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Abstract

Direct speech-to-text translation systems en-
counter an important drawback in data scarcity.
A common solution consists on pretraining
the encoder on automatic speech recognition,
hence losing efficiency in the training process.
In this study, we compare the training dynam-
ics of a system using a pretrained encoder, the
conventional approach, and one trained from
scratch. We observe that, throughout the train-
ing, the randomly initialized model struggles
to incorporate information from the speech in-
puts for its predictions. Hence, we hypothesize
that this issue stems from the difficulty of ef-
fectively training an encoder for direct speech
translation. While a model trained from scratch
needs to learn acoustic and semantic modeling
simultaneously, a pretrained one can just fo-
cus on the latter. Based on these findings, we
propose a subtle change in the decoder cross-
attention to integrate source information from
earlier steps in training. We show that with
this change, the model trained from scratch can
achieve comparable performance to the pre-
trained one, while reducing the training time.

1 Introduction

In recent years, extensive research has been done in
the field of speech-to-text translation (ST). These
models have transitioned from cascaded systems
to direct ones (Salesky et al., 2023). While this
shift helps mitigate error propagation, it introduces
other challenges such as scarcity of training data
and the need for the model to tackle translation
and speech recognition simultaneously. To bypass
these issues, a common approach to train direct
ST systems involves pretraining the encoder on the
Automatic Speech Recognition (ASR) task (Bérard
et al., 2018). This enables the encoder to learn
acoustic modeling in the source language by lever-
aging ASR data, and the model can focus on se-
mantic modeling during the ST training.

Various studies have been conducted on pre-
training for ST. Bansal et al. (2019), introduced

a method to enhance ST performance for low-
resource source languages by utilizing ASR pre-
training from a high-resource language. Alinejad
and Sarkar (2020) enhanced the performance of an
ST system by pretraining both the encoder and the
decoder on ASR and MT respectively. Wang et al.
(2020b) and Le et al. (2023) proposed variations of
ASR pretraining that yielded superior results.

However, pretraining has some drawbacks too.
It has additional data requirements, which can be a
problem particularly in languages that don’t have a
written form and hence no ASR data. Furthermore,
it complicates the training pipeline and worsens the
efficiency of the overall training process.

Recent studies have already questioned the pre-
training approach, Zhang et al. (2022), demonstrat-
ing that similar results can be achieved under cer-
tain conditions without the need for pretraining.
However, the authors show that many strategies
need to be simultaneously used to achieve this, such
as an exhaustive hyperparameter tunning, CTC-
based regularization and their proposed parameter-
ized distance penalty.

Complementing previous interpretability works
in ST (Xu et al., 2021; Alastruey et al., 2022), in
this study, we conduct the first-ever analysis of the
training dynamics of a ST system, and based on
its results, we propose a subtle modification in the
Transformer (Vaswani et al., 2017) architecture to
bypass the pretraining stage.

First, we compare the training dynamics of a
conventional system that uses a pretrained encoder
with one trained from scratch!. Through this anal-
ysis, we observe significant disparities in their be-
haviors. Particularly, we note that when making
predictions, the model trained from scratch delays
the utilization of information extracted by the en-
coder until a later stage of training.

We hypothesize that this delay occurs due to the

'The pretraining is done on the same amount of training
data than the ST training.
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complexity of the acoustic modeling task, that in
this setting needs to be learned together with the
semantic modeling. Hence, it takes a significant
amount of updates to sufficiently train the encoder
so that it can extract meaningful information. Con-
sequently, the model ignores the encoder outputs
and focuses on training the decoder for language
modeling. Once the encoder can extract valuable
representations, the model has already converged
towards language modeling and struggles to rely
on the information obtained by the encoder.

Secondly, we believe that by forcing the model
to utilize encoder outputs earlier in the training pro-
cess, the model would not converge towards lan-
guage modeling and the encoder would be trained
more rapidly, leading to higher-quality represen-
tations in its outputs. Through a modification
in the residual connection in the decoder cross-
attention mechanism, we force the model trained
from scratch to integrate source information from
earlier training steps, and we observe a comparable
performance than in the pretrained one.

Overall, the main contributions of our work are:
(1) the first study of training dynamics in ST, that
unveils the role of the pretraining, and (2) a modi-
fication in the Transformer architecture to bypass
the pretraining stage.

2 Related Work

2.1 Interpretability of Transformer Models

Our research aims to quantify the source of in-
formation used for making predictions in these
models, specifically whether it originates from the
source (encoder input) or the target prefix (previ-
ously predicted words serving as decoder inputs).
To achieve this, we employ the ALTI+ interpretabil-
ity method (Ferrando et al., 2022a).

ALTI+ employs a strategy to rewrite attention
blocks, as introduced by Kobayashi et al. (2020),
along with the contribution definition provided by
Ferrando et al. (2022b) and a variation of rollout
inspired by Abnar and Zuidema (2020). By uti-
lizing ALTI+, we determine the extent to which
each input token in the source and target prefix con-
tribute to the prediction of a token. Furthermore, by
summing the individual contribution of each token
in the encoder source, the authors obtain a unique
score referred to as source contribution, that we use
to study training dynamics on ST.

2.2 Training Dynamics on Machine
Translation

Previous work has been done to understand how
Transformers learn in the task of Machine Trans-
lation on text. Voita et al. (2021) analyse how the
source contribution varies along the training using
Layerwise Relevance Propagation method to track
source and target contribution, and describe three
different training phases.

Target-side language modeling: The beginning
of training is devoted to target-side language mod-
eling. The total contribution of the source substan-
tially decreases. This means that in the trade-off
between information coming from the source and
the target prefix, the model gives more and more
priority to the prefix.

Learning how to use source: In the second stage,
the source influence increases quickly. This means
that, opposite to the first stage, in the trade-off be-
tween information coming from the source and the
target prefix, the model progressively gives more
and more importance to source information.

Refining translations: In the last stage, the
source contribution remains constant. By analysing
other metrics the authors see that the model is learn-
ing to refine some translations. The model learns
to align better, and is able to generate more natural
translations instead of word-to-word ones.

3 Training Dynamics in Speech
Translation

In this section, we analyse how much two training
strategies on a Transformer-based system? rely on
the speech source when making predictions along
a ST training. In particular, we study: (1) a stan-
dard ST system, consisting on an ASR pretraining,
followed by a re-initialization of the decoder and
a training on ST data, and (2) a system that only
performs a ST training on a randomly initialized
model.

To measure the amount of input information used
by the model to generate a prediction we use the
source contribution defined by ALTI+, covered in
Section 2.1.

To generalize this score to a sentence-wise score,
we average the source contribution used for the

We train the small S2T-Transformer architecture
from Fairseq (https://github.com/facebookresearch/
fairseq).
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Figure 1: Source contribution (£std) and BLEU along the first 10k updates (left) and along the full training (right).

prediction of each token in a sentence. Finally, to
obtain a score over a test set, we average again the
score obtained by every sentence in the set.

Given that we use a different source contribu-
tion measure than Voita et al. (2021) in their work
described in Section 2.2, we decide to train an ad-
ditional MT model, to confirm that the three stages
described in their work still happen on our setting.

For all our analysis, we store a checkpoint every
1k updates during the full training, and every 100
updates during the first 10k>. For each of the check-
points, we evaluate the model computing BLEU
and source contribution scores on English-German
MuST-C dataset (Cattoni et al., 2021) *.

3.1 Results Analysis

In Figure 1, we see the obtained results. When fo-
cusing on the first 10k updates we first observe that
the three stages described in Section 2.2 still hap-
pen in the text translation model. However, when
analysing both ST variants, we observe different
behaviours.

In the standard setting with a pretrained encoder,
we observe a two-stage process. This model skips
the first stage described in Section 2.2, and rapidly
integrates source data from the beginning of train-
ing. This phenomenon is coherent, as the encoder
has been pretrained, resulting in high-quality repre-
sentations that are immediately beneficial for the
decoder during prediction tasks. As in the case of
text translation, the last stage starts after the first
around 6k updates.

3Setup details of the experiments are in Appendix A.
*We use transcripts and text translations for the MT model.

Instead, the ST model trained from scratch under-
goes the same three-stage process than text trans-
lation. However, each stage appears to require
significantly more time compared to text transla-
tion. Specifically, the model does not achieve a
stable level of source contribution until after ap-
proximately 30k updates, whereas the other two
models achieve this stability after only 6k updates.

We hypothesize this happens due to the diffi-
culty of training the encoder for the task of ST
from scratch. Unlike an encoder in text transla-
tion, which solely requires semantic modeling, a
ST encoder learns both acoustic and semantic mod-
eling. This dual requirement makes the training
process for an ST encoder more time-consuming
than that of a text translation model. Consequently,
the model tends to overlook the encoder during
the early stages of training, focusing instead on
language modeling.

Opverall, we believe that the initial stage outlined
in Section 2.2 is not a result of the need to learn
language modeling. Rather, it’s a strategy to by-
pass the encoder information until the encoder is
adequately trained. This process is quick in text
translation, non-existent when using a pre-trained
encoder in ST, and lengthy when training an ST
system from scratch.

Moreover, we think that by the time the ST en-
coder trained from scratch becomes capable of ex-
tracting relevant information, the model has already
converged towards relying on language modeling.
As a result, it never reaches the level of contribu-
tion achieved by the pretrained model (as shown in
Figure 1), leading to inferior performance.
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Figure 2: Standard S2T-Transformer cross-attention
layer (left) and proposed WeRC (right).

4 Training ST from Scratch

Building on our previous analysis, we hypothesize
that forcing a Speech Translation model trained
from scratch to utilize source information from the
start could enhance the training process. If the
model is required to use the encoder’s represen-
tations, regardless of their quality, poor represen-
tations will negatively impact the model’s overall
performance. This, in turn, will cause a faster train-
ing of the encoder to extract better representations.

In particular, considering the results in Figure 1,
we observe that both the text translation model and
the pretrained speech translation model achieve a
stable source contribution of approximately 65%.
Hence, we consider this proportion to be optimal
and aim to enforce it in the speech translation
model trained from scratch.

To test our hypothesis we propose a subtle archi-
tecture modification, that forces the Transformer to
use source information along the full training. Our
modification focuses on the cross-attention layer
of the decoder, which is the step where source and
target information is aggregated, with source in-
formation coming from the attention block and
target-prefix details coming from the residual flow.

4.1 WeRC: Weighted Residual Connection

We modify the residual connection after each cross-
attention block in the decoder (Figure 2). This sum
aggregates the output of the cross-attention block
(2 4ttn) and the residual stream(z,es). Our goal is
to increase the information flow coming from the
source, so we scale these two components giving a
higher weight to the output of the cross-attention
(Eq. 1). Specifically, we aim to approximately
match the proportion of source contribution found
in Section 3.1, hence we set A = 0.65.

Model Pretrained En-De En-Es En-Fr

Baseline Yes 224 273 323
Baseline No 204 263 309
WeRC No 222 272 324
WeRC w/o norm No 21.8 - -
WeRC w/o weights No 21.6 - -

Table 1: BLEU (1) on MuST-C test set averaging the
best 10 checkpoints.

Tout = A Tattn + (1 - )\) * Tres (1)

However, a potential issue of this approach is
that the cross-attention block could converge to-
wards producing small-norm vectors, so that they
would still have a small contribution regardless of
the weighting. To solve this potential issue, we
normalize each term of the summation (Eq. 2), by
adding layer normalization layers (Ba et al., 2016).
This ensures both tensors have the same norm be-
fore the weighting. Therefore they will contribute
to the sum with the target proportion.’

LTout = A LN(xattn) + (1 - )\) : LN(xres) (2)

Results in Table 1 show that our model, which
incorporates WeRC and is trained from scratch, out-
performs the baseline by +1.3 BLEU points. Addi-
tionally, it nearly achieves the same performance
as the model with pretraining, while reducing the
training time by skipping the pretraining stage. Ad-
ditionally, we extend this experiment to En-Es and
En-Fr MuST-C sets and obtain analogous results.

4.2 Ablation Study

We perform an ablation study on the usefulness
of the weighted sum and the layer normalization
individually. In Table 1 we observe that both strate-
gies achieve a better performance than the baseline
trained from scratch, but they are still considerably
behind WeRC and the pretrained baseline. In the
case of the variant without normalization, we be-
lieve this is as a result of the trainable parameters
in the attention block (as described earlier). In the
case of the model without weights, we believe this
happens because the model is forced to use a 50%
of source contribution, which is below the opti-
mal (as observed in Figure 1). Additional ablation

>Note that we remove the learnable parameters from layer
normalization to avoid any scaling that could affect the prede-
fined weights.
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studies regarding the use of WeRC on a MT and a
pretrained ST models can be found in Appendix B.

5 Conclusions

In this work, we present the first study on the train-
ing dynamics of direct ST systems, comparing a
standard ST model with a pretrained encoder to
one trained from scratch. The analysis shows that,
without pretraining, the model struggles to incorpo-
rate information from the encoder’s outputs when
making predictions. As an explanation, we sug-
gest the encoder needs more updates than in a text
task until it can extract valuable representations of
the input tokens. Once this is achieved, the model
has already converged towards language modeling,
hence failing to utilize the information extracted by
the encoder effectively even in later steps. To ad-
dress this issue, we propose a subtle modification to
the transformer architecture that forces the model
to incorporate source information throughout the
whole training. By doing so, we achieve compara-
ble performance in a model trained from scratch to
one with pretraining, while reducing training time
and data requirements.

Limitations

While our study provides valuable insights into
the training dynamics of direct ST systems and
proposes a novel approach to improve the efficiency
of the training process, our findings are based on a
specific model, dataset and languages. We believe
different results could be obtained in other settings,
such as low resource speech translation.
Furthermore, our paper focuses on a classic and
widely extended pretraining strategy. ASR and
ST training sets correspond to the same dataset and
have the same size, differing only in the language of
the targets. We also don’t use additional techniques
such as CTC auxiliary loss. However, our goal in
this work is not obtaining a new state-of-the-art ST
training strategy but analysing and understanding
a common training strategy using interpretability
tools, and performing additional experiments to
validate the hypothesis extracted from the analysis.
Finally, in our work we use the learning rate
defined by Wang et al. (2020a) for ST finetuning
also on the experiments trained from scratch. We
acknowledge that the performance of experiments
trained from scratch could be pushed further by
tuning this hyperparameter. However, we wanted
to keep experiments comparable for the training

dynamics analysis, and hence we decided to use
the same learning rate. Furthermore, this should
not have an impact in the conclusions of the paper,
given that our proposed modification (WeRC) is
also trained from scratch and uses the same learn-
ing rate.
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A Experimental Setup

ST Models Details: In our experiments we use
commonly used Fairseq® Transformer and S2T-
Transformer architectures. In the case of speech, it
consists of 12 encoder layers and 6 decoder layers.
Both the encoder and the decoder use 4 attention
heads, the embedding dimension is 256, and in the
MLP blocks it is 2048. The decoder output dimen-
sion is 256, the same as the decoder embedding
dimension. The model has layer normalization be-
fore its main blocks instead of after, and a dropout
of 0.1 is used in both the attention weights and in
the MLP activations. ReL.U is used as the activation
function for the MLP. Regarding text models we
have 6 encoder and 6 decoder layers, no dropout, an
embedding dimension of 512 and 8 attention heads
(other settings remain the same than for speech).

Training Setup: In the case of speech transla-
tion and speech recognition trainings, we follow
the setup defined by (Wang et al., 2020a). We
fix a maximum of 20000 tokens per batch. We
use Adam optimizer (Kingma and Ba, 2017) and a
learning rate of 1- 1073 with an inverse square root
scheduler. We apply a warm-up for the first 10000
updates and we clip the gradient to 10 to avoid
exploding gradients. We use label smoothed Cross-
entropy loss, with a smoothing factor of 0.1. The
update frequency is set to 16, simulating the use of
16 GPUs. We train each model for a maximum of
100000 updates. In ST trainings we use a learning
rate of 2 - 10~3 while on speech recognition it is
1-1073, as done by (Wang et al., 2020a).

In the text translation system, we again follow
the setup defined by (Wang et al., 2020a) for Ma-
chine Translation. It is similar than the speech
translation one but the maximum number of to-
kens per batch is limited to 4096 and the number
of warm updates is 4000. Gradient clipping is re-
moved and learning rate is set to 5 - 1074

®https://github.com/facebookresearch/fairseq
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Model BLEU

Baseline MT 31.6
WeRC 31.6
Baseline Pretrained ST 21.8
WeRC 21.8

Table 2: WeRC performance on MT and pretrained ST.

B Results on Machine Translation and
Speech Translation with Pretraining

In this section, we aim to study the impact of us-
ing WeRC on the analysed MT system and on the
ST training with a pretrained encoder. These set-
tings achieve an optimal level of source contribu-
tion from the first updates of the training, so we
hypothesize that WeRC might have a less notice-
able impact than in the main study of this paper
(ST from scratch). In Table 27 we see the obtained
results. We observe that both settings maintain the
same performance, which is consistent with our
hypothesis.

"Note that this results are obtained evaluating on the best
checkpoint without checkpoint averaging.
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