
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 5293–5306
November 12-16, 2024 ©2024 Association for Computational Linguistics

Safely Learning with Private Data:
A Federated Learning Framework for Large Language Model

JiaYing Zheng1,2, HaiNan Zhang1 ∗, LingXiang Wang1, WangJie Qiu1,
HongWei Zheng2, ZhiMing Zheng 1

1Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing,
Institute of Artificial Intelligence, Beihang University, China

2Beijing Academy of Blockchain and Edge Computing, China
{jiayingzheng, zhanghainan, wanglingxiang}@buaa.edu.cn

Abstract

Private data, being larger and quality-higher
than public data, can greatly improve large lan-
guage models (LLM). However, due to privacy
concerns, this data is often dispersed in multi-
ple silos, making its secure utilization for LLM
training a challenge. Federated learning (FL)
is an ideal solution for training models with
distributed private data, but traditional frame-
works like FedAvg are unsuitable for LLM
due to their high computational demands on
clients. An alternative, split learning, offloads
most training parameters to the server while
training embedding and output layers locally,
making it more suitable for LLM. Nonetheless,
it faces significant challenges in security and
efficiency. Firstly, the gradients of embeddings
are prone to attacks, leading to potential reverse
engineering of private data. Furthermore, the
server’s limitation of handle only one client’s
training request at a time hinders parallel train-
ing, severely impacting training efficiency. In
this paper, we propose a Federated Learning
framework for LLM, named FL-GLM, which
prevents data leakage caused by both server-
side and peer-client attacks while improving
training efficiency. Specifically, we first place
the input block and output block on local client
to prevent embedding gradient attacks from
server. Secondly, we employ key-encryption
during client-server communication to prevent
reverse engineering attacks from peer-clients.
Lastly, we employ optimization methods like
client-batching or server-hierarchical, adopting
different acceleration methods based on the ac-
tual computational capabilities of the server.
Experimental results on NLU and generation
tasks demonstrate that FL-GLM achieves com-
parable metrics to centralized chatGLM model,
validating the effectiveness of our federated
learning framework.

∗ Corresponding author.

(1) (1)(2) (2)

sequential

Client I

Server

Original Model Split Model

t1 t

…2

tn

Embedding

Transformer

Head

BERT

Client II

��� ����

Transformer

Head

Embedding

Wଵ��ଵ� Head

Embedding

�ଶ��ଶ�

��

(a) FedBert

…

Client 1
Private dataset

…

Client M
Private dataset

…

Client 2
Private dataset

Server Side-LLM

Block 1

Block N-2

Client Side-LLM

Block N-1

Linear

Embedding

Block 0

Block N-1

Linear

Embedding

Block 0

Block N-1

Linear

Embedding

Block 0

 Variant 1

batch-
client

Client 1 Client 2 Client M…

Server

… …

Client MClient 1 …

Sub-Server 1 Sub-Server M

①
②

① ② Encrypted Smashed data

Server side Server sideServer side

 Variant 2
Center Server

(b) FL-GLM

share share...
...

Figure 1: Model architecture of FedBert and FL-GLM.

1 Introduction

Existing large language models (LLM) have
achieved astonishing results by utilizing vast
amounts of public data and massive parameters.
In comparison to public data, private data holds
advantages in both quantity and quality, because
private datasets typically encompass more compre-
hensive and detailed information about individuals
or organizations, and the data production process is
more rigorous. Therefore, private data can undoubt-
edly further enhance the performance of LLM.

However, private data is often stored in isolated
data silos. For example, mobile users’ data is kept
locally, involving a significant amount of personal
privacy. Considering privacy and security, LLM
cannot store private data in a centralized manner for
training. Hence, securely leveraging private data
for language model training remains a challenging

5293

problem. An ideal solution is to utilize the Feder-
ated Learning (FL) (Li et al., 2020a) framework,
which allows data to be retained on the user device
for local training and only passes the model parame-
ters to server for model aggregation. This approach
achieves the goal of keeping the data stationary
while making the model updates. By using FL for
LLM training, data privacy can be preserved, and
the performance of LLM can be further improved.

Unfortunately, traditional FL frameworks, such
as FedAvg (Stremmel and Singh, 2021) and Fed-
Prox(Li et al., 2020b), are not suitable for LLMs
because they require each client to have sufficient
computational resources to train the entire LLM.
As an alternative method, transformer with split
learning, represented by FedBERT (Tian et al.,
2022) in Figure 1(a), focuses most of the param-
eters on the server while continuously training
the embedding layer and output layer on the lo-
cal client, making it more suitable for LLM. The
process involves the client using the embedding
layer for data input and forwarding it to the server,
which then computes and returns the output states.
The client calculates loss, sends gradients back
for server updates, and receives updated gradients
for the embedding layer. However, this method
presents security risks. Embedding gradients are
vulnerable to attacks (Yaldiz et al., 2023), poten-
tially allowing attackers to reconstruct private data
through beam search(Gupta et al., 2022) or reverse-
engineered (Asnani et al., 2023). Additionally,
since the server processes one client at a time, it
hinders parallel training and reduces efficiency.

In this paper, we propose a FL framework called
FL-GLM for LLM, as shown in Figure 1(b). We
partition the transformers of the chatGLM into
three parts: input and output blocks are stored on
the client (shared with peers), while the remaining
large parameters are kept on the server. During
the training process, the client first performs for-
ward propagation on the input data to obtain hidden
states. Then, these hidden states are encrypted with
a secure key and sent to the server. Subsequently,
the server, either in a client-batch or server-layered
approach, receives more client hidden states at a
training time and executes forward propagation to
send output hidden states back to each client.

It is clear that our FL-GLM framework can ef-
fectively prevent data leakage attacks from both
servers and peer-clients while enhancing training
efficiency. Clients and servers jointly own and uti-
lize the entire model, with certain input and output

blocks placed on local clients to thwart embed-
ding gradient attacks from the server. Although
sharing input and output blocks between all clients
can improve results, interception by peers poses
risks, which can be resolved through key encryp-
tion during client-server communication. To over-
come server capacity limitations, we propose var-
ious training acceleration methods. For clusters
with multiple machines and GPUs, a hierarchical
server architecture initializes sub-servers for paral-
lel client training, with central server aggregating
and distributing models. With single machines and
multiple GPUs, the client-batch method concate-
nates client information for training, enabling par-
allel execution and enhanced efficiency compared
to traditional serial execution in split learning.

Experimental results on NLU and generation
tasks demonstrate that FL-GLM achieves perfor-
mance comparable to centralized chatGLM-6B
models, validating the effectiveness of our frame-
work. Further analysis of training costs indicates
that our client-batch and server-hierarchical mech-
anisms can save more than 48% of training time.
Our code is available at: https://github.com/TAP-
LLM/SplitFedLLM.

The innovations in this paper are as follows:

• To the best of our knowledge, we are the
first to design a federated learning framework
specifically tailored for LLMs. Starting from
user privacy concerns and considering the
computational demands of LLMs, we improve
split learning to adapt to LLMs, and develop
a reasonable, effective, and secure federated
LLM framework.

• We propose client-batch and server-
hierarchical acceleration optimization
methods based on the server’s computational
capacity to address the issue of low training
efficiency in split learning.

• Experimental results on SuperGLUE and ab-
stractive summarization datasets demonstrate
that the proposed FL-GLM model can obtain
comparable performance to centralized chat-
GLM models, validating the effectiveness of
our FL framework.

2 Related Work

2.1 Federated Learning in LM
Federated Learning (FL) has emerged as a promis-
ing approach to train language models (LM) in

5294

 https://github.com/TAP-LLM/SplitFedLLM
 https://github.com/TAP-LLM/SplitFedLLM

a decentralized manner while respecting user pri-
vacy and data safety. Federated Averaging (Fe-
dAvg) (McMahan et al., 2017) is a popular feder-
ated optimization algorithm used in language mod-
els (Hard et al., 2018; Chen et al., 2019; Strem-
mel and Singh, 2021). In FedAvg, each client
trains its model on locally stored data and com-
municates updates to the server. The server then
performs weighted aggregation of these updates
to create a new global model. To reduce local
training rounds and accelerate the learning pro-
cess, Stremmel and Singh (2021) proposes to uti-
lize the pre-trained global models on FedAvg. Ji
et al. (2019) proposes Attentive Federated Aggrega-
tion (FedAtt) and applies a layer-wise soft attention
mechanism to the trained parameters of the neu-
ral network model.Previous works (Jalalirad et al.,
2019; Thakkar et al., 2020) have integrated DP
mechanisms into FedAvg and FedAtt, respectively.

Split learning, represented by SplitFed (Thapa
et al., 2022), has emerged as a distributed and
collaborative training approach to enable efficient
training on resource-constrained devices (Abedi
and Khan, 2020; Abuadbba et al., 2020; Rahman
et al., 2020; Matsubara and Levorato, 2020), such
as mobile devices or small clients without GPU
resources. To address sequential data training in
language models, FedBERT (Tian et al., 2022) in-
troduces a novel federated learning framework. It
splits language model pre-training, easing limited
computing resources on client devices. FedBERT
segments the BERT model into Embedding, Trans-
former, and Output layers. It trains the Transformer
layer on a powerful server, while less demanding
layers (Embedding and Output) train on client de-
vices. However, this setup incurs high communi-
cation costs and risks data leakage via embedding
gradient attacks.

2.2 Attacks and Defenses
In federated learning, various eavesdroppers
threaten client privacy, including servers attempt-
ing data recovery and peer-clients intercepting data
sent to servers.In NLP, attacks from embedding gra-
dients can easily recover users’s private data. Gupta
et al. (2022) proposes to infer which words the
client used by observing the non-zero values in em-
bedding gradients. They then use beam search and
resort to arrange these words, thereby reconstruct-
ing private data. To counter this, they recommend
freezing embedding layers during training. Zhu
et al. (2019) briefly mentions defending by adding

differentially private noise or setting small gradi-
ents to zero (gradient clipping). Huang et al. (2020)
propose MixUp data augmentation on the BERT
model’s [CLS] token. Yaldiz et al. (2023) sug-
gest server-side cosine similarity checks on client-
uploaded weights to filter out malicious clients.
However, these defenses often reduce model accu-
racy (Yu et al., 2021; Li et al., 2021).

In order to retain the model structure and min-
imize the performance loss caused by model
changes, we propose to move some head layers
to the client and use a key-encryption mechanism
to protect data privacy during client-server commu-
nication. This not only prevents gradient attacks
from the server but also prevents information eaves-
dropping from peers.

3 Model

In this section, we provide the details of the FL-
GLM framework, as shown in Figure 1(b). FL-
GLM consists of three parts: model split, encrypted
transmission, and parallel acceleration. Firstly, we
split LLM into three parts, saving the first block
0 and the last block N-1 on the local client and
placing the remaining parameters on the server.
Then, the smashed data is encrypted using keys dur-
ing client-server transmission. Finally, the server
employs either client-batch or hierarchical-server
methods to achieve parallel acceleration.

3.1 Model Split
For protecting data privacy, the FL-GLM frame-
work splits LLM into three parts for deployment.
Take ChatGLM as an example, the complete Chat-
GLM model contains the embedding layer, 28 Chat-
GLM blocks and the final linear layer, the client
side contains the embedding layer, the 0th Chat-
GLM, the 27th ChatGLM block and the final linear
layer, and the 1st to 26th ChatGLM are deployed on
the server side, each block is a transformer struc-
ture. During forward operations, the client-side
model processes private data to generate smashed
data, which is then sent to the server-side model for
computation. Encrypting the smashed data ensures
its security. Given the input data x = {x1, . . . , xL}
and the next output y, the smashed data h0 of the
client is defined as:

h0 = Block0 (Embedding (x)) ,

where Block0 is the 0th block of LLM, and
Embedding is the embedding layer of LLM.

5295

Model split with P-tuning v2

Server blocks

𝑝𝑟𝑒𝑓𝑖𝑥௜

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒

FFN

⊗

𝑝𝑟𝑒𝑓𝑖𝑥_𝑣𝑎𝑙𝑢𝑒௜

𝑝𝑟𝑒𝑓𝑖𝑥௜ିଵ

𝑝𝑟𝑒𝑓𝑖𝑥௜ାଵ

…

… …

…

P-tuning v2

Prefix
encoder

LLM

LLM-Block i

𝑉𝑎𝑙𝑢𝑒௜ 𝐾𝑒𝑦௜𝑝𝑟𝑒𝑓𝑖𝑥_𝑘𝑒𝑦௜ 𝑄𝑢𝑒𝑟𝑦௜

① ② Encrypted Smashed data

LLM-Block N-2

LLM-Block 1

Server Side-Model

𝐿inear

𝐸mbedding

LLM-Block 0

LLM-Block (1, N-2)

LLM-Block N-1

Client dataset
…

Client Side-Model

①

②

ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑡𝑎𝑡𝑒௜ିଵ

ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑡𝑎𝑡𝑒௜

Figure 2: Model Split with p-tuning v2 fine-tuning by training a prefix encoder to adjust LLM-Block outputs.

The server-side model contains the 1th to the
N-2th blocks of LLM, denoted as Block(1,N-2),
which takes the received smashed data h0 as in-
put, and the hidden state hN-2 as output:

hN-2 = Block(1,N-2)(h0).

Then the server send the output hN-2 back to client.
After the last block N-1 and the linear layer op-

eration on client, the prediction result y
′

is output
and the cross-entropy loss L is calculated:

y
′
= Linear (BlockN-1 (hN-2)) ,

L = Cross_Entropy
(
y
′
, y
)
,

where BlockN-1 is the N-1th block of LLM and
Linear is the linear layer of LLM. During the
whole computation process, the data and data labels
are kept in the client to avoid data privacy leakage.

It’s important to note that the LLM-Block is con-
structed from a transformer layer comprising multi-
head self-attention mechanisms and a forward net-
work (FFN). With the stacking of LLM-Blocks,
large pre-trained models have an extremely high
number of parameters, making fine-tuning com-
putationally intensive. To fine-tune large models
with limited computational resources, efficient tech-
niques such as p-tuning v2(Liu et al., 2021b) can
be employed, as depicted in Figure 2. The FL-
GLM framework supports the p-tuning v2 method,
wherein all original model parameters are frozen,
and the prefix encoder is trained to splice the pre-
fix_key and prefix_value with the key and value
of the original model, adjusting the output of each
LLM-Block. Further details see in Appendix A.

3.2 Encrypted Transmission

Since the data features need to flow between the
client and the server after the model split, the FL-
GLM framework uses a key encryption strategy to
complete the encrypted transmission of data. The
RSA algorithm generates a pair of public and pri-
vate keys by factorizing a very large integer. The
message is encrypted with the public key and can
only be decrypted by the receiver who has the cor-
responding private key. The RSA key generation
process is as follows:

1) Select two large prime numbers, usually de-
noted as p and q.

2) Calculate their product n = pq. n will be
used as the common modulus.

3) Compute the Euler’s totient function ϕ (n) =
(p− 1) (q − 1). For a prime number p, there are
p− 1 numbers that are coprime with p; similarly,
for a prime number q, there are q − 1 numbers that
are coprime with q. Since p and q are coprime with
each other, the Euler’s totient values for p and q
can be multiplied directly.

4) Choose an integer e, called the public key
exponent, satisfying 1 < e < ϕ (n), and e andϕ (n)
are mutually prime.

5) Compute the private key index d satisfying
d ∗ e ≡ 1 (Mod ϕ (n)). d is the multiplicative
inverse of e to ϕ (n).

After the key computation is complete, n and
e are disclosed as the public key, where n is the
modulus and e is the public key index. Convert
the plaintext message M to an integer m with 0 <
m < n. Calculate the ciphertextC = me (Mod n).
C is the encrypted message. After receiving the ci-

5296

Batch parallel

…

batch-
client

…

share
…

share

…

Client 1
Private dataset

…

Client M
Private dataset

…

Client 2
Private dataset

Block N-1

Linear

Embedding

Block 0

Server Side-LLM

Block 1

Block N-2

Block N-1

Linear

Embedding

Block 0

Block N-1

Linear

Embedding

Block 0

① ② Encrypted Smashed data

①

②

①

②

①

②

Server side Server sideServer side

Figure 3: FL-GLM with client-batch parallel training.

phertext C, decrypt it using private key exponent d.
Compute the plaintext message M = Cd (Mod n).
m is the original plaintext message.

3.3 Parallel Acceleration

After deploying the large model separately from the
client and the server, the server node will bear most
of the training cost, and according to the difference
in the computing power of the server node, the
FL-GLM framework supports two training strate-
gies: serial training and parallel training. If the
server node has limited computing resources and
can hardly afford a large batch size, serial train-
ing is a more suitable choice. As shown in Figure
1(b), during serial training, the server interacts with
only one of the clients, and when one client com-
pletes the training, the training process for the next
client is started. After completing the training, the
parameters of multiple client models need to be
averaged. Serial training is time-consuming, but
one-to-one communication requires less commu-
nication, thread processing, and server processing
power and is suitable for training scenarios with
limited server capacity.

Since the special structure of split learning does
not allow smashed data from multiple clients to
be averaged, which will result in features and la-
bels not being aligned and a substantial decrease
in model performance, two parallel training strate-
gies are designed in the FL-GLM framework. As
shown in Figure 3, the first strategy is to stack the
smashed data from different clients during parallel
training as a set of data to expand the batch for
collaborative training. Take clients’ batch size=1
as an example; the number of clients is M , and in
each round of training, every client sends smashed
data of size seqlength, batchsize=1, hiddensize to

server parallel

…

Client 1
Private dataset

share

…

Client 2
Private dataset

…

Client M
Private dataset

share

…share

…

…share

…

Sub-Server Side-LLM

Block 1

Block N-2

Client Side-LLM

Block N-1

Linear

Embedding

Block 0

Sub-Server Side-LLM

Block 1

Block N-2

Client Side-LLM

Block N-1

Linear

Embedding

Block 0

Sub-Server Side-LLM

Block 1

Block N-2

Client Side-LLM

Block N-1

Linear

Embedding

Block 0

Center server

① ② ① ② ① ②

① ② Encrypted Smashed data

Server side Server sideServer side

Figure 4: FL-GLM with server-hierarchical parallel.

the server, and the data received by the server will
be integrated into a tensor with batch size M for
subsequent training. The second parallel strategy
is shown in Figure 4. Each client model will corre-
spond to a server-side model, and the server node
will run multiple models simultaneously, which
can alleviate the threading problem in one-to-many
communication to a certain extent. The server-side
model parameters and client-side parameters are
averaged at the end of the training period.

4 Experiments

In order to demonstrate the performance of
chatGLM model within the federated learning
framework(FL-GLM), we conduct experiments us-
ing the same benchmarks as those used in GLM
model (Du et al., 2022).

4.1 Experimental Settings
We first introduce some empirical settings, includ-
ing datasets, evaluation metrics, baselines and pa-
rameter settings for FL-GLM.

4.1.1 Dataset
For a fair comparison with centralized chatGLM-
6B, we test our model on the SuperGLUE (Wang
et al., 2019) benchmark for NLU tasks, and on
CNN/DailyMail and XSum datasets for abstractive
summarization tasks.

The SuperGLUE benchmark is a collection of
challenging NLU tasks designed to evaluate the
performance and capabilities of state-of-the-art lan-
guage models. It consists of eight diverse tasks, i.e.,
ReCoRD, COPA, WSC, RTE, BoolQ, WiC, CB,
and MultiRC, each representing a different aspect
of language understanding. The details of the Su-
perGLUE benchmark can be seen in Appendix B.

5297

Model Model Size ReCoRD COPA WSC RTE BoolQ WiC CB MultiRC AvgF1/Acc. Acc. Acc. Acc. Acc. Acc. F1/Acc. F1a/EM
T5large (Du et al., 2022) 770M 85.7/85.0 78.0 84.6 84.8 84.3 71.6 96.4/98.2 80.9/46.6 81.2
BARTLarge (Du et al., 2022) 409M 88.3/87.8 60.0 65.4 84.5 84.3 69.0 90.5/92.9 81.8/48.0 76.0
RoBERTaLarge (Du et al., 2022) 335M 89.0/88.4 90.0 63.5 87.0 86.1 72.6 96.1/94.6 84.4/52.9 81.5
GLMRoBERTa (Du et al., 2022) 335M 89.6/89.0 82.0 83.7 87.7 84.7 71.2 98.7/98.2 82.4/50.1 82.9
ChatGLM-6B (Zeng et al., 2022) 6B 80.2/78.7 85.0 71.2 81.6 83.4 71.0 85.7/83.9 78.2/45.6 79.6
FL-GLM 6B 79.8/78.4 85.0 71.2 80.1 81.9 69.6 85.7/83.9 79.3/46.1 79.1

Table 1: Results on the SuperGLUE dev set.

Model Model Size CNN/DailyMail XSum
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

BERTSumAbs (Liu and Lapata, 2019) 110M 41.7 19.4 38.8 38.8 16.3 31.2
UniLMv2Base (Bao et al., 2020) 110M 43.2 20.4 40.1 44.0 21.1 36.1
T5Large (Raffel et al., 2020) 770M 42.5 20.7 39.8 40.9 17.3 33.0
BARTLarge (Lewis et al., 2020) 409M 44.2 21.3 40.9 45.1 22.3 37.3
GLMRoBERTa (Du et al., 2022) 335M 43.8 21.0 40.5 45.5 23.5 37.3
ChatGLM-6B (Zeng et al., 2022) 6B 40.4 17.0 28.0 37.6 12.5 30.1
FL-GLM 6B 39.6 16.9 28.0 37.0 11.9 29.4

Table 2: Results of abstractive summarization on the CNN/DailyMail and XSum test sets.

Following GLM (Du et al., 2022), we formulate
these tasks as blank infilling tasks. Specifically,
given a labeled example (x, y), we rewrite the in-
put x as a closed question q(x) through a mask
token [M] and rewrite output y as an answer a(y).

For abstractive summarization tasks, we append
a mask token [M] at the end of the given context
as input and treat the summary as output. Then the
model generates the summary autoregressively.

4.1.2 Metrics
Since the NLU tasks are reformulated as blank
infilling tasks, the model performance can be evalu-
ated using the generated probability of the ground-
truth answer a(y). For the RTE, BoolQ, WiC, CB,
and MultiRC datasets, the generated answer may
contain a single word. Therefore, we compute the
logit of the corresponding answer token as the eval-
uation score, defined as:

p(y|x) = p(a(y)|q(x)∑
y′∈Y p(a(y′)|q(x)) ,

where Y is the ground-truth label set.
For the ReCoRD, COPA, and WSC datasets, the

answers may contain multiple words; therefore, we
compute the sum of the log-probabilities of the
answer tokens as the evaluation metrics, which is
defined as

s(y|x) =
|Ly |∑

t=1

logP(yt|y1...yt−1, x; θ).

For the summarization task, we use ROUGE-1,
ROUGE-2, and ROUGE-L as quantitative metrics,

which are widely used in NLP tasks (Liu et al.,
2021a; Chen and Yang, 2020; Fang et al., 2022).

4.1.3 Baselines

We apply FL-GLM to ChatGLM-6B model1, who
is an open-source pre-trained language model with
6 billion parameters and building upon the General
Language Model(GLM-130B) (Zeng et al., 2022;
Du et al., 2022). Notely, our framework is not lim-
ited to ChatGLM but can be widely applied to dif-
ferent LLMs (such as Llama2). We use ChatGLM
as a representative model to demonstrate that our
framework does not significantly degrade model
performance. Considering that our future applica-
tions will mainly focus on the Chinese domain, we
chose ChatGLM-6B, which has been extensively
aligned with human in the Chinese domain. Ad-
ditionally, the ChatGLM-6B model offers a break-
through scaling property that enables efficient infer-
ence on a single RTX 3060 (12GB) GPU through
INT4 quantization. This property is especially valu-
able in resource-constrained scenarios, allowing for
cost-effective computation on affordable GPUs.

For a fair comparison with ChatGLM-6B, fol-
lowing GLM, we use 7 baselines, including
T5large (Raffel et al., 2020), BARTLarge (Lewis
et al., 2020), RoBERTaLarge (Liu et al., 2019),
GLMRoBERTa (Du et al., 2022), BERTSumAbs (Liu
and Lapata, 2019), UniLMv2Base (Bao et al., 2020)
and ChatGLM-6B (Zeng et al., 2022).

1https://github.com/THUDM/ChatGLM-6B

5298

https://github.com/THUDM/ChatGLM-6B

Strategy Centralized serial client-batch parallel server-hierarchical
num. of clients None 2 2 4 8 2 3 5 10
time(s) 166.4±9.2 175.2±10.1 85.3±4.1 43.0±2.5 22.5±1.7 87.3±4.9 65.5±3.2 34.5±1.9 17.3±0.9

Table 3: Comparison of training time between different training strategies

4.1.4 Parameter Settings
We utilize the open-source ChatGLM-6B model
as the basement model for the FL-GLM model. It
has 28-layer transformer blocks, 4096 hidden-size,
and 32 self-attention heads. We utilize P-tuning
v2 for more efficient fine-tuning on downstream
tasks. Experiments are conducted on 2, 3, 5, and 10
clients with NVIDIA A100 GPUs, 40GB RAM per
client, and one server with one NVIDIA A100 GPU
and 40GB RAM. We generate RSA public and
private keys at the beginning of FL and then pass
the public keys between server and client. During
the FL process, the keys remain unchanged, and
after a certain number (hyper-parameter) of rounds
of training, we regenerate and share the keys. Our
experiments are conducted with communication
simulated on the same host, but not in a for-loop
manner; rather, we coordinated information with
Flower tool 2. In order to make a fair comparison
between our FL-GLM model and ChatGLM-6B,
we used a batch size of one, a learning rate of
2e-2 with the Adam optimizer, and adjusted the
number of training epochs and maximum sequence
length according to different datasets without using
warmup or weight decay. The code will be released
when this paper is accepted.

4.2 Experimental Results

In this section, we demonstrate our experiment re-
sults on SuperGLUE benchmark, CNN/DialyMail
and XSum datasets.

4.2.1 Metric-based Evaluation
The quantitative evaluation results on SuperGLUE
are shown in Table 1. From the results, we
can see that the recent large language models,
such as ChatGLM-6B outperform the traditional
pre-training models, showing the effectiveness of
human-aligned language models for NLU tasks.
As a distributed learning pattern, our FL-GLM
model performs a little worse than the basement
model, ChatGLB-6B. Take the accuracy of the
ReCoRD, RTE, BoolQ, and Wic datasets. For
example, our FL-GLM model obtains 78.4, 81.6,

2https://github.com/mher/flower

81.9, and 69.6, respectively, which is lower than the
centralized ChatGLB-6B model in the acceptable
range, i.e., 0.3, 1.5, 1.5, and 1.4. From the results
on CNN/DialyMail and XSum datasets in Table 2,
FL-GLM can obtain 39.6 ROUGE-1, 16.9 ROUGE-
2, and 28.0 ROUGE-L on the CNN/DailyMail
dataset, 37.0 ROUGE-1, 11.9 ROUGE-2, and 29.4
ROUGE-L on the XSum dataset. Not more than 1.0
lower than the results of the centralized ChatGLM-
6B model. In conclusion, our FL-GLM has compa-
rable ability to understand language and generate
relevant summary with centralized models.

4.3 Analysis
An analysis is conducted including training ef-
ficiency, impact of Data non-IID and prove the
security of FL-GLM. We also conducted the ex-
periments to analysis the impact of average pe-
riod (Appendix C) and the impact of partici-
pants(Appendix D).

4.3.1 Training Efficiency
To further investigate the impact of our speedup
optimization mechanism on the training cost, we
tested the average training duration of the FL-GLM
model under three training strategies: serial, client-
batch, and server-hierarchical. We randomly se-
lected 1000 data points from the ReCoRD dataset
for communication cost analysis experiment. We
tested 10 times and took the mean and standard de-
viation of the total communication time, as shown
in Table 3. From the results, we can see that the
time consumed in serial training mode with 1000
data points is close to that of centralized training,
while parallel training can significantly improve
the training time, which is directly proportional to
the number of clients.

Furthermore, we measured training communi-
cation time between two computers (server and
client) within the same LAN with a bandwidth of
1100MB/s. Results indicate that training across
two machines in the LAN is approximately five
times slower than centralized training (centralized
training: 0.91s/step, stimulate training FL-GLM in
single machine with two GPUs: 1.79s/step, train-
ing FL-GLM with two machines: 4.83s/step).

5299

0

20

40

60

80

100

100 200 300 400 500

IID Non-IID

0

20

40

60

80

100

100 200 300 400 500

IID Non-IID

0

20

40

60

80

100

40 80 120 160 200

IID Non-IID

(a) Serial (b) Server-hierarchical
Steps Steps Steps

A
cc
.

A
cc
.

A
cc
.

(c)Client-batch parallel

Figure 5: Impact of IID and non-IID of COPA dataset on FL-GLM.

4.3.2 Impact of IID and non-IID

The independent and identically distributed (IID)
assumption is a foundational premise in traditional
machine learning. However, in federated learning,
data from different participants may exhibit het-
erogeneity, making it difficult to satisfy the IID as-
sumption. This presents one of the core challenges
in federated learning. To evaluate the performance
of the FL-GLM framework in handling heteroge-
neous data, we conduct the following experiments.

We selected the COPA dataset from the Super-
GLUE benchmark, which is a binary classification
dataset for textual causal judgment and contains
400 training samples, with 195 labeled as 0 and
205 labeled as 1. To simplify the analysis, we as-
sumed the existence of two clients. After sampling
with the independent and identically distributed
(IID) method, the dataset was divided into sub-
datasets A and B. Sub-dataset A contains 97 sam-
ples labeled as 0 and 102 samples labeled as 1,
while sub-dataset B contains the remaining sam-
ples. Then, we applied a non-IID sampling method
to divide the datasets into sub-datasets A’ and B’.
Sub-dataset A’ contains 195 samples labeled as 0
and 5 samples labeled as 1, while B’ contains 200
samples labeled as 1.

The experimental results under three training
strategies are shown in Figure 5. In the case of
non-IID data, due to the issue of data heterogene-
ity, the model performance of fine-tuning training
using both serial training strategy 5(a) and server-
parallel strategy 5(b) decreases by approximately
7%. However, client-batch parallel training 5(c) is
not significantly affected by the data distribution.
This is because during client-batch parallel training,
the data features from each client are stacked into
batches and sent to the server, allowing most of
model parameters on the server side to sufficiently
learn the data features, to some extent mitigates the
performance loss caused by non-IID data.

4.3.3 Security Analysis

Theoretical proof of the security of split learning is
challenging. Pasquini et al. (2021) propose an infer-
ence attack method FSHA for feature data security
in split learning, where a malicious server restores
the training dataset by hijacking the client’s output
data, which is validated in the field of image recog-
nition, and is able to restore the client’s training
dataset effectively. Inspired by this method, we
conduct security analysis experiments to indirectly
demonstrate the security of FL-GLM.

An important prerequisite for FSHA is that the
malicious server has a shadow dataset with the
same domain and task as the dataset held by the at-
tacked party. However, in the private data domain,
the data are all held by the training participants and
protected by legal regulations, and the server side
in the FL-GLM framework cannot obtain the same
domain data under normal circumstances. So we
consider the extreme case where, in serial training
mode, at least one client colludes with the server
to share its private data, Dpriv

1, with the server
for the purpose of training an attack model. Let
F be the first part of the model held by the mali-
cious client. The malicious server-side constructs
the model F−1 for attacking and utilizes Dpriv

1

to train F−1. During the attacking phase, the ma-
licious server hijacks the smashed data outputted
by the attacked client, denoted as f , and utilizes
F−1 to inference the privacy data Dpriv

2 held by
the attacked client.The method is validated on the
BoolQ dataset.

The experimental results are shown in Table 4.
When the client only has the embedding layer like
FedBert, which is refering as ’Embd.’, F−1 is a
single Linear layer, the attack model can achieve
a BLEU-4 score of 28.570 and a ROUGE-1 score
of 33.290. While in the FL-GLM framework, the
client contains the embedding layer and an LLM-
Block, noted as ’Client-side A’, F−1 is a single

5300

F F−1 ROUGE-1 ROUGE-2 ROUGE-L BLEU-4

Embd. Linear 33.29 7.05 26.73 28.57
Client-side A TF. 0.14 0.002 0.47 0.34

Table 4: Security Analysis

layer Transfomer(TF.), all the metrics of the attack
model are all close to 0. Therefore, the security
of FL-GLM could be proven in experiments. Ad-
ditionally, we find that the attack metrics’ perfor-
mance of a single-block Transformer is similar to
that of a multi-block Transformer. Therefore, the
optimal split point, based on experimental results,
might be a single-block Transformer, even though
it is challenging to prove theoretically.

4.3.4 More Basement Model
To further validate the practicality and generaliz-
ability of our FL-GLM framework, we incorpo-
rated Llama2-7B-Chat (Touvron et al., 2023) as
a baseline model. We split Llama2-7B-Chat ac-
cording to the FL-GLM framework, resulting in
a variant denoted as FL-Llama. The performance
evaluation experiment was conducted utilizing six
datasets from the SuperGLUE benchmark with se-
rial training strategy and utilizing the LoRA to
fine-tune. Note that Llama2-7B-Chat supports in-
struction fine-tuning, leading us to adapt the in-
put prompts for each dataset in accordance with
the Meta’s official recommended instruction tem-
plates, rather than employing the Cloze question
templates in Appendix B. The experimental re-
sults are presented in Table 5, which indicate that
our proposed framework could achieve comparable
accuracy metrics, and suggest that the FL-GLM
framework is agnostic to the base model type and
does not significantly affect performance.

Furthermore, we validated the FL-GLM frame-
work on the Chinese medical dataset Huatuo-
26M (Li et al., 2023), referring to the Llama2-
Chinese-7B-Chat based FL-GLM framework as
FL-Chinese-Llama. The full Huatuo-26M dataset
contains 2,623,904 Q&A pairs in the training
dataset and 264,041 Q&A pairs in the test dataset.
We randomly sampled 3,000 Q&A pairs from the
full dataset for training and 300 Q&A pairs from
the test set for evaluation. It should be noted that,
since the limited Chinese language capability of
Llama2-7B-chat, we chose Llama2-Chinese-7B-
Chat 3 as the baseline model for this experiment,

3https://huggingface.co/FlagAlpha/Llama2-Chinese-7B-
Chat

Model CB COPA RTE WiC BoolQ WSC

Llama2-7B-Chat 85.71 75.00 73.29 70.85 83.79 68.27
FL-Llama(ours) 85.71 75.00 73.29 70.83 82.35 68.37

Table 5: FL-GLM’s performance on Llama2-7B-Chat

Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

ChatGLM-6B 9.32 29.94 8.89 24.07
FL-GLM(OURS) 8.95 29.22 8.61 23.40

Llama2-Chinese-7B-Chat 3.07 19.42 2.95 15.08
FL-Chinese-Llama(ours) 3.04 19.04 2.79 14.85

Table 6: Results on sampled Huatuo-26M test set.

which has been fine-tuned on a large Chinese cor-
pus. As illustrated in Table 6, the proposed training
framework maintains model performance that is
closely comparable to centralized training. Specifi-
cally, the performance metrics of FL-GLM exhibit
a degradation of no more than 0.72 when compared
to ChatGLM-6B, while FL-Chinese-Llama shows
a decline of no more than 0.38 when compared
to Llama2-Chinese-7B-Chat. Whereas, the inter-
model comparisons show that the Chinese conver-
sational capabilities of ChatGLM significantly sur-
pass those of Llama2-Chinese-7B-Chat. Therefore,
we recommend using ChatGLM as the base model
for FL-GLM framework in Chinese application sce-
narios.

5 Conclusions

To address the challenge of distributed training of
LLMs with limited client computational resources,
we propose to utilize the split learning method to
segment the generative model. We place the input
and output blocks locally on client devices, while
the remaining primary model parameters are cen-
tralized on a server with ample computational re-
sources. We secure client-server information trans-
fers with encryption methods. To enhance training
efficiency, we suggest selecting the client-batch
and server-hierarchical acceleration optimization
methods based on the server’s actual computational
capacity, thereby enabling parallel training. This
distributed architecture not only ensures that user
private data remains on local devices but also ef-
fectively reduces the training time, making it more
suitable for the scale and complexity of LLMs. In
the future, we contemplate employing more ad-
vanced privacy-preserving techniques, such as dif-
ferential privacy, to safeguard the data transmitted
from clients, enabling the application of large lan-
guage models in privacy-sensitive scenarios.

5301

Limitations

FL-GLM was evaluated on the SuperGLUE bench-
mark, CNN/DailyMail and XSum datasets, and
despite achieving results close to those of the cen-
tralized tests, it is still constrained by the privacy-
utility trade-off, and we would like to further opti-
mize the communication consumption of the cur-
rent distributed training framework and achieve
even better model efficacy. In addition, our frame-
work is currently limited to ChatGLM-6B. Future
work will extend FL-GLM to different LLMs, such
as Llama, to demonstrate its adaptability and wider
applicability.

Ethical Considerations

We propose a federated learning framework named
FL-GLM, which aims to use private data to train
LLM with considerations of prevent data privacy
leakage. Our data originates from open-source
NLU and NLG projects, adhering to their license
limitations and public benchmarks. Moreover, we
emulate a distributed data storage environment us-
ing open-source datasets, ensuring the exclusion of
private data. We affirm our societal contribution
without causing harm.

Acknowledgments

The authors thank Zishuai Zhang for the de-
velopment and maintenance of this project.
This work was funded by the National Natu-
ral Science Foundation of China (NSFC) un-
der Grants No. 62406013, the Advanced In-
novation Center for Future Blockchain and Pri-
vacy Computing (ZF226G2301) and the Fron-
tier Cross Fund Program of Beihang University
(501QYJC2023141001, 501QYJC2024141003).

References
Ali Abedi and Shehroz S Khan. 2020. Fedsl: Fed-

erated split learning on distributed sequential data
in recurrent neural networks. arXiv preprint
arXiv:2011.03180.

Sharif Abuadbba, Kyuyeon Kim, Minki Kim, Chandra
Thapa, Seyit A Camtepe, Yansong Gao, Hyoungshick
Kim, and Surya Nepal. 2020. Can we use split learn-
ing on 1d cnn models for privacy preserving training?
In Proceedings of the 15th ACM Asia Conference
on Computer and Communications Security, pages
305–318.

Vishal Asnani, Xi Yin, Tal Hassner, and Xiaoming Liu.
2023. Reverse engineering of generative models:

Inferring model hyperparameters from generated im-
ages. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan
Yang, Xiaodong Liu, Yu Wang, Songhao Piao, Jian-
feng Gao, Ming Zhou, et al. 2020. Unilmv2: pseudo-
masked language models for unified language model
pre-training. In Proceedings of the 37th International
Conference on Machine Learning, pages 642–652.

Jiaao Chen and Diyi Yang. 2020. Multi-view sequence-
to-sequence models with conversational structure for
abstractive dialogue summarization. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 4106–
4118.

Mingqing Chen, Rajiv Mathews, Tom Ouyang, and
Françoise Beaufays. 2019. Federated learn-
ing of out-of-vocabulary words. arXiv preprint
arXiv:1903.10635.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320–335.

Yue Fang, Hainan Zhang, Hongshen Chen, Zhuoye
Ding, Bo Long, Yanyan Lan, and Yanquan Zhou.
2022. From spoken dialogue to formal summary:
An utterance rewriting for dialogue summarization.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3859–3869.

Samyak Gupta, Yangsibo Huang, Zexuan Zhong,
Tianyu Gao, Kai Li, and Danqi Chen. 2022. Recov-
ering private text in federated learning of language
models. Advances in Neural Information Processing
Systems, 35:8130–8143.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop
Ramaswamy, Françoise Beaufays, Sean Augenstein,
Hubert Eichner, Chloé Kiddon, and Daniel Ramage.
2018. Federated learning for mobile keyboard pre-
diction. arXiv preprint arXiv:1811.03604.

Yangsibo Huang, Zhao Song, Danqi Chen, Kai Li, and
Sanjeev Arora. 2020. Texthide: Tackling data privacy
in language understanding tasks. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1368–1382.

Amir Jalalirad, Marco Scavuzzo, Catalin Capota, and
Michael Sprague. 2019. A simple and efficient fed-
erated recommender system. In Proceedings of the
6th IEEE/ACM international conference on big data
computing, applications and technologies, pages 53–
58.

Shaoxiong Ji, Shirui Pan, Guodong Long, Xue Li, Jing
Jiang, and Zi Huang. 2019. Learning private neural

5302

language modeling with attentive aggregation. In
2019 International joint conference on neural net-
works (IJCNN), pages 1–8. IEEE.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Jianquan Li, Xidong Wang, Xiangbo Wu, Zhiyi Zhang,
Xiaolong Xu, Jie Fu, Prayag Tiwari, Xiang Wan,
and Benyou Wang. 2023. Huatuo-26m, a large-scale
chinese medical qa dataset.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. 2020a. A
review of applications in federated learning. Comput-
ers & Industrial Engineering, 149:106854.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. 2020b.
Federated optimization in heterogeneous networks.
Proceedings of Machine learning and systems, 2:429–
450.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori
Hashimoto. 2021. Large language models can be
strong differentially private learners. In International
Conference on Learning Representations.

Junpeng Liu, Yanyan Zou, Hainan Zhang, Hongshen
Chen, Zhuoye Ding, Caixia Yuan, and Xiaojie Wang.
2021a. Topic-aware contrastive learning for abstrac-
tive dialogue summarization. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2021,
pages 1229–1243.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021b.
P-tuning v2: Prompt tuning can be comparable to
fine-tuning universally across scales and tasks. arXiv
preprint arXiv:2110.07602.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021c. Gpt
understands, too. arXiv e-prints, pages arXiv–2103.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Y Matsubara and M Levorato. 2020. Neural compres-
sion and filtering for edge-assisted real-time object

detection in challenged networks. In IEEE Inter-
national Conference on Pattern Recognition (IEEE
ICPR).

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR.

Dario Pasquini, Giuseppe Ateniese, and Massimo
Bernaschi. 2021. Unleashing the tiger: Inference
attacks on split learning. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 2113–2129.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Sawsan Abdul Rahman, Hanine Tout, Chamseddine
Talhi, and Azzam Mourad. 2020. Internet of things
intrusion detection: Centralized, on-device, or feder-
ated learning? IEEE Network, 34(6):310–317.

Joel Stremmel and Arjun Singh. 2021. Pretraining fed-
erated text models for next word prediction. In Ad-
vances in Information and Communication: Proceed-
ings of the 2021 Future of Information and Communi-
cation Conference (FICC), Volume 2, pages 477–488.
Springer.

Om Thakkar, Swaroop Ramaswamy, Rajiv Mathews,
and Françoise Beaufays. 2020. Understanding un-
intended memorization in federated learning. arXiv
preprint arXiv:2006.07490.

Chandra Thapa, Pathum Chamikara Mahawaga
Arachchige, Seyit Camtepe, and Lichao Sun. 2022.
Splitfed: When federated learning meets split learn-
ing. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 36, pages 8485–8493.

Yuanyishu Tian, Yao Wan, Lingjuan Lyu, Dezhong Yao,
Hai Jin, and Lichao Sun. 2022. Fedbert: When fed-
erated learning meets pre-training. ACM Transac-
tions on Intelligent Systems and Technology (TIST),
13(4):1–26.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R Bowman. 2019. Superglue: a stickier
benchmark for general-purpose language understand-
ing systems. In Proceedings of the 33rd International
Conference on Neural Information Processing Sys-
tems, pages 3266–3280.

5303

http://arxiv.org/abs/2305.01526
http://arxiv.org/abs/2305.01526

Duygu Nur Yaldiz, Tuo Zhang, and Salman Avestimehr.
2023. Secure federated learning against model poi-
soning attacks via client filtering. In ICLR 2023
Workshop on Backdoor Attacks and Defenses in Ma-
chine Learning.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi,
Huseyin A Inan, Gautam Kamath, Janardhan Kulka-
rni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz,
et al. 2021. Differentially private fine-tuning of lan-
guage models. In International Conference on Learn-
ing Representations.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: An
open bilingual pre-trained model. In The Eleventh In-
ternational Conference on Learning Representations.

Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep
leakage from gradients. In Proceedings of the 33rd
International Conference on Neural Information Pro-
cessing Systems, pages 14774–14784.

A P-tuning v2

P-tuning v2 is proposed based on the p-tuning(Liu
et al., 2021c) algorithm, and its basic principle is
to add a prompt of length Lp as a learnable em-
bedding, denoted as a prefix, to each LLM-Block’s
attention operation. Fine-tuning is done by freezing
the model parameters and training only the prefix.
In each LLM-Block, the corresponding prefix con-
tains two parts: prefix_key ∈ RL×B×Nh×dh and
prefix_value ∈ RL×B×Nh×dh . Where L is the
data length, B denotes batch size, Nh denotes the
number of attention heads, and dh is the dimension
of each head.

In the process of forward operation, when the
data passes through each LLM-Block, the prefix is
spliced with the frozen key and value in the model
to form a new key’ and value’, which are denoted
as K

′
and V

′
, respectively, with the original query

parameter (Q) of the model to compute the atten-
tion score of the current data as well as the hidden
state. Taking the i-th layer LLM-Block as an ex-
ample, the computation process of p-tuning v2 is
shown below:

keyi
′
: Ki

′
= [prefix_keyi : keyi]

valuei
′
: Vi

′
= [prefix_valuei : valuei]

Attention score : S′
i = softmax(

QiKi
′T

√
dh

)

hidden_statei = FFN(S′
iVi

′)

B Dataset

Table 7 shows the cloze questions and answers for
SuperGLUE tasks, and the detailed corresponding
description of SuperGLUE benchmark are as be-
low:

• ReCoRD(Reading Comprehension with Com-
monsense Reasoning and Disambiguation): In
this task, models are required to answer ques-
tions by extracting information from a given
passage, while also employing commonsense
reasoning and resolving ambiguous pronouns.

• COPA(Choice of Plausible Alternatives): This
task assesses causal reasoning abilities by pro-
viding a premise and two alternative hypothe-
ses, where the model must choose the correct
causal relationship.

• WSC(Winograd Schema Challenge): This
task evaluates pronoun resolution and coref-
erence resolution abilities, where the model
must identify the correct referent for a pro-
noun in a given sentence.

• RTE(Recognizing Textual Entailment): The
task requires determining if one sentence en-
tails, contradicts, or remains neutral with re-
spect to another sentence.

• BoolQ(Boolean Questions): Models must an-
swer boolean questions, i.e., questions that
require a yes or no answer, based on a given
context.

• WiC(Word-in-Context): In this task, models
must determine if a word has the same sense in
two different contexts, requiring fine-grained
lexical semantics understanding.

• CB(CommitmentBank): It is a famous corpus
of short texts for textual entailment task, in
which at least one sentence contains an em-
bedded clause.

• MultiRC(Multiple-Choice Reading Compre-
hension): This task involves answering
multiple-choice questions based on multiple
passages, which tests the ability to compre-
hend complex documents.

5304

Dataset Task Cloze Question Answers
ReCoRD Question answering [passage p] [cloze question q] Answer candidates
COPA Causal reasoning “[choice c1]” or“[choice c2]”? [premise p], so [M]. c1/c2
WSC Coreference resolution [sentence s] The pronoun ‘*p*’ refers to [M]. Noun n
RTE Textual entailment “[hypothesis h]”? [M] “[premise p]” “yes”/“no”
BoolQ Question answering [passage p]. Question: q? Answer:[M]. “yes” / “no”

WiC Word sense disambiguation
“[sentence s1]”/“[sentence s2]”Similar sense
of [word w]? [M].

“yes”/“no”

CB Textual entailment “[hypothesis h]”? [M], “[premise p]” “yes”/“no”/“maybe”
MultiRC Question answering [passage p]. Question: q? Is it [answer a]? [M]. “yes”/“no”

Table 7: Cloze questions and answers for the 8 SuperGLUE tasks

Sequential

82

83

84

85

86

2 3 5 10

A
cc

ur
ac

y

Num. of clients

100 200 300 400 500

77

78

79

80

81

2 3 5 10

A
cc

ur
ac

y

Num. of clients

80 100 120 140 160

(a) RTE

62

64

66

68

70

2 3 5 10

A
cc

ur
ac

y

Num. of clients

187 238 289 340 391

(b) WiC (c) COPA

70
72
74
76
78
80
82
84

2 3 5 10

A
cc

ur
ac

y

Num. of clients

50 100 150 200 250 300

(d) BoolQ

68
70
72
74
76
78
80

2 3 5 10

A
cc

ur
ac

y

Num. of clients

75 150 225 300 375 450

(e) MuitiRC

83

83.5

84

84.5

85

85.5

86

2 3 5 10

A
cc

ur
ac

y

Num. of clients

40 80 120 160 200 240

(f) CB

Figure 6: Comparison of model performance under serial training, where colors denote distinct training steps.

Datasets Average Period Sequential client-batch parallel server-hierarchical

COPA
50 85 85 85

100 85 85 85

WiC
50 69.1 66.6 68.2

100 69.0 65.5 67.2

RTE
50 80.1 80.1 78.3

100 79.8 79.4 77.6

BoolQ
50 81.6 79.9 81.0

100 81.9 80.5 81.3

MultiRC
50 79.3 76.2 77.5

100 77.5 76.6 77.1

CB
50 85.7 85.7 85.7

100 85.7 85.7 85.7

WSC
50 71.2 63.5 63.5

100 66.3 65.4 63.5

Table 8: Impact of different average period

C Impact of Average Period

For analyzing the effect of different averaging peri-
ods on the model performance, we tested the perfor-
mance of FL-GLM with different averaging periods
(50 step and 100 step).

The results are shown in Table 8, where the

model with an average period of 100 steps slightly
outperforms the model with an average period of
50 steps in the BoolQ task. However, in the WiC,
RTE, and MultiRC tasks, better results are achieved
with an average period of 50 steps. In the COPA
and CB tasks, the averaging period has no effect
on performance. The most noticeable difference
occurs in the WSC task, with scores of 71.2 and
66.3 for an average period of 50 steps and 100
steps, respectively, for serial training, 63.5 and 65.4
for client-batch parallel, and flat accuracy scores
for server-hierarchical. Among all the evaluation
tasks, the WSC task has the highest sensitivity to
the average period, but the average training period
has little effect on the overall performance of the
FL-GLM model with the same training strategy.

5305

parabatch

76

78

80

82

84

0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Normonized Epochs

2 4 8

(a)COPA

40

45

50

55

60

65

70

0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Normonized Epochs

2 4 8

(b)WiC

68
70
72
74
76
78
80
82

0.5 0.625 0.75 0.875 1

A
cc

ur
ac

y

Normonized Epochs

2 4 8

(c)RTE

Figure 7: Comparison of the accuracy curves under varying numbers of clients using a client-batch parallel training.

paraserver

70

72

74

76

78

80

82

50 100 150 200 250 300

A
cc
ur
ac
y

Steps

2 3

5 10
70

75

80

85

90

100 200 300 400 500

A
cc
ur
ac
y

Steps

2 3
5 10

(a)BoolQ (b)COPA

66
68
70
72
74
76
78
80

80 100 120 140 160

A
cc
ur
ac
y

Steps

2 3
5 10

(c)RTE

Figure 8: Comparison of the accuracy curves under varying numbers of clients using a server-hierarchical training.

D Impact of Participants

In this section, we test the three training strate-
gies with different numbers of clients by calcu-
lating the accuracy scores of FL-GLM on dif-
ferent datasets. 4The sequential test uses RTE,
WiC, COPA, BoolQ, MultiRC and CB datasets,
while the client-batch parallel test uses RTE, WiC,
COPA datasets, and the server-hierarchical test uses
BoolQ, COPA and RTE datasets, and the hyperpa-
rameters such as learning rate are kept consistent.

When using serial training strategy, the impact
of increasing the number of clients is minimal, as
shown in Figure 6. This is because the majority
of parameters are trained on the server, making
the number of clients insignificant in server-side
parameter training.

When training in parallel, the accuracy score
of FL-GLM decreases slightly as the number of
clients increases, which is more obvious on datasets
with smaller data volumes. For client-batch parallel
training, as shown in Figure 7, the accuracy score
decreases with the increase in the number of clients

4In the client-batch parallel test, in order to mitigate the
effect of overfitting, the datasets are trained with the same
number of training epochs for different numbers of clients,
and normalization is used to enhance the visibility of the
results.

due to the increase in the batch size, the frequency
of model parameter updating decreases, and the
server-side model is easy to converge to the saddle
point. For hierarchical-server parallel, as shown
in Figure 8, the increase in the number of clients
makes the amount of data for a single client smaller,
so the more the number of clients, the more obvious
the overfitting phenomenon is.

5306

