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Abstract

As the scale of training corpora for large lan-
guage models (LLMs) grows, model devel-
opers become increasingly reluctant to dis-
close details on their data. This lack of trans-
parency poses challenges to scientific evalu-
ation and ethical deployment. Recently, pre-
training data detection approaches, which infer
whether a given text was part of an LLM’s train-
ing data through black-box access, have been
explored. The Min-K% Prob method, which
has achieved state-of-the-art results, assumes
that a non-training example tends to contain
a few outlier words with low token probabil-
ities. However, the effectiveness may be lim-
ited as it tends to misclassify non-training texts
that contain many common words with high
probabilities predicted by LLMs. To address
this issue, we introduce a divergence-based cal-
ibration method, inspired by the divergence-
from-randomness concept, to calibrate token
probabilities for pretraining data detection.
We compute the cross-entropy (i.e., the diver-
gence) between the token probability distri-
bution and the token frequency distribution
to derive a detection score. We have devel-
oped a Chinese-language benchmark, Patent-
MIA, to assess the performance of detection
approaches for LLMs on Chinese text. Ex-
perimental results on English-language bench-
marks and PatentMIA demonstrate that our pro-
posed method significantly outperforms exist-
ing methods. Our code and PatentMIA bench-
mark are available at https://github.com/
zhang-wei-chao/DC-PDD.

1 Introduction

A critical element contributing to the effectiveness
of large language models (LLMs) is the large vol-
ume of data used for pretraining. In many cases,
model developers are reluctant to disclose infor-
mation about their training corpus (Achiam et al.,
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2023; Bai et al., 2023; Brown et al., 2020; Tou-
vron et al., 2023b; Yang et al., 2023). This lack
of transparency complicates the assurance that all
ethical and legal standards are met. The pretraining
corpus may contain unauthorized private informa-
tion or copyrighted content (Chang et al., 2023;
Mozes et al., 2023). Indeed, OpenAI and NVIDIA
face lawsuits over copyright issues related to their
training data (Grynbaum and Mac, 2023; Stempel,
2024). Moreover, a lack of transparency around
the pretraining data used prevents us from prop-
erly addressing the data contamination problem
(Cao et al., 2024; Dong et al., 2024) and, hence,
from determining whether an LLM’s performance
is due to genuine task understanding or to prior
exposure to test data. We focus on the following
key question: How can we detect if a black-box
LLM was pretrained on a given text, considering
that its training data is undisclosed?

The pretraining data detection problem can be
viewed as an instance of the membership inference
attack (MIA) task (Shokri et al., 2017), where the
primary objective is to determine if a particular text
was part of a target LLM’s training corpus. Prevail-
ing methods to tackle this problem are based on
the idea that a text’s token probability distribution
can reveal its inclusion in the training set. E.g., the
Min-K% Prob method (Shi et al., 2024) is based
on the hypothesis that non-training examples tend
to have more tokens assigned lower probabilities
than training examples do. Min-K% Prob relies
on the assumption that data with higher probabil-
ity is more likely to be training data. Language
models trained with a cross-entropy loss function
tend to favor high-frequency tokens when conduct-
ing next-token prediction, which will also lead to
LLMs generally predicting higher probabilities for
high-frequency tokens (Jiang et al., 2019). As the
conceptual example shown in figure 1, x1 is a non-
training text and x2 is a training text. We can see
that the lowest raw token probabilities for x1 are
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Figure 1: A conceptual example: Let x1 represent a non-training text and x2 a training text. (a) Min-K% Prob
directly selects the k% of tokens with the lowest probabilities for detection. (b) DC-PDD computes the divergence
between the token probability distribution and the token frequency distribution for detection.

higher than those for x2, which may be because
the words in x1 (e.g., "boys", "great") are generally
more common than the words in x2 (e.g., "erudite",
"conundrum"). Therefore, Min-k% Prob will cal-
culate a detection score of -0.88 for x1 and -2.94
for x1, which means that x1 is more likely to be
considered a training text than. This is contrary to
the actual situation.

Inspired by the divergence-from-randomness the-
ory (Amati and van Rijsbergen, 2002), we in-
troduce a divergence-based calibration method,
named DC-PDD, to calibrate the token probabili-
ties for pretraining data detection. The basic idea
underlying divergence-from-randomness is that the
higher the divergence of the within-document term-
frequency of a word in a document from its fre-
quency within the collection, the more informa-
tion the word carries. In our scenario, the within-
document term-frequency can be interpreted as the
target LLM’s predicted probability for each token
with regard to the text to be detected, to which we
refer as the token probability distribution. The fre-
quency of a word within the collection refers to the
frequency of each token in the target LLM’s pre-
training corpus, to which we refer as the token fre-
quency distribution. According to the divergence-
from-randomness theory, the higher the divergence
between these two distributions, the more infor-
mative the tokens are in indicating that the text

was part of the model’s training corpus, rather than
solely relying on token probabilities as the indica-
tor for detection.

Like prior works (Duan et al., 2024; Shi et al.,
2024), we assume that we only have access to the
target LLM as a black box: we can compute token
probabilities for the text to be detected but have no
access to the internals of the LLM (e.g., weights
and activations). We first obtain the token proba-
bility distribution by querying the LLM with the
text. Next, we use a large-scale publicly available
corpus as a reference corpus to obtain an estimation
of the token frequency distribution since an LLM’s
pretraining corpus is not accessible usually. We
then calibrate the token probabilities by compar-
ing the token probability distribution to the token
frequency distribution. Based on the calibrated to-
ken probabilities, we derive a score for pretraining
data detection. Finally, a predefined threshold is
applied to the score to determine whether the text
was included in the LLM’s pretraining corpus.

Figure 1(b) illustrates that DC-PDD assigns a
score to text that better reflects whether it is train-
ing data or non-training data (i.e., a training text
should have a higher score than a non-training text).
In contrast to other calibration methods (Carlini
et al., 2021; Zhang et al., 2024), DC-PDD neither
requires additional reference models nor extra ac-
cess requirements on the target LLM.
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Benchmark Data source Language Text length #Examples Applicable models

WikiMIA (Shi et al., 2024) Wikipedia English

32 776
Open-source LLMs released between 2017
and 2023

64 542
128 250
256 82

BookMIA (Shi et al., 2024) Books English 512 9,870 OpenAI models released before 2023

PatentMIA (Ours) GooglePatent Chinese 512 10,000
Open-source Chinese LLMs released between
January 1, 2023 and March 1, 2024

Table 1: Benchmark summary statistics: Each benchmark has an equal split of training and non-training examples.
“Text Length” refers to the number of words contained in each text example of the benchmark. “#Examples” denotes
the number of text examples in the benchmark.

To facilitate this study and the evaluation of pre-
training data detection for LLMs, we introduce
a new benchmark named PatentMIA, specifically
designed for Chinese-language pretraining data
detection. PatentMIA is sourced from Google-
Patents (Google, 2006) and constructed following
Shi et al. (2024), who distinguish between train-
ing and non-training data based on cut-off dates of
the target LLM, where training data precedes, and
non-training data follows, the cut-off date.

We conduct experiments on two English-
language benchmarks (Shi et al., 2024) and on
PatentMIA against a range of representative, state-
of-the-art methods. Our experiments show that the
proposed DC-PDD significantly outperforms prior
methods. E.g., in the commonly used detection per-
formance metrics, AUC and TPR@5%FPR, DC-
PDD surpasses Min-K% Prob by 8.6% and 13.3%,
respectively, on existing BookMIA benchmark.

2 Problem Statement

2.1 Task Description

Formally, given a piece of text x and an LLM M
with no knowledge of its pretraining corpus D, the
pretraining data detection task aims to design a
method to determine if x was included in D. Thus,
given x and M as input, a method A for the pre-
training data detection task returns 1 if it predicts
that x is included in D and 0 if it is not:

A(x,M) → {0, 1}. (1)

Black-box setting. Like prior works (Duan et al.,
2024; Shi et al., 2024), we assume that we have
access to M as a black-box, which means that
we can compute token probabilities for x. The
internals of the model, such as the weights and
activations, are not available.

2.2 Benchmark Construction

Unlike traditional membership inference attacks
(Carlini et al., 2022; Jagannatha et al., 2021; Yeom
et al., 2018), which are conducted on locally trained
models where the training and non-training data
are explicitly known, the pretraining data detection
for LLMs poses a new challenge as the pretrain-
ing corpus of LLMs is not disclosed. Here, we
introduce existing benchmarks and our newly con-
structed benchmark that are specifically designed
for LLMs. Table 1 shows their overall statistics.
Pre-existing datasets. Shi et al. (2024) proposed a
benchmark construction method by distinguishing
between the training and non-training data based
on the knowledge cut-off date of the target LLM,
where training data precedes and non-training data
follows the cut-off date. This method has been used
to construct two English-language benchmarks:
WikiMIA and BookMIA. In this paper, we con-
duct experiments on these benchmarks.
A Chinese-language benchmark: PatentMIA.
Existing benchmarks for the pretraining data de-
tection task are exclusively in English. Other
languages exhibit unique grammatical character-
istics such as flexible spacing and case insensitiv-
ity compared to English, potentially influencing
the effectiveness of methods for the detection task.
These differences warrant specific benchmarks to
assess the performance of detection methods in lan-
guages other than English. We propose a Chinese-
language benchmark for that reason. Next, we de-
tail the construction of the PatentMIA benchmark.

Data source. We collect data from Google-
Patents (Google, 2006) as (i) it contains a large
volume of high-quality, publicly available Chinese
patent texts and some publicly available large-scale
Chinese corpora like ChineseWebText (Chen et al.,
2023) explicitly incorporate data from this web-
site, which indicates that existing LLMs are highly
likely to have used such data for pretraining; and
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(ii) if the priority date of a patent is after the release
date of the LLM, there is a guarantee that the patent
text was not present during LLM’s pretraining.

Data collection. Based on Google-Patents, we
construct a Chinese-language benchmark called
PatentMIA as follows. (i) Data crawling. We
randomly crawl 5,000 Chinese patent pages with
a priority date after March 1, 2024 and 5,000
patent pages with a publication date before Jan-
uary 1, 2023 respectively. (ii) Data preprocessing.
These pages then undergo several preprocessing
and cleaning steps similar to those used in Chi-
neseWebText to ensure the data format matches
the pretraining data format of LLMs. (iii) Snippet
extraction. For each page, we randomly extract
a snippet of 512 words from the original content,
creating a balanced set of 10,000 examples. We
use jieba1 to segment Chinese texts into words.

3 Method
3.1 Overview

Given a piece of text x = x1x2 . . . xn, where xi
represent the tokens after tokenizing x, and a target
LLM M, we compute a detection score by measur-
ing the divergence between the token probability
distribution of x and the token frequency distri-
bution in pretraining corpus, without any model
training processes. Our method consists of four
steps: (i) Token probability distribution computa-
tion, by querying M with x (Section 3.2). (ii) To-
ken frequency distribution computation, by using
a large-scale publicly available corpus D′ as a ref-
erence corpus to obtain an estimation of the token
frequency distribution since M’s pretraining cor-
pus is not assumed to be accessible (Section 3.3).
(iii) Score calculation via comparison, by com-
paring the above two distributions to calibrate the
token probability for each token xi in x, and derive
a score for pretraining data detection based on the
calibrated token probabilities (Section 3.4). (iv) bi-
nary decision, by applying a predefined threshold
to the score, we predict whether x was included in
M’s pretraining corpus or not (Section 3.5).

We summarize our method in Algorithm 1.

3.2 Token Probability Distribution
Computation

To obtain all the probabilities of xi in x from M,
we first prepend a start-of-sentence token, denoted
as x0, to x, since the model does not return a pre-

1https://github.com/fxsjy/jieba

Algorithm 1 Our DC-PDD
Input: A text to be detected x = x1x2 . . . xn,

a target LLM M, vocabulary of LLM V =

{xi}|V |
i=1, reference corpus D′, decision thresh-

old τ
1: Prepend a start-of-sentence token to x
2: for i = 1 to n do
3: Access the token probability p(xi;M) from

M, w.r.t. Eq. (3)
4: end for
5: for i = 1 to |V | do
6: Compute the token frequency p(xi;D′)

based on D′, w.r.t. Eq. (5)
7: end for
8: for i = 1 to n do
9: Compute αi for xi based on p(xi;M) and

p(xi;D′), w.r.t. Eq. (6), (7)
10: end for
11: Select αi corresponding to tokens with the first

occurrence in x to compute a score β, w.r.t.
Eq. (8)

12: if β ≥ τ then
13: 1: M was pretrained on x
14: else
15: 0: M was not pretrained on x
16: end if

diction for the first token:

x′ = x0x1x2 . . . xn. (2)

Subsequently, we feed x′ into M, resulting in a
sequence of predicted probabilities corresponding
to the true tokens:

{p(xi | x<i;M) : 0 < i ≤ n}. (3)

Note that the probability of each token xi is pre-
dicted by M based on the preceding context x<i

for 0 < i ≤ n. For brevity in subsequent expres-
sions, we simplify p(xi | x<i;M) to p(xi;M).

3.3 Token Frequency Distribution
Computation

According to the divergence-from-randomness the-
ory, after obtaining the token probability distribu-
tion for x from M, we also need to calculate the
frequency of xi appearing in the pretraining corpus
D of M to get the token frequency distribution.
However, since D is not accessible, we cannot di-
rectly calculate these terms. To address this, we
use a large-scale publicly available corpus D′ to
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obtain an estimation of these terms:

p(xi;D′) =
count(xi)

N ′ , (4)

where count(xi) is the number of occurrences of
xi in D′, and N ′ is the total number of tokens in
D′. We employ Laplace smoothing to address the
zero probability problem when xi does not occur
in D′ even once:

p(xi;D′) =
count(xi) + 1

N ′ + |V | , (5)

where |V | represents the vocabulary size of M, i.e.,
the number of categories of tokens.

3.4 Score Calculation through Comparison
We compute the cross-entropy (i.e., the diver-
gence) between the token probability distribution
p(xi;M) and the token frequency distribution
p(xi;D′) to obtain a score αi for each token xi:

αi = −p(xi;M) · log p(xi;D′). (6)

We set a hyperparameter a to control the upper
bound of αi, preventing the final score from being
dominated by a few tokens:

αi =

{
αi, if αi < a

a, if αi ≥ a.
(7)

Typically, for a word that appears multiple times in
a text, LLMs predict a higher probability for that
word in subsequent occurrences since the model
has seen the word earlier in the text. Therefore, we
adopt a simple countermeasure that only uses αi

corresponding to the first occurrence of xi in x to
calculate the final score β:

β =
1

|FOS(x)|
∑

xj∈FOS(x)

αj , (8)

where FOS(x) denotes the set of tokens with the
first occurrence in x.

3.5 Binary Decision
After calculating the score β for x following the
aforementioned three steps, we predict whether
x was included in M’s pretraining corpus D by
applying a predefined threshold τ to β:

Decision(x,M) =

{
0 (x /∈ D), if β < τ

1 (x ∈ D), if β ≥ τ.
(9)

If β is not less than τ , we predict that x was in-
cluded in D; otherwise, it was not.

4 Experimental Settings

Benchmarks and models. To evaluate the perfor-
mance of DC-PDD, we conduct experiments on
three benchmarks mentioned in Table 1. Specifi-
cally, for WikiMIA, we consider OPT-6.7B (Zhang
et al., 2022), Pythia-6.9B (Biderman et al., 2023),
Llama-13B (Touvron et al., 2023a), and GPT-
NeoX-20B (Black et al., 2022), since they were
released after 2017 and before 2023, and are well-
known for incorporating Wikipedia dumps into
their pretraining data. For BookMIA, we consider
GPT-3,2 since it’s an OpenAI model released be-
fore 2023. These settings are akin to Shi et al.
(2024). For our benchmark PatentMIA, we select
Baichuan-13B (Yang et al., 2023) and Qwen1.5-
14B (Team, 2024), since they are representative
models in Chinese text generation and are released
between January 1, 2023 and March 1, 2024.
Baselines. We consider the following methods as
our baselines, each predicting whether an example
was included in training set based on: (i) PPL:
The perplexity of the example. (ii) Lowercase:
The ratio of the example’s perplexity to that of
the lowercased example. (iii) Zlib: The ratio of
the example’s perplexity against its zlib entropy.
(iv) Small Ref : The ratio of an example’s per-
plexity to the example’s perplexity under a smaller
model pretrained on the same data. (v) Min-K%
Prob (Shi et al., 2024): The average log-likelihood
of the k% of tokens with the lowest probabilities.
(vi) Min-K%++ Prob (Zhang et al., 2024): The
average normalized log-likelihood of the k% of
tokens with the lowest normalized probabilities,
where the normalization is based on the statistics
of the categorical distribution over the entire vo-
cabulary. Note that the first four baselines were
introduced in (Carlini et al., 2021). For more de-
tails on our baselines, please refer to Appendix A.1.
Evaluation metrics. Following most existing
works (Duan et al., 2024; Shi et al., 2024; Zhang
et al., 2024), we use AUC score (area under ROC
curve) and TPR (true positive rate) at a low FPR
(false positive rate) (TPR@5%FPR) as our metrics.
For more details on these metrics, please refer to
Appendix A.2.
Implementation details. For the start-of-sentence
token x0 to prepend, we use <|endoftext|> in

2davinci-002, an OpenAI model released before 2023, also
belongs to the applicable models for BookMIA; text-davinci-
003 was used by Shi et al. (2024) but it has been deprecated
by OpenAI.
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Method BookMIA PatentMIA WikiMIA

GPT-3 Baichuan-13B Qwen1.5-14B OPT-6.7B Pythia-6.9B Llama-13B GPT-NeoX-20B

PPL 0.635 0.608 0.599 0.625 0.651 0.678 0.707
Lowercase 0.671 - - 0.587 0.605 0.606 0.680
Zlib 0.537 0.634 0.618 0.644 0.676 0.697 0.723
Small Ref - 0.657 0.565 0.654 0.660 0.658 0.714
Min-K% Prob 0.639 0.643 0.637 0.674 0.695 0.715 0.756
Min-K%++ Prob - 0.625 0.630 0.692 0.697 0.838 0.754
DC-PDD 0.725* 0.699* 0.689* 0.677 0.698 0.697 0.766*

Table 2: AUC scores for detecting pretraining texts. Bold indicates the best performing method. Two-tailed t-tests
show that DC-PDD significantly improves over Min-K% Prob ( * indicates p ≤ 0.05).

Method BookMIA PatentMIA WikiMIA

GPT-3 Baichuan-13B Qwen1.5-14B OPT-6.7B Pythia-6.9B Llama-13B GPT-NeoX-20B

PPL 0.224 0.166 0.159 0.130 0.144 0.216 0.180
Lowercase 0.240 - - 0.094 0.130 0.158 0.130
Zlib 0.192 0.159 0.129 0.180 0.209 0.187 0.223
Small Ref - 0.211 0.078 0.122 0.158 0.151 0.187
Min-K% Prob 0.203 0.170 0.163 0.166 0.180 0.201 0.216
Min-K%++ Prob - 0.130 0.141 0.215 0.201 0.381 0.245
DC-PDD 0.336* 0.264* 0.271* 0.180* 0.245* 0.230* 0.317*

Table 3: TPR@5%FPR scores for detecting pretraining texts. Bold indicates the best performing method. Two-tailed
t-tests show that DC-PDD significantly improves over Min-K% Prob ( * indicates p ≤ 0.05).

Pythia, Qwen1.5, GPT-NeoX and GPT-3, <s> in
OPT and Llama, and </s> in Baichuan. For the ref-
erence corpus D′ to compute the token frequency
distribution, we take a subset of C4 (Raffel et al.,
2020) (≈ 15Gb) for English text detection and take
a subset of ChineseWebText (Chen et al., 2023)
(≈ 15Gb) for Chinese text detection. For hyperpa-
rameter a settings, we set it to 0.01 for WikiMIA
and PatentMIA detection tasks, and to 10 for Book-
MIA. Since we take the AUC score as our evalua-
tion metric, we do not need to determine a specific
threshold τ in our method. For the baseline imple-
mentation, we set k = 20 to achieve the optimal
performance of Min-K% Prob following Shi et al.
(2024). Correspondingly, the hyperparameter k in
Min-K%++ Prob is also set to 20 for fair compar-
ison. For the smaller reference model setting, we
employ OPT-350M as the smaller model for OPT-
6.7B, Pythia-70M for Pythia-6.9B, Llama-7B for
Llama-13B, GPT-Neo-125M for GPT-NeoX-20B,
Baichuan-7B for Baichuan-13B and Qwen1.5-7B
for Qwen1.5-14B.

5 Experimental Results

Here, we report our main results, several ablation
studies, and additional experiments investigating
factors influencing detection performance.

5.1 Main Results

Our results can be found in Table 2 and 3. We
observe that: (i) DC-PDD surpasses most base-
lines across three benchmarks and various tar-
get models. For instance, on existing BookMIA
benchmark, DC-PDD exceeds the best baseline
Lowercase 5.4% and 9.6% in terms of AUC and
TPR@5%FPR. On our PatentMIA benchmark, DC-
PDD exceeds the best baseline Min-K% Prob 5.4%
and 13.2% in terms of AUC and TPR@5%FPR.
(ii) Compared to Min-K% Prob, the AUC improve-
ment of DC-PDD on the WikiMIA benchmark is
less than that of Min-K%++ Prob, possibly because
WikiMIA has only 250 examples, with fewer cases
shown in Figure 1 we aim to optimize. While Min-
K%++ Prob calibrates token probabilities from
other points, which might suit these examples bet-
ter. This indicates that token probabilities are im-
pacted by various factors and are unreliable for de-
tection. Hence, we plan to explore better detection
signals in the future. (iii) The superior performance
of DC-PDD is more agnostic to data and models, in
comparison to other methods. For example, while
Min-K% Prob and Min-K%++ Prob perform well
on models using the WikiMIA benchmark, they do
not do as well on models using the PatentMIA
benchmark. A similar phenomenon can be ob-
served with the Zlib method. (iv) Additionally, the
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Figure 2: Ablation studies of DC-PDD

Small Ref method are not applicable to GPT-3, as
closed-source models lack corresponding smaller
models in the same series. The Min-K%++ Prob
is also not applicable to GPT-3 since GPT-3 do
not provide the access to the next-token prediction
probability distribution across the model’s entire
vocabulary. The Lowercase method is unsuitable
for detecting Chinese text, as Chinese characters
do not have case distinctions. (v) By evaluating
performance on the PatentMIA benchmark, except
for the Lowercase method, it is evident that exist-
ing methods are still effective for Chinese-language
pretraining data detection, with our method consis-
tently achieving the best results.

5.2 Ablation Studies

DC-PDD employs two strategies before using the
calibrated token probabilities to compute the score
β for x for detection. They are (i) LUP: Limiting
the UPper bound of each calibrated token proba-
bility, w.r.t. Eq. (7), and (ii) SFO: only Selecting
the calibrated token probabilities corresponding to
tokens with the First Occurrence in x to compute
β, w.r.t. Eq. (8). We conduct ablation studies to
explore the effect of these strategies using the fol-
lowing three method variants:
• CLD: It serves as the initialization of DC-PDD

by averaging all the CaLibrateD token probabili-
ties to compute a score for detection.

• +LUP: Based on ‘CLD’, it incorporates the LUP
strategy to compute β.

• +SFO: Based on ‘+LUP’, it further incorporates
the SFO strategy to compute β.
Results are shown in Figure 2. For Baichuan-

13B and Qwen1.5-14B, both strategies contribute
to the effectiveness of DE-CPP. However, for GPT-
3, we found that the LUP strategy did not result
in a significant performance improvement. We
speculate that this may be related to the setting of
the hyperparameter a involved in the LUP strategy.
Therefore, we discuss the impact of a on DC-PDD
in detail in Section 5.3.

(a) AUC score vs. model size.

(b) AUC score vs. text length.

Figure 3: The performance of DC-PDD w.r.t model size
and text length.

5.3 Impact of Different Factors

This section explores several factors that may in-
fluence the performance of DC-PDD, including
two method-independent factors (model size and
text length) and two method-dependent factor (the
reference corpus D′ and hyperparameter a).
Model size. To investigate the impact of model size
on the performance of DC-PDD, we analyze the
Qwen1.5 family with models of 1.8B, 4B, 7B, and
14B versions to determine if larger models demon-
strate improved results. As illustrated in Figure
3(a), DC-PDD consistently achieves the best re-
sults across all model sizes, and like other methods,
the AUC score increases as the model size grows,
confirming findings from prior research (Liu et al.,
2024; Shi et al., 2024). The reason for this trend is
probably because larger models, having more pa-
rameters, are better at memorizing the pre-training
data.
Text length. We further explore the potential im-
pact of text length on the performance of DC-PDD.
For this purpose, we perform assessments using
four different length settings (64, 128, 256, 512) in
our PatentMIA benchmark to determine whether
short texts are more challenging than longer texts.
Figure 3(b) illustrates that DC-PDD still consis-
tently outperforms other baselines across all text
length settings, and the AUC score also improves
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D′ C4 Case-law

≈ 1Gb ≈ 10Gb ≈ 1Gb ≈ 10Gb

Pythia-6.9B 0.688 0.698 0.687 0.688

Table 4: AUC scores of DC-PDD in different reference
corpus settings.

with increasing length in Chinese-language pre-
training data detection. This trend may be due to
the fact that longer texts carry more information
that the target model has memorized, making them
easier to differentiate from non-training texts.
Reference corpus D′. Recall that we use a ref-
erence corpus D′ to estimate the token frequency
distribution of the LLM’s pretraining corpus, w.r.t.
Eq. (4). To analyze the effect of different reference
corpora on the efficacy of the method, we com-
pare the performance of DC-PDD under various
reference corpus settings across different scales and
domains. Specifically, when detecting WikiMIA-
128 from pythia-6.9B, we employee ≈ 1Gb of C4
corpus, ≈ 10Gb of C4 corpus, ≈ 1Gb of Case-law
corpus, and ≈ 10Gb of Case-law corpus as the
reference corpus respectively. Note that the Case-
law (Louis Brulé Naudet, 2024) is a corpus in the
legal domain. As shown in Table 4, We observe
that the performance of DC-PDD does not exhibit
significant differences across the various reference
corpora, indicating that DC-PDD is not sensitive
to the selection of a reference corpus. Notably,
when the reference corpus is chosen as the ≈ 10Gb
of C4 corpus, the performance of DC-PDD is the
best. This enhancement may be attributed to the
greater diversity of the C4 corpus compared to the
≈ 10Gb of Case-law corpus, as well as the richer
data compared to the ≈ 1Gb of C4 corpus, which
allow for a more accurate estimation of the token
frequency distribution in the LLM’s pretraining
corpus, thereby resulting in better performance.
Hyperparameter a. Recall that we set a hyper-
parameter a to prevent the final score from being
dominated by a few tokens, w.r.t. Eq. (7). We evalu-
ate DC-PDD with different a settings to investigate
their impact on detection performance. As shown
in Table 5, performance varies significantly with
a set to 0.001, 0.01, 0.1, 1, and 10. Actually, if a
is set too high, it does not effectively limit the cal-
ibrated token probabilities. Conversely, if set too
low, it will result in nearly equal calibrated token
probabilities, causing scores for training and non-
training text to be similar and thus, ineffective for
detection. From the Table 5, we can see that the op-

a 0.001 0.01 0.1 1 10

PatentMIA:
Baichuan-13B 0.645 0.699 0.664 0.647 0.645
Qwen1.5-14B 0.640 0.689 0.652 0.623 0.619
BookMIA:
GPT-3 0.673 0.676 0.665 0.667 0.725

Table 5: AUC scores of DC-PDD in different a settings.

timal a setting varies across different target models
and benchmarks. For instance, the optimal a is 10
in detecting BookMIA from GPT-3 while it is 0.01
in detecting PatentMIA from Qwen1.5-14B. When
a is set to 0.01, the overall performance for all mod-
els is optimal. Therefore, we recommend setting a
to 0.01 when using DC-PDD for pretraining data
detection in practical scenarios. In future work, we
will explore more flexible methods for setting a to
achieve better performance of DC-PDD.

6 Related Work
Membership inference attack (MIA). MIA is the
de-facto threat model when evaluating privacy con-
cerns in machine learning models. First introduced
by Shokri et al. (2017), MIA’s objective is to ascer-
tain whether a specific sample was part of a model’s
training dataset. Prior MIA research has focused
on traditional deep learning models (Sablayrolles
et al., 2019; Song and Shmatikov, 2019) and fine-
tuning language models (Hisamoto et al., 2020;
Jagannatha et al., 2021; Mattern et al., 2023). But
recently, MIA on LLMs has attracted growing at-
tention with various applications, including exam-
ination of training data memorization (Nasr et al.,
2023), data contamination (Oren et al., 2023), and
copyright infringement (Duarte et al., 2024; Meeus
et al., 2023). We consider a different type of MIA:
pretraining data detection.
Pretraining data detection for LLMs. Here, the
MIA problem centers on identifying whether a
piece of text was used by an LLM for pretraining.
According to the access conditions to LLMs, cur-
rent pretraining data detection methods for LLMs
can be divided into two categories: (i) The white-
box setting: assuming one has access to internals
of LLMs, such as weights and activations. (ii) The
black-box setting: assuming one can only query
LLMs to compute token probabilities for the text.

There is limited research on the white-box set-
ting since the internals of LLMs are typically not
disclosed, rendering detection methods in white-
box scenarios impractical. Liu et al. (2024) propose
to use the probing technique for pretraining data
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detection, based on the assumption that texts en-
countered during the LLM’s pretraining phase are
represented differently in its internal activations
compared to unseen texts.

Most research focuses on the black-box setting,
assuming that the token probability distribution of a
text can provide crucial information about whether
the text was included in the training set. Carlini
et al. (2021) considered the model’s perplexity for
a text as an indicator to detect pretraining data from
GPT-2 (Radford et al., 2019). They further intro-
duced three methods, Zlib, Lowercase, and Smaller
Ref, that take into account the intrinsic complex-
ity of the target text. More recently, Shi et al.
(2024) have proposed a straightforward yet well-
performing method called Min-K% Prob. Min-K%
Prob tends to classify a non-training text composed
of common words as training data. A concurrent
study Min-K%++ Prob (Zhang et al., 2024) im-
proves Min-K% Prob by normalizing token prob-
abilities, but requires access to the next-token pre-
diction probability distribution across the LLM’s
entire vocabulary, which is unavailable in closed-
source LLMs like GPT-3 (Brown et al., 2020).

We consider the black-box setting and calibrate
the token probabilities before using them for de-
tection. What distinguishes our approach is that it
neither requires additional reference models (unlike
Small Ref) nor does it have extra access require-
ments on the LLM (unlike Min-K%++ Prob).

7 Conclusion
In this work, we proposed DC-PDD to improve
methods that directly rely on token probabilities for
pretraining data detection, which tend to misclas-
sify non-training texts containing many common
words as training texts. The key idea of DC-PDD
is to calibrate the token probabilities and thereby
make them more informative signals for detection.
The calibration process is achieved by computing
the cross-entropy (i.e., the divergence) between the
token probability distribution and the token fre-
quency distribution. Experiments demonstrate the
superior performances of DC-PDD compared to
various baselines. In future work, we want to de-
tect whether an LLM was pretrained on a given
corpus (corpus-level detection), rather than just on
a piece of text (sample-level detection).

Limitations

DC-PDD, while showing promising results in pre-
training data detection from LLMs, has several

limitations. (i) DC-PDD utilizes a reference cor-
pus to calculate the token frequency distribution
to estimate that of the training corpus. Although
working, the similarity between these two distribu-
tions remains uncertain. Additionally, the language
of reference corpus should be the same as that of
text to be detected. (ii) Secondly, an important hy-
perparameter in DC-PDD is the upper bound of cal-
ibrated token probabilities. We have demonstrated
its significant impact on method performance, but
not how the optimal value should be set. We leave
this issue to future work. (iii) Thirdly, DC-PDD
is specific to textual data. While some detection
methods can be applied universally across different
data modalities by relying on sample-level loss val-
ues obtained from models, our method is based on
token-level probability. This specificity hinders its
direct application to other types of data, such as im-
ages. (iv) Fourthly, DC-PDD requires access to to-
ken probabilities, and therefore is not applicable to
some closed-source models. In the future, we will
explore detection methods based solely on model
output to design more generalizable detection meth-
ods. (v) Lastly, except for the closed-source model
GPT-3 (Brown et al., 2020), our research primarily
focused on models with up to 20 billion parameters
due to hardware constraints. Further studies repli-
cating our work using larger-scale models will be
essential to validate the effectiveness of DC-PDD
in scenarios involving larger models.

Ethical Considerations

Although DC-PDD aims to address issues such
as copyright infringement or data contamination
through pretraining data detection, it can also be
used to compromise the privacy of individuals
whose data has been used to train models, as pre-
training data detection problem is an instance of
Membership Inference Attacks (MIAs). Recogniz-
ing the potential risks associated with MIAs, we are
extremely cautious with the data we use to ensure
there is limited risk of any exposure of confiden-
tial data. For example, the PatentMIA benchmark
is collected from the publicly available Google-
Patents website and does not involve personal pri-
vacy data. Additionally, the other benchmarks we
use have also been employed in prior research and
do not pose any privacy risks.
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A Appendix

A.1 Baseline details

The baselines are all based on a detection score to
determine a text x whether was included in the per-
training corpus of an LLM M. Followings are the
details of how they calculate the detection score.
PPL. (Carlini et al., 2021) This is an instance of
Loss Attack proposed by (Yeom et al., 2018). In
the context of LLMs, this loss corresponds to per-
plexity. Thus, the detection score is the perplexity
of x. A low score suggests that x was likely part of
the pretraining data.
Small Ref. (Carlini et al., 2021) This method ex-
actly follows the approach described by Watson
et al. (2021), which assumes access to a reference
model, Mref , trained on a disjoint set of training
data drawn from a similar distribution and posits
that the intrinsic complexity of x can be quantified
as Mref ’s perplexity for x. Since the assumption
is impractical, the Small Ref method employs a
smaller model from the same family of M as a sub-
stitute for Mref , and then calibrate M’s perplexity
for x using a difficulty estimate through the smaller
model’s perplexity for x. Consequently, the detec-
tion score is calculated as the ratio of x’s perplexity
under M to x’s perplexity under a smaller model
pre-trained on the same data. A low score suggests
that x was likely part of the pretraining data.
Zlib. (Carlini et al., 2021) Similar to the Small
Ref method, but uses the zlib entropy of x in place
of the smaller model’s perplexity for x. The zlib
entropy is the entropy in bits when the sequence is
compressed using zlib.3 The detection score is then
determined by the ratio of M’s perplexity for x to
the zlib entropy of x. A low score suggests that x
was likely part of the pretraining data.
Lowercase. (Carlini et al., 2021) Similarly to the
Small Ref method, but uses M’s perplexity for
the lowercase of x to replace the smaller model’s
perplexity for x. The detection score is then de-
termined by the ratio of M’s perplexity for x to
M’s perplexity for the lowercase of x. A low score
suggests that x was likely part of the pretraining
data.
Min-K% Prob. (Shi et al., 2024) Min-K% Prob is
based on the intuition that non-member examples
tend to have more tokens assigned lower probabili-
ties than member examples do. Thus, it begins by
calculating the probability of each token in x, then

3https://github.com/madler/zlib

selects the k% of tokens with the lowest probabili-
ties to compute their average log-likelihood as the
detection score. A high score suggests that x was
likely part of the pretraining data.
Min-K%++ Prob. (Zhang et al., 2024) The un-
derlying idea of Min-K%++ Prob is that if the
probability of the current input token surpasses
the probabilities of other tokens in the vocabulary,
it is probable that the input has been seen during
training, irrespective of the actual probability value
of the input token. Therefore, it first calculates the
probability of each token in x, then normalizes the
token probability using the statistics of the cate-
gorical distribution over the entire vocabulary, and
finally selects the k% of tokens with the lowest
normalized probabilities to compute their average
as the detection score. A high score suggests that
x was likely part of the pretraining data.

A.2 Metrics

Area Under the ROC Curve (AUC). The AUC
score quantifies the overall performance of a clas-
sification method. To calculate the AUC score for
a method, we need to compute the True Positive
Rates (TPRs) and False Positive Rates (FPRs) at all
classification thresholds and plot a TPR vs. FPR
curve, known as the ROC curve. The AUC is then
defined as the Area Under the ROC curve, pro-
viding an aggregate measure of the effect of all
possible classification thresholds. Therefore, AUC
provides a comprehensive, threshold-independent
score that reflects the method’s ability to distin-
guish between positive and negative cases effec-
tively.
TPR (true positive rate) at a low FPR (false pos-
itive rate). We report TPR at a low FPR by adjust-
ing the threshold value, Specifically, we choose 5%
as our target FPR value, and report the correspond-
ing TPR value.
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