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Abstract

The patent citation count is a good indicator
of patent quality. This often generates mone-
tary value for the inventors and organizations.
However, the factors that influence a patent re-
ceiving high citations over the year are still not
well understood. With the patents over the past
two decades, we study the problem of patent ci-
tation prediction and formulate this as a binary
classification problem. We create a semantic
graph of patents based on their semantic simi-
larities, enabling the use of Graph Neural Net-
work (GNN)-based approaches for predicting
citations. Our experimental results demonstrate
the effectiveness of our GNN-based methods
when applied to the semantic graph, showing
that they can accurately predict patent citations
using only patent text. More specifically, these
methods produce up to 94% recall for patents
with high citations and outperform existing
baselines. Furthermore, we leverage this con-
structed graph to gain insights and explanations
for the predictions made by the GNNs.

1 Introduction & Related Work

Patents play a pivotal role in driving innovation and
fostering economic growth. They provide a legal
framework that allows inventors (e.g., companies,
researchers) exclusive rights to their creations for a
specified period, typically 20 years (Levin, 2004;
Kitch, 1977; Encaoua et al., 2006). This exclusivity
motivates the inventors and the businesses to invest
in research and development, as they can benefit
from their innovations.

Patent citations are important in the context of
intellectual property (IP) and patent valuations and
serve multiple important roles for patent examiners
and applicants. Firstly, they aid patent examin-
ers in assessing an invention’s novelty and non-
obviousness for granting patents to genuinely in-
novative creations. Secondly, they assist inventors
by revealing the technological landscape and help
them to refine claims and avoid any patent conflicts.
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Thirdly, patent citations play a significant role in
assessing the value of patent portfolios, with more
citations often signifying greater influence in spe-
cific industries. Further, researchers employ them
to track tech trends and policy impact.

Several studies have analyzed patent value
through the forward citations (Hall et al., 2001;
Harhoff et al., 1999) and assessed economic value
of patents (Sampat and Ziedonis, 2005; Hall et al.,
2005). Previous research endeavors have explored
broader patterns of knowledge transfer (Singh,
2003) through patent citations such as interactions
between academia and industry via citations be-
tween academic papers and patents (Chen and
Hicks, 2004). One of the relevant work involves
prediction of patent value dependent on citation
count from the text (Hsu et al., 2020) with regres-
sion. However, we differ in multiple ways: our
study formulates a classification task, construct a
semantic-based network, uses graph neural network
(GNN)-based methods, and generates explanations.

In this paper, we perform an extensive empirical
study on the power of patent text to predict cita-
tions. Our major contributions as follows.
Problem and data. We study the problem of patent
citation prediction as a binary classification prob-
lem. Our study includes granted patents over last
two decades and provides descriptive analyses on
the meta-data of the patents in three major classes.
Method. We construct a patent semantic graph
from the patent similarities and use graph neural
network (GNN)-based methods for citation pre-
diction. Our empirical evaluations show that the
GNN-based methods can predict patent citations
only using the patent text with high quality.
Explanation. The constructed graph combined
with an explanation technique are used to get in-
sights of the predictions of the GNNGs.

Note that we have added more details for next
sections in the Appendix along with background,
related work, and additional experiments.
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2 Problem Definition and Data

We formulate the problem of patent citation pre-
diction as a binary classification task where we
classify the patents as highly cited or low cited.
LetP = {P,, P,---, P} be the set of m patents.
As the patent citations vary over years, we use the
count of citations obtained by a patent after d years
from the year of being granted. We denote the ci-
tation of the patent F; after d years as Cfl. In the
experiments we use d = 3,5, and 10 years and
use these to generate different labels and thus they
generate different datasets.

Our aim is to measure the impact of a patent by
using the citations of the patent. We focus on pre-
dicting whether a particular patent will be highly
cited (positive, denoted by 1) or low cited (negative,
denoted by 0) at the time of its granting year by
using the text-based information from the patent
itself. The decision on whether a patent belongs to
a particular class (positive or negative) is based on
the distributions of the citations. We set a threshold
based on the distribution. Let us assume the thresh-
old is x—th percentile. Thus, we define patent cita-
tion class as positive based on whether the citation
count is higher than the value at the top z—th per-
centile. Similarly, a patent belongs to a low cited
class if the patent citation count is lower than the
value at the bottom z—th percentile.

Definition 1 Citation Label: We define the label
function y(C%) € {0,1} of a patent P' for the
citations in next d years:

i ]-a lfCZ > Cz,h
y(Cq) = . ?
07 lde < C:E,l

where Cy j, and C,,; denote the values at the top
x—th percentile and the bottom x—th percentile
respectively.

Other Class Labels. Though the above definition
produces citation labels, one could design the la-
bels other ways. Note that the above one produces
an “easy to classify” dataset in the sense that the
patent with high and low citations are well sepa-
rated in the distribution. In the experiments, we
explore other labeling settings. First, we define top
x—th percentile as high, bottom x—th percentile as
low and the rest as middle (we set z = 10 in the
experiments). As the main goal is to identify high-
quality or low-quality patents, we have divided the
datasets and taken pair-wise classification in three

CPC class Description (short) #Patents
A6l Medical or Veterinary Science 269364
HO4 Electric Communication 379099
GO06 Computing 340667

Table 1: #Patents in the individual CPC classes.

different settings: High vs rest, high vs middle,
middle vs low. Please see Sec. 4.2 for details.
Our classification problem. We investigate the
predictive power of the text in prediction of the
quality of the patent, i.e., the patent citation count.
To do so, we learn a prediction function f, where
the features constructed from the patent text are
given as input and the defined label y(C?) acts as
the outcome variable.

Data. Our study includes the granted patents from
the United States Patent and Trademark Office
(USPTO)!. The number of patents grow exponen-
tially over the years. We have included recent
patents over the last two decades from 2000 to
2022 for our analysis. Our study focuses on cita-
tions which often depend on the area or topics of
the invention, and thus, we consider on subcate-
gories of patents. We consider patents under major
(based on numbers) categories rather than all the
patents. We follow the standard classification sys-
tem for patents called the CPC categorization. We
choose top three CPC classes in terms of the num-
ber of patents categorized in them. Table 1 shows
the classes and the number of patents in each cate-
gory. Descriptive analysis of the data is provided
in the Appendix.

3 Methods

In patent citation prediction, there are two major
challenges: (1) The texts in patents are not similar
to the texts in research papers or news articles, (2)
Our aim to build models that are explainable, i.e,
we can find the reasoning behind their predictions.
Text-based AI Methods. Modern Al tools have re-
cently gained popularity in patent analysis (Shomee
et al., 2024). We use two methods to generate rep-
resentations for the patent documents: Doc2Vec
(Lau and Baldwin, 2016) and Patent Bert (Lee
and Hsiang, 2020). These representations are used
in combination with a multi-layered perceptron
(MLP) for the classification tasks in the experi-
ments. PatentBert fine-tunes a pre-trained BERT
model with patent data and applies the model to
the patent classification task.

"https://www.uspto.gov/
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3.1 Graph-based AI Methods

Graph construction. We construct a graph from
the semantic similarity between the patents where
each node is a patent. Two nodes are connected
if they have a high semantic similarity (~0.6-0.8 —
more details in A.4.2). We represent the patent doc-
uments with a 100-dimensional embeddings. These
embeddings are generated from training a Doc2Vec
model with approximately 200,000 patent texts
which include their titles, abstracts, and claims.
Edges in the graph are computed based on the se-
mantic similarity between the nodes (patent em-
beddings computed above), specifically using the
Doc2Vec features. An edge is created between
nodes when their similarity surpasses a selected
threshold.

Node Feature Representation. We use graph neu-
ral network (GNN)-based method to perform the
patent citation prediction task. However, GNNs
require initial features for the nodes. We again
compute these features based on the patent text
from two different embedding model: Doc2Vec
(Lau and Baldwin, 2016) and PatentBert (Lee and
Hsiang, 2020).

Graph Neural Networks. Graph Neural Net-
works (GNNs) (Kipf and Welling, 2016; Hamilton
et al., 2017) have proven to be effective in mak-
ing predictions on such graphs by learning rele-
vant low-dimensional node representations through
a message-passing mechanism. During message
passing, each node (v € V') updates its represen-
tation by aggregating information from itself and
its set of neighbors N (u). GNNs iteratively apply
this aggregation scheme to refine the node repre-
sentations, capturing the structural dependencies
within the graph. The GNNs are effective for a
wide range of prediction tasks over graphs such
as node classification, link prediction, and graph
classification. We use three types on GNNs for our
study: GCN (Kipf and Welling, 2016), GraphSage
(Hamilton et al., 2017), and Graph Transformer
Network (GTN) (Yun et al., 2019).

4 Experiments

We use three types of patent data from three major
CPC (Cooperative Patent Classification) classes:
A61, HO4, and G06. This results in nine separate
datasets with three different periods of citation his-
tory from the year of 2000: (1) Citation history for
3 years (3-years-history): Patents published until
2019 as we count citation up to 2022; (2) Citation

history for 3 years (5-years-history): published un-
til 2017. (3) Citation history for 3 years (10-years-
history): Patents published until 2011. Recent two
years of data from each patent dataset (among the
nine datasets above) are kept for testing.

4.1 Citation Prediction: Top vs Bottom

Labels. We have created the labels of positive
and negative classes based on the citation count
and the overall distribution. For the patents with
high citations we choose top 10% patents based on
citations (positive class), and correspondingly we
choose bottom 10% patents for the negative class.

Results. Our objective is to demonstrate the ef-
ficacy of graph-based Al methods in the patent
citation prediction. We present the results for dif-
ferent setting in Table 2 (recall of the positive class,
i.e., patents with high citations). Please see the
results for accuracy (Table 13) (accuracy) and F1
(Table 14) in the Appendix. respectively. From Ta-
ble 2, we observe that all the methods can retrieve
the patents with high citations accurately. This is a
critical task, as high-quality patents can have a sub-
stantial impact on innovation, ultimately benefiting
society. The results in Table 13 shows how the
combination of textual semantics and the structure
within the graph aids the models in understanding
quality and thus leads to accurate predictions.

4.2 Citation Prediction: Different Labels

Labels. First, we define top x—th percentile as
high, bottom x—th percentile as low and the rest as
middle (x = 10). We have divided the datasets and
taken pair-wise classification in three different set-
ting: high vs rest (Table 3), high vs middle (Table
4), middle vs low (Table 5).

Results. As the labels are harder than the previ-
ous labels (Sec. 4.1), the graph-based models per-
form much better than just using MLP. The MLP
baselines produce almost similar results as random
(note that a random model would generate accuracy
of .5). Our graph-based models produce good per-
formance in terms of four measures in all the three
settings, generating more than .7 in all the measures.
Further, GSAGE and GTN are more sophisticated
method than GCN (e.g., GSAGE have generalized
aggregation function whereas GCN uses the mean
as an aggregator (Hamilton et al., 2017)), and thus
they produce better results than GCN.
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Models CPC Classes
A61 \ HO04 \ G06
Citation Predictions @

3y [ 5y [ 10y [ 3y [ 5y [ 10y | 3y | 5y | 10y

Doc2Vec-MLP 0.81 | 0.87 | 0.93 | 0.68 | 0.68 | 0.68 | 0.64 | 0.93 | 0.91
PatentBERT-MLP 0.76 | 0.87 | 091 | 0.68 | 0.68 | 0.68 | 0.68 | 0.89 | 0.86
Doc2Vec-GCN 0.83 | 0.86 | 0.92 | 0.76 | 0.76 | 0.76 | 0.70 | 0.94 | 0.92
Doc2Vec-GTN 0.75 1 0.82 | 0.90 | 0.67 | 0.86 | 0.87 | 0.55 | 0.87 | 0.90
Doc2Vec-GSAGE 0.78 | 0.84 | 0.93 | 0.71 | 0.90 | 0.87 | 0.62 | 0.91 | 0.90
PatentBERT-GCN 0.76 | 0.85 | 0.92 | 0.61 | 0.61 | 0.61 | 0.70 | 0.93 | 0.89
PatentBERT-GTN 0.77 | 0.85 [ 094 0.83 | 0.88 | 0.83 | 0.58 | 0.86 | 0.87
PatentBERT-GSAGE || 0.74 | 0.85 | 0.91 ‘ 0.70 | 0.91 | 0.85 | 0.56 | 0.93 | 0.88

Table 2: Recall of Highly Cited (positive class) Patents. Our graph-based methods often produce the best results
(blue) and recall greater than .75 indicating that they recognize more than 75% among the highly cited patents.

Model Precision Recall F1-Score Accuracy -
Model Precision Recall F1-Score Accuracy
PatentBERT-MLP .55 .50 52 .50
PatentBERT-GCN 61 58 59 58 PatentBERT-MLP 49 .49 49 Sl
PatentBERT-GTN 70 69 70 70 PatentBERT-GCN 56 36 56 4
PatentBERT-GSAGE | .74 73 73 73 PatentBERT-GTN 72 71 71 69
PatentBERT-GSAGE 12 71 1 .10

Table 3: The citation prediction (best in blue) on high
(positive) vs rest (negative) to show whether the models
detect the high quality patents from the rest.

Model Precision Recall F1-Score Accuracy
PatentBERT-MLP .55 51 52 51
PatentBERT-GCN .61 .59 .60 .69
PatentBERT-GTN 73 73 73 73

PatentBERT-GSAGE 74 74 74 74

Table 4: Citation prediction (best in blue) on high (posi-
tive) vs middle (negative) to differentiate the high quality
patents from the “mediocore” ones.

4.3 Explanations with GNNs

One primary motivation for designing graph-based
methods is the capability to provide explanations
for the predictions (Kakkad et al., 2023; Kosan
et al., 2023). Note that it is difficult to explain
patent quality from the text itself with traditional
methods such as LIME (Ribeiro et al., 2016) as
the patent text is domain-specific and often written
by an expert lawyer with a lot of jargon. Thus,
our graph construction method becomes useful for
generating explanations. We choose a set of 50
nodes from both the classes. GNNExplainer (Ying
et al., 2019) is designed to explain the prediction
behavior of GNNs while producing a subgraph as
an explanation for node classification tasks. In this
context, we can gain insights into the relationships
between different nodes (patents) that impact cita-
tions. We compare these two sets of explanation
subgraphs obtained for the nodes in both classes.
We compute three graph-specific properties: den-
sity, degree, and clustering coefficient (CC). We
report the average of the values from the subgraphs

Table 5: Citation prediction (best in blue) on middle
(positive) vs low (negative) to differentiate the “medio-
core” patents from the low-quality ones.

in both classes. Table 6 shows the results. Clearly,
average clustering coefficient can distinguish be-
tween the explanation subgraphs of highly cited
patents from the explanation subgraphs of the low
cited ones. This indicates that the neighborhood of
the highly cited patents are densely connected.

Data  Label Citations  Avg. Density  Avg. Degree CC

A6l 1 high 0.470 5.705 0.265
A61 0 low 0.563 6.232 0.228
HO04 1 high 0.322 16.22 0.46
HO4 0 low 0.287 10.826 0.331
G06 1 high 0.221 14.368 0.431
G06 0 low 0.221 9.21 0.284

Table 6: Comparison of graph-based properties in the
explanation subgraphs for nodes in both classes. CC
denotes average clustering co-efficient of the nodes.

B
@ g

Figure 1: Explanation subgraph of node 7 with the
patent titled “Interchangeable shaft assemblies for use
with a surgical instrument” produced by the GNN-
explainer method (Ying et al., 2019). Please refer to
Table 7 for the specific patent-related information.

4.3.1 Example Explanation Subgraph

We show an example of the explanation subgraph
that is obtained from our framework with the GN-
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Node ID  Connection

Title

Citations

7 Self Interchangeable shaft assemblies for use with a surgical instrument 508
21 Direct Modular powered surgical instrument with detachable shaft assemblies 592
59 Direct Drive system lockout arrangements for modular surgical instruments 538
63 Direct Rotary powered articulation joints for surgical instruments 531
193 Direct Locking arrangements for detachable shaft assemblies 409
1389 Direct Robotically powered surgical device with manually-actuatable reversing system 117
1122 Indirect Shaft assembly arrangements for surgical instruments 153
20315 Indirect Articulation mechanism for surgical instrument 1206

1287
1201
1118

Indirect
Indirect
Indirect

Surgical device having multiple drivers
Hand held rotary powered surgical instruments with end effectors
Articulatable surgical instrument configured for detachable use with a robotic system

195
142
153

Table 7: Information on patents/nodes of example explanation subgraph in Fig. 1. We observe that explanation
subgraph attached to a highly cited node/patent consists of nodes/patents that are highly cited. Interestingly, all the

nodes that are both indirectly or directly connected to the node/patent being explained have high citations.

Model 2000-2004 2005-2009 2010-2014
Acc Pr Re F1 Acc Pr Re F1 Acc Pr Re F1

Doc2vec-GCN 0.61 0.66 0.69 0.67 | 0.66 0.67 0.84 0.74 | 0.68 0.68 0.89 0.77
Doc2Vec-GTN 0.65 072 066 0.69 | 0.67 0.68 083 075 | 0.69 0.68 089 0.77
Doc2Vec-GSAGE 0.65 072 067 0.70 | 0.66 0.0.68 0.81 0.74 [ 0.71 0.70 0.88 0.78
PatentBert-GCN 0.66 0.73 0.67 0.70 | 0.69 0.73 075 074 | 072 0.73 085 0.78
PatentBert-GTN 0.67 0.76 065 0.70 | 0.70 0.74 076 075 | 0.73 0.75 0.82 0.78
PatentBert-GSAGE | 0.67 0.76 0.64 0.69 | 0.69 0.74 073 073 |1 073 075 0.83 0.78

Table 8: Results on the test dataset with patents only from the year of 2016 in A61 where Acc denotes accuracy and
Pr, Re, FI denote Precision, Recall and F1-score for the positive class. We construct three different training sets
from a span of 5-years from 2000-2014. The results show that training with recent patents have a more accurate

prediction of citation classes for the future patents.

NExplainer method (Ying et al., 2019). In Figure 1,
we present the subgraph resulting from the explana-
tion of the patent titled “Interchangeable shaft as-
semblies for use with a surgical instrument” (node
with the index 7). Note that there are several nodes
that are directly connected (with the dark edges).
The graph edges are color-coded to convey their
strength: black edges represent strong connections,
while the shadow lines indicate weaker connec-
tions. We extract the critical subgraph nodes based
on the presence of black edge lines, signifying their
importance in the explanation subgraph.

Furthermore, to understand the example of the
patents in the explained subgraph, we present the
patent title, the number of citations, and the con-
nection type in Table 7. The focal patent (node 7)
is highly cited patent with 508 citations. Notably,
both directly and indirectly connected nodes also
have titles related to surgical devices and instru-
ments same as the focal node, with high citation
counts. This explainer subgraph example suggests
that the number of citations in the similar patents
might indirectly impact the number of citation of
the focal patent, even though our proposed GNNs
do not use this information for the prediction.

4.4 TImpact of Recency on Citations

We demonstrate that the recency of the patents
are useful for patent citation prediction. Here we
evaluate the influence of patents from recent years

within the A61 CPC class. We utilize three distinct
training sets with five years of patents: 2000-2004,
2005-2009, and 2010-2014, respectively. The test
set remain consistent across all experiments with
patents from 2016. The results, presented in Table
8, indicate that training with more recent patents
enhances the models’ predictive capabilities of ci-
tation classes for the future patents. For instance,
when using the PatentBert-GSAGE approach, we
achieve higher levels of accuracy, precision, re-
call, and F1-score when training with patents from
2010-2014 to predict citations for patents in 2016.

5 Discussions

We draw several key takes from the study. (/)
Text and network structure matter: Graph-based
Al models (GNNs) can predict patent citation ac-
curately only from the text of title, abstract, and
claims. Understanding the network structure of
the patent landscape is also important. (2) Expla-
nation is the key: Though several deep learning
models have good predictive power, they might
lack domain-specific explanations and the GNN-
based explainers might be helpful. (3) Recent data
is important: The text from recent patents are more
useful for citation prediction, thus, models should
be mindful about the training data and possibly
need re-training regularly.

Code and data are accessible at https://github.com/
robiS6/patent_high_citation/.
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6 Ethical considerations

In this work, we have built AI models based on
textual information and patent semantic network to
predict patent citations after the patents are granted.
We do not foresee any ethical issues from our study.

7 Limitations

This paper addresses a timely subject related to
Al-based methods to predict patent citations. The
dataset and the model used for this study are pub-
licly available. While the paper shows the capabil-
ity graph-based approaches towards patent citation
prediction, one could further investigate the reason-
ing on patents getting high citations and build a few
prototypes.

378



References

Sophia Althammer, Mark Buckley, Sebastian Hofstitter,
and Allan Hanbury. 2021. Linguistically informed
masking for representation learning in the patent do-
main. arXiv preprint arXiv:2106.05768.

Juho Bai, Inwook Shim, and Seog Park. 2020. Mexn:
Multi-stage extraction network for patent document
classification. Applied Sciences, 10(18):6229.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:
A pretrained language model for scientific text. arXiv
preprint arXiv:1903.10676.

Fernando Benites, Shervin Malmasi, and Marcos
Zampieri. 2018. Classifying patent applica-
tions with ensemble methods. arXiv preprint
arXiv:1811.04695.

Gaetano Cascini and Manuel Zini. 2008. Measuring
patent similarity by comparing inventions functional
trees. In Computer-Aided Innovation (CAI) IFIP 20th
World Computer Congress, Proceedings of the Sec-
ond Topical Session on Computer-Aided Innovation,
WG 5.4/TC 5 Computer-Aided Innovation, September
7-10, 2008, Milano, Italy, pages 31-42. Springer.

Alok K Chakrabarti, Israel Dror, and Nopphdot Eak-
abuse. 1993. Interorganizational transfer of knowl-
edge: an analysis of patent citations of a defense

firm. IEEE Transactions on Engineering Manage-
ment, 40(1):91-94.

Chaomei Chen and Diana Hicks. 2004. Tracing knowl-
edge diffusion. Scientometrics, 59(2):199-211.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

David Encaoua, Dominique Guellec, and Catalina
Martinez. 2006. Patent systems for encouraging in-
novation: Lessons from economic analysis. Research
policy, 35(9):1423-1440.

Lintao Fang, Le Zhang, Han Wu, Tong Xu, Ding Zhou,
and Enhong Chen. 2021. Patent2vec: Multi-view
representation learning on patent-graphs for patent
classification. World Wide Web, 24(5):1791-1812.

Sijie Feng. 2020. The proximity of ideas: An analysis
of patent text using machine learning. PloS one,
15(7):¢0234880.

Mattyws F Grawe, Claudia A Martins, and Andreia G
Bonfante. 2017. Automated patent classification us-
ing word embedding. In 2017 16th IEEE Interna-
tional Conference on Machine Learning and Appli-
cations (ICMLA), pages 408—411. IEEE.

Bronwyn H. Hall, Adam Jaffe, and Manuel Trajtenberg.
2005. Market value and patent citations. The RAND
Journal of Economics, 36(1):16-38.

Bronwyn H Hall, Adam B Jaffe, and Manuel Tra-
jtenberg. 2001. The nber patent citation data file:
Lessons, insights and methodological tools. Working
Paper 8498, National Bureau of Economic Research.

William L. Hamilton, Rex Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems,
NIPS’17, page 1025-1035. Curran Associates Inc.

Dietmar Harhoff, Francis Narin, F. M. Scherer, and Ka-
trin Vopel. 1999. Citation Frequency and the Value
of Patented Inventions. The Review of Economics
and Statistics, 81(3):511-515.

Po-Hsuan Hsu, Dokyun Lee, Prasanna Tambe, and
David H. Hsu. 2020. Deep learning, text, and patent
valuation.

Junegak Joung and Kwangsoo Kim. 2017. Monitor-
ing emerging technologies for technology planning
using technical keyword based analysis from patent
data. Technological Forecasting and Social Change,
114:281-292.

Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu
Aggarwal, and Sourav Medya. 2023. A survey on ex-
plainability of graph neural networks. arXiv preprint
arXiv:2306.01958.

MMS Karki. 1997. Patent citation analysis: A policy
analysis tool. World Patent Information, 19(4):269—
272.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Edmund W Kitch. 1977. The nature and function of the
patent system. the Journal of Law and Economics,
20(2):265-290.

Mert Kosan, Samidha Verma, Burouj Armgaan,
Khushbu Pahwa, Ambuj Singh, Sourav Medya,
and Sayan Ranu. 2023. Gnnx-bench: Unravel-
ling the utility of perturbation-based gnn explain-
ers through in-depth benchmarking. arXiv preprint
arXiv:2310.01794.

Jey Han Lau and Timothy Baldwin. 2016. An em-
pirical evaluation of doc2vec with practical insights
into document embedding generation. arXiv preprint
arXiv:1607.05368.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-
tional conference on machine learning, pages 1188—

1196. PMLR.

Jieh-Sheng Lee and Jieh Hsiang. 2019. Patentbert:
Patent classification with fine-tuning a pre-trained
bert model. arXiv preprint arXiv:1906.02124.

Jieh-Sheng Lee and Jieh Hsiang. 2020. Patent classi-
fication by fine-tuning bert language model. World
Patent Information, 61:101965.

379


http://www.jstor.org/stable/1593752
https://doi.org/10.3386/w8498
https://doi.org/10.3386/w8498
https://doi.org/10.2139/ssrn.3758388
https://doi.org/10.2139/ssrn.3758388

Richard Levin. 2004. A patent system for the 21st
century. Issues in Science and Technology, 20(4):49—
54.

Shaobo Li, Jie Hu, Yuxin Cui, and Jianjun Hu. 2018.
Deeppatent: patent classification with convolutional
neural networks and word embedding. Scientomet-
rics, 117:721-744.

Rui Meng, Sanqgiang Zhao, Shuguang Han, Daqing He,
Peter Brusilovsky, and Yu Chi. 2017. Deep keyphrase
generation. arXiv preprint arXiv:1704.06879.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word

representations in vector space. arXiv preprint
arXiv:1301.3781.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Nar-
jes Nikzad, Meysam Chenaghlu, and Jianfeng Gao.
2021. Deep learning—based text classification: a com-
prehensive review. ACM computing surveys (CSUR),
54(3):1-40.

Diego Moll4 and Dilesha Seneviratne. 2018. Overview
of the 2018 alta shared task: Classifying patent ap-
plications. In Proceedings of the Australasian Lan-
guage Technology Association Workshop 2018, pages
84-88.

Francis Narin. 1994. Patent bibliometrics. Scientomet-
rics, 30(1):147-155.

Heeyong Noh, Yeongran Jo, and Sungjoo Lee. 2015.
Keyword selection and processing strategy for apply-
ing text mining to patent analysis. Expert Systems
with Applications, 42(9):4348-4360.

Charles Oppenheim. 2000. Do patent citations count.
The web of knowledge: A festschrift in honor of Eu-
gene Garfield, pages 405—-432.

Subhash Chandra Pujari, Annemarie Friedrich, and Jan-
nik Strotgen. 2021. A multi-task approach to neural
multi-label hierarchical patent classification using
transformers. In Advances in Information Retrieval:
43rd European Conference on IR Research, ECIR
2021, Virtual Event, March 28-April 1, 2021, Pro-
ceedings, Part I 43, pages 513-528. Springer.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135—
1144.

Julian Risch and Ralf Krestel. 2019. Domain-specific
word embeddings for patent classification. Data
Technologies and Applications, 53(1):108—122.

Bhaven N. Sampat and Arvids A. Ziedonis. 2005.
Patent Citations and the Economic Value of Patents,
pages 277-298. Springer Netherlands, Dordrecht.

Homaira Huda Shomee, Zhu Wang, Sathya N Ravi,
and Sourav Medya. 2024. A comprehensive sur-
vey on ai-based methods for patents. arXiv preprint
arXiv:2404.08668.

Jasjit Singh. 2003. Social networks as drivers of knowl-
edge diffusion. Technical report, Technical report.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Arnold Verbeek, Koenraad Debackere, and Marc Luwel.
2003. Science cited in patents: A geographic" flow"
analysis of bibliographic citation patterns in patents.
Scientometrics, 58(2):241-263.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka
Zitnik, and Jure Leskovec. 2019. Gnnexplainer: Gen-
erating explanations for graph neural networks. Ad-
vances in neural information processing systems, 32.

Yongmin Yoo, Cheonkam Jeong, Sanguk Gim, Junwon
Lee, Zachary Schimke, and Deaho Seo. 2023. A
novel patent similarity measurement methodology:
Semantic distance and technological distance. arXiv
preprint arXiv:2303.16767.

Kenneth A Younge and Jeffrey M Kuhn. 2016. Patent-
to-patent similarity: A vector space model. Available
at SSRN 2709238.

Seongjun Yun, Minbyul Jeong, Rachyun Kim, Jaewoo
Kang, and Hyunwoo J Kim. 2019. Graph transformer
networks. Advances in neural information process-
ing systems, 32.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283-17297.

380


https://doi.org/10.1007/1-4020-2755-9_13
https://openreview.net/forum?id=rJXMpikCZ

A Appendix

A.1 Background

Types of Patents. In the United States, there are
three major types of patents granted by the United
States Patent and Trademark Office (USPTO).
These patents are designed to protect different
kinds of inventions and intellectual property. (1)
Utility Patents: Ultility patents are the most com-
mon type of patent and cover new and useful pro-
cesses, machines, manufactured articles, and com-
positions of matter.(2) Design Patents: Design
patents protect the ornamental or aesthetic design
of a functional item. They are often sought for
products with unique visual characteristics, such
as consumer electronics, jewelry, and automotive
parts. (3) Plant Patents: Plant patents protect new
and distinct varieties of plants that have been asexu-
ally reproduced (e.g., through cuttings or grafting).

Components of Utility Patents. In this work we
mainly focus on utility patents. Ultility patents,
also known as “patents for inventions”, protect new
and useful processes, manufactured articles, and
compositions of matter. We use these key compo-
nents of a utility patent in our study: (1) Title: The
title provides a concise and descriptive name for
the invention. (2) Abstract: An abstract is a con-
cise summary of the invention, typically limited
to 150-250 words. It provides a brief overview of
the invention’s technical aspects and applications.
(3) Claims: The claims define the legal bound-
aries of the patent. They precisely describe the
elements or steps that make the invention unique
and patentable. We use the text of title, abstract
and claims to create features for our patent citation
prediction task. The claims have been to useful for
other task such as CPC (topic-based) classification
(Lee and Hsiang, 2020). Title and abstracts are
often used in similar natural language processing
tasks such as keyphrase generation (Meng et al.,
2017).

Importance of Patent Citations. Patent cita-
tions, which refer to the references to prior patents
within a newly granted patent, serve several pur-
poses and are important for various stakeholders
in the intellectual property ecosystem. (1) Assess-
ment of Novelty and Non-obviousness: Patent ex-
aminers use patent citations to assess the novelty
and non-obviousness of a new invention. By exam-
ining the references cited in a patent application,
examiners can determine whether the claimed in-

vention is truly novel and represents a non-obvious
advancement over prior art. This is a fundamental
step in the patent examination process and helps
ensure that only truly innovative inventions receive
patent protection. (2) Prior Art Search: For inven-
tors and patent applicants, reviewing patent cita-
tions can aid in understanding the existing land-
scape of related technologies and inventions, often
referred to as "prior art." This can help inventors
refine their claims, identify gaps in existing knowl-
edge, and potentially avoid pursuing inventions that
are unlikely to be granted patents due to the exis-
tence of prior art. (3) Patent Valuation: A patent
with numerous citations from other patents may be
considered more valuable because it indicates that
the patented technology is widely recognized as
influential or relevant within a specific industry or
field.

In summary, patent citations are essential for the
evaluation and utilization of intellectual property.
They provide valuable information about the state
of innovation, the relationship between patents,
and the technological advancements within spe-
cific fields. Thus, we focus on building Al-based
models to predict the citations.

A.2 Related Work

Patent classification. Recent advancements in
Machine Learning have led to the application of
various ML techniques aimed at enhancing the effi-
ciency of patent classification. Benites et al. (Ben-
ites et al., 2018) presented a top-performing so-
lution in the ALTA 2018 Shared Task on patent
classification (Molla and Seneviratne, 2018), uti-
lizing the full text of patent documents. Grawe
et al. (Grawe et al., 2017) employed an LSTM in
conjunction with word embeddings for classifica-
tion. Risch and Krestel (Risch and Krestel, 2019)
pre-trained fastText word embeddings using a sub-
stantial corpus of patent documents, integrating
them with Gated Recurrent Units (GRUs) for clas-
sification. Li et al. (Li et al., 2018) proposed Deep-
Patent, which is a deep learning algorithm based on
convolutional neural networks. PatentBERT (Lee
and Hsiang, 2019) focuses on fine-tuning a pre-
trained BERT (Devlin et al., 2018) model which
uses only the first claim of a patent and achiev-
ing noteworthy results. Patent2vec (Fang et al.,
2021) adopted a multi-view graph-based approach
with tags to patent classification. Bai et al. (Bai
et al., 2020) proposed a Multi-stage Feature Extrac-
tion Network (MEXN), comprising a paragraph
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encoder and summarizer for all patent paragraphs
to enhance classification. Pujari et al. (Pujari et al.,
2021) developed a hierarchical transformer-based
multi-task model that trained an intermediate SciB-
ERT (Beltagy et al., 2019) layer using title and
abstract as input text. In a comparative analysis of
BERT and SciBERT for patent classification, Al-
thammer et al. (Althammer et al., 2021) discovered
that the SCIBERT model outperformed BERT. Za-
heer et al. propose Big Bird (Zaheer et al., 2020), a
long-text transformer, and apply it to patent classi-
fication by incorporating title, abstract, and claims
into the classification process.

Patent Similarity. Measuring similarity between
patents has become another prominent field of re-
search involving patents. Consequently, a substan-
tial body of research has concentrated on method-
ological aspects, employing machine learning and
deep learning, particularly natural language pro-
cessing (NLP) techniques, to gauge patent simi-
larity. Cascini and Zini (Cascini and Zini, 2008)
introduced a clustering algorithm that evaluates
patent similarity by taking into account hierarchi-
cal and functional interactions among patents. Vec-
tor space models have also been utilized in patent
analysis. Younge et al. (Younge and Kuhn, 2016)
developed a single vector space-based model for
automatically measuring the continuous similar-
ity distance between pairs of patents. Feng (Feng,
2020) devised a similarity measurement technique
using vector space representations of patent ab-
stracts with Document Vectors (Doc2Vec) (Le and
Mikolov, 2014). Noh and Lee applied text mining
to patent analysis by employing keyword selection
and processing strategies (Noh et al., 2015). Sim-
ilarly, Joung and Kim adopted a keyword-based
approach for technology planning (Joung and Kim,
2017). Recently, Yoo et al. (Yoo et al., 2023) pro-
posed a hybrid method that automatically assesses
patent similarity, taking into account both semantic
and technological similarities.

Patent Citations. Patent citations serve as a
significant metric to gauge intellectual heritage
and influence. They have been employed to as-
sess the dissemination and exchange of knowl-
edge in research and development, as well as to
measure research productivity and impact (Narin,
1994). The information derived from patent cita-
tions can effectively portray the transmission of
knowledge (Karki, 1997; Oppenheim, 2000). Pre-
vious investigations have delved into the broader

patterns of knowledge transfer through patent cita-
tions. For instance, Chakrabarti et al. (Chakrabarti
et al., 1993) scrutinized inter-organization patent ci-
tation trends in defense-related research and devel-
opment transitioning into the civilian sector. Chen
and Hicks (Chen and Hicks, 2004) examined the in-
teractions between academia and industry by scru-
tinizing citations between academic papers and
patents in the field of tissue engineering. Verbeek et
al. (Verbeek et al., 2003) explored the geographic
distribution of scientific research’s influence on
patents in the domains of biotechnology and in-
formation technology. Singh (Singh, 2003) investi-
gated how the social distance between inventors im-
pacts the flow of knowledge within USPTO patents.
These studies on knowledge diffusion were primar-
ily based on the citation patterns between pairs of
entities.

A.3 Data

Our study includes the granted (accepted) patents
from the United States Patent and Trademark Of-
fice (USPTO)>. The number of patents grow expo-
nentially over the years. We have included recent
patents over the last two decades from 2000 to
2022 for our analysis. Our study focuses on cita-
tions which often depend on the area or topics of
the invention. This fact naturally leads us to focus
on subcategories of patents. For a better under-
standing on how patents are cited as well to build
better models to predict the citations, we consider
patents under major (based on numbers) categories
rather than all the patents. We follow the standard
classification system for patents called the CPC
categorization®. We choose top three CPC classes
in terms of the number of patents categorized in
them. Table 1 shows the classes and the number of
patents in each category.

We show descriptive analysis of the data on the
distribution of several important components of
patents for the three CPC classes. Fig. 2 shows
statistics for all the three major CPC classes (A61,
HO04, and GO6) on average number of inventors
(team size), figures, sheets. One interesting ob-
servation is that A61 (i.e., patents in the medical
domain) has higher average then the other two for
all the years. Over the years, all the values have an
upward trend. Upward trend in team size implies
the collaboration is increasing over the years. On

Zhttps://www.uspto.gov/
3https://www.uspto.gov/web/patents/classification/cpc/
html/cpc.html
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the other hand, Fig. 3 shows statistics on the aver-
age number of claims (all and dependent) for all
the three major CPC classes. Note that the claims
describe the elements or steps that make the in-
vention unique and patentable. Interestingly, in all
areas, the number of claims look similar. Over the
years, all the values have mostly a downward trend
indicating that number of claims might not be a
driving factor to get a patent accepted.

A.4 Methods

There are numerous deep learning-based methods
that have been proposed for text classification tasks
(Minaee et al., 2021; Shomee et al., 2024). How-
ever, in the patent citation prediction tasks, there
are two major challenges:

* The texts in patents are not similar to the texts
in research papers or news articles.

* Our aim to build models that are explainable,
i.e, we can find the reasoning behind their pre-
dictions. Furthermore, we aim to understand
the mechanism behind a patent getting high
citations.

A4.1 Text-based AI Methods

We use two methods to generate representations for
the patent documents from traditional text-based
Al or NLP models: Doc2Vec and Patent Bert. Note
that these representations are used in combination
with a multi-layered perceptron (MLP) for the clas-
sification tasks in the experiments. We describe
these two methods one being generic and another
focusing on patent data:

¢ Doc2Vec (Le and Mikolov, 2014): Doc2Vec,
also known as Paragraph Vector, is an exten-
sion of Word2Vec (Mikolov et al., 2013), a
popular method (Lau and Baldwin, 2016) for
representing paragraphs in stead of words as a
vector representation in natural language pro-
cessing (NLP). While Word2 Vec learns vector
representations for words, Doc2Vec goes a
step further by learning representations for
entire documents or paragraphs while captur-
ing the semantic meaning and context of a
document. Each document is represented as
a fixed-length vector. We use the represen-
tations produced by Doc2Vec and feed them
through an MLP to predict the citation class
of a patent.

» PatentBert (Lee and Hsiang, 2020): This
method fine-tunes a pre-trained BERT model
and applies it to the task of patent classifi-
cation. It uses the BERT based pre-trained
model for fine-tuning.

A.4.2 Graph-based AI Methods

Graph construction. We construct a graph from
the semantic similarity between the patents where
each node is a patent. Two nodes are connected if
they have a high semantic similarity.

Proximity creation via training the Doc2Vec
model: We represent the patent documents with
a 100-dimensional vector representations (embed-
dings). These embeddings are generated from train-
ing a Doc2Vec model with approximately 200,000
patent texts which include their titles, abstracts,
and claims. These embeddings are designed to
capture the semantic similarity between patent text
data, thus will help us to create the edges between
patents.

Edge Construction: Edges in the graph are com-
puted based on the semantic similarity between
the nodes (patent embeddings computed above),
specifically using the Doc2Vec features. An edge
is created between nodes when their similarity sur-
passes a selected threshold, typically falling within
the range of 0.62 to 0.8. The choice of the similar-
ity threshold is based on the desired density of the
graph, which we vary from 5 to 25.

Node Feature Representation: We use graph neu-
ral network (GNN)-based method to perform the
patent citation prediction task. However, GNNs
require initial features for the nodes. We again
compute these features based on the patent text.
Specifically, we create two distinct types of node
features from two different embedding model (we
use these features separately in the experiments):

* Features from Doc2Vec: The first type of
node features is generated using the Doc2Vec
model trained in the previous step. These fea-
tures are calculated based on the semantic con-
tent of the patent text data.

* Features from PatentBert (Lee and Hsiang,
2020): The second type is obtained from the
PatentBert model which is trained on a dataset
comprising over 100 million patents, includ-
ing international patents. This model, based
on BERTLARGE (Devlin et al., 2018), pro-
duces 1024-dimensional feature representa-
tions.
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Graph Neural Networks. Consider a graph, de-
noted as G = (V, X, A), consisting of a set of
nodes (V') and a set of edges (£). Let X € R7xd
represent the d-dimensional features of n nodes
in V, while A € {0,1}"*" is the adjacency ma-
trix specifying edges in the edge set E/. Graph
Neural Networks (GNNs) (Kipf and Welling, 2016;
Hamilton et al., 2017; Velickovi¢ et al., 2018) have
proven to be effective in making predictions on
such graphs by learning relevant low-dimensional
node representations through a message-passing
mechanism.

During message passing, each node (v € V') up-
dates its representation by aggregating information
from itself and its set of neighbors N (u). Mathe-
matically, the update in [-th step can be represented
as follows:

D = AGGR(BI™Y, {h{ Vi e N(w)}) ()
where th ) is the updated representation of node

w at iteration [, obtained by applying the aggrega-
tion operation (AGG R) to combine its previous
representation (hg _1)) with those of its neighbor-
ing nodes. The representation at the O-th step is the
initial feature set of the nodes. GNNss iteratively
apply this aggregation scheme to refine the node

representations, capturing the structural dependen-
cies within the graph. The GNNs are effective for
a wide range of prediction tasks over graphs such
as node classification, link prediction, and graph
classification. We use three types on GNNs for our
study.

(1) GCN (Kipf and Welling, 2016): In the mes-
sage passing framework, GCN uses sum as its Ag-
gregation function. The propagation rule is as fol-
lows:

HO — (D" V2AD 12 -V (-1 (2

where A = A + I is the adjacency matrix with
self connections. W(~1) is layer specific weight
matrix. o is the activation function. H' is matrix of
activation in [ th layer. In theory, GCN considers
spectral convolution on graph as a multiplication
of signal and filter.

(2) GraphSage (Hamilton et al., 2017): Graph-
Sage extends the ideas of message aggregation in
two important ways. First, considers multiple ag-
gregator functions like mean, element wise max
pooling and LSTM. Second, it concatenates node’s
current representation with the aggregated neigh-
borhood vector.
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AGGE = AGG(! Vi € N(u)))
) = o(WConcat(h{™, AGGL™)

(3) Graph Transformer Network (GTN) (Yun
et al., 2019): Graph Transformer Networks (GTN)
uses self-attention mechanisms to capture relation-
ships between the nodes in the graph. This self-
attention mechanism makes it more effective in the
traditional prediction tasks over graphs. When X is
the set of node features, we can represent the node
embeddings as H = Enc(X ), where Enc is the en-
coding function, typically based on self-attention
mechanisms. The self-attention mechanism com-
putes attention scores between nodes and combines
their features accordingly:

(H - Wo)(H - Wi)"
Vdy,

Here, Att, o, W,, Wy, and W, are Attention,
softmax function, learnable weight matrices, and
dj, is the dimension of the key vectors. GTNs
often employ multi-head attention, which allows
the model to focus on different aspects of the
graph simultaneously. The final output from the
self-attention mechanism is typically used to per-
form a graph convolution operation. This op-
eration aggregates information from neighboring
nodes to update node features. The graph convo-
lution can be represented as: GraphConv(H) =
o (MultiHead(H ) - W,). Here, o is the activation
function, and W, is another learnable weight ma-
trix.

Att(H):a< )-(H‘WU)

A.5 Experimental Settings
A.5.1 Dataset

The focus of the study is on building methods to
predict a quality of a patent from its citations. Es-
sentially, we aim to classify patents with high and
low citations. Thus, given a new patent we would
be predict whether the patent will have high or
low citations. We use three types of patent data
that are prepared for three major CPC (Cooperative
Patent Classification)* classes: A61, HO4, and GO06.
This results in nine separate datasets with three
different periods of citation history from the year
of 2000: (1) Citation history for 3 years (3-years-
history): Patents published until 2019 as we can

“https://www.uspto.gov/web/patents/classification/cpc/
html/cpc.html

count citation up to 2022; (2) Citation history for
3 years (5-years-history): Patents published until
2017. (3) Citation history for 3 years (10-years-
history): Patents published until 2011.

Dataset Preparation for Classification Task
Recent two years of data from each patent dataset
(among the nine datasets above) are kept for testing.
The remaining data is used for model training. This
test dataset is designed to understand the model be-
havior to predict citation behavior on new unseen
patents.

A.5.2 Training and Test Data Split

We consider several variations in splitting the Train-
ing and Test dataset corresponding various experi-
ments. The detailed description on class sizes and
train/test splits are provided in Tables 9,10,11,12.
We have considered different cut-off thresholds to
determine a patent to be highly cited or lowly cited.
The cut-offs corresponding to experiments in Ta-
ble 2 for highly cited patents in the A61, HO4, and
GO06 CPC classes are 18, 15, and 16 citations re-
spectively, with patents below these cut-offs are
considered lowly cited.

Table 9: Train/Test Data Distribution corresponding to
experiments in Table 2: 3-years-history (Train: 2000-
2017, Test: 2018-2019), 5-years-history (Train: 2000-
2015, Test: 2016-2017), 10-years-history (Train: 2000-
2010, Test: 2011-2012)

CPC Classes | Years (Train, Test)
Ab61 3y (40874, 2624)
A61 5y (37799, 3142)
A61 10y (20912, 5981)
HO04 3y (59713, 1986)
HO4 Sy (51683, 7306)
HO04 10y (25699, 11023)
G06 3y (52701, 2389)
G06 Sy (46521, 5123)
G06 10y (21707, 8925)

A.5.3 Performance Measures

We compare the proposed methods with three fol-
lowing performance measures: accuracy, recall of
positive class (high citations), and F1-Score on pos-
itive class.

* Accuracy: It measures how well the models
performs in correctly classifying all patents
including both with high citations and low
citations.

* Recall of positive class (high citations): One
of our major goals is to retrieve the high qual-
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Table 10: Class Size Distribution for A61 CPC Classes corresponding to experiments in Tables 3, 4, 5 (Train:

2000-2015, Test: 2016)

Category Train (high, low)

Test (high, low) | Total (Train, Test)

(Top, Middle)
(Top, Bottom)
(Middle, Bottom)

(8996, 8996)
(9004, 8996)
(8996, 8996)

(2157, 1078)
(2148, 1078)
(2157, 2157)

(17992, 3235)
(18000, 3226)
(17992, 4314)

Table 11: Train/Test data distribution corresponding to
experiments in Table 8.

Period Train | Test
2000-2004 | 10933 | 2687
2005-2009 | 8132 | 2687
2010-2014 | 13198 | 2687

Table 12: Yearly Distribution of Patent Selection for
experiments in Table 2.

Year | A6l | H04 | GOo6
2000 | 188 655 489
2001 | 944 | 2804 | 2118
2002 | 687 | 2905 | 2144
2003 | 713 | 2984 | 2277
2004 | 1487 | 3468 | 2458
2005 | 2978 | 3017 | 2368
2006 | 3677 | 4604 | 3552
2007 | 3132 | 3884 | 3120
2008 | 2826 | 3770 | 3356
2009 | 3039 | 3971 | 3681
2010 | 4494 | 4758 | 5045
2011 | 4309 | 4650 | 4837
2012 | 4946 | 5330 | 5568
2013 | 5007 | 5321 | 5818
2014 | 4543 | 4830 | 4973
2015 | 2903 | 2819 | 3016
2016 | 1915 | 1682 | 1811
2017 | 1312 | 7594 | 4659

ity patents. Thus, we use Recall for the patents
with high citations. It measures the model’s
ability to identify patents with high citation
out of all patents with high citations. A high
recall would suggest that the model has high
capability to identify high-quality patents.

* F1-Score on positive class: This assesses
the model’s ability to accurately predict
patents with high citations while balancing

between precision and recall: F'lpositive =
2-Precisionpositive ‘Recallpositive
Precisionpositive +Recallpositive

A.5.4 Other Settings

All experimental work has been conducted with a
Google Cloud Ubuntu virtual machine with 64 GB
of RAM and 8 vCPUs (equivalent to 4 physical
CPU cores). We have also set the maximum num-
ber of epochs to 500, the optimizer as Adam opti-
mizer, weight decay of 54, loss function as the
cross-entropy function. We systematically vary the

learning rate across a range from 0.01 to 0.00001
to explore how different learning rates affect the
model’s convergence and performance.

A.6 Reproducibility and Code

We have developed a publicly accessible codebase
(https://github.com/robi56/patent_high_citation/).
We believe that it will help practitioners either
implement the techniques in practice or use them
as competing baselines.
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Models CPC Classes
A61 \ HO04 \ G06
Citation Predictions @
3y [ 5y [ 10y [ 3y [ 5y [10y | 3y | 5y | 10y
Doc2Vec-MLP 0.77 | 0.85 | 0.75 | 0.68 | 0.68 | 0.68 | 0.64 | 0.63 | 0.57
PatentBERT-MLP 0.74 | 0.85 | 0.89 | 0.69 | 0.69 | 0.69 | 0.68 | 0.66 | 0.67

Doc2Vec-GCN 0.78 | 0.84 | 0.75 0.73 | 0.73 | 0.73 | 0.69 | 0.62 | 0.57
Doc2Vec-GTN 0.74 | 0.81 | 0.75 | 0.69 | 0.61 | 0.57 | 0.58 | 0.66 | 0.60
Doc2Vec-GSAGE 0.76 | 0.82 | 0.76 | 0.71 | 0.57 | 0.59 | 0.64 | 0.65 | 0.61
PatentBERT-GCN 0.74 |1 0.83 | 0.75 | 0.64 | 0.64 | 0.64 | 0.68 | 0.64 | 0.63
PatentBERT-GTN 0.75] 0.84 | 0.80 | 0.68 | 0.64 | 0.68 | 0.61 | 0.67 | 0.67
PatentBERT-GSAGE || 0.73 | 0.84 | 0.89 | 0.72 | 0.60 | 0.67 | 0.60 | 0.67 | 0.68

Table 13: Accuracy for Citation classification (top vs bottom). We use Top 10% as the highly cited category (positive
class) and Bottom 10% as the low cited category (negative class). Our graph-based methods often produce the best
results (blue) and accuracy up to .89 indicating that they are effective in patent citation prediction.

CPC Classes
A61 \ HO04 \ G06
Citation Predictions @
3y [ 5y [ 10y [ 3y [ 5y [ 10y | 3y | 5y [ 10y
Doc2Vec-MLP 0.86 | 091 | 0.78 | 0.78 | 0.78 | 0.78 | 0.75 | 0.72 | 0.59
PatentBERT-MLP 0.83 1092|090 | 0.79 | 0.79 | 0.79 | 0.79 | 0.73 | 0.65

Doc2Vec-GCN 0.87 | 091 | 0.78 0.83 | 0.83 | 0.83 | 0.79 | 0.72 | 0.59
Doc2Vec-GTN 0.83 |1 0.89 | 0.77 | 0.78 | 0.61 | 0.50 | 0.69 | 0.72 | 0.60
Doc2Vec-GSAGE 0.85 090 | 0.79 | 0.81 | 0.59 | 0.51 | 0.75 | 0.73 | 0.61
PatentBERT-GCN 0.84 | 0.90 | 0.78 | 0.74 | 0.74 | 0.74 | 0.79 | 0.73 | 0.61
PatentBERT-GTN 0.84 | 091 | 0.56 | 0.81 | 0.63 | 0.56 | 0.72 | 0.73 | 0.64
PatentBERT-GSAGE || 0.83 | 091 | 0.91 | 0.81 | 0.61 | 0.56 | 0.71 | 0.74 | 0.66

Models

Table 14: F1-Score of High Cited Patents: We use Top 10% as the highly cited category (positive class) and
Bottom 10% as the lowly cited category (negative class). Our graph-based methods often produce the best results.
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