine-tuning process.

• We conducted extensive experiments on 11
datasets. Results show that CLIPFit brings a
7.33% improvement in harmonic mean accu-
racy compared with zero-shot CLIP on the 16-
shot base-to-new setting, demonstrating that
CLIPFit is a promising alternative to prompt
tuning and adapter tuning.

2 Related Works

Visual-Language Models (VLMs). With large-
scale available web-crawled image-text pairs
(Schuhmann et al., 2022), pre-training VLMs have
been developed fast in recent years (Xu et al., 2021;
Radford et al., 2021; Jia et al., 2021; Wang et al.,
2022a) and achieved remarkable zero-shot perfor-
mance in the downstream tasks, e.g., image clas-
sification. Despite the remarkable transfer ability,
the potential of VLMs can be further stimulated
by fine-tuning it with few-shot downstream data
(Song et al., 2022; Zhang et al., 2021; Shen et al.,
2021; Wang et al., 2022c,b; Chen et al., 2023).

Parameter-efficient Fine-tuning (PEFT) on
VLMs. There are mainly two categories of VLM
parameter-efficient fine-tuning methods: prompt
tuning (Zhou et al., 2022b,a; Chen et al., 2022; Yao
et al., 2023; Zhu et al., 2023; Zhang et al., 2023;
Khattak et al., 2023) and adapter tuning (Gao et al.,
2023; Zhang et al., 2021). Prompt tuning methods
for VLMs introduced a few learnable parameters
(prompts) as input, which were inspired by lan-
guage prompt tuning (Lester et al., 2021). Adapter
tuning methods set an additional bottleneck layer
following the text or image encoder to learn better
features by a residual way. Both prompt tuning and
adapter tuning methods boost CLIP’s performance,
so research on fine-tuning the inherent parameters
of CLIP seems to be overlooked. To explore classic
model fine-tuning on VLMs, our CLIPFit proposes

to fine-tune CLIP by modifying a small portion
of the CLIP model’s inherent parameters without
introducing any external learnable parameters.

PEFT on Large Language Models. Fully fine-
tuning language models (Radford et al., 2018; De-
vlin et al., 2018) can achieve promising results but
is expensive. To efficiently fine-tune pre-trained
language models, a lot of approaches have sought
to fine-tune only a small number of parameters.
For example, adapter methods (Bapna et al., 2019;
Houlsby et al., 2019; Pfeiffer et al., 2020) and
prompt tuning methods (Liu et al., 2023; Lester
et al., 2021; Brown et al., 2020; Gao et al., 2020)
introduce a set of learnable external parameters
for adaptation to downstream tasks. Recently, Bit-
Fit (Zaken et al., 2021) demonstrated that, without
introducing any new parameters, fine-tuning only
the bias terms in pre-trained language models can
perform competitively compared with fully fine-
tuning. However, BitFit is designed for LLM fine-
tuning, and our experiments in Sec. 4 shows that
directly applying BitFit to VLM fine-tuning may
harm the model’s generalization ability. Thus, our
CLIPFit proposes to only fine-tune the LayerNorm
of image encoder motivated by distribution shift.
Our method is different to BitFit Moreover, to un-
derstand how fine-tuning affects pre-trained mod-
els, various works (Zhou and Srikumar, 2022; Mos-
bach et al., 2020; De Vries et al., 2020; Merchant
et al., 2020) have explored this with LLM fine-
tuning. However, very little work was attempted
on the VLM side. In this paper, we attempt to
bridge this gap by conducting an initial exploration
to analyze the fine-tuning process in CLIPFit for
VLMs, focusing on changes in internal parameters
and representations.

3 Methodolgy

In this section, we introduce CLIPFit. We first
briefly review CLIP and then illustrate CLIPFit.

3.1 Review of CLIP

We first briefly review CLIP (Radford et al., 2021).
During pre-training, CLIP aims to align image fea-
tures and text features in the joint embedding space
to capture the relationship between images and
texts. Let D = {(xi, ti)}bi=1 be the sampled batch,
where xi is the input image, ti is the input text and
b is the batch size. A CLIP model is comprised
of two types of encoders: visual encoder EI(·,θI)
and text encoder ET(·,θT). The visual encoder
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Figure 2: An overview of our CLIPFit. Unlike existing prompt tuning methods or adapter tuning methods, CLIPFit
does not introduce any external parameters and fine-tunes specific inherent parameters of CLIP. For the text
encoder, as shown in the upper part of the figure, CLIPFit fine-tunes only the bias terms of projection linear layers in
feed-forward networks. For the image encoder, as shown in the lower part of the figure, CLIPFit updates LayerNorm.

encodes image xi into f i and text ti into gi, i.e.,

f i = EI(xi,θI), gj = ET(ti,θT). (1)

Then, a contrastive learning loss is applied to them
for alignment.

After pre-training, CLIP can perform zero-shot
image recognition by comparing the image features
with class weights {wi}Ki=1, where K is the num-
ber of classes. The class weight wi is generated
by text encoder ET (·,θT ) which takes the class
descriptions (prompts) as input. These prompts
usually take the form “a photo of a [CLASS].”,
where the class token will be replaced by the i-th
class name (e.g., cat) for weight wi. Formally, for
an image feature f , the probability that it belongs
to class i is calculated by

p(y = i | x) = exp (cos (wi,f) /τ)∑K
j=1 exp (cos (wj ,f) /τ)

, (2)

where τ is a temperature parameter learned by
CLIP during pre-training and cos(·, ·) denotes the
cosine similarity function.

3.2 CLIPFit
The overall pipeline of the proposed CLIPFit is
shown in Fig. 2. Without introducing any external
parameters, CLIPFit involves fine-tuning only the
bias terms of projection linear layers in FNNs of
the text encoder and updating LayerNorm (Ba et al.,
2016) in the image encoder.

Text Encoder. For the text encoder, instead
of fine-tuning all bias terms, CLIPFit fine-tunes
only the bias terms of projection linear layers (i.e.,
second layers) in the FFNs of the text encoder.
Fine-tuning only part of bias terms will reduce
the number of training parameters compared with
fine-tuning all bias terms. Moreover, Sec. 4.4 will
empirically show that our bias tuning method can
achieve better performance compared with fine-
tuning all bias terms (Zaken et al., 2021).

Image Encoder. As mentioned in Sec. 1, di-
rectly applying BitFit (Zaken et al., 2021) to the
image encoder may cause a negative impact on
the model’s performance. Instead of fine-tuning
the bias terms of the image encoder, CLIPFit pro-
poses to fine-tune LayerNorm. In LayerNorm, the
two learniable parameters gain g and bias b are ap-
plied for affine transformation on normalized input
vectors x for re-centering and re-scaling, which
are expected to enhance the expressive power by
re-shaping the distribution (Ba et al., 2016). Dif-
ferent data distributions should produce different
gains and biases in LayerNorm for distribution re-
shaping during the training process. So, if shifted
gains and biases in LayerNorm are applied during
inference, it may lead to a sub-optimal solution.
Therefore, CLIPFit proposes to fine-tune Layer-
Norm in the image encoder.

Loss function. Previous works (Yao et al., 2023;
Xuhong et al., 2018) have verified that during the
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fine-tuning stage, generic pre-trained knowledge is
easily forgotten. Therefore, we explore two differ-
ent strategies for alleviating such forgetting. The
first one is to use the knowledge distillation (Hinton
et al., 2015; Yao et al., 2023) loss to guide CLIP-
Fit to learn from the original zero-shot CLIP. Let
{wclip

i }Ki=1 and {wi}Ki=1be the text features from
original CLIP and text features from CLIPFit. The
training loss and KD loss of CLIPFit are defined
by

L = Lce + βLkg, (3)

Lkg =
1

K

K∑

i=1

cos(wclip
i ,wi), (4)

where Lce is the cross entropy loss for classification
(Zhou et al., 2022b,a) and β is a hyperparameter.

The second strategy is using the MSE loss in
bias terms to penalize changes in the text encoder.
Let {bclipi }Li=1 and {bi}Li=1 be the unfixed text bias
terms from pre-trained CLIP and unfixed text bias
terms from CLIPFit, where L is the number of
unfixed bias layers. The MSE loss is defined as

Lmse =
1

L

L∑

i=1

||bclipi − bi||2. (5)

We found that both strategies can alleviate the for-
getting problems and the KD loss performs better
(as discussed in Sec. 4.3), thus we adopted the KD
loss as the final solution for CLIPFit.

4 Experiments

In this section, we show and discuss the experi-
mental results. To evaluate the effectiveness of our
proposed method, we conducted extensive experi-
ments and analyses on 11 datasets.

4.1 Experimental Setup
Datasets. Following CoOp, we conducted exten-
sive experiments on 11 public classification bench-
mark datasets to evaluate CLIPFit. The datasets
are ImageNet (Deng et al., 2009), Caltech101 (Fei-
Fei et al., 2004), OxfordPets (Parkhi et al., 2012),
StanfordCars (Krause et al., 2013), Flowers102
(Nilsback and Zisserman, 2008), Food101 (Bossard
et al., 2014), FGVCAircraft (Maji et al., 2013),
SUN397 (Xiao et al., 2010), DTD (Cimpoi et al.,
2014), EuroSAT (Helber et al., 2019), and UCF101
(Soomro et al., 2012). Implementation details.
We implemented our method with PyTorch (Paszke
et al., 2019). The experiments were based on the
vision backbone with Vit-B/16 (Dosovitskiy et al.,

Dataset CLIP CoOp CoCoOp Adapter KgCoOp MaPLe CLIPFit

Average
Base 69.34 82.69 80.47 82.23 80.73 82.28 83.72
New 74.22 63.22 71.69 70.61 73.60 75.14 74.84
HM 71.70 71.66 75.83 75.98 77.00 78.55 79.03

ImageNet
Base 72.43 76.47 75.98 76.13 75.83 76.66 76.2
New 68.14 67.88 70.43 67.17 69.96 70.54 70.17
HM 70.22 71.92 73.10 71.37 72.78 73.47 73.06

Caltech101
Base 96.84 98.00 97.96 97.40 97.72 97.74 98.3
New 94.00 89.81 93.81 93.23 93.70 94.36 93.7
HM 95.40 93.73 95.84 95.51 96.03 96.02 95.94

OxfordPets
Base 91.17 93.67 95.20 94.33 94.65 95.43 95.23
New 97.26 95.29 97.69 97.10 97.76 97.76 97.13
HM 94.12 94.47 96.43 95.69 96.18 96.58 96.17

Stanford
Cars

Base 63.37 78.12 70.49 76.10 71.76 72.94 78.80
New 74.89 60.40 68.87 71.20 75.04 74.00 73.87
HM 68.65 68.13 72.01 72.30 73.36 73.47 76.26

Flowers102
Base 72.08 97.60 94.87 97.23 95.00 95.92 96.83
New 77.80 59.67 71.75 69.27 74.73 72.46 73.53
HM 74.83 74.06 81.71 80.90 83.65 82.56 83.59

Food101
Base 90.10 88.33 90.70 90.37 90.50 90.71 90.6
New 91.22 82.26 91.29 90.83 91.70 92.05 91.33
HM 90.66 85.19 90.99 90.6 91.09 91.38 90.96

FGVC
Aircraft

Base 27.19 40.44 33.41 38.70 36.21 37.44 42.47
New 36.29 22.30 23.71 32.27 33.55 35.61 33.47
HM 31.09 28.75 27.74 35.19 34.83 36.50 37.43

SUN397
Base 69.36 80.60 79.74 81.57 80.29 80.82 81.97
New 75.35 65.89 76.86 74.03 76.53 78.70 78.17
HM 72.23 72.51 78.27 77.62 78.36 79.75 80.02

DTD
Base 53.24 79.44 77.01 79.53 77.55 80.36 81.97
New 59.90 41.18 56.00 51.67 54.99 59.18 63.5
HM 56.37 54.24 64.85 62.64 64.35 68.16 71.56

EuroSAT
Base 56.48 92.19 87.49 87.70 85.64 94.07 93.33
New 64.05 54.74 60.04 58.83 64.34 73.23 71.07
HM 60.03 68.69 71.21 70.42 73.48 82.35 80.69

UCF101
Base 70.53 84.69 82.33 85.47 82.89 83.00 85.23
New 77.50 56.05 73.45 72.97 76.67 78.66 77.3
HM 73.85 67.46 77.64 78.73 79.65 80.77 81.07

Table 1: Accuracy comparison on Base-to-new generalization
of CLIPFit with previous methods. Adapter: CLIP-Adapter.

2020). We followed CoOp to preprocess input
images. We used a single text prompt for all ex-
periments for a fair comparison. We used SGD
optimizer with batch size set as 32, and set the
learning rate as 0.002 (Zhou et al., 2022b). All
results reported below are the average of three runs
with different random seeds. The training epoch
was set to 100 for all datasets except ImageNet and
Food101. β was set to 8 for all datasets on the
base-to-new and cross-dataset setting, and 2 for the
distribution shift setting. For the few-shot setting,
we set β to 2 for all datasets except SUN397 and
DTD. More implementation details are provided in
appendix B.

Comparisons. We compared our method
against state-of-the-art methods: zero-shot CLIP,
prompt tuning methods: CoOp, CoCoOp (Zhou
et al., 2022a), ProGrad (Zhu et al., 2023), KgCoOp
(Yao et al., 2023), MaPLe (Khattak et al., 2023) and
adapter tuning methods: CLIP-adapter, Tip-adapter
(Zhang et al., 2021). Detailed introductions to these
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methods can be found in appendix C.

4.2 Comparisons with State-of-the-arts
Results on base-to-new generalization setting
Following Zhou et al. (2022b), we split each date-
set into two disjoint groups: the base class dataset
and the new class dataset. All compared meth-
ods and the proposed CLIPFit were trained on the
base class dataset and evaluated on the new class
dataset. We conducted 4/8/16-shot experiments,
following Yao et al. (2023). We reported base and
new class accuracies (Base and New) and their har-
monic mean accuracy (HM). The 16-shot results
are shown in Table 1, and 4/8-shot results are pro-
vided in appendix G. As shown in Table 1, CLIPFit
achieves 6 best HM accuracies among 11 datasets
and the best average HM accuracy, which demon-
strates that CLIPFit can not only learn well on seen
base class data but also can generalize well to data
from unseen new classes. A notable issue with pre-
vious methods like CoOp, CoCoOp, ProGrad, and
KgCoOp is that they usually perform well only on
either the base or new class. To alleviate this issue,
MaPLe proposes a multi-modal prompt learning
strategy for CLIP tuning which improves a lot over
HM compared to previous methods. Compared
to MaPLe, our CLIPFit achieves better HM accu-
racy and average performance on the base class,
with slightly lower average performance on the
new class. It is important to note that CLIPFit
only needs to tune nearly 46K parameters while
MaPLe needs to tune nearly 3.55M parameters for
each task, which is 77 times more than CLIPFit,
meaning that CLIPFit fine-tunes significantly fewer
parameters and is much more efficient.

Results on few-shot learning setting. To ver-
ify whether the proposed CLIPFit can learn task-
specific knowledge, we also compared CLIPFit
with other existing methods on the few-shot learn-
ing setting. Following Zhou et al. (2022a), we used
1, 2, 4, 8, and 16-shot sets for training and reported
accuracy performance. We report the results of the
average accuracy of 11 datasets in Table. 2, and
report all results on each dataset in appendix F. As
shown in Table 2, compared with other methods,
CLIPFit shows overall consistent improvements
among all 1/2/4/8/16-shot settings. This demon-
strates that CLIPFit can successfully learn task-
specific knowledge. It is worth noting that CLIPFit
outperforms other methods by a large margin in
1/2/4-shot settings, demonstrating CLIPFit’s ro-
bust ability to learn with extremely few samples.

Table 2: Comparison of CLIPFit and other methods on
the few-shot learning setting. We report average accu-
racy on 11 datasets for the 1/2/4/8/16-shot setting.

Method shot
1 2 4 8 16

CoOP 68.09 70.13 73.59 76.45 79.01
CLIP-adapter 67.87 70.20 72.65 76.92 79.86

CoCoOp 66.95 67.63 71.98 72.92 75.02
ProGrad 68.2 71.78 74.21 77.93 79.2
KgCoOp 69.51 71.57 74.48 75.82 77.26

Tip-adapter 70.62 73.08 75.75 78.51 81.15
CLIPFit 72.32 74.39 77.18 79.03 81.27

Table 3: Comparison of our method against other meth-
ods on robustness to distribution shift.

Method Souce Target AverageImageNet -V2 -Sketch
CLIP 66.73 60.83 46.15 57.90
CoOP 71.51 64.20 47.99 61.23

CLIP-adapter 71.60 63.67 46.52 60.60
Tip-adapter 73.10 64.82 46.73 61.55

CoCoOp 71.02 64.07 48.75 61.28
ProGrad 72.24 64.73 47.61 61.53
KgCoOp 71.20 64.10 48.97 61.42
CLIPFit 71.53 64.83 48.87 61.74

Results on the robustness to distribution shift
setting. Following Zhang et al. (2021), we evalu-
ated the robustness under distribution shift of CLIP-
Fit and other methods by first training models on
the 16-shot ImageNet dataset and then evaluating
on ImageNet-V2 (Recht et al., 2019) and ImageNet-
Sketch (Wang et al., 2019). The label sets of two
evaluating datasets are subsets of the label set of
ImageNet. Although the label sets are compati-
ble, the distributions of these three datasets are
different from each other. The results are shown in
Table 3. As shown in Table 3, while TIP-adapter
achieves the best performance on the ImageNet
dataset, CLIPFit can achieve better average perfor-
mance compared to existing methods, effectively
underlining the robustness of CLIPFit.

Results on cross-dataset transfer setting is pro-
vided in appendix D.

4.3 Fine-tuning Analysis

Analyzing parameter change. To understand the
black-box fine-tuning process in CLIPFit, we first
analyzed changes in the parameters of both the
text encoder and image encoder. We computed
the squared difference ||ppre − p||2 for each layer,
where ppre is the pre-trained parameter vector and
p is the fine-tuned parameter vector. We conduct
experiments on the DTD dataset. The results are
shown in Fig. 3. As observed Fig. 3 (a), for bias
terms in the FNN of the text encoder, when the
number of layers increases, the change in bias de-
creases, which implies that low-level features in the
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(a) Text encoder (b) Image encoder

Figure 3: Visualization of changes in different layers.

text encoder change more than high-level features
during the fine-tuning process of CLIPFit. From
Fig. 3 (b), we found that for LayerNorm in the im-
age encoder, the first layer (i.e., patch embedding
layer) changes much more compared with other
layers for both bias and gain, showing that tuning
patch embedding LayerNorm is crucial for shifted
downstream tasks. Moreover, the gain of the last
several LayerNorm layers has much changed and
the most intermediate layers change much less. The
difference in change between different layers may
be caused by gradient difference. We visualize the
squared sum of gradient from each text bias layer
in Fig. 4 (a). As observed, the curve of the gradient
sum is very similar to changes in parameters.

To verify whether more changed layers are more
important in fine-tuning, we conducted experi-
ments by freezing less (or more) changed Layer-
Norm layers on the 4-shot setting. We found that
when only updating the first LayerNorm layer and
freezing other LayerNorm layers, the average ac-
curacy is 76.22%. For comparison, the average
accuracy is 74.93% when only updating the twelfth
LayerNorm, and 75.06% when updating the last
LayerNorm. Both are much less than the first layer
and these two layers change much less than the first
layer, as shown in Fig. 3 (b). Moreover, when up-
dating the top 6 most changed LayerNorm layers,
the average accuracy is 77.03%, which is only a
0.15% drop, while only tuning 23% parameters of
CLIPFit. The phenomenon for text encoder is simi-
lar and can be found in appendix H. These results
demonstrate that the more changed layers are more
important for knowledge adapting.

Analyzing regularization loss. We then ana-
lyze the two regularization losses: KD loss and
bias term MSE loss. We found that both two losses
can avoid overfitting and boost performance dur-
ing fine-tuning. For the 4-shot learning task, fine-
tuning w/ KD loss leads to a 77.18% average accu-
racy, and fine-tuning w/ KD loss leads to a 76.23%
average accuracy. Both two performances are bet-
ter than fine-tuning w/o regularization loss (76.13%

(b) Change w/regulariza2on loss(a) Gradient sum

Figure 4: Left: visualization of squared gradient sum.
Right: visualization of change w/ regularization loss.

(a) zero-shot CLIP (b) CLIPFit

Figure 5: Visualization of learned image feature space
from zero-shot CLIP and CLIPFit via t-SNE.

average accuracy) and KD loss performs better. We
then analyze how these two losses affect changes
in parameters during fine-tuning of CLIPFit. The
results are shown in Fig. 4 (b). As observed, KD
loss will reduce the changes for the more-changed
low-level bias terms and enhance changes in less-
changed high-level layers, which implies that pe-
nalizing changes for low-level bias terms is impor-
tant in avoiding overfitting. Compared with KD
loss, MSE loss directly applying to text bias terms
reduces more changes in low-level layers.

Analysing image encoder representations. We
used t-SNE (Van der Maaten and Hinton, 2008) to
visualize the image representation space of zero-
shot CLIP and CLIPFit to analyze image encoder
representations. We visualize the data from Eu-
roSAT dataset. The visualization results are pre-
sented in Fig. 5. As observed, in high-dimensional
classification feature space, CLIPFit has a much
clearer separation of different class image fea-
tures compared with zero-shot CLIP, which demon-
strates that CLIPFit can better detect the similar-
ities among images. These results verify that up-
dating LayerNorm in the image encoder during
fine-tuning will lead to a more separated and better
similarity-detected image feature space.

Updating LayerNorm can also benefit other
methods. We show that updating LayerNorm can
also benefit prompt tuning methods and adapter tun-
ing methods. We re-implemented CoOp, KgCoOp,
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Table 4: Comparison of prompt tuning and adapter tun-
ing methods w/ and w/o updating LayerNorm on the 16-
shot base-to-new setting. +UL means training updating
LayerNorm.

Method Base New H
CoOp 82.63 67.99 74.60
+UL 82.96(+0.33) 69.09(+1.10) 75.39(+0.79)

KgCoOp 80.73 73.60 77.00
+UL 82.13(+1.40) 74.96(+1.36) 78.38(+1.38)

CLIP-adapter 82.23 70.61 75.98
+UL 83.63(+1.40) 71.87(+1.26) 77.31(+1.33)

Table 5: Comparison of different strategies of fine-
tuning bias terms in CLIP.

Strategy Base New H # param.
(a) Text+Image bias 84.15 64.35 72.93 0.17M

(b) Text bias 83.33 64.43 72.67 67.6K
(c) FFNs bias (Text) 83.25 67.60 74.61 30.7K

(d) Projection bias (Text) 83.23 67.58 74.59 6.1K

and CLIP-adapter with updating LayerNorm. The
results are shown in Table 4. Table 4 shows that
training with LayerNorm updating can boost the
base class, new class, and harmonic mean perfor-
mance for all three methods. For example, train-
ing KgCoOp with updating LayerNorm can bring
1.4%, 1.36%, and 1.38% improvements in the base
class, new class, and Harmonic Mean (HM) ac-
curacy, which demonstrates the effectiveness and
wide validity of the proposed updating LayerNorm.

More detailed analyses about other datasets and
other aspects are provided in appendix H.

4.4 Ablation Study

Comparison of different strategies of fine-tuning
bias terms. We give an in-depth exploration of
how to apply BitFit to fine-tune the CLIP model.
Original BitFit fine-tunes all bias terms in language
models. We conduct 4 strategies for fine-tuning
bias terms of CLIP: (a) fine-tuning all bias terms
of the text and image encoder; (b) fine-tuning all
bias terms of the text encoder; (c) fine-tuning bias
terms of FFNs of the text encoder; (d) fine-tuning
bias terms of projection linear layers in FFNs of
the text encoder. We trained these four strategies
on the 16-shot base-to-new setting with Lce and
reported average accuracy. The results are shown
in Table 5. As shown in Table 5, both strategy (a)
and strategy (b) can boost seen base class perfor-
mance but will decrease significantly unseen new
class performance, which implies that directly ap-
plying BitFit to CLIP may be harmful to model’s
generalization ability. Moreover, strategy (c) and
strategy (d) can have similar performance among
both the base and new class data, but strategy (d)
fine-tunes only one-fifth of parameters compared

Configurations Accuracy(%)
1-shot 4-shot 16-shot

Porjection Bias 68.86 74.72 79.53
w/ LayerNorm 70.75 76.13 81.04

w/ KD loss 71.21 75.94 79.62
w/ KD loss + LayerNorm 72.32 77.18 81.27

Table 6: Ablation study of CLIPFit on the few-shot set-
ting with 1/4/16-shot. Projection Bias: fine-tuning bias
terms of projection layer in FNNs of the text encoder.
LayerNorm: updating LayerNorm in the image encoder.

Method Params time Base New HM
CoOp 2048 0.44ms 82.69 63.22 71.66

CoCoOp 35k 25.59ms 80.47 71.69 75.83
KgCoOp 2048 0.44ms 80.73 73.60 77.00
MaPLe 3.55M 2.1ds 82.28 75.14 78.55
CLIPFit 44k 0.96ms 83.72 74.84 79.03

Table 7: Comparison of training efficiency with other
methods over 11 datasets.

with strategy (c), which speeds up training.
Effectiveness of proposed components. We

validated the effects of updating LayerNorm and
KD loss by ablating them. The results are shown
in Table 6. Fine-tuning bias terms with KD loss
brings 2.35%, 1.22%, and 0.09% improvements
for 1/4/16-shot setting, respectively. Fine-tuning
bias terms in the text encoder and LayerNorm
in the image encoder brings 1.89%, 1.41%, and
1.51% improvements for 1/4/16-shot setting, re-
spectively. Together, CLIPFit brings 3.46%, 2.46%
and 1.74% improvements for 1/4/16-shot setting,
respectively. These results demonstrate the effec-
tiveness of each CLIPFit components.

Training efficiency. We compare the training
efficiency of CLIPFit and other methods w.r.t. pa-
rameters and training time per image (Yao et al.,
2023). The results are shown in Table 7. It is
noticed that CoOp and KgCoOp have the lowest
number of training parameters and time. However,
the performance of these two methods is not sat-
isfactory. MaPLe improves accuracy performance
compared with other methods but also increases
the required tuning parameters to 3.55M, which is
very time-consuming. CLIPFit achieves the best
harmonic mean accuracy with only 44k parameters,
which is much less than MaPLe. Also, the training
time of CLIPFit is slightly higher than CoOp and
KgCoOp. Given the large improvement of CLIPFit,
a slight increase in training time is acceptable.

4.5 Discussion

Although our method is designed for contrastive en-
coder VLMs (CLIP), the core idea of CLIPFit and
our model analysis may still provide insights for
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other large multimodal model (e.g., LLaVA (Liu
et al., 2024)) fine-tuning. For example, the idea
of tuning LayerNorm could be used when distri-
butions of downstream and pretraining QA image
data are divergent, and parameter change and im-
portance analysis (Sec. 4.3) could provide insights
for how to select fine-tuning parameters. We hope
our work can provide insights for a broader range
of VLM fine-tuning.

5 Conclusion

In this paper, we presented CLIPFit for fine-tuning
visual-language models. Unlike existing prompt
tuning and adapter tuning methods, CLIPFit does
not introduce any external parameters and fine-
tunes CLIP by updating only bias terms of pro-
jection layers in FFNs of the text encoder and the
image encoder’s LayerNorm. To understand the
effect of CLIPFit fine-tuning on the pre-trained
model, we conducted various analyses focusing
on changes in internal parameters and representa-
tions. We conducted extensive experiments and
analysis to evaluate CLIPFit on 11 datasets, whose
performances show the superiority of our method.

6 Limitations

In this paper, we presented CLIPFit for VLM fine-
tuning and conducted an exploration of how CLIP-
Fit affects the pre-trained CLIP model. Our analy-
ses found some interesting phenomena after fine-
tuning, i.e., low-level bias terms in the text encoder
change much more than high-level bias terms and
the change in the first LayerNorm layer is much
bigger than other LayerNorm layers in the image
encoders. Moreover, we found that this may be
caused by the difference in the magnitude of the
gradient. Nevertheless, our analysis does not reveal
why the difference in the magnitude of the gradi-
ent happens during fine-tuning. A deeper analysis
of gradient back-propagation during fine-tuning is
needed to understand this for future work.

Furthermore, following previous works (Zhou
et al., 2022a; Yao et al., 2023; Zhou et al., 2022b;
Khattak et al., 2023), this paper focused on im-
age classification for VLMs, so our study was con-
strained to classification tasks. Expanding CLIPFit
for VLM fine-tuning to a broader range of tasks
(e.g., image retrieval) could be the future work.
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A Dataset Statistics

Following CoOp (Zhou et al., 2022b), we con-
ducted extensive experiments on 11 public clas-
sification benchmark datasets to evaluate the ef-
fectiveness of the proposed CLIPFit. The datasets
are ImageNet (Deng et al., 2009), Caltech101 (Fei-
Fei et al., 2004), OxfordPets (Parkhi et al., 2012),
StanfordCars (Krause et al., 2013), Flowers102
(Nilsback and Zisserman, 2008), Food101 (Bossard
et al., 2014), FGVCAircraft (Maji et al., 2013),
SUN397 (Xiao et al., 2010), DTD (Cimpoi et al.,
2014), EuroSAT (Helber et al., 2019), and UCF101
(Soomro et al., 2012). In distribution shift exper-
iments, we also used ImageNet-V2 (Recht et al.,
2019), and ImageNet-Sketch (Wang et al., 2019) as
the target dataset. The statistics of these datasets
can be found in Table 8.

B Implementation Details

We implemented our method with PyTorch (Paszke
et al., 2019). All experiments were based on the
vision backbone with Vit-B/16 (Dosovitskiy et al.,
2020) of CLIP (Radford et al., 2021). We followed
CoOp (Zhou et al., 2022b) to preprocess input im-
ages: we resized all images to 224×224 and used
random cropping, resizing, and random horizontal
flipping for data augmentation. Following Radford
et al. (2021), we used a single hand-craft prompt
as text input for all methods except prompt tuning
methods for a fair comparison. The prompt for
each dataset can be found in Table 8. We used
SGD optimizer with batch size set as 32, and set
the learning rate as 0.002 (Zhou et al., 2022b). All
results reported below are the average of three runs
with different random seeds. The training epoch
was set to 100 for all datasets except ImageNet
and Food101. The training epoch for ImageNet
and Food101 datasets was set to 10. Smoothing
parameter α was set to 0.99 for all experiments. β
was set to 8 for all datasets on the base-to-new and
cross-dataset setting, and 2 for the distribution shift
setting. For the few-shot setting, we set β to 2 for
all datasets except SUN397 and DTD. β was set to
8 for SUN397 and DTD datasets. All experiments
were run on one single NVIDIA A100 GPU.

C Detailed Introduction to Baseline
Methods.

We compared our method against state-of-the-art
methods: zero-shot CLIP (Radford et al., 2021),
prompt tuning methods: CoOp (Zhou et al., 2022b),

𝛽

Figure 6: Performance changes of harmonic mean on
16 shot base-to-new setting by varying hyperparameter
β.

.

CoCoOp (Zhou et al., 2022a), ProGrad (Zhu et al.,
2023), KgCoOp (Yao et al., 2023) , MaPLe (Khat-
tak et al., 2023) and adapter tuning methods: CLIP-
ddapter (Gao et al., 2023), Tip-adapter (Zhang
et al., 2021).

Zero-shot CLIP (Radford et al., 2021) uses the
hand-crafted template “a photo of a []” to gener-
ate the prompts and then applies these prompts to
predict the class of given images.

CoOp (Zhou et al., 2022b) introduces learnable
text prompts instead of hand-crafted prompts to
adapt the CLIP model to downstream image recog-
nition tasks.

CoCoOp (Zhou et al., 2022a) proposes to gener-
ate an input-conditional token for each image with
a lightweight learnable neural network.

KgCoOp (Yao et al., 2023) proposes to use con-
text knowledge distillation to learn from the origi-
nal CLIP model to avoid overfitting and forgetting.

MaPLe (Khattak et al., 2023) proposes a multi-
modal prompt learning strategy to introduce learn-
able text and image prompts.

CLIP-Adapter (Gao et al., 2023) sets an addi-
tional bottleneck layer following the text or image
encoder to learn better features by a residual way.

Tip-Adapter(Zhang et al., 2021) does not need
training but creates the weights by a key-value
cache model constructed from the few-shot training
set and then uses this cache model for inference.
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Table 8: Statistics and prompts for each Dataset.

Dataset Classes Train Val Test Hand-crafted prompt

ImageNet 1,000 1.28M N/A 50,000 “a photo of a [CLASS].”
Caltech101 100 4,128 1,649 2,465 “a photo of a [CLASS].”
OxfordPets 37 2,944 736 3,669 “a photo of a [CLASS], a type of pet.”
StanfordCars 196 6,509 1,635 8,041 “a photo of a [CLASS].”
Flowers 102 4,093 1,633 2,463 “a photo of a [CLASS], a type of flower.”
Food101 101 50,500 20,200 30,300 “a photo of [CLASS], a type of food.”
FGVCAircraft 100 3,334 3,333 3,333 “a photo of a [CLASS], a type of aircraft.”
SUN397 397 15,880 3,970 19,850 “a photo of a [CLASS].”
DTD 47 2,820 1,128 1,692 “[CLASS] texture.”
EuroSAT 10 13,500 5,400 8,100 “a centered satellite photo of [CLASS].”
UCF101 101 7,639 1,898 3,783 “a photo of a person doing [CLASS].”

ImageNetV2 1,000 N/A N/A 10,000 “a photo of a [CLASS].”
ImageNet-Sketch 1,000 N/A N/A 50,889 “a photo of a [CLASS].”

Table 9: Comparison of CLIPFit and other methods in the cross-dataset transfer setting. S.C.: StanfordCars dataset.
F.A.: FGVCAircraft dataset.
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CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
ProGrad 72.24 91.52 89.64 62.39 67.87 85.40 20.61 62.47 39.42 43.46 64.29 62.71
KgCoOp 70.66 93.92 89.83 65.41 70.01 86.36 22.51 66.16 46.35 46.04 68.50 65.51

CLIPFit 71.10 93.77 90.36 64.56 71.43 85.76 24.46 67.43 45.20 46.40 69.17 65.85

D Results on cross-dataset transfer
setting

Following Zhou et al. (2022b,a), We also evaluated
the cross-dataset generalization ability of CLIP-
Fit and other methods. Models were trained on
the 16-shot Imagenet dataset and then tested on
other datasets. The results are shown in Table 9.
As shown in Table 9, the average performance of
CLIPFit is also better than existing methods, which
shows that CLIPFit has a good generalization abil-
ity.

E Parameter Analysis

In this section, we aim to discuss hyper-parameters
β. α is the coefficient parameter to control the
weight of knowledge distillation loss. Experiments
were conducted on the 16-shot base-to-new setting,
and we report harmonic mean accuracy in Fig. 6.
As shown in Fig. 6, performances are not sensitive
within certain ranges.

F More Few-shot Learning Results

Following Zhou et al. (2022a), we used 1, 2, 4, 8,
and 16-shot sets for training and reported accuracy
performance to test whether our proposed method
can learn task-specific knowledge. The results are
reported in Table 10. As shown in Table 10, CLIP-
Fit can bring a consistent improvement in terms of
average accuracy on all settings.

G More Results of base-to-new setting

In this section, we give more detailed results on the
base-to-new setting. The detailed results for each
dataset on 4-shot and 8-shot settings are shown
in Table 11 and Table 12. Since MaPLe (Khattak
et al., 2023) did not conduct experiments on 4/8-
shot setting, we do not report results from MaPLe.
As shown in Table 11 and Table 12, the proposed
CLIPFit brings consistent improvement compared
with other methods.
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(a) Text Encoder (b) MSE loss

Figure 7: Visualization of changes in different layers on
the EuroSAT dataset.

(a) LayerNorm gain (b) LayerNorm bias

Figure 8: Visualization of LayerNorm changes w/ and
w/o regularization loss in the DTD dataset.

H More Fine-tuning Analysis

Sec. 4.3 discussed the changes in unfixed parame-
ters after fine-tuning the DTD dataset and the im-
portance of more changed LayerNorm. In this sub-
section, we give more detailed analyses of other
datasets and other aspects.

Importance of low-level bias terms in text en-
coder. Sec. 4.3 presented that after the fine-tuning
of CLIPFit, for bias terms in the FNN of the text en-
coder, as the number of layers increases, the change
in bias decreases. In this subsection, we conducted
experiments to verify whether more changed layers
in the text encoder are more important. Similar to
Sec. 4.3, we freeze less (or more) changed Layer-
Norm bias layers in the text encoder on the 4-shot
setting. When updating only the first bias layer
and freezing other layers, the average accuracy is
74.69%. For comparison, the average accuracy is
73.33% when only updating the sixth bias layer
and 70.62% when only updating the last bias layer.
Both are much lower than updating the first layer.
We also found that when only updating the top-3
bias layers (changed more) and freezing other bias
term layers, the average accuracy is 76.13%. For
comparison, when only updating the last 3 bias
layers (changed less) and freezing other bias term
layers, the average accuracy is 70.86%, which is
much lower than updating the top 3 bias layers.
These results demonstrate that the more changed
parameters are crucial for fine-tuning.

Analyzing LayerNorm with regularization
loss. Sec. 4.3 analyzed the difference of changes

(a) KD loss (b) MSE loss

Figure 9: Visualization of bias changes w/ and w/o
regularization loss in the EuroSAT dataset.

(a) LayerNorm gain (b) LayerNorm bias

Figure 10: Visualization of LayerNorm changes w/ and
w/o regularization loss in the EuroSAT dataset.

(b) Change in each itera/on(a) LayerNorm gradient sum

Figure 11: Left: visualization of squared gradient sum
in LayerNorm layers. Right: change of the first text bias
layer and first LayerNorm layer at each iteration.

in the text encoder bias terms between w/ and w.o
regularization loss. In this subsection, we will ana-
lyze LayerNorm in the image encoder bias terms
between w/ and w.o regularization loss. Noted that
although the two regularization losses are applied
to text features or text encoder, the image encoder
or image features will also be affected since these
two encoders are fine-tuned simultaneously. The
results on the DTD dataset are shown in Fig. 8.
When fine-tuning w/ KD loss, unlike in text en-
coder, changes in gain and bias increase compared
with w/o KD loss. This phenomenon implies that
image features will change more w/ KD loss com-
pared with fine-tuning w/o KD loss. Moreover, we
also found that the increases are almost in the more
changed LayerNorm layers. When fine-tuning w/
MSE loss, changes in gain and bias are equal or
slightly higher than fine-tuning w/o KD loss.

LayerNorm gradient. We visualize the squared
sum of gradient from each LayerNorm layer in the
image encoder in Fig. 11 (a). As observed, the
magnitude of gradient in the first LayerNorm layer
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Table 10: Comparison with existing methods in the few-shot learning setting. S.C.: StandfordCars dataset. F.A.:
FGVCAircraft dataset.

shot Method ImageNet Caltech101 OxfordPets S.C. Flowers Food101 F.A. Sun397 DTD EuroSAT UCF101 AVG

1

CoOp 65.77 92.37 92.2 67.1 82.2 82.07 26.73 64.7 49.0 54.8 72.0 68.09
CoCoOp 69.51 93.8 91.17 67.92 71.98 86.1 13.2 68.19 48.51 55.71 70.35 66.95

CLIP-adapter 67.93 93.3 89.03 67.1 72.03 85.9 27.6 67.1 45.2 61.7 69.67 67.87
TIP-adapter 67.43 93.56 90.72 67.88 86.63 86.01 29.58 64.49 53.25 63.95 73.27 70.62

ProGrad 64.33 90.96 89.01 67.11 83.81 82.75 27.97 64.54 52.79 55.1 71.91 68.2
KgCoOp 69.03 94.13 91.97 67.03 74.63 86.27 26.9 68.43 52.5 60.83 72.93 69.51
CLIPFit 69.37 93.67 91.63 69.33 82.83 86.17 27.73 69.07 54.63 76.87 74.27 72.32

2

CoOp 68.17 92.83 89.2 69.37 88.47 80.8 29.57 66.4 51.7 61.2 73.67 70.13
CoCoOp 69.84 94.92 92.14 68.77 76.12 86.21 15.03 69.11 52.02 46.24 73.58 67.63

CLIP-adapter 68.6 93.67 89.73 68.97 78.53 86.1 29.6 69.0 47.87 66.07 74.1 70.2
TIP-adapter 68.6 94.22 91.1 71.39 90.21 86.26 32.51 66.74 56.32 70.38 76.11 73.08

ProGrad 66.12 93.21 90.55 71.94 88.62 84.81 30.84 68.51 54.35 66.19 74.39 71.78
KgCoOp 69.63 94.2 92.13 68.13 79.47 86.6 28.07 69.53 55.73 68.97 74.83 71.57
CLIPFit 69.93 94.47 92.03 72.7 87.77 86.63 30.7 70.87 57.7 78.83 76.7 74.39

4

CoOp 69.38 94.44 91.3 72.73 91.14 82.58 33.18 70.13 58.57 68.62 77.41 73.59
CoCoOp 70.55 94.98 93.01 69.1 82.56 86.64 30.87 70.5 54.79 63.83 74.99 71.98

CLIP-adapter 69.56 94.0 90.87 71.13 86.77 86.47 31.1 71.3 53.83 66.8 77.3 72.65
TIP-adapter 69.86 95.06 91.58 74.59 91.5 86.48 35.15 70.29 62.09 76.43 80.24 75.75

ProGrad 70.21 94.93 93.21 71.75 89.98 85.77 32.93 71.17 57.72 70.84 77.82 74.21
KgCoOp 70.19 94.65 93.2 71.98 90.69 86.59 32.47 71.79 58.31 71.06 78.4 74.48
CLIPFit 70.4 95.0 93.07 76.43 92.03 86.73 35.8 73.0 63.2 83.17 80.13 77.18

8

CoOp 70.83 94.1 90.83 76.57 94.37 83.37 37.63 72.5 64.7 75.53 80.57 76.45
CoCoOp 70.77 95.11 93.44 70.19 84.17 86.92 26.53 70.62 58.92 68.26 77.19 72.92

CLIP-adapter 70.2 94.27 91.77 76.47 94.9 86.67 37.2 73.13 66.4 73.23 81.87 76.92
TIP-adapter 71.4 95.2 92.09 78.34 94.98 86.74 40.61 73.6 67.28 81.11 82.24 78.51

ProGrad 71.1 94.92 92.18 78.78 93.51 85.91 37.89 72.91 62.13 79.22 88.64 77.93
KgCoOp 70.23 94.97 93.1 73.53 89.53 86.9 34.97 72.5 65.87 72.37 80.03 75.82
CLIPFit 71.0 95.43 93.13 79.57 94.7 87.0 39.93 74.27 67.17 84.87 82.17 79.03

16

CoOp 71.51 95.5 91.8 78.89 96.1 85.17 40.93 74.5 68.63 83.6 82.43 79.01
CoCoOp 71.02 95.19 93.25 71.68 87.64 87.19 31.29 72.05 63.78 73.82 78.34 75.02

CLIP-adapter 71.6 94.57 92.03 80.9 97.0 86.83 42.67 75.3 71.17 81.87 84.53 79.86
TIP-adapter 73.1 95.79 92.7 83.09 96.18 87.24 45.59 74.99 72.05 87.46 84.5 81.15

ProGrad 72.68 95.8 92.13 81.46 94.87 87.01 40.39 75.0 65.92 84.38 81.59 79.2
KgCoOp 71.2 95.03 93.23 74.87 92.9 87.03 36.27 73.4 69.37 74.93 81.43 77.26
CLIPFit 71.53 96.13 93.5 82.43 96.37 87.37 45.47 75.67 71.57 90.13 83.83 81.27

is much bigger than other layers. So the differ-
ence in change may be caused by the difference in
gradient.

Change in each iteration. We visualize the
change in first-layer text bias terms, first-layer Lay-
erNorm gain, and first-layer LayerNorm bias for
each iteration in Fig. 11 (b). As observed, the
change will increase smoothly and converge to
some values.

Analyses on other datasets. We also conducted
analyses on other datasets. The results for the Eu-
roSAT dataset are shown in Fig. 7, Fig. 9, and Fig.
10. The phenomena in the EuroSAT dataset are
very similar to the DTD dataset.
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Table 11: Comparison with existing methods in the base-to-new generalization based on the 4-shot settings. H:
Harmonic mean.

Datasets metric CoOp CLIP-adapter CoCoOp ProGrad KgCoOp CLIPFit

ImageNet
Base 73.6 74.23 75.46 74.24 74.87 75.03
New 63.29 67.93 69.58 65.47 69.09 69.87

H 68.06 70.94 72.4 69.58 71.86 72.36

Caltech101
Base 97.27 97.23 97.25 97.37 97.53 97.57
New 93.01 94.17 94.9 93.92 94.43 94.23

H 95.09 95.68 96.06 95.61 95.95 95.87

OxfordPets
Base 93.33 93.8 94.59 94.08 94.68 94.93
New 95.69 97.0 96.75 97.63 97.58 96.97

H 94.5 95.37 95.66 95.82 96.11 95.94

StandfordCars
Base 70.92 69.43 67.71 72.69 69.25 73.77
New 69.38 73.0 75.37 69.88 74.98 73.77

H 70.14 71.17 71.33 71.26 72.0 73.77

Flowers
Base 92.5 87.93 84.75 92.46 91.3 91.03
New 70.12 71.9 73.85 72.69 75.34 74.47

H 79.77 79.11 78.93 81.39 82.56 81.92

Food101
Base 86.79 90.2 89.79 88.91 90.3 90.2
New 89.06 90.97 90.99 90.18 91.39 91.23

H 87.91 90.58 90.39 89.54 90.84 90.71

FGVCAircraft
Base 33.21 32.43 32.07 33.73 34.21 34.53
New 28.57 33.77 33.93 30.09 32.81 31.47

H 30.72 33.09 32.97 31.81 33.5 32.93

Sun397
Base 76.49 77.7 77.57 77.72 78.87 79.5
New 64.56 75.67 76.96 71.93 75.64 77.77

H 70.02 76.67 77.26 74.71 77.22 78.63

DTD
Base 71.26 67.43 67.44 71.06 73.65 74.37
New 50.93 55.43 56.0 52.58 57.21 64.1

H 59.4 60.84 61.19 60.44 64.4 68.85

EuroSAT
Base 82.56 81.9 79.27 82.48 82.63 88.57
New 53.04 59.67 65.44 56.43 59.98 76.7

H 64.59 69.04 71.69 67.01 69.51 82.21

UCF101
Base 79.97 80.4 78.01 81.3 80.8 82.77
New 65.98 76.17 73.07 76.02 75.77 76.43

H 72.3 78.23 75.46 78.57 78.2 79.47

AVG
Base 78.43 77.52 76.72 79.18 78.92 80.21
New 68.03 72.33 73.35 71.14 73.11 75.18

H 72.44 74.84 74.85 74.62 75.9 77.61
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Table 12: Comparison with existing methods in the base-to-new generalization based on the 8-shot settings. H:
Harmonic mean.

Datasets metric CoOp CLIP-adapter CoCoOp ProGrad KgCoOp CLIPFit

ImageNet
Base 75.22 75.07 75.52 75.72 75.84 75.73
New 65.91 67.6 70.28 66.76 69.33 70.07

H 70.26 71.14 72.81 70.96 72.44 72.79

Caltech101
Base 97.81 97.3 97.76 98.0 97.68 97.83
New 92.58 93.83 93.63 93.38 94.1 93.8

H 95.12 95.53 95.65 95.63 95.86 95.77

OxfordPets
Base 94.19 94.33 95.5 94.47 94.81 94.83
New 96.11 96.83 97.69 97.03 97.58 97.03

H 95.14 95.56 96.58 95.73 96.18 95.92

StandfordCars
Base 73.2 72.13 69.7 75.08 69.66 76.63
New 67.44 71.37 74.13 70.63 75.4 74.23

H 70.2 71.75 71.85 72.79 72.42 75.41

Flowers
Base 96.17 94.27 92.24 93.8 87.72 94.17
New 69.41 70.67 72.77 72.2 74.75 74.47

H 80.63 80.78 81.36 81.59 80.72 83.17

Food101
Base 87.27 90.27 89.6 89.48 90.46 90.33
New 86.96 90.7 90.79 89.9 91.63 91.5

H 87.11 90.48 90.19 89.69 91.04 90.91

FGVCAircraft
Base 37.01 35.47 33.71 36.89 34.53 38.9
New 38.45 33.03 32.15 31.67 34.95 32.43

H 37.72 34.2 32.91 34.08 34.74 35.37

Sun397
Base 78.61 79.53 78.05 79.21 79.37 80.57
New 66.25 74.9 76.29 70.77 76.85 77.77

H 71.9 77.1 77.16 74.75 78.09 79.15

DTD
Base 76.97 74.43 73.03 74.42 69.72 77.87
New 51.81 52.77 57.24 52.38 56.44 62.63

H 61.93 61.75 64.18 61.48 62.38 69.42

EuroSAT
Base 83.27 80.23 78.68 82.27 81.07 90.3
New 50.59 59.87 56.03 58.52 63.13 73.0

H 62.94 68.57 65.45 68.39 70.98 80.73

UCF101
Base 82.85 82.83 80.4 82.61 81.16 84.4
New 64.32 74.53 71.68 73.75 78.65 77.57

H 72.42 78.46 75.79 77.93 79.89 80.84

AVG
Base 80.74 79.62 78.56 80.62 78.37 81.96
New 68.39 71.46 72.06 71.02 73.75 74.95

H 73.51 75.32 74.9 75.21 76.06 78.3

14410


