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Abstract

Predictions of word-by-word conditional proba-
bilities from Transformer-based language mod-
els are often evaluated to model the incremental
processing difficulty of human readers. In this
paper, we argue that there is a confound posed
by the most common method of aggregating
subword probabilities of such language models
into word probabilities. This is due to the fact
that tokens in the subword vocabulary of most
language models have leading whitespaces and
therefore do not naturally define stop proba-
bilities of words. We first prove that this can
result in distributions over word probabilities
that sum to more than one, thereby violating
the axiom that P(Q2) = 1. This property results
in a misallocation of word-by-word surprisal,
where the unacceptability of the end of the cur-
rent word is incorrectly carried over to the next
word. Additionally, this implicit prediction of
word boundaries incorrectly models psycholin-
guistic experiments where human subjects di-
rectly observe upcoming word boundaries. We
present a simple decoding technique to reac-
count the probability of the trailing whitespace
into that of the current word, which resolves
this confound. Experiments show that this cor-
rection reveals lower estimates of garden-path
effects in transitive/intransitive sentences and
poorer fits to naturalistic reading times.

1 Introduction

Language models (LMs), which are trained to make
predictions about upcoming words, are at the core
of many natural language processing (NLP) appli-
cations. While most contemporary applications
involve generating text by sampling from the LMs’
conditional probability distribution, the magnitudes
of the probabilities they assign to each word in a
given sentence have been important from two per-
spectives. The first is from the perspective of LM
interpretability, which aims to study their predic-
tions and the linguistic knowledge encoded in their
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representations. A well-established paradigm in
this line of research is what has been dubbed “tar-
geted syntactic evaluation” (Linzen et al., 2016;
Gulordava et al., 2018; Marvin and Linzen, 2018),
in which probabilities of critical words in mini-
mal pairs (e.g. grammatical vs. ungrammatical sen-
tences) are compared.

Moreover, in cognitive modeling, conditional
probabilities from LMs are used to model the word-
by-word reading times of human subjects, often
under the theoretical link that the contextual pre-
dictability of a word determines its processing diffi-
culty (Hale, 2001; Levy, 2008). Recent work in this
line of research has evaluated surprisal estimates
(i.e. negative log probabilities) from LMs and has
shown that surprisal from larger Transformer-based
model variants are less predictive of naturalistic
reading times (Oh and Schuler, 2023b; Shain et al.,
2024; Steuer et al., 2023) and that surprisal greatly
underpredicts the processing difficulty of garden-
path constructions (van Schijndel and Linzen, 2021;
Arehalli et al., 2022; Huang et al., 2024).

As such, while the use of word-by-word proba-
bilities from LMs is popular in computational lin-
guistics research, we argue that there is a confound
for calculating them correctly that has gone un-
addressed. This confound is posed by subword
tokenization schemes (e.g. byte-pair encoding; Sen-
nrich et al., 2016) that are used to define the token-
level vocabulary for training most contemporary
LMs (e.g. Al@Meta, 2024; Google Gemini Team,
2024; Jiang et al., 2023). For languages that use
whitespace orthography, these subword tokeniza-
tion schemes often build the whitespace character
directly into the front of the tokens, thereby result-
ing in leading whitespaces. As a consequence, the
stop probability of a word (i.e. the probability of
the trailing whitespace) is never explicitly calcu-
lated, and therefore the sum over the probabilities
of all possible whitespace words can exceed one.

We propose a simple and efficient decoding
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method that reaccounts the probability of the
trailing whitespace into that of the current word,
which resolves this confound. Regression results
show that this correction reveals significantly lower
surprisal-based estimates of garden-path effects in
transitive/intransitive sentences and poorer fits of
LM surprisal to naturalistic reading times.

2 Confound From Leading Whitespaces
and Whitespace-Trailing Decoding

This section provides a proof that the leading
whitespaces of the LMs’ subword vocabulary re-
sult in inconsistent word probabilities, describes a
related confound, and proposes a simple decoding
method for addressing it.

2.1 Proof of Inconsistent Word Probabilities

On languages that use whitespace orthography, the
vocabulary V defined by the subword tokeniza-
tion scheme consists of the set of tokens that be-
gin with a whitespace Vp, and the set of tokens
that do not begin with a whitespace V;.! In the
context of next-word prediction, the sample space
of a whitespace-delimited word is Q = {x; , |
x1€Vp, x2.,€V, neN}, where n is the total num-
ber of subword tokens in each whitespace word as
determined by the tokenizer.

Theorem 1 Leading whitespaces of the LMs’
subword vocabulary can result in word probabili-
ties that violate the Kolmogorov (1933) axiom that
P(Q) = 1.

Existence Proof Let P(x;=j;) = 1 and P(x,=/ |
x1=j1) = 1, where j1€Vp and j,€V;. It follows
from the chain rule of conditional probabilities that:

P(x1=j1, x2=J2) = P(x1=j1) - P(x2=J2 | x1=j1)
=1-1=1. (D)

If word probabilities are simply defined as the
product of the probabilities of the tokens within
those words, then P(x;=j1) + P(x1=j1, xo=J2) > 1,
P(Q) > 1, and therefore the axiom is violated. m

For example, given the minimal pair / was a
matron in France and [ was a mat in France, where
matron is more likely than mat, the LM tokenizes
the two sentences as follows and calculates the

'V = V3 U V;, and V3 NV, = @. The subscripts respec-
tively represent the ‘beginning’ and ‘inside’ of a whitespace-
delimited word.

5.85 4.28 4.67 EFEEE 1.74 2.12

| Lwas La Lmat ron Lin
5.85 4.28 4.67 10.78
| was a mat in

(a) Surprisal values calculated with leading whitespaces.

6.30 3.84 4.68 WEFErE 2.11 1.75

I was,, a, mat ron,, in,
6.30 3.84 4.68 5.80
I was,, a, mat,, in,

(b) Surprisal values calculated with trailing whitespaces.

Figure 1: Surprisal values calculated for the partial sen-
tences I was a matron in and I was a mat in using the
GPT-2 XL LM (Radford et al., 2019), with leading
whitespaces (top; standard practice) and trailing whites-
paces (bottom; proposed in this work).

conditional probability of each token.?

I _was _a _mat ron _in _France )

I _was .a _mat _in _France 3)

The presence of leading whitespaces results in an
incorrect allocation of word-by-word surprisal. As
can be seen in Example 2, due to this tokenization,
P(umat ron | I _was _a) is factorized into P(_mat |
I wwas ca) - P(ron | I cwas .a .mat), and therefore
it follows that P(_mat ron | I _was _a) < P(umat |
I was .a), despite the fact that matron is more
acceptable than mat in the above context. Instead,
part of the ‘unacceptability’ of mat is incorrectly
carried over to P(uin | I was wa _mat), where _in
competes for probability mass against the highly
likely ron (Figure 1a).

2.2 Confound: Incompatibility With
Psycholinguistic Experimental Paradigms

Additionally, the presence of leading whitespaces
in subword tokens makes the LM’s predictions in-
compatible with the self-paced reading paradigm,
in which human readers directly observe the up-
coming word boundary.

mat €))

%In the context of the LM’s tokens, ‘.’ is used to denote
the explicit whitespace character that is part of the token, and
whitespace is used to delimit subword tokens.
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In Example 4, when human readers see mat, they
know that the next keystroke will reveal a new
whitespace-delimited word (analogous to observ-
ing that the next token will be in Vg) and not trans-
form it into e.g. matron (analogous to observing
that the next token will be in V7). In contrast, LMs
define a probability distribution over both Vg and
V after the token mat in the sequence The cat sat
on the mat.

While this confound is more apparent in the self-
paced reading paradigm, this is also a potential con-
found for studying data collected through the typi-
cal eye-tracking paradigm. This is because native
speakers of languages with whitespace orthogra-
phies have been shown to be sensitive to the loca-
tion of upcoming whitespaces through parafoveal
processing and utilize this information to plan eye
movements (Pollatsek and Rayner, 1982; Rayner
et al., 1998; Perea and Acha, 2009). Therefore,
although information about word boundaries is not
directly built into the design of the paradigm, it
can be argued that human subjects engaged in the
eye-tracking paradigm also face little uncertainty
about upcoming word boundaries.

2.3 Proposed Solution: Whitespace-Trailing
Decoding

This inconsistency and confound can be resolved
by reaccounting the probability of the trailing
whitespace as part of the word’s probability, in
lieu of that of the leading whitespace as LMs cur-
rently do (Examples 2 and 3). To this end, we pro-
pose whitespace-trailing (WT) decoding. Given a
word w;4 that consists of subword tokens xp,+1.n,,,
where n, is the total number of subword tokens
in the word sequence wj ;, and x,+1€V3p, and
Xn,+2.n., €V, WT decoding reallocates the prob-
ability of the leading whitespace of each word to
its previous word:?

P(W;H | wIl..t) =
P(xn,,+1€VB | Wi_s+1)
P(x,+1€VB | wi.1)

6))

Pt | wis) -

3See Appendix A for the proof that WT decoding results
in consistent word probabilities. However, we note that WT
decoding does not resolve other issues with subword units
that may be addressed by re-training LMs with different to-
kenization schemes (e.g. Nair and Resnik, 2023), which can
nonetheless be expensive. Concurrent work by Pimentel and
Meister (2024) points out this same issue and also proposes
WT decoding.

For instance, applying Equation 5 to Example 3
yields:

P(mat. | I-was_a.) =

P(. | I .was a .mat)
P(emat | I was _a) - P lowas ) (6)

As WT decoding simply involves the factoriza-
tion of whitespace probabilities by marginalizing
over tokens in Vp and rearranging them, it requires
no modifications to the LM and minimal over-
head. Additionally, the joint probability of the
entire sequence, and therefore metrics like perplex-
ity, changes minimally by a factor of the probability
of the final trailing whitespace with WT decoding.

As can be seen in Figure 1b, incorporating the
probabilities of trailing whitespaces correctly dif-
ferentiates between matron and mat in this context,
and removes the inherent relationship between the
two probabilities that holds with leading whites-
paces. Additionally, the ‘unacceptability’ of mat
that was incorrectly carried over to _in in Example
3 is now reflected in P(mat. | I. was.. a.).

LM probabilities with trailing whitespaces are
also better aligned with the self-paced reading
paradigm where the upcoming word boundaries
are directly observed. For example, the calculation
of P(mat. | The. cat. sat. on. the.) precludes the
prediction of tokens in V; directly after mat, which
correctly reflects the fact that the next keystroke in
Example 4 will reveal a new whitespace word.

3 Experiment 1: Surprisal-Based
Estimates of Garden-Path Effects

Equation 6 shows that WT decoding will result
in an increase (or decrease) in probability to the
extent that the next token is likely to be in Vp pro-
portional to the extent that the first token of the
current word was likely to be in V. The first experi-
ment demonstrates that the confound posed by lead-
ing whitespaces affects surprisal-based estimates
of garden-path effects in transitive/intransitive sen-
tences (Mitchell, 1987; Gorrell, 1991), which is
caused by syntactic disambiguation that takes place
at the critical word (highlighted in magenta).

After the doctor left the room turned very dark ... @)

The same critical word in the control counterpart is
thought to be easier to process, as the verb left is
disambiguated by the comma.

After the doctor left, the room turned very dark ... (8)
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3.1 Procedures

We estimated surprisal-based garden-path effects
from GPT-2 model variants (Radford et al., 2019)
with and without WT decoding, using the data and
following the procedures of Huang et al. (2024).
First, to estimate a linking function between LM
surprisal and human reading times, linear mixed-
effects regression (LMER) models with the follow-
ing formula were fit to self-paced reading times
(n = 995, 814) of filler items from the Provo Cor-
pus (Luke and Christianson, 2018) for each variant:
RT ~ surp + surp_prevl + surp_prev2 + s(length) +
freq + freqg_prevl + freq_prev2 + s(index) +
(1 | subject) + (1 | item),
where length is word length in characters, index
is the position of the word within the sentence, and
the frequency predictors were log-transformed.
These modeling choices assume a linear relation-
ship between surprisal and reading times (Shain
et al., 2024; Wilcox et al., 2023), and that surprisal
and log frequency from two previous words have a
lingering influence on the current word (spillover
effects). These LMER models were subsequently
used to predict word-by-word reading times (in ms)
for 24 items in the ambiguous condition (Exam-
ple 7) and the unambiguous control condition (Ex-
ample 8) of the transitive/intransitive construction,
which were read by 2,000 subjects (n=15,915).
The increase in the predicted reading times of
the disambiguating critical word and two subse-
quent words due to the increase in surprisal across
conditions was estimated using LMER models with
the following formula to quantify the magnitude of
surprisal-based garden-path effects at each word:*

pred_RT ~ condition + (1 | subject) + (1 | item).

3.2 Results

The results in Figure 2 show addressing the con-
found posed by subword tokenization through
WT decoding lowers the estimated magnitude of
garden-path effects in the first and second spillover
regions, the difference in which is significant at
p < 0.05 level for all comparisons except GPT-
2 Large in the second spillover region. This is
due to the decrease in surprisal at the critical re-
gion of the ambiguous condition (turned), as the
probability of its unlikely preceding whitespace® is

“Both the “filler item’ and ‘reading time increase’ LMER
models have been simplified from the specifications in Huang
et al. (2024) due to convergence issues.

5The LMs strongly expect a comma right after room.

Transitive/Intransitive

Critical Word Critical Word+1 Critical Word+2

—
N

T
= === \Vhitespace-Leading
Whitespace-Trailing

=
o

[ee]
H
H

Estimated Effect of Interest (ms)

‘9‘“6\:,@5\\)«\\?’&2 * 6‘(\’&;25‘\)«\\9(& » 6‘(\’()\;\6‘5‘\)6\\9@6 »

GPT-2 Models

Figure 2: Estimated effects of interest at each region
for the transitive/intransitive garden-path construction,
using GPT-2 surprisal with and without WT decoding.
Error bars represent 95% confidence intervals.

reaccounted by the previous word (room). The re-
sulting decrease in surprisal difference across con-
ditions at the critical region is carried over to the
two spillover regions. At the critical region itself,
however, this decrease is not observed as the in-
crease in surprisal difference of its previous word
(room) cancels it out. Such lower estimates suggest
that the underestimation of human-like garden-path
effects is more severe than previously reported.

4 Experiment 2: Fit of Surprisal to
Naturalistic Reading Times

The second experiment evaluates how addressing
the confound posed by leading whitespaces affects
the fit of LM surprisal to naturalistic reading times.

4.1 Procedures

The experimental procedures closely follow those
of Oh and Schuler (2023a), who evaluated surprisal
estimates from Pythia LM variants (Biderman et al.,
2023) with different model sizes and training data
amounts on self-paced reading (SPR) times from
the Natural Stories Corpus (Futrell et al., 2021) and
go-past durations (GPD) from the Dundee Corpus
(Kennedy et al., 2003).° LMER models with the
following formulae were respectively fit to the Nat-
ural Stories and Dundee corpora, whose likelihoods
were then subtracted from those of the baseline
LMER models without surprisal to calculate the
increase in log-likelihood due to surprisal, or ALL:

log(SPR) ~ surp + length + index +
(surp + length + index + 1 | subject) +
(1 | subject:sentid)

See Appendix B for the data preprocessing procedures.
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Figure 3: Increase in regression model log-likelihood due to including surprisal estimates from Pythia LM variants
calculated with WT decoding (top) and the resulting change in regression model log-likelihood (bottom). See
Appendix C for results from surprisal estimates calculated without WT decoding.

log(GPD) ~ surp + length + index + slength + pfix +
(surp + length + index + slength + pfix +
1 | subject) + (1 | sentid),
where slength is the saccade length, pfix is
whether the previous word was fixated, and sentid
is the index of the sentence within each corpus.
These procedures were repeated with and without
WT decoding to calculate ALLy7 and ALLy re-
spectively, and the change in fit to reading times as
a result of addressing the confound was calculated.

4.2 Results

Figure 3 shows that surprisal estimates calculated
with WT decoding results in poorer fits to natural-
istic reading times, especially for LMs that have
seen around 256 to 1,000 batches of training data
on both corpora. Nonetheless, the peak in ALL
at around 1,000 training batches’ and the adverse
effect of model size at the end of LM training (Oh
and Schuler, 2023a) are replicated. In contrast to
these results, Pimentel and Meister (2024) report
small improvements on the same two corpora as
a result of applying WT decoding to fully trained
Pythia LMs. We conjecture this is due to different
regression modeling procedures involving different
baseline predictors.

5 Conclusion

This work calls attention to an inconsistency and
a confound that is inherent in word probabilities
calculated from LMs trained with subword tok-
enization. These are posed by the fact that tokens

"The change in log-likelihood (ALLy7 — ALLy;) at 1,000

training batches is significant at p < 0.001 level on both
corpora by a permutation test of aggregated squared errors.

have leading whitespaces in most models, mean-
ing that the stop probability of a whitespace word
is never explicitly calculated, which can result in
word probability distributions whose sum exceeds
one. We proposed WT decoding as a solution
for these issues, and demonstrated that address-
ing them reveals lower surprisal-based estimates
of transitive/intransitive garden-path effects and
poorer fits of LM surprisal to naturalistic read-
ing times. Other targeted syntactic constructions
and naturalistic reading time corpora may similarly
show systematic changes to word probabilities.
More generally, addressing these issues will have
the biggest impact on probabilities of words neigh-
boring low-probability whitespaces, such as those
at potential phrasal/clausal boundaries where LMs
will likely predict a punctuation mark. These issues
will also be more pronounced for LMs that are not
able to predict word boundaries accurately, such as
those trained on smaller amounts of data. There-
fore, future studies using LM word probabilities
for interpretability and cognitive modeling research
should control for them through WT decoding.®
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Limitations

The confound in the connection between word-
by-word conditional probabilities of Transformer-
based language models and human reading times
identified in this work is supported by experiments
using language model variants trained on English
text and data from human subjects that are native
speakers of English. Therefore, the confound iden-
tified in this work may not generalize to other lan-
guages, in particular those that do not use whites-
pace orthography. Additionally, this work is con-
cerned with the use of language models as cognitive
models of human sentence processing, and there-
fore does not relate to their use in natural language
processing applications, such as text generation,
summarization, or question answering.

Ethics Statement

This work used data collected as part of previously
published research (Huang et al., 2024; Luke and
Christianson, 2018; Futrell et al., 2021; Kennedy
et al., 2003). Readers are referred to the respec-
tive publications for more information on the data
collection and validation procedures. As this work
focuses on studying the connection between condi-
tional probabilities of language models and human
sentence processing, its potential negative impacts
on society appear to be minimal.
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A Proof of Consistent Word Probabilities With Whitespace-Trailing Decoding

Theorem 2 Applying whitespace-trailing decoding results in word probabilities that satisfy the Kol-
mogorov (1933) axiom that P(Q2) = 1.

Proof In the context of predicting w;;; given w;; the sample space is Q = {X;+1.n,, |
Xn,+1€VB, Xu42.10, €V Ans, 1 JCN, nyq1>n4}, where n; is the total number of subword tokens in the
word sequence w;_;, and n, is the total number of subword tokens in the word sequence w;_,.;. There-
fore, P(Q) is the total sum of word probabilities when n,.; —n, = 1,2,3, ... .

The sum of word probabilities according to Equation 5 when n;4; — n; = 1 is:

P(xn,+2€VE | Xn+1=j1,w1.0)  P(xn,+1€VE, Xn,+2€VE | w1 1)
P(xn,+1€VE [ wi.4) P(Xn+1€VE | wi.r)

Z P(xp+1=j1 1 wi.s) -

J1€VE
= P(xy,+2€VB | X4,41€VB,W1.1). (9)

More generally, the sum of word probabilities when n;y1 — n; > 2 is:

P01 +1€VB | Xnpt 1o = J 1 (=) W1L)
P(xp,+1€VB | wi.1)

Z P(xn,+l‘.n,+1 :jl‘.(n,ﬂ—n,) | wi.g) -

~ J1€VB
J2. g -n€VI

= P(xn+2.n,,1 €EVIs X, +1€VE | Xn,11€VE, w1 1) (10)
P(€)) can then be calculated as the following series that sums over disjoint subspaces of Q.

P(Q) = P(xy,,+2€Vp | xp,+1€VB, wi.1) +
P(xn,+2€V1, Xp,+3€VB | Xp,+1€VE, w10) +
P(xn,+2€ V1, Xp,+3€V, X, 14€VE | Xp11€VE, W10) +
P(xn,+2€ V1, X, +3€V, Xn,+4€V], X1 5€VE | Xp11€VE, Wi) +

. (11)
which approaches P(x,,2€Vp | xp,+1€VE, wi.1) + P(xn,+2€Vr | Xp,+1€VB, wi1.;) = 1 in the limit. [ ]

B Preprocessing Procedures for Naturalistic Reading Time Corpora

The Natural Stories Corpus (Futrell et al., 2021) provides self-paced reading times from 181 subjects
that read 10 English stories (10,256 words), which were filtered to exclude those shorter than 100 ms or
longer than 3000 ms, those of sentence-initial and -final words, and those from subjects who answered
fewer than four comprehension questions correctly. Approximately 50% of the observations (384,905
observations) selected based on the sum of the subject index and the sentence index was used to fit the
LMER models and calculate ALL.

The Dundee Corpus (Kennedy et al., 2003) provides fixation durations from 10 subjects that read 67
English newspaper editorials (51,501 words), which were filtered to exclude those from unfixated words,
those of words following saccades longer than four words, and those of sentence/document/line/screen-
initial and -final words. Again, approximately 50% of the observations (98,115 observations) selected
based on the sum of the subject index and the sentence index was used to fit the LMER models and
calculate ALL.

C Increase in Regression Model Log-Likelihood Without WT Decoding

The increase in regression model log-likelihood due to including surprisal estimates from Pythia LM
variants calculated without WT decoding can be found in Figure 4.
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Figure 4: Increase in regression model log-likelihood due to including surprisal estimates from Pythia LM variants
calculated without WT decoding.
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