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Abstract

Can human reading comprehension be assessed
from eye movements in reading? In this work,
we address this longstanding question using
large-scale eyetracking data. We focus on a
cardinal and largely unaddressed variant of this
question: predicting reading comprehension of
a single participant for a single question from
their eye movements over a single paragraph.
We tackle this task using a battery of recent
models from the literature, and three new multi-
modal language models. We evaluate the mod-
els in two different reading regimes: ordinary
reading and information seeking, and exam-
ine their generalization to new textual items,
new participants, and the combination of both.
The evaluations suggest that the task is highly
challenging, and highlight the importance of
benchmarking against a strong text-only base-
line. While in some cases eye movements pro-
vide improvements over such a baseline, they
tend to be small. This could be due to limi-
tations of current modelling approaches, limi-
tations of the data, or because eye movement
behavior does not sufficiently pertain to fine-
grained aspects of reading comprehension pro-
cesses. Our study provides an infrastructure for
making further progress on this question.1

1 Introduction

Reading comprehension is an indispensable skill
for successful participation in modern society. Con-
sequently, many efforts and resources are invested
in the development of reading comprehension as-
sessments by educational institutions and commer-
cial companies. The standard, and to date the only
practical way to assess reading comprehension is
through behavioral tasks, most commonly reading
comprehension questions. However, despite its
clear value and ubiquitous use, this approach is ex-
tremely time-consuming and costly, which severely

1Code is available at https://github.com/lacclab/Reading-
Comprehension-Prediction.

limits the volume and public availability of reading
comprehension tests. Further, this testing method-
ology relies on offline behavioral signals – the end
responses to a few select reading comprehension
questions, and has no ability to trace the rich online
reading comprehension processes as they unfold
over time.

An alternative vision for assessing reading com-
prehension has been emerging in psycholinguis-
tics and the psychology of reading. It posits that
reading comprehension may be decoded in real-
time directly from eye movements in reading. This
vision is rooted in literature that suggests a tight
correspondence between eye movements and real
time language comprehension (Just and Carpenter,
1980; Rayner, 1998; Rayner et al., 2016, among
others). With the rise of modern machine learning
and NLP, multiple studies over the past decade at-
tempted to use eye movement data to predict read-
ing comprehension (Copeland et al., 2014; Ahn
et al., 2020; Reich et al., 2022; Mézière et al.,
2023b, among others). This line of work suggests
that in some cases various aspects of reading com-
prehension can be predicted from eye movements
with above-chance performance. However, despite
the advances so far, predictive modeling of reading
comprehension from gaze is still in its infancy.

A number of factors have been hindering
progress in this area. One is the paucity and
small size of reading comprehension data paired
with eye movements. Second, the task of reading
comprehension prediction has thus far been pre-
dominantly formulated as prediction of aggregated
scores across multiple questions rather than pre-
diction of comprehension at the resolution of an
individual question. Further, reading comprehen-
sion has been primarily studied when the reader has
no specific goals with respect to the text beyond
general comprehension, a regime that we refer to
as ordinary reading. Many other reading regimes
common in daily life, such as explicit information
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seeking, remain largely unaddressed. Finally, de-
spite the dramatic progress in machine learning
and NLP in recent years, effective joint modeling
of text and eye movements remains a nascent and
challenging domain of investigation.

In this work, we take a step forward in advancing
the state-of-the-art in eye movement-based predic-
tion of reading comprehension by combining new
models, new data, and systematic evaluations. Our
primary contributions are the following:

• Task: we introduce the challenging and
largely unaddressed task of predicting the
reading comprehension of a single reader with
respect to a single reading comprehension
question over one passage. This task is en-
abled by OneStop Eye Movements (Malmaud
et al., 2020), the largest eyetracking for read-
ing comprehension dataset to date with 486
multiple-choice questions and 19,440 ques-
tion responses from 360 participants.

• Modeling: we develop three new mod-
els that combine text and eye movements
based on the transformer encoder architec-
ture: RoBERTa-QEye, MAG-QEye, and
PostFusion-QEye. These models address both
test format-agnostic and multiple-choice spe-
cific variants of the task.

• Reading Regimes: we study reading compre-
hension not only in ordinary reading but also
in information seeking, a highly common but
understudied reading scenario.

• Evaluation: we evaluate our models against
a battery of existing models for prediction of
reading comprehension from eye movements,
and a strong text-only baseline. To this end,
we use a detailed evaluation protocol target-
ing three different levels of model generaliza-
tion: new participant, new textual item, and
the combination of both.

2 Related Work

Our study contributes to an existing body of work
on the prediction of reading comprehension from
eye movements in reading. To address various as-
pects of this task, prior studies used a wide range
of models, including linear models (Mézière et al.,
2023b,a), kernel methods (Makowski et al., 2019),
feed-forward networks (e.g. Copeland et al., 2014),
CNNs (Ahn et al., 2020) and RNNs (e.g. Ahn et al.,

2020; Reich et al., 2022). These were typically
applied to the prediction of aggregated comprehen-
sion scores over multiple items. In this work, we
evaluate multiple models from prior work on the
single-item reading comprehension task.

While transformer models (Vaswani et al., 2017),
have been used for joint modeling of eye move-
ments and text (e.g. Deng et al., 2023; Yang and
Hollenstein, 2023), they have not been applied to
the problem of reading comprehension prediction
from eye movements. In this work we introduce
three new transformer models which draw on multi-
modal transformers, in particular MAG (Rahman
et al., 2020) which integrated text, speech and vi-
sion for sentiment analysis, and language vision
models such as VisualBERT (Li et al., 2019) (see
Zhu et al. (2023); Xu et al. (2023) for reviews).

Most prior studies on reading comprehension
prediction from eye movements relied solely on eye
movement features (Copeland et al., 2014; South-
well et al., 2020; Ahn et al., 2020; Mézière et al.,
2023b,a), while a few combined eye movements
with properties of the underlying text (Martínez-
Gómez and Aizawa, 2014; Makowski et al., 2019;
Reich et al., 2022). In the current work, we take
the latter, under-explored approach. The impor-
tance of combining eye movements with attributes
of the text is motivated by a large literature in the
psychology of reading which points to systematic
effects of linguistic properties of the text on reading
times (Rayner, 1998; Rayner et al., 2004; Kliegl
et al., 2004; Demberg and Keller, 2008; Smith and
Levy, 2013, among others), in particular in the
context of reading comprehension (Just and Car-
penter, 1980) and linguistic proficiency (Berzak
et al., 2018; Berzak and Levy, 2023).

While highly informative, existing work is criti-
cally limited by small data, especially with respect
to the number of available questions and partici-
pants. For example, Copeland et al. (2014) have 9
text pages, 18 questions and 39 participants. SB-
SAT (Ahn et al., 2020), the only publicly available
eyetracking dataset for reading comprehension, has
22 text pages, 20 questions, and 95 participants.
The small size of previously used datasets severely
limits the potential of NLP and machine learning
approaches for reading comprehension prediction.
At the same time, the reading comprehension com-
ponent of broad coverage eyetracking datasets such
as MECO (Siegelman et al., 2022) and CELER
(Berzak et al., 2022) comprises only simple com-
prehension questions that serve as attention checks,
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and as such are not well suited for studying read-
ing comprehension. OneStop, used here, has a
large number of items, participants and questions,
enabling meaningfully addressing item-level pre-
diction of comprehension.

Prior work varies in experimental designs. In
several studies, multiple questions are presented af-
ter reading a multi-screen text without the ability to
return to the text (Makowski et al., 2019; Ahn et al.,
2020; Reich et al., 2022). This design is advanta-
geous in the separation of text reading and question
answering, but can lead to loose relations between
eye movements and question-answering behavior
due to memory limitations. In other studies, such
as Copeland et al. (2014), participants can switch
back and forth between the text and the questions.
This creates a complex mix of ordinary reading and
information seeking components which are difficult
to disentangle. In OneStop, a single question ap-
pears immediately after reading a single text page,
setting a middle ground between the two primary
existing approaches for question presentation, and
alleviating their main disadvantages. At the same
time, it includes a question preview manipulation
which allows to systematically compare reading
comprehension in ordinary reading and question
guided information seeking.

An additional limitation of prior work is the
scope and nature of the evaluations. With the ex-
ception of Copeland et al. (2014), both training
and evaluation were previously carried out over
aggregated responses across multiple questions,
and in some cases also across multiple texts. These
approaches, which focus on measuring overall com-
prehension, do not enable testing direct links be-
tween eye movements and understanding specific
aspects of the text. In several studies (Martínez-
Gómez and Aizawa, 2014; Makowski et al., 2019;
Ahn et al., 2020; Reich et al., 2022), an additional
step was taken, binning comprehension scores into
two binary categories, high versus low comprehen-
sion, thus further simplifying the task.

A second important evaluation limitation in prior
work is evaluations in which eyetracking data for
both the test participants and items is used in
the training set. To our knowledge, except for
Makowski et al. (2019), no work has evaluated
reading comprehension prediction when neither
the participant nor the item appears in the training
data. This evaluation regime is needed to fully char-
acterize model generalization ability. Importantly,
even in less challenging regimes and with aggre-

gated scores and binning, model performance in
prior work is typically only modestly higher than
chance level. More stringent evaluations without
binning comprehension scores (Martínez-Gómez
and Aizawa, 2014), or with held-out participants
and/or items (Makowski et al., 2019; Reich et al.,
2022) tend to exhibit chance level performance.
These results suggest that generalization in reading
comprehension prediction is highly challenging.

3 Eyetracking Data

We use OneStop, an extended version of the dataset
collected by Malmaud et al. (2020) over the tex-
tual materials of OneStopQA (Berzak et al., 2020).
OneStop is the largest English L1 eyetracking for
reading corpus to date. The data was collected
using an Eyelink 1000+ eyetracker at a sampling
rate of 1000Hz. In this dataset, 360 adult native
English participants read newswire articles from
the Guardian, and answer a multiple-choice read-
ing comprehension question about each paragraph.
The dataset includes 30 articles divided into 162
paragraphs. The average paragraph length is 109
words. Each paragraph has 3 possible questions,
corresponding to a total of 486 questions.

Answer Category Degree of Comprehension Gathering Hunting

A Correct Full comprehension 7,890 (81.2) 8,450 (86.9)
B Incorrect Identified question-relevant information 1000 (10.3) 744 (7.7)
C Incorrect Some degree of attention to the text 568 (5.8) 374 (3.8)
D Incorrect No evidence for comprehension 260 (2.7) 152 (1.6)

Table 1: Summary of the STARC annotation framework
for answer types A–D, their corresponding degree of
comprehension, and number of trials in which each an-
swer type was chosen in OneStop. Values in parentheses
are percentages by reading regime.

The articles are divided into three 10-article
batches, where each participant is assigned to one
batch. In each trial of the experiment, participants
read a paragraph and then proceed to answer one
of the three possible questions on a new screen,
without the ability to return to the paragraph. 180
participants are in an ordinary reading (Gathering)
regime where they do not see the question prior to
reading the paragraph. The remaining 180 partici-
pants are in an information seeking regime (Hunt-
ing) where they are presented with the question
(but not the answers) before reading the paragraph.
The total number of trials is 19,440, split equally
across the two reading regimes. This corresponds
to 40 responses per question, 20 for each regime–
paragraph combination. The total number of word
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Figure 1: Left: an example of an eye movement trajectory over a paragraph, where red circles represent fixations,
and blue arrows represent saccades. Right: a schematic depiction of word-level feature extraction, resulting in a
vector Ewi

: an eye movements and linguistic word properties feature representation for each word.

tokens over which eyetracking data was collected
in OneStop is 3,827,216.

The underlying textual materials and reading
comprehension questions follow the STARC an-
notation framework (Berzak et al., 2020), where
answer A is the correct answer, answer B is a mis-
comprehension of the information required to an-
swer correctly, C refers to another part of the text
that does not provide the answer to the question
and D has no textual support. These answer types
correspond to an ordering of the answers by degree
of comprehension. Table 1 presents a summary of
the framework along with answer choice statistics
in the OneStop eyetracking data.

4 Tasks

4.1 Correct versus Incorrect Comprehension

The primary task we address is item-level pre-
diction of whether a participant will respond cor-
rectly to a single question about a paragraph from
the participant’s eye movements over the para-
graph. For each paragraph p and a corresponding
question qp, the possible answers are Ansq

p
=

{aqp1 , aq
p

2 , aq
p

3 , aq
p

4 }. Note that the correct answer
A and the three distractors {B,C,D} are randomly
mapped per trial to a1 through a4. The set of p, qp,
and optionally Ansq

p
, defines a textual item W .

Given a participant S tested on item W , where
the participant’s eye movements over the para-
graph are EyespS , the complete trial information
is TrialWS := {W,EyesSp }. We make W optional
to allow for models that use only eye movements
without the text.

The prediction problem can then be formulated
as a binary classification task, we predict whether
the participant will answer the question correctly.
Formally, given a classifier h:

h : TrialWS 7→ {0, 1} (1)

where 1 indicates a correct answer (A) and 0 indi-
cates an incorrect answer (B/C/D).

Note that this task formulation abstracts away
from the multiple-choice format. This allows as-
sessing comprehension without depending on the
format of the subsequent assessment task (e.g. an-
swer choice, answer production), nor its details
such as the number of answer choices and their
specific content in the multiple-choice format. The
combination of these task characteristics enables
applying prior models from the literature, all of
which predict a binary outcome without taking into
account the answers, and some of which use only
eye movements without the text.

4.2 Specific Answer Choice

We further address a task that takes advantage of
the multiple-choice assessment format. In this task,
given the answers, we predict which specific an-
swer the participant will select:

h : TrialWS 7→ {a1, a2, a3, a4} (2)

5 Models

We introduce three new models, RoBERTa-QEye,
MAG-QEye and PostFusion-QEye, all of which
combine text and eye movements information, and
rely on the transformer language model encoder.
Specifically, we use the RoBERTaLARGE model
(Liu et al., 2019). Each of these models uses a
different strategy for combining text with eye move-
ments. RoBERTa-QEye augments the textual in-
put with additional eye movement features. MAG-
QEye uses eye movement information to modify
contextualized word representations at intermedi-
ate layers of the language model. PostFusion-QEye
processes text and eye movements separately and
then combines them via cross-attention mecha-
nisms. We further adjust a number of prior models
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Figure 2: Model architectures. (a) RoBERTa-QEye treats eye movements as additional input features. (b) MAG-
QEye uses eye movement information to modify contextualized word representations. (c) PostFusion-QEye
processes text and eye movements separately and combines them via cross-attention mechanisms. Model input:
EyesP represents the participant’s eye movements over the paragraph p, qp is a question and [Ansq

p

] are optional
answer choices which are provided only in the multiple choice version of the task.

from the literature for the single-item reading com-
prehension prediction task.

Eye Movement Feature Representations The
eyetracking record is commonly represented as a
scanpath consisting of fixations (periods in which
the gaze position is stable) and saccades (rapid tran-
sitions between fixations). The examined models
represent this information in three different ways,
in increasing level of granularity:

• Global: Summarizing fixation and saccade
information across all the words in the input.

• Words: Summarizing fixation and saccade
information for each word.

• Fixations: Accounting for each fixation and
its preceding and following saccade.

Our new models focus on the word and fixation
level approaches, using a variety of eye movement
measures from the psycholinguistic literature. As
reading times are known to be affected by linguistic
word properties such as predictability, frequency,
and length (Rayner et al., 2004; Kliegl et al., 2004;
Rayner et al., 2011), which are not directly encoded
in word embeddings, we further add such proper-
ties to the eye movement representations to allow
the models to learn eye movements-word property
interactions. The strength of such interactions has
been shown to be indicative of the readers’ linguis-
tic proficiency (Berzak et al., 2018; Berzak and
Levy, 2023), which is directly related to reading

comprehension. The eye movement and linguistic
word property features used in all the models are
listed in Appendix A. Note that two different fea-
ture sets are used for representing eye movements
at the word and fixation levels. Figure 1 presents
an example of an eye movement trajectory over
a paragraph and a schematic visualization of the
word-level feature extraction approach.

5.1 RoBERTa-QEye
RoBERTa-QEye incorporates eye movements as
additional input sequences to RoBERTa by pro-
jecting them to the word embedding space. An
overview of the architecture is presented in Fig-
ure 2a. The model is implemented in two vari-
ants, RoBERTa-QEye-Words which has a word-
level feature representation and RoBERTa-QEye-
Fixations, which uses a fixation-level representa-
tion. Both variants combine a textual input ZW

with eye movements input ZEP
.

The textual representation ZW is the word em-
bedding sequence [CLS; p; SEP; qp; [Ansq

p
]; SEP],

where p is the paragraph, qp is the question,
[Ansq

p
] are optional answers, and SEP is a sep-

arator token. The eye movement representation for
the paragraph ZEP

= [ZEw1
, ..., ZEwn

] consists of
a representation for each fixation or word i as:

ZEwi
= FC(Ewi) + Embpos(i) + Embeye (3)

where Ewi are the eye movement and word prop-
erty features and FC is a fully connected layer
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projecting this feature representation to the word
embedding space. Embpos(i) is the positional em-
bedding of the i-th word or fixation, initialized to
the model’s original positional embedding, which
ties the eye movement representation to its respec-
tive word index. Embeye is an additional learnable
embedding marking the presence of eye movement
information. ZEP

is concatenated with the word
embedding representation ZW , separated by a spe-
cial token SEPE , initialized as SEP. The combined
sequence [ZEP

; SEPE ;ZW ] is passed through the
transformer encoder language model. The resulting
CLS token is then provided to a multilayer percep-
tron for response prediction.

5.2 MAG-QEye

MAG-QEye, shown in Figure 2b, modifies the
transformer encoder’s hidden word representations
based on eye movement information. It is an adap-
tation of the MAG architecture (Rahman et al.,
2020) originally developed for multimodal senti-
ment analysis. The goal of this model is to empha-
size or de-emphasize words based on their respec-
tive eye movement features. Formally, for a given
model layer k, each hidden token representation in
the paragraph Zk

Wi
is shifted by HWi :

Z̄k
Wi = Zk

Wi
+ αHWi (4)

where HWi is a scaled version of eye movements
EWi transformed into the word embedding space.
The final resulting CLS token is passed through
a multilayer perceptron classifier. Appendix B.1
provides a detailed description of the architecture.

5.3 PostFusion-QEye

PostFusion-QEye, outlined in Figure 2c, processes
text and eye movements separately and combines
their representations through two cross-attention
mechanisms. The primary objective of these mech-
anisms is to transform both text and eye movement
data into a unified space, which we refer to as the
reading space while taking into account the reading
comprehension prediction task.

The input paragraph is passed through a lan-
guage model to obtain contextualized embeddings
ZP . The eye movement input features are pro-
cessed through two 1D convolution layers, re-
sulting in the eye movement representation ZEP

.
Cross-attention is then applied between the para-
graph embedding ZP and ZEP

, with eye move-
ments as the query and text embeddings as the key

and the value. This step modifies the paragraph
words based on the eye movements. The output
is provided along with ZEP

to a fully connected
layer, yielding ZEP+P , a projection of the two into
a shared space. Another cross-attention layer is
applied between ZEP+P as key and value and the
question embedding ZQ as query, weighting the
shared representation by the relevance to the ques-
tion. The output of this step is passed to a multi-
layer perceptron classifier to predict the response.

5.4 Multiple-Choice Variants
For the specific-answer prediction task, we
add to the model input the answer choices:
[aq

p

1 , aq
p

2 , aq
p

3 , aq
p

4 ]. The answer choices are pro-
vided to the model in a randomized order, as pre-
sented to the participants.

5.5 Baseline Models
We compare the proposed models to a number of
eye movement models from prior work. We focus
on models that were either designed for reading
comprehension prediction or can be adjusted to the
binary task with minimal modifications. As none
of the prior models allow encoding of answers, we
cannot apply them to the multiple-choice task.

Logistic Regression (Mézière et al., 2023b)
Based on Mézière et al. (2023b) who used linear
regression for reading comprehension prediction.
We use the same feature set which includes reading
speed, and global averages of standard eye move-
ment measures.

CNN (Ahn et al., 2020) Similarly to Mézière et al.
(2023b), this model is based only on eye movement
information, without the underlying text. It uses
the fixation sequence, represented by x and y coor-
dinates on the screen, fixation durations, and pupil
size, which are passed through a Convolutional
Neural Network (CNN) to predict a binary compre-
hension outcome.

BEyeLSTM (Reich et al., 2022) A model for
predicting reading comprehension from eye move-
ments which represents both the fixation sequence
and text features, combining LSTMs with affine
transformations. BEyeLSTM outperforms the
CNN model of Ahn et al. (2020), on the high versus
low comprehension task with SB-SAT.

Eyettention (Deng et al., 2023) This model was
originally developed for scanpath prediction. Eyet-
tention is a word sequence encoder and a fixation
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sequence encoder that uses a pre-trained BERT
(Devlin et al., 2019) and an LSTM (Hochreiter and
Schmidhuber, 1997), with a cross-attention mecha-
nism for the alignment of the input sequences. We
adjust this model for prediction of reading com-
prehension by using global cross-attention instead
of windowed attention, and represent the scanpath
using the last hidden representation. Further details
on this model are provided in Appendix B.

5.6 No Eye Movements Baselines
We further introduce two baselines with no eye
movements. The first is a majority class baseline.
The second is Text-only RoBERTa. This baseline
is of special importance as it is able to take into
account item difficulty as reflected in the item tex-
tual characteristics and the distribution of item re-
sponses in the training data. To our knowledge, no
previous reading comprehension prediction method
was benchmarked against this kind of baseline.

6 Experimental Setup

We evaluate the models in three evaluation regimes
that test different aspects of model generalization.

• New Participant: No eyetracking data is
available for the given participant, but eye-
tracking data from other participants is avail-
able for the given item (paragraph).

• New Item: No eyetracking data is available
for the item, but prior eyetracking data is avail-
able for the participant on other items.

• New Item & Participant: No prior eyetrack-
ing data is available for the participant nor for
the item.

We further report aggregated results across all three
regimes.

We perform model training, hyperparameter tun-
ing, and evaluation separately for the ordinary
reading and information seeking parts of the data,
with 10-fold cross-validation. Figure 3 presents
schematically one of the 10 data splits for a 10-
article 60-participant batch. A full data split for a
reading regime (ordinary reading or information
seeking) is the union of three such splits. In each
split, approximately 64% of the data is allocated
for training, 17% for validation, and 19% for test-
ing. The test data is further divided into 9% in
the New Participant, 9% New Item, and 1% New
Item & Participant regimes. In total across the

Validation

Ite
m

s

Participants

New Items & 
Participants

New 
Participants

New Items

Train

Figure 3: A schematic depiction of a 10-article 60-
participant batch split, divided into a train set, a val-
idation set, and the three test sets. A full data split for a
reading regime (ordinary reading or information seek-
ing) consists of the union of three batch splits.

10 splits, approximately 90% of the trials in the
dataset appear in each of the New Participant and
New Item evaluation regimes, and 10% in the New
Item & Participant regime. Items are assigned to
the train, validation and test portions of each split at
the article level, such that no article is split across
different data portions, ensuring generalization to
items whose content is unrelated to items seen in
training. See Appendix C for further information
on the splits.

Because the data is unbalanced across classes,
we use balanced accuracy as the evaluation metric.
As prior work has shown considerable differences
in reading behavior between the ordinary reading
and information seeking reading conditions (Hahn
and Keller, 2023; Malmaud et al., 2020; Shubi and
Berzak, 2023), we train and evaluate the models on
each type of trials separately. We perform hyperpa-
rameter tuning for each split, and report balanced
accuracy results on the aggregation of the predic-
tions across the 10 test sets. We assume that at
test time the evaluation regime of the trial is un-
known. Model hyperparameter tuning is therefore
based on the entire validation set of the split. As
prior models from the literature were developed
for different tasks and on different datasets, we
run a hyperparameter search for each model over
a search space that includes the original parameter
settings. Hyperparameters are also optimized for
the Text-only RoBERTa baseline. To address the
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Binary Reading Comprehension Ordinary Reading (Gathering) Information Seeking (Hunting)

Model Gaze
Representation

Text
Representation

New
Item

New
Participant

New Item
& Participant All New

Item
New

Participant
New Item

& Participant All

Majority None None 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Text-only RoBERTa None Emb 54.8 63.1 55.2 58.7 51.8 63.1 50.5 57.1

Log. Reg. (Mézière et al., 2023b) Global None 53.3 50.8 53.8 52.2 53.2 52.2 52.3 52.7
CNN (Ahn et al., 2020) Fixations None 51.0 51.0 51.9 51.1 51.4 51.3 49.2 51.2
BEyeLSTM (Reich et al., 2022) Fixations Ling. Feat. 50.6 55.7 51.1 53.0 50.5 55.1 55.1 53.0
Eyettention (Deng et al., 2023) Fixations Emb + Word Len. 54.8 60.4 57.1 57.6 50.5 56.4 52.3 53.4

RoBERTa-QEye Words Emb + Ling. Feat. 55.5 63.5 52.1 59.1 50.5 63.8 51.0 56.8
RoBERTa-QEye Fixations Emb + Ling. Feat. 53.3 61.3 57.1 57.3 50.3 60.3 50.8 55.1
MAG-QEye Words Emb + Ling. Feat. 54.8 64.1* 53.8 59.2 52.5 62.3 51.3 57.1
PostFusion-QEye Fixations Emb + Ling. Feat. 54.8 63.5 55.0 58.9 53.8* 62.7 53.8 58.0

Table 2: Results on balanced accuracy for the main binary reading comprehension prediction task (correct vs incorrect
comprehension). ‘All’ denotes results for the aggregation of all the trials across the three test regimes. ‘Emb’ stands
for word embeddings, ‘Ling. Feat.’ for linguistic word properties. Statistically significant improvements over the
Text-only RoBERTa baseline, using a paired bootstrap test, chosen based on considerations described in (Dror et al.,
2018), are marked with ‘*’ at p < 0.05.

Multiple-Choice Reading Comprehension Ordinary Reading (Gathering) Information Seeking (Hunting)

Model
Gaze

Representation
Text

Representation
New
Item

New
Participant

New Item
& Participant

All
New
Item

New
Participant

New Item
& Participant

All

Majority None None 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Text-only RoBERTa None Emb 25.3 33.0 25.2 29.0 25.0 31.7 24.8 28.2

RoBERTa-QEye Words Emb + Ling. Feat. 28.2* 31.5 32.1** 29.9 28.9*** 30.1 27.1 29.3
RoBERTa-QEye Fixations Emb + Ling. Feat. 29.2* 32.9 28.1 30.9 30.3*** 31.0 29.5 30.5***

MAG-QEye Words Emb + Ling. Feat. 27.9*** 32.5 30.4*** 30.2** 26.8 30.0 29.0 28.4
PostFusion-QEye Fixations Emb + Ling. Feat. 29.4** 31.7 32.9* 30.6* 27.5* 27.9 26.7 27.6

Table 3: Results on balanced accuracy for the multiple-choice specific answer prediction task. Statistically significant
improvements over the Text-only RoBERTa baseline, using a paired bootstrap test, are marked with ‘*’ at p < 0.05,
‘**’ at p < 0.01 and ‘***’ at p < 0.001. We note that in some cases, higher balanced accuracy scores correspond to
lower p-values due to higher variability in the predictions of the minority classes.

unbalanced nature of the data, shown in Table 1,
we sample the same number of trials from each
answer class during training. Additional details on
feature normalization, model training, hyperparam-
eter search, and number of model parameters are
provided in Appendix D.

7 Results

7.1 Correct vs Incorrect Comprehension
In Table 2, we present trial-level reading compre-
hension prediction results for ordinary reading and
information seeking. The best results are achieved
by different models under the different evaluation
regimes. MAG-QEye achieves the highest overall
balanced accuracy in ordinary reading with a score
of 59.2, while PostFusion-QEye performs best in
information seeking, with a score of 58.0. In all the
evaluation regimes, the best performing model out-
performs the Text-only RoBERTa baseline. In all
but the New Item & Participant evaluation regime,
the best performing model is one of our proposed
models. Text-only RoBERTa turns out to be a key
benchmark, whereby most models are below this
baseline especially in the New Participant regime.

We note several key trends in the results. First,
results in the New Participant regime tend to be
higher than in the New Item regime, highlighting
the importance and the challenge of generaliza-
tion to new items. The strong performance of the
RoBERTa text-only baseline in the New Partici-
pant regime suggests that much of the gains in this
regime do not stem from eye movement informa-
tion, but rather from item properties and statistics.
This highlights the importance of benchmarking
against such a baseline for assessing the contri-
bution of eye movement information. It further
underscores the importance of explicit representa-
tion of the text; the Logistic Regression, CNN and
BEyeLSTM models, which do not include such
a representation, perform poorly in the New Par-
ticipant regime. Finally, for any given model, the
ordinary reading regime tends to yield higher accu-
racies compared information seeking. We hypothe-
size that this difference could be related to higher
variability in reading strategies in information seek-
ing across participants (Shubi and Berzak, 2023).
We leave a detailed investigation of this hypothesis
to future work.
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7.2 Multiple-Choice Task

In Table 3 we use our models, MAG-QEye and
PostFusion-QEye, and the two RoBERTa-QEye
variants to predict participants’ specific answer re-
sponse among the four provided answers. As men-
tioned above, prior models from the literature are
not applicable for this task. We find that all the
models outperform the Text-only RoBERTa base-
line in the two regimes that involve new items,
but not in the New Participant regime. The best
performing model in the overall evaluations is
RoBERTa-QEye-Fixations. The general trends re-
garding higher performance in the New Participant
regime compared to the New Item regime, as well
as the stronger within-model performance in or-
dinary reading compared to information seeking,
extend to this evaluation.

7.3 Additional Experiments

We perform two additional sets of experiments of
preliminary nature. In Appendix E we provide ab-
lation experiments on the effect of linguistic word
properties on model performance. In Appendix F
we further examine different variants of the tex-
tual backbone of the models. Finally, we provide
validation set results in Appendix G.

8 Summary and Discussion

This paper presents a systematic evaluation of the
ability to predict reading comprehension from eye
movements in reading at the level of a single ques-
tion over a single paragraph. We address this task
using a range of existing and new models, applied
to large scale data across several task variants and
evaluation regimes. Our experiments indicate that
the task at hand is highly challenging, and further
highlight the importance of text-only baselines for
assessing the added value of eye movements in-
formation. However, we do find that small im-
provements over a strong text-only baseline are
achievable with the proposed and some of the past
modeling approaches.

Given the presented results, the extent to which
specific aspects of reading comprehension can be
reliably decoded from eye movements signal re-
mains an open question. It is possible that eye
movements simply do not contain sufficient infor-
mation for decoding comprehension at high accu-
racy rates for the examined level of granularity.
Alternatively, it may be the case that current mod-
eling techniques do not represent or process eye

movements data effectively enough for this task.
Another factor whose role in task difficulty needs
to be investigated in more detail is the imbalanced
nature of the data, where only a relatively small
fraction of the responses are incorrect.

Additional work on eye movement data analysis,
new model architectures, feature representations
and training regimes is needed for making further
progress on this task. Additionally, new datasets
with other task variants and other populations such
as children and L2 readers are required to study the
problem in a more comprehensive manner. We en-
vision that the models, tasks, evaluation protocols,
and data presented here will serve as a stepping
stone for such work, as well as a broader scientific
investigation of the relations between eye move-
ments and reading comprehension.

9 Ethical Considerations

The eyetracking data used in this work was col-
lected by Malmaud et al. (2020) under an institu-
tional IRB protocol. All the participants provided
written consent prior to participating in the eye-
tracking study. The data is anonymized. Analy-
ses of the relations between eye movements and
reading comprehension, and predictive models of
comprehension are among the primary use cases
for which the data was collected.

Automatic reading comprehension assessments
from eye movements can potentially address short-
comings of standard assessment methodologies by
reducing test development and test taking costs,
and enhancing test availability. However, they
also introduce potential risks for biased and inaccu-
rate assessments that may put various populations
and individuals at a disadvantage. These include
non-native speakers, older participants, participants
with cognitive impairments, disabilities, eye condi-
tions and others. Much higher model performance
than the current state-of-the-art and a thorough ex-
amination of potential biases due to factors unre-
lated to reading comprehension are needed before
considering deploying such assessments.

It has previously been shown that eye move-
ments can be used for user identification (e.g. Bed-
narik et al., 2005; Jäger et al., 2020). We do not
perform user identification in this study. We fur-
ther emphasize that future reading comprehension
assessment systems are to be used only with ex-
plicit consent from potential users to have their eye
movements collected and analyzed for this purpose.
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10 Limitations

Our work has a number of limitations which are re-
lated to the experimental design of OneStop. First,
the textual data consists of articles with 4-7 para-
graphs. Each question is over the content of a
single paragraph. Longer and shorter texts, as well
as questions that require integration of information
from several paragraphs, are not covered. The ex-
perimental design does not allow participants to go
back and forth between the question and passage,
which is common in question answering tasks. Fur-
ther, participant expectations for upcoming reading
comprehension questions, as well as the setting
of an in-lab experiment may result in reading pat-
terns that deviate from reading in everyday settings
(Huettig and Ferreira, 2022) and could impact the
predictive performance of the model.

While our work examines the feasibility of auto-
mated assessment of reading comprehension from
eye movements, the accuracy of the models pre-
sented is still very far from being relevant for de-
ployment in real world scenarios. Our results are
further limited to the equipment at hand. Our ap-
proach has only been tested using a state-of-the-art
eyetracker (Eyelink 1000 Plus) at a sampling rate
of 1000Hz. This allows extracting gaze position
and duration at a very high temporal resolution
and character-level precision. While studies such
as Ishimaru et al. (2017) and Chen et al. (2023)
have demonstrated predictive modeling capabili-
ties using lower spatial and temporal resolution eye
tracking systems, additional work is required to test
the feasibility of reading comprehension prediction
using such equipment.

Although we use the largest eyetracking for read-
ing comprehension dataset to date, OneStop was
collected from adult L1 English speakers, with no
cognitive impairments, and in the large majority of
cases no eye conditions. We acknowledge that this
pool of participants excludes multiple populations,
including children, elderly, participants with cogni-
tive and physical impairments and others. Future
data collection and analysis work is required to test
the generalization capabilities and potential biases
of the models in other populations.

In this work we assume the availability of both
suitable eyetracking data and a pretrained language
model for the language at hand. Although language
models for lower-resource languages (e.g. Chriqui
and Yahav, 2022; Vamvas et al., 2023) and multilin-
gual models (e.g. Lai et al., 2023) have been made

available, many languages still lack such models.
Similarly, to the best of our knowledge, no eye-
tracking data with a substantial reading comprehen-
sion component is currently available for languages
other than English. This limits the generality of
the results. More eyetracking data collection and
language model development work is required to
include additional languages.
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A Features

Feature Name Description

Word-Level Eye Movement Features

IA_DWELL_TIME The sum of the duration across all fixations that fell in the current interest area
IA_DWELL_TIME_% Percentage of trial time spent on the current interest area (IA_DWELL_TIME / TRIAL_DWELL_TIME).
IA_FIXATION_% Percentage of all fixations in a trial falling in the current interest area.
IA_FIXATION_COUNT Total number of fixations falling in the interest area.
IA_REGRESSION_IN_COUNT Number of times interest area was entered from a higher IA_ID (from the right in English).
IA_REGRESSION_OUT_FULL_COUNT Number of times interest area was exited to a lower IA_ID (to the left in English).
IA_RUN_COUNT Number of times the Interest Area was entered and left (runs).
IA_FIRST_FIX_PROGRESSIVE Checks whether the first fixation in the interest area is a first-pass fixation.
IA_FIRST_FIXATION_DURATION Duration of the first fixation event that was within the current interest area
IA_FIRST_FIXATION_VISITED_IA_COUNT This reports the number of different interest areas visited so far before the first fixation is made to the current interest area.
IA_FIRST_RUN_DWELL_TIME Dwell time of the first run (i.e., the sum of the duration of all fixations in the first run of fixations within the current interest area).
IA_FIRST_RUN_FIXATION_COUNT Number of all fixations in a trial falling in the first run of the current interest area.
IA_SKIP An interest area is considered skipped (i.e., IA_SKIP = 1) if no fixation occurred in first-pass reading.
IA_TOP Y coordinate of the top of the interest area.
IA_LEFT X coordinate of the left-most part of the interest area.
normalized_Word_ID Position in the paragraph of the word interest area, normalized from zero to one.
IA_REGRESSION_PATH_DURATION The summed fixation duration from when the current interest area is first fixated until the eyes enter an interest area with a higher IA_ID.
IA_REGRESSION_OUT_COUNT Number of times interest area was exited to a lower IA_ID (to the left in English) before a higher IA_ID was fixated in the trial.
IA_SELECTIVE_REGRESSION_PATH_DURATION Duration of fixations and refixations of the current interest area before the eyes enter an interest area with a higher ID.
IA_LAST_FIXATION_DURATION Duration of the last fixation event that was within the current interest area.
IA_LAST_RUN_DWELL_TIME Dwell time of the last run (i.e., the sum of the duration of all fixations in the last run of fixations within the current interest area).
PARAGRAPH_RT Reading time of the entire paragraph.
total_skip Binary indicator whether the word was fixated on.

Fixation-level Eye Movement Features

CURRENT_FIX_INDEX The position of the current fixation in the trial.
CURRENT_FIX_DURATION Duration of the current fixation.
CURRENT_FIX_PUPIL Average pupil size during the current fixation.
CURRENT_FIX_X X coordinate of the current fixation.
CURRENT_FIX_Y Y coordinate of the current fixation.
NEXT_FIX_ANGLE, PREVIOUS_FIX_ANGLE Angle between the horizontal plane and the line connecting the current fixation and the next/previous fixation.
NEXT_FIX_DISTANCE, PREVIOUS_FIX_DISTANCE Distance between the current fixation and the next/previous fixation in degrees of visual angle.
NEXT_SAC_AMPLITUDE Amplitude of the following saccade in degrees of visual angle.
NEXT_SAC_ANGLE Angle between the horizontal plane and the direction of the next saccade.
NEXT_SAC_AVG_VELOCITY Average velocity of the next saccade.
NEXT_SAC_DURATION Duration of the next saccade in milliseconds.
NEXT_SAC_PEAK_VELOCITY Peak values of gaze velocity (in visual degrees per second) of the next saccade.

Table 4: Word-level and fixation-level eye movement features, defined and extracted by SR Data Viewer.

Feature Name Description

Surprisal
(Hale, 2001; Levy, 2008), formulated as − log2(p(word|context)) for each word given the preceding textual content of the
paragraph as context, probabilities extracted from the GPT-2-small language model (Radford et al., 2019; Wolf et al., 2020).

Wordfreq_Frequency Frequency of the word based on the Wordfreq package (Speer, 2022), formulated as − log2(p(word)).
Length Length of the word in characters.
start_of_line Binary indicator of whether the word appeared at the beginning of a line.
end_of_line Binary indicator of whether the word appeared at the end of a line.

Is_Content_Word
Binary indicator of whether the word is a content word.
A content word is defined as a word that has a part-of-speech tag of either PROPN, NOUN, VERB, ADV, or ADJ.

n_Lefts The number of leftward immediate children of the word in the syntactic dependency parse.
n_Rights The number of rightward immediate children of the word in the syntactic dependency parse.
Distance2Head The number of words to the syntactic head of the word.

Table 5: Linguistic word properties and their descriptions. POS tags and parse trees were obtained using SpaCy
(Honnibal et al., 2020).
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B Adaptations of Prior Models

B.1 MAG
We replace the vision and acoustic input with word-level eye movement features. To align them with
the tokenized text, we duplicate the word-level features for each subword token. Additionally, for a fair
comparison with other models, we replace BERT with RoBERTaLARGE as the textual backbone model.

Formally, each token embedding Zi is displaced by Hi.

Z̄i = Zi + αHi (5)

Hi is a scaled and transformed version of the eye movements Ei,

Hi = gi · (WeEi) + bH (6)

where the scaling is defined by,

gi = ReLU(Wg[Zi;Ai] + bg) (7)

The amount of displacement is defined by

α = min(
||Zi||2
||Hi||2

β, 1) (8)

where β is a hyper-parameter, and We,Wg, bH , bg are learned.
Finally, the contextualized CLS token is used for classification.

B.2 Eyettention
We adjust the prediction objective of the model from next fixation to trial-level classification. To this
end, we use global cross attention between the word sequence and the scanpath sequence instead of fixed
window cross attention, as suggested in Deng et al. (2023). We then represent the whole scanpath using
the last hidden representation of the scanpath LSTM. We further replace BERT, with RoBERTaLARGE for
consistency with the other models.

B.3 BEyeLSTM
First, we employ SpaCy tokenization based on paragraph-level input rather than word-level input, resulting
in a more precise tokenization. Second, the textual materials used here include a more fine-grained set
of part-of-speech tags and named entities, which results in a larger final feature set. Lastly, we omit the
"words in fixed context on unigrams" feature, as it presupposes that all the participants read the same
texts, which is not the case in OneStop.

B.4 CNN
Ahn et al. (2020) resort to artificially subdividing SB-SAT texts into smaller segments in order generate a
sufficient number of training examples to make the dataset usable for their task of predicting low versus
high comprehension over multiple items. This heuristic is problematic in general, and not applicable to
the single item task addressed here. In the current work we use the entire fixation sequence as the input to
the model.
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C Cross Validation Splits

Each split guarantees an equal number of participants from each OneStopQA batch in each portion of
the split, and is approximately stratified by answer type. Recall that each participant is presented with a
specific combination of a paragraph and one of its three associated questions. Due to the stratification by
answer type, it is not guaranteed that the appearances of any given paragraph will be balanced across the
three possible questions in any of the split portions. Note that across the 10 test sets, not all participant –
item combinations are covered in the test sets, as this would require 100 data splits.
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D Feature Standardization and Hyperparameter Tuning

We apply standardization for each feature in EP , where the statistics are computed on the train set and
applied to the validation and test sets, separately for each split. Feature normalization is performed using
Scikit-learn (Pedregosa et al., 2011).

For all the neural models, we use the AdamW optimizer (Loshchilov and Hutter, 2018) with a batch
size of 16, a linear warmup ratio of 0.1, and a weight decay of 0.1, following best practice recom-
mendations from Liu et al. (2019) and Mosbach et al. (2021). The search space for learning rates is
{0.00001, 0.00003, 0.0001} and for dropout {0.1, 0.3, 0.5}.

• For Logistic Regression, we search over regularization parameter C values of {0.1, 5, 10, 50, 100},
with and without an L2 penalty.

• For the CNN we include a learning rate of 0.001 as in Ahn et al. (2020).

• Following (Reich et al., 2022), for BEyeLSTM the search space for learning rates is
{0.001, 0.003, 0.01}, embedding dimensions of {4, 8} and hidden dimension of {64, 128}.

• For Eyettention we also include a learning rate of 0.001 and dropout of 0.2, as in Deng et al. (2023).

• For MAG-QEye, the search space for the injection layer index is {0, 11, 23}. We set the MAG-
internal dropout to 0.5, and the scaler parameter to 1e-3, as suggested by (Rahman et al., 2020).

• In PostFusion-QEye, the 1D convolution layers have a kernel size of three, stride 1, and padding 1.

All neural networks are trained using the Pytorch Lighting library (Falcon and The PyTorch Lightning
team, 2019; Paszke et al., 2019) and evaluated using torch-metrics (Nicki Skafte Detlefsen et al., 2022)
on a NVIDIA A100-40GB and A40-48GB GPUs. We adapt Huggingface’s RoBERTa implementation
(Wolf et al., 2020). The baselines described in Section 5.5 are reimplemented in this framework as well.
A single training epoch took approximately 5 minutes. We train for a maximum of ten epochs, stopping
after three epochs without improvement on the validation set.

The number of model parameters is 355M for the RoBERTaLARGE backbone, and an additional 1.1M
for MAG-QEye and RoBERTa-QEye, and 9M for PostFusion-QEye.
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E The Role of Linguistic Word Property Features

Our proposed models tend to outperform the Text-only RoBERTa baseline, especially in the two evaluation
regimes that involve new items. Note however, that in addition to eye movements, these models also
include linguistic word properties, which may provide information on the textual item that is not fully
encoded in word embeddings. Some of them (e.g. word length, frequency and surprisal) are also known
to be predictive of reading times.

What is the effect of these features on model performance? To examine this question, we carry out
two ablation experiments. In the first experiment, we ablate the linguistic word property features. In the
second experiment we ablate the eye movement features. The latter ablation is not possible with fixation
based models, because even with the eye movement features removed, these models still have information
about the gaze trajectory through the order and word identity of the fixations. We therefore perform these
experiments only with the word based models RoBERTa-QEye-Words and MAG-QEye.

Table 6 in Appendix E presents the ablation results for the binary task. In the first experiment, removal of
linguistic word properties does not substantially affect model performance. This outcome does not match
our expectation regarding the potential benefits of allowing models to learn eye movement – linguistic
word property interactions. In the second experiment, overall, we again do not observe performance
degradation when ablating the eye movement features. While this experiment is not sufficient for drawing
general conclusions regarding the value of eye movement information for our task, it suggests that in our
two instances of word-based models, eye movements do not seem to provide substantial performance
gains above and beyond features that can be readily extracted from the text. We leave a more extensive
investigation regarding the impact of linguistic features on model performance to future work.

Binary Reading Comprehension Gathering Trials Hunting Trials

Model
New
Item

New
Participant

New Item
& Participant

All
New
Item

New
Participant

New Item
& Participant

All

Text-only RoBERTa 54.8 63.1 55.2 58.7 51.8 63.1 50.5 57.1

MAG-QEye 54.8 64.1* 53.8 59.2 52.5 62.3 51.3 57.1
MAG-QEye w/o Ling. Feat 55.9 63.8 55.5 59.6 52.3 63.3 54.8 57.7
MAG-QEye w/o Eyes 54.2 63.7 56.7 58.8 51.9 63.3 53.8 57.4

RoBERTa-QEye-Words 55.5 63.5 52.1 59.1 50.5 63.8 51.0 56.8
RoBERTa-QEye-Words w/o Ling. Feat 55.4 63.3 56.3 59.2 51.1 62.7 50.7 56.6
RoBERTa-QEye-Words w/o Eyes 56.7* 63.7 57.5 60.0** 49.3 63.2 51.2 56.0

Table 6: The effect of ablating word-level eye movement features (Table 4) and linguistic word properties (Table 5)
on balanced accuracy for binary classification of the word based models MAG-QEye and RoBERTa-QEye-Words.
Statistically significant improvements over Text-only RoBERTa, using a paired bootstrap test, are marked with ‘*’
at p < 0.05, ‘**’ at p < 0.01 and ‘***’ at p < 0.001.
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F Textual Backbone Variants

Our models use RoBERTa as a textual backbone model, and the parameters of this backbone are subjected
to change during model training. Other choices for this model component are possible. For example, one
can pre-train the model on multiple choice question answering, freeze the textual backbone parameters
during model training, or choose a different textual backbone model altogether. Preliminary experiments
with MAG-QEye in Appendix F Table 7 do not show a consistent effect of these choices on model
performance in the main prediction task. We leave a comprehensive investigation of textual backbone
model choice and training to future work.

Binary Reading Comprehension Gathering Trials Hunting Trials

MAG-QEye Backbone
New
Item

New
Participant

New Item
& Participant

All
New
Item

New
Participant

New Item
& Participant

All

RoBERTa Large 54.8 64.1 53.8 59.2 52.5 62.3 51.3 57.1
RoBERTa Large Frozen 54.3 61.4 51.4 57.5 51.9 60.0 53.3 55.8
RoBERTa Large Trained for QA on RACE 54.8 64.6 52.7 59.3 48.3 62.7 44.9 54.9
RoBERTa Base 52.8 64.0 56.9 58.3 50.8 63.5* 51.6 56.9

Table 7: Balanced accuracy performance comparison of different backbone architectures and training strategies for
MAG-QEye. Statistically significant improvements compared to an unfrozen RoBERTa Large backbone are marked
with ‘*’ at p < 0.05, ‘**’ at p < 0.01 and ‘***’ at p < 0.001 using a paired bootstrap test.
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G Validation Set Results

Binary Reading Comprehension Ordinary Reading (Gathering) Information Seeking (Hunting)

Model Gaze
Representation

Text
Representation

New
Item

New
Participant

New Item
& Participant All New

Item
New

Participant
New Item

& Participant All

Majority None None 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Text-only RoBERTa None Emb 59.8 65.8 57.9 62.5 57.1 65.1 56.8 60.8

Log. Reg. (Mézière et al., 2023b) Global None 53.4 51.1 53.9 52.3 51.8 53.0 51.9 52.4
CNN (Ahn et al., 2020) Fixations None 53.3 53.7 53.4 53.5 55.1 54.5 55.0 54.8
BEyeLSTM (Reich et al., 2022) Fixations Ling. Feat. 55.0 58.5 55.7 56.7 57.3 58.6 58.3 58.0
Eyettention (Deng et al., 2023) Fixations Emb + Word Len. 58.5 62.4 57.9 60.3 57.0 59.5 56.9 58.2

RoBERTa-QEye Words Emb + Ling. Feat. 57.0 65.5 60.5 61.2 55.3 64.7 52.2 59.6
RoBERTa-QEye Fixations Emb + Ling. Feat. 57.0 63.5 60.4 60.3 54.6 62.4 56.5 58.4
MAG-QEye Words Emb + Ling. Feat. 60.4 65.8 58.9 62.9 57.3 66.0 59.5 61.6
PostFusion-QEye Fixations Emb + Ling. Feat. 60.1 65.2 60.4 62.5 58.3 65.8 59.3 61.9*

Table 8: Balanced accuracy for the binary reading comprehension prediction task (correct vs incorrect comprehen-
sion).

Multiple-Choice Reading Comprehension Ordinary Reading (Gathering) Information Seeking (Hunting)

Model
Gaze

Representation
Text

Representation
New
Item

New
Participant

New Item
& Participant

All
New
Item

New
Participant

New Item
& Participant

All

Majority None None 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Text-only RoBERTa None Emb 25.7 35.7 25.6 30.4 25.0 34.4 25.5 29.5

RoBERTa-QEye Words Emb + Ling. Feat. 34.0*** 34.4 37.4** 34.3*** 33.3*** 34.3 32.9 33.7*

RoBERTa-QEye Fixations Emb + Ling. Feat. 33.6*** 34.7 37.9*** 34.3*** 34.0*** 34.4 37.4 34.3***

MAG-QEye Words Emb + Ling. Feat. 33.8*** 36.1 34.3** 34.9** 34.8*** 33.6 32.9 34.1***

PostFusion-QEye Fixations Emb + Ling. Feat. 33.2*** 35.1 33.5* 34.1** 34.0** 31.8 35.4 33.0

Table 9: Balanced accuracy for the multiple-choice specific answer prediction task.
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