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Abstract
We study LMs pretrained sequentially on two
languages (“L2LMs”) for modeling nonnative
sentence processing. In particular, we pretrain
GPT2 on 6 different first languages (L1s), fol-
lowed by English as the second language (L2).
We examine the effect of the choice of pre-
training L1 on the model’s ability to predict
human reading times, evaluating on English
readers from a range of L1 backgrounds. Ex-
perimental results show that, while all of the
LMs’ word surprisals improve prediction of L2
reading times, especially for human L1s dis-
tant from English, there is no reliable effect
of the choice of L2LM’s L1. We also eval-
uate the learning trajectory of a monolingual
English LM: for predicting L2 as opposed to
L1 reading, it peaks much earlier and immedi-
ately falls off, possibly mirroring the difference
in proficiency between the native and nonna-
tive populations. Lastly, we provide examples
of L2LMs’ surprisals, which could potentially
generate hypotheses about human L2 reading.

1 Introduction

It has been widely shown that one’s first language
(L1) affects both second language (L2) production
(e.g., Murakami and Alexopoulou, 2016) and pro-
cessing (e.g., Clahsen and Felser, 2006), a phe-
nomenon called L1 transfer. In computational
linguistics, most studies of LMs as models of ac-
quisition (e.g., Huebner et al., 2021) have consid-
ered monolingual settings. To date, Yadavalli et al.
(2023) and Oba et al. (2023) seem to be among the
rare exceptions that have investigated LMs as mod-
els of second language acquisition (SLA), which
we refer to as L2 Language Models (L2LMs). Both
of these studies establish that the typological dis-
tance between the model’s first language and its
second language (English) correlates with its En-
glish performance as measured by a morphosyn-
tactic benchmark. However, these L2LMs are yet
to be tested against human L2 speakers. As one

way of testing if the L1 of L2LMs affects L2LMs’
performance on English in a humanlike manner,
we study their sentence processing.

Sentence processing is widely used to study
(L)LMs’ cognitive plausibility (e.g., Oh et al.,
2022; Oh and Schuler, 2022, 2023a; Kuribayashi
et al., 2021, 2022; Wilcox et al., 2023, inter
alia). By comparing the LM surprisal (Hale, 2001;
Levy, 2008) to human reading time, we determine
whether humans and models process given texts
in a similar manner. Studies in this area have in-
vestigated the impact of data size, model size, and
model architecture, among other variables (see §2).

In this study, we train autoregressive L2LMs
from scratch to investigate the following ques-
tions (§3): (1) Does the L1 effect on L2LMs’ L2
grammaticality discrimination, previously demon-
strated for encoder-only models, extend to decoder-
only models, namely GPT2? We hypothesize that,
as in previous studies, the L2LMs trained with
L1s closer to the L2 (English) will perform better.
(2) Do L2LM surprisals predict reading time of hu-
man English speakers of different L1 backgrounds?
We hypothesize that L2LM best predicts L2 read-
ing time when the L2LM and human L1s match.
Our findings (§4) are, in brief:

1. The L1 chosen for pretraining does impact
the L2LM’s English perplexity and perfor-
mance on the morphosyntactic benchmark
(BLiMP), with closer-to-English languages
generally helping more, echoing prior find-
ings about encoder-only models.

2. Contrary to our hypothesis, matching L1s be-
tween L2LMs and humans has little effect on
the accuracy of models’ human reading time
predictions, which are largely dominated by
the main effect of human L1 alone.

3. As we show with selected examples, L2LM
surprisals could potentially generate hypothe-
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ses about human L2 reading behaviors.1

2 Related Work

2.1 LMs and (Second) Language Acquisition

With the ever-growing training data and model
sizes of modern large language models (LLMs),
their cognitive plausibility has been garnering at-
tention. Huebner et al. (2021) is among the ear-
lier attempts to train a more cognitively plausible
LM, and they show that BabyBERTa, a downsized
RoBERTa (Liu et al., 2019b) trained on a substan-
tially smaller amount of data, achieves competitive
performances on various linguistic tasks. Warstadt
and Bowman (2024) point out that many LLMs
are trained on data that are orders of magnitude
larger than the realistic input humans are exposed
to. A shared task called the BabyLM Challenge
(Warstadt et al., 2023; Choshen et al., 2024) pro-
motes evaluation of models trained with data quan-
tities on par with child exposure.

Another factor that plays an important role in
understanding the language acquisition of LMs is
inductive bias. For example, McCoy et al. (2020a)
investigated the effect of various architectural fac-
tors (e.g., choice of recurrent unit, attention type,
and explicit tree structure in the model) on the
way LMs process ambiguous input, and found that,
among the various factors they studied, the pres-
ence of an explicit tree structure in the encoder and
decoder was the only factor that consistently led to
LMs’ preference for hierarchical generalization.

Other works study inductive biases as a trainable
set of parameters (e.g., McCoy et al., 2020b). Of
particular relevance to this study is the work by
Papadimitriou and Jurafsky (2020), where they pro-
pose a method called TILT (test of inductive bias
via language transfer). Training LMs on various
first “languages”, including music scores, artifi-
cial and natural languages, and then on the second
language (Spanish), they find that all of them im-
proved learning of the second language, with natu-
ral language pretraining showing the best result.

Yadavalli et al. (2023) used TILT to test positive
and negative language transfer by comparing how
pretraining an LM on various L1s affects the per-
formance on L2 (English). They find that the effect
of the L1 training on L2 performance largely corre-
lated with the L1’s linguistic distance from L2, with

1Code available at https://github.com/t-aoyam/
l2lm-sentence-processing under a Creative Commons li-
cense.

the pretraining on English exhibiting the best per-
formance on English, followed by German, French,
Polish, Japanese, and Indonesian, in descending or-
der. Oba et al. (2023) report similar results, where
the order was German, French, Japanese, and Rus-
sian. Both of these studies rely on BLiMP for eval-
uation, comparing the experimental results against
typological/linguistic distance between L1s and L2.
While this experimental setup is reasonable and
has its pros (e.g., no noise from human data), our
study focuses on adding human performance as a
reference to study L2LMs and the inductive biases
added through the L1 pretraining. For this pur-
pose, we use sentence processing as the primary
evaluation, which we now turn to.

2.2 Sentence Processing
Levy (2008) posits that any realistic theory of hu-
man sentence comprehension must account for
processing difficulty. He proposes the resource-
allocation account of sentence processing, which
maintains that the processing difficulty corresponds
to the amount of resource reallocation needed. This
account is found to be the equivalence of surprisal
theory (Hale, 2001), a probabilistic account of cog-
nitive effort. Both Hale (2001) and Levy (2008)
provide empirical support for the surprisal theory
using probabilistic parsers, showing that the sur-
prisal (negative log-probability) of a given word
predicts human processing phenomena.

More recently, decoder-only left-to-right incre-
mental processing models such as GPT2 (alongside
simpler LMs such as n-gram models and LSTMs)
have become a standard testbed for the aforemen-
tioned hypothesis. Specifically, surprisal theory
can be tested by measuring how well LMs’ con-
ditional output probabilities predict human behav-
ioral data (often referred to as psychometric predic-
tive power, or ppp; e.g., Wilcox et al., 2020; Kurib-
ayashi et al., 2022), such as self-paced reading
time data, eye-tracking data, and brain activity data.
This line of literature corroborates the surprisal the-
ory, showing that the model quality (as measured
in perplexity) correlates with the predictive power
of human reading time (quality-power hypothe-
sis); in other words, the lower the perplexity, the
higher the predictive power (Goodkind and Bick-
nell, 2018; Wilcox et al., 2020), and that this trend
holds crosslinguistically (Wilcox et al., 2023).

However, exceptions have been pointed out: the
trend has not been found in Japanese (Kuribayashi
et al., 2021), and similarly for English, smaller
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Figure 1: Training setup for L2LMs. The model is first pretrained on a given L1. We then freeze all the layers
except for the embedding and output layers, and then continue pretraining on the L2 (English).

LMs were more predictive of human reading time
than larger LMs (Oh and Schuler, 2023b). Oh
and Schuler (2023a) explains this discrepancy by
showing that GPT-family LMs are most predictive
of human reading time after seeing around 2B–4B
word tokens and their predictive power plateaus or
decreases beyond that point.

Given that the surprisal theory has been empiri-
cally supported and can be used to test humanlike-
ness of LMs (e.g., Oh and Schuler, 2023a), and
that sentence processing is susceptible to L1 trans-
fer (e.g., Clahsen and Felser, 2006), it provides
an apposite evaluation for L2LMs. In light of all
these, we investigate L2LMs’ predictive power of
L2 English reading time, in addition to their mor-
phosyntactic abilities.

3 Methods

To study the effect of L1 on L2LM grammaticality
judgment (RQ1) and sentence processing (RQ2),
we train L2LMs on various L1s and a common L2
(English), while constraining their learning during
the L2 training phase, mirroring the human SLA.

3.1 Training
We adopt the TILT method from Papadimitriou
and Jurafsky (2020), as well as its implementa-
tion with transformer-based LMs from Yadavalli
et al. (2023). Figure 1 illustrates the approach.
We first train a GPT2-based LM on a given L1
from scratch, freeze all the transformer blocks (i.e.,
only the embedding layers and the LM head are
trainable), and then “keep pretraining” on the L2
(English).2 The idea is that the high-level abstract
linguistic knowledge has been shown to be stored in
the intermediate layers (see Rogers et al., 2020 for

2Some refer to this as a “finetuning” phase; however, be-
cause the training objective is the same, we refer to this phase
as the second pretraining phase, or L2 learning phase.

a comprehensive review), and that freezing those
parameters will force the model to acquire a new
language primarily by learning new words (in the
embedding layer) while relying on the L1 grammar
(in the frozen decoder blocks).

All of the models were downsized for computa-
tional efficiency. Oh and Schuler (2023a) find that
transformer-based LMs as small as 2 layers with 3
attention heads and an embedding size of 192 are
competitive with or even better than larger models
on human reading time prediction. We therefore
adopt this model configuration.

3.2 L1 Training
We use the CC100 corpus (Conneau et al. 2020;
Wenzek et al. 2020), a multilingual common web
crawl corpus that covers a set of 100 typologically
diverse languages, available under Common Crawl
term of use.3 Since our goal is to measure the rela-
tionship between LM surprisal and human L2 read-
ing times, the LMs’ L1s were chosen based on the
L1s of the human participants of the CELER cor-
pus (Berzak et al., 2022, see §3.4.3): Arabic, Chi-
nese (simplified), English, Japanese, Portuguese,
and Spanish. We sampled a training set of 100M
tokens from each of the L1 subcorpora in CC100.

For each L1, we first train a tokenizer. We use
SentencePieceBPETokenizer from the Hugging
Face library (Wolf et al., 2020), available under
an Apache License. The SentencePiece algorithm
(Kudo and Richardson, 2018) works well with
languages not separated by white spaces, and its
language-agnostic nature fits our purpose to keep
the conditions as close as possible to each other
across different L1s. We train each tokenizer on
5M sentences (≈500MB of data). We set the vocab-
ulary size to 20K, based on the estimate of human
L1 vocabulary size that ranges from 17K to 20K

3https://commoncrawl.org/terms-of-use
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distinct words (Nation, 2006; Goulden et al., 1990;
Zechmeister et al., 1995).

Once the tokenizer is trained, we then train the
model on 4B words, saving the model at every
400M words. We focus our analyses on the first
(400M words) and the last (4B words) checkpoints.
We consider the 400M variant to be cognitively
plausible, based on the estimate that the number
of word tokens a person is annually exposed to
amounts to 11M words (Hart and Risley, 1995).
The 4B variant is by no means comparable to hu-
mans in terms of the amount of input; however, this
variant is expected to be most predictive of human
reading time based on Oh and Schuler (2023a),
who find that LMs’ predictive power of human
reading time peaks after seeing about 2B tokens
(and 4B tokens for smaller models). For both con-
ditions, we used an effective batch size of 64 and
context length of 256. This resulted in ≈24K and≈244K training steps for each condition, respec-
tively. The training took ≈10 hours for each L1 on
a single RTX A6000 GPU with 48GB vRAM. For
the subsequent L2 training, we reuse each of these
L1LMs as the starting checkpoint.

3.3 L2 Training
Once the L1 training phase is complete, we freeze
all of the LM’s parameters except for the embed-
ding layer and the LM head. By doing so, we
allow the model to acquire a new set of vocabu-
lary items (in the L2, namely English), as well as
to adjust the classification space (we are changing
both the language and the size of the classification
space; ∣VL1∣ > ∣VL2∣). For training data, we use Sim-
ple English Wikipedia,4 available under a Creative
Commons license. The preprocessed version is
available under the Hugging Face library.5

We train the model on 30M words and save a
checkpoint at every 3M words, focusing on the
first (3M words) and last (30M words) checkpoints.
The 3M variant is motivated by Nation (2014) and
Mason and Krashen (2014), where they found that
around 1M and 3M words were necessary to see the
5,000 most frequent word families and 9,000 most
frequent word families, respectively, for at least 12
times. The 30M variant is to mirror the L1 training
phase: we simply exposed the model to 10 times
more word tokens than the cognitively plausible
exposure condition (3M words), amounting to 30M

4https://simple.wikipedia.org/wiki/Main_Page
5https://huggingface.co/datasets/rahular/

simple-wikipedia

word tokens. We used the same training setup, with
an effective batch size and context length of 64 and
256, respectively. This resulted in 183 and 1,831
training steps for the two conditions, respectively.6

With 6 L1s, 1 L2, and 2 configurations for each
of the two training phases, we obtain 6×1×2×2 =
24 L2LMs. These variants establish the baseline
for the initial comparisons, although we train addi-
tional models and investigate intermediate check-
points as follow-ups, as described in later sections.
The differences in the results can be fully attributed
to the inductive biases of the L2 LMs, since every-
thing else was held constant.

3.4 Evaluation
3.4.1 Perplexity
We report the perplexity of each L2LMs, mainly for
the purpose of (1) ensuring that the TILT training
is properly working as expected (L2 perplexity is
expected to go down) and (2) testing the quality-
power hypothesis in L2 sentence processing. We
obtain the perplexity on a held-out validation set of
Simple English Wikipedia of 3M tokens, or 10%
in size of the training set, using the sliding window
strategy. Because each L2LM has a context length
of 256, we set the sliding window size to 128, with
each token going through the forward pass twice.

3.4.2 Morphosyntax
We also evaluate L2LMs on morphosyntactic
knowledge, namely the Benchmark of Linguistic
Minimal Pairs (BLiMP; Warstadt et al., 2020). As
discussed earlier, this is mainly because the preced-
ing studies (Yadavalli et al., 2023; Oba et al., 2023)
used this benchmark as the main evaluation, and
we aim to test whether (1) the results in the litera-
ture can be replicated with a decoder-only model
(GPT2), and (2) the L2LM is properly infused with
an inductive bias based on the L1 training.

3.4.3 Reading Time
LMs are considered more “humanlike” in terms
of sentence processing if their per-word surprisal
estimates are more predictive of the per-word hu-
man reading times. We need 3 key ingredients to
test this: (i) a left-to-right incremental processing
model, (ii) per-word surprisal estimates obtained
from such a model, and (iii) human reading time
data. For (i), we use the GPT2-based L2LM de-
scribed earlier in this paper. For (ii), based on pre-
vious work (e.g., Kuribayashi et al., 2021; Oh and

6See Appendix A for the list of hyperparameters.
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Schuler, 2023b; Clark et al., 2023; Wilcox et al.,
2023, inter alia), we take the negative log prob-
ability of a given word conditioned on all of the
preceding words to obtain the model’s surprisal
value of a given word:

Swi = − logP(wi ∣www<i). (1)

This represents how “surprised” the model is given
the word of interest and the preceding context. The
L2LM’s predictive power of human reading behav-
iors is then measured by how much improvement
we see in a linear regression model’s fit for human
reading time data when the surprisal is added to
the baseline model. This is operationalized as the
difference in the model fit between the 2 regression
models (delta log-likelihood; ∆LL):

∆LL = LLφbl+S −LLφbl , (2)

where LLφbl+S and LLφbl are log-lilekihood (measure
of model fit) of the baseline model with and with-
out surprisal estimates, respectively. The intuition
behind this operationalization is as follows: The fit
of the first regression model (LLφbl ) represents how
well human reading time can be predicted without
an LM, whereas the fit of the second regression
model (LLφbl+S) represents how well human read-
ing time can be predicted with an LM. By taking
the difference between these two, we can measure
how much improvement the addition of LM sur-
prisals makes on the fit on human reading time.
This difference in the model fit, or ∆LL, is the op-
erationalization of the LM’s predictive power of
human reading time. Following the previous stud-
ies, we include the word length and position as
fixed effects, and subject ID as a random effect in
baseline features (Φbl) to predict gaze duration. We
report the per-word average ∆LL.

For (iii), we use CELER (Berzak et al., 2022), a
corpus of English reading times collected from a
total of 365 L1 and L2 English speakers. For the L2
speakers, L1s include Arabic, Japanese, Mandarin
Chinese, Portuguese, and Spanish, as discussed
earlier. We hypothesize that the surprisals obtained
from L2LM trained on the same L1 as the human
learners will produce the greatest ∆LL.

4 Results

4.1 Perplexity

Figure 2 summarizes the perplexities of L2LMs
trained on 400M (dotted lines) and 4B (solid lines)
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Figure 2: L2LMs’ perplexities on the L2 validation set.
The color indicates the L1 of the L2LM as shown in the
legend. Dotted and solid lines represent the L1 training
amount of 400M and 4B tokens, respectively.

tokens on 6 L1s, throughout the L2 training phase.
The color of each bar corresponds to different L1s
of L2LMs as shown in the legend (ordered in de-
scending order based on the linguistic distance
from English; Littell et al., 2017). As expected,
regardless of the L1 and L1 training amount, the
perplexity decreases monotonically throughout the
L2 training.

More importantly, the results support Papadim-
itriou and Jurafsky’s (2020) finding that L1s typo-
logically closer to the L2 result in lower perplexi-
ties. The expected order was (from lower to higher
in perplexity) English, Spanish, Portuguese, Ara-
bic, Chinese, and Japanese, and the observed order
was identical except for the flipped order between
Spanish and Portuguese. In addition, this order was
only observed when the L2LMs were sufficiently
trained on the L1 (4B tokens), and not when they
were trained less (400M tokens).

4.2 Morphosyntax

Figure 3 summarizes each L2LM’s performance on
the BLiMP dataset. Each of the 4 blocks of 6 bars
corresponds to one of the 4 possible combinations
of L1 and L2 training configurations. For example,
400M→3M means that all of the 6 L2LMs in that
block were trained on their respective L1 for 400M
tokens, and then on L2 (English) for 3M tokens. A
few observations were made.
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Figure 3: L2LMs’ performance on BLiMP. The color
indicates the L1 of the L2LM as shown in the legend,
and each block indicates the respective data sizes in L1
and L2 training. Error bars represent 95% confidence
intervals, obtained from binomial distributions.

Effect of L2 Input Effect of L1 Input
∆3M→30M ∆400M→4B

L2LM L1=400M L1=4B L2=3M L2=30M

en→en 0.0298 0.0447 −0.0015 0.0134
es→en 0.0126 0.012 0.0008 0.0002
po→en 0.0201 0.0291 −0.0087 0.0003
ar→en 0.0184 0.0037 0.0072 −0.0075
zh→en 0.0136 0.0097 −0.0017 −0.0057
jp→en 0.0037 0.0084 0.0044 0.0091

Table 1: The difference in BLiMP accuracy scores
when L2 training amount is varied (left), and when L1
training amount is varied (right).

First, with enough exposure to L2, it appears
that L2LM’s performance on BLiMP negatively
correlates with the corresponding L1’s typologi-
cal distance from English, largely replicating the
results from Yadavalli et al. (2023) and Oba et al.
(2023). That is, models in both 400M→30M and
4B→30M (but not *→3M) configurations tend to
perform better on BLiMP when their L1 is typolog-
ically closer to English.

Second, more L2 training always led to better
BLiMP performance. As shown in the left half of
Table 1, although the degree of improvement varied
based on the L1, without exception, L2LMs’ per-
formance improves with more L2 training when the
L1 training amount is held constant. That is to say,
the performance improved from the 400M→3M to
the 400M→30M setting, and from the 4B→3M to
the 4B→30M setting.

Third, the effect of the amount of L1 training
on BLiMP performance varied by L1, as shown in
the right half in Table 1. This is in stark contrast
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Figure 4: ∆LL of each L2LM when adding its surprisal
estimates to the baseline linear regression model (top),
and the corresponding log-likelihood of the baseline
linear regression model for each human L1 (bottom).
Each L2LM’s L1 is indicated by the color of the bar, and
the L1 of the human participants of the CELER corpus
is indicated on the x-axis. Error bars represent 95%
confidence intervals, obtained from fitting regression
models on bootstrapped samples 1,000 times.

with the second observation that more L2 training
invariably led to higher BLiMP performance. More
concretely, the L2LM’s performance improves for
some L1s and degrades for others, when trained on
more L1 data with the L2 training amount held con-
stant. Specifically, more L1 training on Japanese
always led to better BLiMP performance, whereas
more L1 training on Chinese always led to poorer
BLiMP performance. More L1 training on English
and Portuguese led to better BLiMP performance
when L2 training was sufficient (30M) but to poorer
BLiMP performance when L2 training was limited
(3M), and the opposite was true about Arabic L1
training. L1 training on Spanish had virtually no
effect on BLiMP performance, which may explain
the anomaly we observe in Spanish L2LM in Fig-
ure 3. As we saw in §4.1, that each L1 differently
affects the outcome of identical L2 training, con-
firming the idea that the L1 training infuses the
model with different inductive biases (Papadim-
itriou and Jurafsky, 2020).
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Figure 5: Reading time predictivity (∆LL) of a monolingual English LM over the course of training. Plots reflect
evaluation on data from different human L1 groups.

4.3 Reading Time

4.3.1 Effect of L1 on ∆LL
Figure 4 summarizes the per-word average ∆LL of
each of the L2LM (indicated by the color of the bar)
when its surprisals are added to the baseline regres-
sion model to predict the reading time of human
participants of the CELER corpus (whose L1 is
indicated on the x-axis). The shaded bars represent
the ∆LLs that were expected be the highest within
the same block (i.e. within the 6 regression models
that predict the reading time of human participants
of the same L1), based on the hypothesis that L2
humans and L2LMs behave similarly if they share
the same L1. Figure 4 shows that this is not the
case: within-block differences are small, and the
predicted pattern is not consistently supported.

Rather, differences across blocks are more pro-
nounced. Two-way analysis of variance (ANOVA)
reveals that the main effect for human L1 (F =
628.64, df = 5, p < .001) is much stronger than that
of LM L1 (F = 16.67, df = 5, p < .001), although
both are statistically significant. In other words, re-
gardless of the L1 of the L2LM, adding the L2LM
surprisals leads to the greatest improvement in the
regression model’s reading time predictions when
the human L1 is Japanese, followed by Arabic,
Chinese, Spanish, Portuguese, and English, in de-
scending order. We suspect that this is due to the
fit of the baseline models, which rely on the word
length and the word position alone. In the bottom
of Figure 4, we plot the LL of the baseline regres-
sion model for each human L1. Indeed, there is
a strong correlation between the mean ∆LL of 6
L2LMs for a given human L1, and the baseline LL
for the same human L1 (r = −.92, p < .01), mean-
ing that, the higher the LL of the baseline model
is (the more predictable human reading time is,
based on the baseline variables i.e. word length

and position), the lower the ∆LL is (the less the
improvement from adding L2LM surprisals).

Additionally, it is also worth noting that the or-
der of baseline LL roughly follows the linguistic
distance between L1s and English (see §4.2). The
linguistic distances are in the following order: En-
glish (trivially), Spanish, Portuguese, Arabic, Chi-
nese, and Japanese; while the baseline LL is in the
following order: English, Spanish, Chinese, Por-
tuguese, Arabic, and Japanese. This suggests that,
given an L2 English reader, the more distant their
L1 is from English, the less predictable their En-
glish reading behavior is solely based on word
length and word position. This also implies that,
between L1 speakers and L2 speakers, and among
L2 speakers of different L1s, different strategies
are employed for online English processing, which
is also reported in applied psycholinguistics (e.g.
Clahsen and Felser, 2006).

4.3.2 Effect of L1 and L2 Training on ∆LL
In this section, we provide analyses of the devel-
opmental trajectory of each L2LM’s reading time
predictions. We first show the equivalent plot of a
monolingual English LM to (1) show that our meth-
ods replicate the previously reported observations
on the relationship between the predictive power
and training amount when tested on L1 English
reading time, and (2) determine whether a similar
observation can be made about L2 reading time.
Figure 5 summarizes how the predictions for hu-
man L1 English reading times change throughout
the pretraining process. The LM is trained on 4B
tokens from scratch as described in §3.2, and each
of the 6 plots differs from each other only in the
L1 of the humans whose reading times the LM
is predicting. Notably, on the one hand, for En-
glish speakers’ reading time, ∆LL peaks at around
2.4B tokens and plateaus for the most part after-

4933



0.
00

10
0.

00
12

0.
00

14

40
0M

0.
00

65
0.

00
70

0.
00

75
0.

00
80

0.
00

85

0.
00

55
0.

00
60

0.
00

65
0.

00
70

0.
01

0
0.

01
1

0.
01

2
0.

01
3

0.
00

80
0.

00
85

0.
00

90
0.

00
95

0.
01

5
0.

01
6

0.
01

7

100 150

English

0.
00

11
0.

00
12

0.
00

13
0.

00
14

4B

100 150

Spanish

0.
00

70
0.

00
75

0.
00

80
0.

00
85

0.
00

90

100 150

Portuguese

0.
00

60
0.

00
65

0.
00

70
0.

00
75

100 150

Arabic

0.
01

100.
01

150.
01

200.
01

250.
01

300.
01

35

100 150

Chinese

0.
00

85
0.

00
90

0.
00

95
0.

01
00

100 150

Japanese

0.
01

5
0.

01
6

0.
01

7
0.

01
8

0.
01

9

∆L
L

Human L1

LM L1
English
Spanish
Portuguese
Arabic
Chinese
Japanese

Figure 6: The relation between L2LMs’ ∆LL (y-axis) and L2 perplexity (x-axis) at every 3M tokens during the L2
training phase. Each line represents an L2LM trained on the L1 of the corresponding color for 400M tokens (top)
and 4B tokens (bottom), respectively. The shaded region around each line represents the 95% confidence interval.
Human L1s are indicated on the x-axis.

ward. This is congruent with previously reported
results that LMs’ predictive power peaks after 2B–
4B tokens (Oh and Schuler, 2023a), confirming
(1). On the other hand, when a monolingual
English LM predicts L2 English reading time,
∆LL peaks at around 800M–1.2B and plummets
beyond that point. One potential account for this
tendency is that L2 English speakers’ proficiency is
comparable to LMs trained on 800M–1.2B words,
while LMs reach “nativelike” proficiency at around
2B–4B words.

Figure 6 plots the ∆LLs and L2 perplexities col-
ored by LM L1 for each human L1, trained on
400M (top) and 4B (bottom) L1 tokens (see Fig-
ure 9 in Appendix C for a plot similar to Figure 5
but for L2LMs). Importantly, when L2LMs are
trained on 4B L1 tokens (bottom half of the figure),
regardless of LM L1 or human L1, L2 perplexity
and ∆LL are positively correlated, meaning that
the higher the LM quality (lower the perplexity) is,
the less they are predictive of L2 human reading
time. This is in contrast with the quality-power
hypothesis (Wilcox et al., 2023), where they find a
positive correlation between LM quality and LM
psychometric predictive power. However, Oh and
Schuler (2023a) show that 2B tokens is the tipping
point where the quality-power correlation changes
from positive to negative. Given that all of the
L2LMs in the bottom half of the figure are trained
on 4B L1 tokens, they may be at the phase where
quality-power correlation is negative.

It is important to note, however, that the L2 train-

ing amount is on the order of 3M to 30M tokens,
which is far from the aforementioned tipping point
(2B tokens). Taken together with the observation
that the choice of LM L1 had little effect on the
L2LM’s L2 reading time predictions (see §4.3.2), it
appears that, regardless of the choice of L1, when
an LM is trained on some L1 for a sufficient amount
(say, 2B tokens), it reaches the maximum predic-
tive power for human sentence processing, even
when the target language (on which sentence pro-
cessing is measured) is different from the language
the LM is trained on. Considering the small model
(192-2-3 architecture) and training data (≤30M to-
kens) sizes, there may be an alternative account
for the inverse quality-power relation besides what
has been proposed to date, such as larger model
size allowing for the memorization of training data
(Oh and Schuler, 2023b), and the learning of infre-
quent words later in pretraining (Oh et al., 2024).
Clearly, these hypotheses have been proposed with
respect to monolingual English LMs, and the ob-
servations we made on the L2LMs trained with
the TILT-based (Papadimitriou and Jurafsky, 2020)
unique pretraining setup may not be straightfor-
wardly applicable.

4.3.3 Qualitative Examples

Since human data are noisy, it is not surprising that
L2LMs’ behaviors are not in alignment with those
of human L2 speakers. Needless to say, multiple
hypotheses can be given to explain these results,
with the obvious one being that the L2LMs intro-
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duced in this study are simply not good models of
human L2 speakers. However, in this section, we
show a sample sentence from the CELER corpus
where L2LMs’ predictions were maximally differ-
ent from each other (i.e. their surprisals were most
divergent based on the L1 they were trained on).
With these, we aim to show that these L2LMs do
exhibit some behaviors that could potentially help
us generate hypotheses about human behaviors.

In Figure 7, we see that each L2LM shows a sim-
ilar level of surprisal until faced with the word occu-
pied. Interestingly, L2LMs first trained on Spanish
and Portuguese are more than 1.5 times more “sur-
prised” than the other three L2LMs (first trained
on Arabic, Chinese, and Japanese, respectively).
To reiterate, their L2 English training and English
tokenizers are identical. The word occupied was
tokenized into [‘oc’, ‘c’, ‘up’, ‘ied’], suggesting
that the model recognizes its part of speech (past
or past participle of a verb based on the rightmost
suffix). We speculate that this is because Arabic,
Portuguese, and Spanish place relative clauses af-
ter noun phrases while Chinese and Japanese lan-
guages place them before. Therefore, because the
decoder blocks were frozen during the L2 training
phase, the model may be more likely to have a
strong expectation for a determiner or a noun after
a preposition for the latter group.

This speculation is based on the idea that the
TILT method allows for the preservation of L1
structural information in the frozen middle layers
learned during the L1 pretraining phase (Papadim-
itriou and Jurafsky, 2020). It has been widely ob-
served in the BERTology literature that structural
information (including POS information, which is
critical to an expectation of given word class as
hypothesized above) is encoded in middle layers of
the transformer architecture has been widely shown
(e.g., Tenney et al., 2019; Liu et al., 2019a, inter
alia). Aoyama and Schneider (2022) also corrob-
orate this hypothesis directly through a language
modeling task, showing that the model learns to
predict a word with ‘correct’ (i.e., same as the tar-
get) POS most actively in middle layers.

Given this literature, we suspect that our TILT-
based L2LMs have L2 vocabulary and L1 structural
knowledge, potentially resulting in the observed
preference in certain word orders reflective of L1
structure. However, it is important to note that
this hypothesis calls into question why the Arabic
L2LM patterns with Chinese and Japanese (see
Figure 8 in Appendix B for a similar grouping
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Figure 7: Per-word surprisals of a sample sentence
from the CELER corpus. L2LMs maximally differ from
each other at the 8th word occupied.

effect).

5 Conclusion

In this study of L2LMs, we trained GPT2–style
decoder-only LMs on 6 L1s (Arabic, Chinese, En-
glish, Japanese, Portuguese, and Spanish) and then
on a common L2 (English), freezing the decoder
blocks the L2 training phase, with all of the vari-
ables including data size and hyperparameters held
constant. We replicate findings from previous lit-
erature that the linguistic distance between the L1
and L2 negatively correlates with the LM’s perfor-
mance on the L2 (as measured in BLiMP). Our
novel findings include that a monolingual English
LM is most predictive of L1 English reading time
at around 2.4B word tokens, and of L2 English
reading time at around 800M–1.2B word tokens;
that L2LMs’ sentence processing was not shown
to correlate with that of human L2 speakers of En-
glish; and that the overall predictability of human
L2 speakers’ sentence processing largely depended
on their L1. We also showed that, despite the lack
of overall correlation between L2LMs surprisals
and L2 English speakers’ reading times, qualita-
tive examples could be conducive to generating
hypotheses of L2 reading behaviors.

6 Limitations

First, this work relied solely on the TILT method
(Papadimitriou and Jurafsky, 2020) to simulate the
L2 learning process; of course, it is not realistic
to assume that all the neurons are “frozen” in hu-
man brain once an L1 is acquired, and testing other
methods of simulating human L2 (and L1) acqui-
sition with LMs is an important avenue for future
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research. More broadly, simulating language learn-
ing with text inputs alone is both unrealistic and in-
adequate, and incorporating other input modalities,
such as vision, remains an important and exciting
direction.

Second, since an extensive comparison of LMs
of different sizes was not feasible, we only trained
L2LMs using the 192-2-3 architecture (hidden size
of 192, 2 layers, and 3 attention heads), as dis-
cussed in §3.1. Although the efficacy of small LMs
has been widely shown (e.g., Huebner et al., 2021)
and although this particular architecture was re-
ported as a variant that had a predictive power of
human reading time similar to or even better than
larger variants (Oh and Schuler, 2023a), it remains
possible that testing L2LMs of larger sizes would
yield new insights. In a similar vein, we only tested
GPT2-based LMs in this study, and results may
vary for other decoder-only models.

Third, human reading time data are scarce, let
alone human L2 reading time data. The data used
in this study, CELER (Berzak et al., 2022), is a
rare exception; however, the total of 365 partici-
pants means that each of the 6 L1s is represented
by ≈60 participants. While this is an impressive
number given the cost of collecting such behavioral
data, we acknowledge that findings based on these
participants may not generalize to broader speaker
populations.

Ethics Statement

We only studied L2 English and 6 L1s (Arabic,
Chinese, English, Japanese, Portuguese, Spanish),
all of which are well-resourced languages. This
is because we needed to match the L1s available
in the CELER corpus (Berzak et al., 2022), and
not because particular languages are more “im-
portant” than others. We acknowledge that it is
important to study additional first and second lan-
guages, and expanding the availability of datasets
in other languages remains an important goal of fu-
ture research. In addition, although certain L2LMs
seemed to perform better than other L2LMs, this
is not to be taken as an indication of superiority of
a certain L1 population in mastering English as a
second language.

Lastly, this work involved training multiple deep
learning models, which is energy-intensive and
could contribute to carbon emissions. However,
as already described in §3, we minimize the num-
ber of models by first training 6 monolingual mod-

els while saving checkpoints and reusing them for
L2LM training. Therefore, we assess the climate
impacts to be modest.
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A Hyperparameters

L1 L2

vocab_size 20_000 5_000
context_length 256 256
train_layers all [wte.weight,

wpe.weight,
ln_f.weight,
ln_f.bias]

n_embed 192 192
n_layer 2 2
n_head 3 3
batch_size 8 1
grad_acc_steps 8 8
weight_decay 0.1 0.1
warmup_steps 1_000 30
lr_scheduler cosine cosine
learning_rate 5e-4 5e-4

Table 2: List of hyperparameters used to train L2LMs.

Table 2 summarizes the hyperparameters used to
train L2LMs. The keys are shortened in the table
for readability and for space reasons. Please refer
to the configs directory in our Github repo to see
the exact setup.

B More Qualitative Examples
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Figure 8: Per-word surprisals of a sample sentence
from the CELER corpus. L2LMs maximally differ from
each other at the 7th word chairman.

Figure 8 plots the per-word suprisal obtained
from each of the 6 L2LMs. Here again, Chinese
and Japanese L2LMs pattern together, showing
lower surprisals compared to other L2LMs. This is
perhaps due to the fact that Chinese and Japanese
are the only 2 languages among the 6 that do not
have the article system, and that an article-less sin-
gular noun is less surprising.

C Training Steps and L2LM ∆LL

Figure 9 summarizes each L2LM’s predictive
power of each L1 group’s L2 English reading time

at every 3M tokens they saw in the L2 training
phase. Because L2 perplexity was monotonically
decreasing in relation to L2 training amount (see
Figure 2), Figure 6 looks similar in shape to Fig-
ure 9, which summarized the trajectory of ∆LL as
a function of L2 perplexity. We find a few general
patterns.

First, comparing the L2LMs trained on 400M
words in the L1 (top) and those trained on 4B words
in the L1 (top), even though the L2 input and size
are identical, the development of the predictive
power seems to be different. When L2LMs are
exposed to 4B words during the L1 training phase,
with very few exceptions, L2 exposure does not
improve L2LMs’ predictive power, as observed in
the almost monotonically decreasing trend in all 6
plots in the bottom half of Figure 9.

Second, when L2LMs are exposed to 400M
words during the L1 training, L2 exposure some-
times improves the predictive power, for some com-
binations of L2LMs’ L1s and human L1s (e.g., the
Spanish L2LM predicting L2 English reading time
of Spanish, Portuguese, and Chinese speakers).

Lastly, it is worth noting that this overall down-
ward trend in the development of predictive power
stands in sharp contrast to the monotonically up-
ward trend in BLiMP performance (left half of
Table 1; see §4.2), where L2 exposure always led
to higher BLiMP performance, regardless of the
number of words L2LMs have seen during the L1
training phase (400M and 4B). This suggests that,
with the decoder blocks frozen and only embedding
and output layers left trainable, L2LMs adapted to
the English inputs during the L2 training phase by
learning to distinguish likely and unlikely (gram-
matical and ungrammatical) sequences of inputs,
using novel strategies that seem to deviate from
both humans and regular LMs.
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Figure 9: L2LMs’ ∆LL on CELER corpus at every 3M tokens during the L2 training phase. Each line represents an
L2LM trained on the L1 of the corresponding color for 400M tokens (top) and 4B tokens (bottom), respectively.
Human L1s are indicated on the x-axis.
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