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Abstract

Automatic question generation (QG) serves a
wide range of purposes, such as augmenting
question-answering (QA) corpora, enhancing
chatbot systems, and developing educational
materials. Despite its importance, most exist-
ing datasets predominantly focus on English,
resulting in a considerable gap in data avail-
ability for other languages. Cross-lingual trans-
fer for QG (XLT-QG) addresses this limitation
by allowing models trained on high-resource
language datasets to generate questions in low-
resource languages. In this paper, we propose a
simple and efficient XLT-QG method that oper-
ates without the need for monolingual, parallel,
or labeled data in the target language, utilizing
a small language model. Our model, trained
solely on English QA datasets, learns interrog-
ative structures from a limited set of question
exemplars, which are then applied to generate
questions in the target language. Experimen-
tal results show that our method outperforms
several XLT-QG baselines and achieves per-
formance comparable to GPT-3.5-turbo across
different languages. Additionally, the synthetic
data generated by our model proves beneficial
for training multilingual QA models. With sig-
nificantly fewer parameters than large language
models and without requiring additional train-
ing for target languages, our approach offers an
effective solution for QG and QA tasks across
various languages1.

1 Introduction

Automatic question generation (QG) aims to gener-
ate questions based on a given context. QG models
have been employed not only to augment question-
answering (QA) datasets but also to generate educa-
tional materials and develop chatbots. Several QA
datasets have been proposed, including SQuAD
(Rajpurkar et al., 2016), HotpotQA (Yang et al.,

1We release our code and question exemplars used in
our experiments at https://github.com/SeonjeongHwang/
QuIST.

2018), and QuAC (Choi et al., 2018). However, the
majority of these datasets are in English, resulting
in a significant lack of data for other languages.
Moreover, translating English datasets into other
languages or creating new QA datasets, despite
the availability of similar English datasets, is of-
ten inefficient in terms of both time and financial
resources.

Recently, researchers have concentrated on
cross-lingual transfer (XLT) to address data defi-
ciencies in non-English languages (Sherborne and
Lapata, 2022; Wu et al., 2022a; Vu et al., 2022; Deb
et al., 2023; Pfeiffer et al., 2023). XLT involves
deploying models trained on English datasets to
other languages when annotated data in the target
language is limited or unavailable.

Additionally, in recent years, multilingual
large language models (mLLMs), such as GPT-
4 (Achiam et al., 2023), BLOOM (Workshop et al.,
2022), and PaLM (Chowdhery et al., 2023), have
exhibited remarkable performance across various
natural language generation (NLG) tasks, often
achieving high efficacy through zero or few-shot
inference. However, significant cost burdens are
associated with utilizing commercial APIs, and
employing open-source LLMs requires substantial
computational resources. Previous studies on XLT
for QG (XLT-QG) have typically utilized target lan-
guage data, such as monolingual corpora, source-
target parallel corpora, or a limited number of QA
examples (Kumar et al., 2019; Chi et al., 2020;
Shakeri et al., 2021; Wang et al., 2021; Agrawal
et al., 2023). Nevertheless, incorporating language-
specific data during model training can lead to
inflexibility in language scalability, necessitating
additional training efforts for applications in new
languages.

In this paper, we present a simple and efficient
XLT-QG method that generates Questions by learn-
ing Interrogative Structures in Target languages
(QuIST). QuIST comprises two stages: 1) Ques-
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tion Type Classification (QTC) and 2) QG utilizing
question exemplars. We categorize questions into
eight types based on English interrogative words,
and the QTC model determines the type of question
to be generated based on the input context and an-
swer. Once the question type is identified, it is used
to select the corresponding question exemplars for
the QG stage.

The QG model generates questions based on
a given input context, answer, and question ex-
emplars. During training with English data, the
model learns to identify the interrogative structures
specific to each question type from the provided
exemplars. This approach enables the model to
generate questions that are not only semantically
aligned with the input context and answer but also
syntactically similar to the exemplars. By train-
ing exclusively on English data, we ensure that the
model can generate questions in other languages
without requiring additional training.

In our experiments, we evaluate the performance
of QuIST across nine linguistically diverse lan-
guages. Through both automatic and human eval-
uation, we show that QuIST outperforms various
XLT-QG baselines and achieves performance com-
parable to GPT-3.5-turbo in several languages. Fur-
thermore, we confirm that synthetic questions gen-
erated by QuIST are more effective for training
high-performance multilingual QA models than
those generated by GPT-3.5-turbo.

Our contributions can be summarized as follows:

• We introduce QuIST, a straightforward and
efficient XLT-QG method that leverages inter-
rogative structures from question exemplars
in target languages during inference.

• QuIST exhibits high language scalability, as
it can be readily applied to new languages
with only a few question exemplars, without
requiring additional parameter updates.

• Despite utilizing relatively smaller language
models, such as mBERT (Devlin et al., 2018)
with 110 million parameters and mT5 (Xue
et al., 2021) with 1.2 billion parameters,
QuIST generates questions of quality com-
parable to those produced by GPT-3.5-turbo.

• QuIST demonstrates greater effectiveness for
data augmentation in multilingual QA com-
pared to other XLT-QG baselines.

2 Cross-lingual Transfer for Automatic
Question Generation

The zero-shot XLT approach–leveraging mul-
tilingual pretrained language models (mPLMs)
fine-tuned exclusively on English data for tar-
get languages–has shown promising performance
across various classification tasks (Liu et al., 2019;
Conneau and Lample, 2019; Gritta and Iacobacci,
2021; Wu et al., 2022a; Li and Murray, 2023).
However, when applied to natural language gener-
ation (NLG) tasks, this approach often results in
catastrophic forgetting of the target language. To
mitigate this issue,Maurya et al. (2021) proposed
fine-tuning only the encoder layers of mPLMs
while keeping the word embeddings and all de-
coder layer parameters frozen.

Finnish

Synthetic Question (mT5) :  How long is Pyhäjärven pituus?

Synthetic Question (mBART) : How pitkä on Pyhäjärven muoto?

Ground Truth :  Kuinka pitkä Pyhäjärvi on?

Translation: How long is Pyhäjärvi?

Korean

Synthetic Question (mT5) : When did 카를 마르크스 죽었다?
Synthetic Question (mBART) : When was 카를 하인리히 마르크스's birthday?

Ground Truth :  마르크스는 언제 사망하였는가?
Translation:  When did Marx die?

Telugu

Synthetic Question (mT5) :  How many వేరు వేరు మహాసముద్రాలు ఉన్రాయి?
Synthetic Question (mBART) : How many మహాసాగరాలుగా గురతిసాి రు?
Ground Truth :  మహా సముద్రాలు ఎన్నా ఉన్రాయి?
Translation:  How many great oceans are there?

Figure 1: Questions generated by mT5 (Xue et al.,
2021) and mBART (Liu et al., 2020) fine-tuned on En-
glish QA datasets. The questions often contain En-
glish interrogative expressions such as “How long” and
“When did.”

In our preliminary investigation, we found that
this technique did not completely prevent code-
switching in XLT-QG, as shown in Figure 1. Specif-
ically, the models struggled to fully grasp in-
terrogative structures in the target language, a
phenomenon we refer to as “interrogative code-
switching.” In this study, we propose a method
that enables small mPLMs to learn interrogative
structures without relying on target language data
during training.

As illustrated in Figure 2, we divide the task
into two stages. In the QTC stage, a classification
model identifies the type of question to be gen-
erated. We focus on Wh-questions, categorizing
them into eight types based on English interroga-
tive words. While the type of question is primarily
influenced by the type of answer, the model consid-
ers both the answer and the context. This is crucial,
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When
What
How…

[CLS] Caprivi [SEP] Namibia is …  the highest rainfall occurs in the Caprivi … [SEP]

[CLS] 1930 [SEP] ... 월드컵은 1930년에 첫 대회가 열렸다. ... [SEP]
(The first World Cup was held in 1930.)

Where does the highest rainfall occur in Namibia?

월드컵은 언제 처음 시작되었나요?

(When did the World Cup first start?)

[Training Stage]

Where
What
When…

[Inference Stage]

Question Exemplars: Where do you find a lead out? Where does morphine come from? … 

Where are the most visited monuments located in Paris? 

Answer: Caprivi

Context: Namibia is … the highest rainfall occurs in the Caprivi …

Question Exemplars: 최초의 신호등은 언제 세워졌나요? 항균 내성 확산이 자주 발생하는

시기는 언제입니까? ...하드캔디는 언제 출시됐나요?

                                             (When was the first traffic light erected? When does the spread of antimicrobial resistance 

often occur? ...When was Hard Candy released?)

Answer: 1930

Context: ...월드컵은 1930년에 첫 대회가 열렸다. ...

                          (The first World Cup was held in 1930.)

Question 
Generator

Question Type
Classifier

Figure 2: Overview of our proposed method: The QG model generates questions utilizing the question exemplars
corresponding to the question type determined by the QTC model.

as the same answer can result in different types of
questions depending on the context. For example,
the number “911” could refer to a quantity, year, or
proper noun.

The set of question exemplars corresponding to
the question type identified by the QTC model is
used in the QG stage. These exemplars are pre-
created for each question type and language, as
detailed in Section 3.1. By leveraging the shared
interrogative structures among the exemplars, the
QG model generates questions using the provided
answer and context. Both the QTC and QG models
are trained exclusively on English QA data and can
be deployed to new languages without the need for
additional training with target language data.

2.1 Question Type Classification

We categorize questions into eight types: When,
Where, What, Which, Who, Why, Howway, and
Hownumber

2. To train the QTC model, we first an-
notate the question types in the English QA dataset,
considering only those questions that fit into one of
the eight categories. Specifically, questions starting
with “how” are classified as Howway if followed
by an auxiliary verb, or as Hownumber if followed
by an adjective or adverb.

In this stage, we apply the zero-shot XLT ap-
proach. We fine-tune mBERT (Devlin et al., 2018)
with a feed-forward classification layer using En-
glish QA data. The concatenation of the answer and
context, separated by special tokens (i.e., [CLS]
answer [SEP] context [SEP]), is fed into the
QTC model. After encoding the input sequence us-

2Howway-inquire about the manner in which something is
done, while Hownumber-questions seek information regarding
a degree or specific number.

ing mBERT, the output hidden vector correspond-
ing to the [CLS] token is passed through a feed-
forward layer, followed by the softmax function, to
compute probabilities for the eight question types.
We use cross-entropy loss between the predicted
and ground-truth labels to update all model param-
eters. During inference in target languages, the
fine-tuned model predicts the question type by con-
sidering the answer and context in those languages.

2.2 Question Generation with Question
Exemplars

We employ mT5 (Xue et al., 2021) as the backbone
of our QG model, framing the task as a sequence-to-
sequence prediction problem. The model is trained
using the teacher-forcing technique to generate the
ground-truth question based on the provided ques-
tion exemplars, answer, and context. During train-
ing, the model learns to leverage the syntactic in-
formation from the question exemplars to generate
questions that are both syntactically correct and
semantically appropriate for the given context and
answer. During inference, the question exemplars
corresponding to the question type predicted by the
QTC model are input into the QG model, helping
it comprehend the interrogative structures of the
target language.

3 Experimental Setup

In this section, we describe the datasets and base-
line models we used in our experiments. Details
regarding the implementation and evaluation met-
rics are provided in Appendices B and C.1, respec-
tively.
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3.1 Data

QA Datasets We used SQuAD1.1 (Rajpurkar
et al., 2016) as the English QA dataset (C-Q-Aen)
to train both the QTC and QG models. For eval-
uation, we collected QA examples in nine target
languages (C-Q-Atgt) from multilingual human-
annotated QA datasets, including TyDiQA (Clark
et al., 2020), XQuAD (Artetxe et al., 2020) and
MLQA (Lewis et al., 2020). These datasets con-
sist of context–question–answer triplets, where the
answer is a span within the context. Details about
these datasets are provided in Appendix D.
Question Exemplars The English question ex-
emplars (Qen) were randomly selected from the
questions in the training set of C-Q-Aen after label-
ing question types as described in Section 2.13. To
gather question exemplars in the target languages
(Qtgt) written by native speakers, we utilized the
questions from the training set of C-Q-Atgt. Af-
ter translating these questions into English using
Google Translation API, we constructed the ques-
tion exemplars in the same manner as for English.

We experimented with several versions of ques-
tion exemplars containing different number of ques-
tions: {1, 5, 10, 15}. In addition, we randomly
sampled each version of the exemplars five times
using different random seeds. Consequently, we
trained five distinct QuIST models using different
English question exemplars. During the inference
stage, five sets of exemplars for each target lan-
guage were utilized for evaluation. As a result, in
Section 4, we report the average of 25 automatic
evaluation results.

3.2 Baselines

We compared our QuIST method with several XLT-
QG models that share the same backbone, mT5.
All baselines treat the QG task as a sequence-to-
sequence prediction, training the models to gen-
erate questions based on the concatenation of the
input answer and context.
BaselineEncDec This model was simply trained by
fine-tuning all parameters of mT5 using C-Q-Aen.
This approach was introduced to examine the effect
of training the parameters of the embedding layer
and decoder on English data regarding catastrophic
forgetting in the target language.

3In preliminary experiments, we observed that using fixed
exemplars was more effective than configuring random exem-
plars for each training example. A detailed analysis of this
finding is provided in Appendix A.

BaselineEnc Unlike BaselineEncDec, only param-
eters of the encoder layers of mT5 were updated for
this baseline model. This training technique was
also employed to train QuIST, but the two mod-
els differ in whether the question exemplars are
utilized.
BaselineMulti Inspired by the method proposed
by Shakeri et al. (2021), we adopt multi-task fine-
tuning, where mT5 simultaneously learns the En-
glish QG task and the question denoising task. The
denoising task aims to restore questions with ran-
domly masked tokens and we used Qtgt with 15 ex-
emplars for each question type (i.e., 120 questions)
for a fair comparison with QuIST. We use this
baseline to check whether utilizing a small num-
ber of question exemplars during the fine-tuning
stage is also effective in XLT-QG. As this baseline
learned language-specific data during training, we
constructed different models for each language.
BaselineAdapter We implemented the Adapter-
based mT5, which have been recently utilized in
XLT for various NLP tasks (Pfeiffer et al., 2020;
Deb et al., 2023; Pfeiffer et al., 2023; Wu et al.,
2023). After training language-specific adapters
using monolingual corpora4, we trained the task-
specific adapters using C-Q-Aen, where the English
adapters are incorporated. While updating each
type of adapter, we froze all other model parame-
ters. In contrast to QuIST, this baseline does not
utilize Qtgt, but instead requires large-scale mono-
lingual corpora in target languages.

Model Training Inference

BaselineEncDec C-Q-Aen C-Q-Atgt

BaselineEnc C-Q-Aen C-Q-Atgt

BaselineMulti C-Q-Aen, Qtgt C-Q-Atgt

BaselineAdapter C-Q-Aen, Stgt C-Q-Atgt

QuIST C-Q-Aen, Qen C-Q-Atgt, Qtgt

Table 1: Data utilized by QuIST and baseline models.

Table 1 summarizes the datasets utilized by each
model during both the training and inference stages.
As indicated in the table, QuIST, BaselineEncDec,
and BaselineEnc are exclusively trained on En-
glish datasets. In contrast, BaselineMulti and
BaselineAdapter make use of language-specific data
during training. Consequently, distinct language-

4We extracted 50k raw sentences for each language
from the Wikipedia dump (https://dumps.wikimedia.
org) using WikiExtractor (https://github.com/attardi/
wikiextractor), and the language-specific adapters were up-
dated through a text denoising task.
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Model en bn de fi hi id ko sw te zh Avg

BaselineEncDec 44.25 0.72 10.11 14.48 2.11 13.33 2.17 16.07 3.92 27.63 10.06
BaselineEnc 44.45 14.53 25.00 19.95 23.45 20.37 11.76 16.72 14.79 40.83 20.82
BaselineMulti 41.84 6.23 19.11 15.65 15.12 15.92 7.92 13.65 8.72 30.93 14.81
BaselineAdapter 44.16 19.29 23.44 20.26 31.41⋆ 22.73 15.75 21.09 22.21 44.60 24.53

QuIST1 43.48 14.96 25.75 27.73 21.82 23.06 11.51 20.84 10.44 42.40 22.06
QuIST5 43.47 17.47 26.80 37.89 22.44 27.04 15.90 27.82 20.57 46.09 26.89
QuIST10 43.40 20.23 27.08 38.36 27.26 28.32 23.86 31.32⋆ 29.98 47.82⋆ 30.47
QuIST15 43.08 19.07 26.84 38.79 27.56 28.36 25.14⋆ 30.59 30.74⋆ 47.71 30.53⋆

GPT-3.5-turbozero 33.98 21.30 27.76 35.55 24.84 31.18 18.56 27.90 17.31 41.67 27.34
GPT-3.5-turbo10 37.63 21.51⋆ 29.49⋆ 39.41⋆ 26.60 32.54⋆ 22.28 30.12 23.13 44.47 29.95

Table 2: Automatic evaluation results for the nine target languages. This table shows the ROUGE-L performance
of the models (SP-ROUGE (Vu et al., 2022) scores for Chinese). The best scores among mT5-based models are in
bold and the highest scores among all models are marked with ⋆. We also report BLEU4 and METEOR scores and
standard deviations in Appendix F.

specific models were trained for these two base-
lines.

4 Main Results

Comparison with Baselines Table 2 presents the
performance of QuIST and the baseline models
across nine target languages. The results show
that QuIST15, which achieved the highest per-
formance among our models with varying num-
bers of question exemplars, outperforms several
XLT-QG baselines, demonstrating a margin of
6.00 points compared to the most robust baseline,
BaselineAdapter. While adapting BaselineAdapter

to a new language necessitates training language-
specific adapter modules, our model can be readily
deployed in new languages without the need for
additional training.

QuIST notably outperforms BaselineEnc across
all languages. Note that both models have the same
number of trainable parameters during the fine-
tuning stage. These results indicate that exposing
the model to interrogative structures during the
inference stage significantly enhances its ability to
generate questions in the target language.

Despite BaselineMulti learning questions in the
target language via the denoising task, it exhib-
ited poor performance, even scoring lower than
BaselineEnc. Upon reviewing the generated results
of BaselineMulti, we frequently observed instances
where the questions were unrelated to the input con-
text or answer. These findings suggest that utilizing
a small number of question exemplars during the
training stage may lead to overfitting, resulting in a
decline in model performance.
Comparison with LLMs We also compared
QuIST and GPT-3.5-turbo, which stands out as a

relatively cost-effective option among various com-
mercial LLMs and demonstrates satisfactory re-
sults using only a few examples. We evaluated the
performance of GPT-3.5-turbo through zero-shot
inference and 10-shot inference, using prompts that
included 10 English examples sampled from C-Q-
Aen. The prompt templates we used are provided
in Appendix E.

According to the results, QuIST15 shows higher
scores on average than the zero-shot and 10-shot
inference of GPT-3.5-turbo. In detail, our model
exhibits better performance in several languages,
particularly in Hindi, Korean, Telugu, Swahili, and
Chinese. Additionally, we investigated the few-
shot inference of GPT-3.5-turbo that utilized our
QTC model and question exemplars. The results
are reported in Appendix G.
Human Evaluation We conducted a human eval-
uation in six languages where QuIST and GPT-
3.5-turbo10 exhibited similar automatic evaluation
results, and we also evaluated the strongest base-
line model, BaselineAdapter. We collected a total
of 240 questions generated by the three models per
language and asked three native speakers to assess
the question quality based on five criteria: Inter-
rogative Sentence (I), Grammatical Correctness
(G), Clarity (C), Answerability (A), Answer-Match
(A.M.). The first two metrics were rated on a scale
of 0, 1, 2, while responses for the remaining cate-
gories were binary (yes or no). More information
regarding these criteria is described in Appendix
C.2.

Table 3 presents the majority responses from
three raters. For the criteria of clarity, answerabil-
ity, and answer-match, we report the percentage
of ’yes’ responses. In German, Finnish, and In-

3198



bn te ko zh hi sw id fi de
0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f c

od
e-

sw
itc

he
d 

qu
es

tio
ns

 (%
) B-EncDec

B-Enc
B-Multi
B-Adapter
QuIST
GPT-3.5 (10-shot)

Figure 3: Percentage of code-switched synthetic questions. The patterned lower section of each bar represents the
proportion of questions with only interrogative code-switching, while the full bar indicates the total proportion of all
questions involving any form of code-switching.

I G C A A.M.

bn

BaselineAdapter 1.10 1.60 76.6 76.1 72.3
QuIST 1.05 1.65 73.8 70.5 68.2
GPT-3.5-turbo10 1.69 1.82 64.7 64.7 64.7

de

BaselineAdapter 1.62 1.48 79.2 77.9 55.1
QuIST 1.88 1.94 97.4 96.2 96.2
GPT-3.5-turbo10 1.96 2.00 100 98.8 95.0

fi

BaselineAdapter 0.82 1.08 100 100 73.8
QuIST 1.97 1.91 100 100 100
GPT-3.5-turbo10 2.00 1.98 100 100 98.2

hi

BaselineAdapter 1.83 1.84 31.3 32.3 20.7
QuIST 1.73 1.50 28.6 26.5 25.7
GPT-3.5-turbo10 1.99 1.96 32.5 32.9 24.6

id

BaselineAdapter 1.78 1.86 89.2 77.0 47.3
QuIST 1.96 2.00 100 98.7 97.5
GPT-3.5-turbo10 2.00 2.00 100 100 98.8

sw

BaselineAdapter 1.36 1.73 42.4 33.9 6.8
QuIST 1.94 1.82 82.5 76.3 55.0
GPT-3.5-turbo10 2.00 1.95 98.8 98.8 96.3

Table 3: Human evaluation results.

donesian, the questions generated by QuIST and
GPT-3.5-turbo10 consistently received high scores
across all criteria. Specifically, both models ef-
fectively generate questions that align with the
given answers, outperforming BaselineAdapter. In
contrast, our model achieves lower overall scores
in Bengali and Hindi compared to the previously
mentioned languages. However, this performance
decline is also observed in GPT-3.5-turbo10 and
BaselineAdapter.

In Swahili, QuIST lagged significantly be-

hind GPT-3.5-turbo10 in terms of “Answerabil-
ity” and “Answer-Match.” However, given that
BaselineAdapter generates questions of significantly
lower quality–despite outperforming all other base-
line models in automated evaluation–it is notewor-
thy that our model can generate Swahili questions
of acceptable quality without any specific training
in the target language.

5 Analysis

5.1 Interrogative Code-switching

We investigated the frequency of interrogative code-
switching occurrence in questions generated by dif-
ferent XLT-QG methods5. As depicted in Figure
3, interrogative code-switching is observed in the
majority of questions generated by BaselineEncDec.
This phenomenon can be attributed to catastrophic
forgetting in target languages, as both the encoder
and decoder were fine-tuned using English data.
In BaselineEnc, where only the encoder was fine-
tuned, this issue is slightly alleviated; nevertheless,
more than half of the synthetic questions still ex-
hibit this code-switching problem.

Through the results of BaselineMulti, we con-
firm that interrogative code-switching is alleviated
in numerous languages due to the impact of the
question denoising task specific to the target lan-
guage. Both QuIST and BaselineAdapter prove
comparable effectiveness in mitigating interroga-
tive code-switching, surpassing other baseline ap-
proaches. Specifically, our model demonstrates ef-
fective in alleviating interrogative code-switching

5We used cld3 (https://github.com/google/cld3) to
identify the languages. If the target language comprised less
than 70% of the generated question, it was classified as code-
switching. If the target language accounted for more than 70%
but included English interrogative words, it was classified as
interrogative code-switching.
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Method bn fi id ko sw te Avg

English-only 33.63 54.05 55.75 49.03 50.30 56.40 49.86

BaselineEnc 56.34 53.71 57.52 56.04 60.12 68.01 58.62
BaselineAdapter 54.87 50.85 58.29 52.90 59.72 64.43 56.84
Prompt-tuned PaLM 54.57 54.14 59.18 56.16 64.00 69.21 59.54
GPT-3.5-turbo10 54.28 53.28 56.34 53.87 64.06 64.92 57.79
QuIST 59.59 53.33 59.53 57.37 60.05 68.01 59.65

Table 4: Exact match scores of multilingual QA models trained on datasets synthesized using different methods.

Model Training (en) Inference (tgt) Avg ROUGE

QuIST Human & Classified Human & Classified 30.53

(1) Human & Classified Translator & Classified 27.65
(2) Human & Typeless Human & Typeless 23.59
(3) × Human & Classified 16.96

BaselineEnc × × 20.82

Table 5: Performance of XLT-QG models using question exemplars in different ways.

observed in low-resource languages such as Ben-
gali and Swahili.

5.2 Data Augmentation for Question
Answering

We explored the potential of QuIST for augmenting
training data for multilingual QA models. Specif-
ically, we compared synthetic data generated by
QuIST and baseline models6 with the multilingual
QA dataset generated by Agrawal et al. (2023),
which used their PaLM-540B model prompt-tuned
with five QA examples from target languages. Ta-
ble 4 presents the average exact match (EM) scores
across six languages for the multilingual QA mod-
els. The training details can be seen in Appendix
B.

According to the results, QuIST achieves the
best performance, surpassing GPT-3.5-turbo10 and
prompt-tuned PaLM-540B. Interestingly, contrary
to the findings from the automatic evaluation and
interrogative code-switching analysis, BaselineEnc

demonstrates greater effectiveness in QA data aug-
mentation compared to BaselineAdapter. In the ear-
lier experiment, over 70% of the questions gen-
erated by BaselineEnc exhibited code-switching
issues. However, unlike BaselineAdapter, which de-
pends solely on task-specific adapters for learning
the QG task, BaselineEnc leverages all encoder pa-
rameters. This suggests that BaselineEnc may be
capable of producing questions with higher seman-
tic quality.

6The questions were generated based on the context and
answer pairs within the synthetic dataset released by Agrawal
et al. (2023).

5.3 Impact of Different Question Exemplars

We investigated the impact of utilizing different
methods for constructing question exemplars com-
pared to our proposed approach. These approaches
were compared to BaselineEnc, where only the en-
coder is fine-tuned on English data, without using
additional data from target languages during both
training and inference. Table 5 presents the average
ROUGE scores across nine languages.

(1) QuIST utilizes human-written question exem-
plars in target languages during inference. In this
experiment, we evaluate the model’s performance
using exemplars translated from English questions
via the Google Translation API. The results show
that while machine-translated exemplars improve
target language question generation compared to
BaselineEnc, they are less effective than human-
written exemplars.

(2) We conducted training and inference using
exemplars that covered all question types to eval-
uate the effectiveness of type-specific question ex-
emplars. The exemplars included two instances of
each of the eight question types, totaling 16 ques-
tions, and the QTC model was not used in this
setting. The results indicate a slight performance
improvement compared to BaselineEnc; however,
this effect is marginal.

(3) We investigated whether input question exem-
plars during the inference stage are beneficial, even
without the training process for generating ques-
tions using question exemplars. The model was
trained to generate a question based on the given
context and answer without utilizing the question
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exemplars, similar to BaselineEnc, and only used
the exemplars in the inference stage. In this setting,
question exemplars in the target language were not
helpful, meaning that QuIST learns how to utilize
question examples for QG during training.

5.4 Question Type Classification

Labeling Type en tgt

Hard 62.92 52.86
Relaxed 96.38 91.13

Table 6: Performance of the QTC model.

To measure the zero-shot inference performance
of the QTC model for the target languages, we
first annotated the ground-truth question types of
the target language QA data. We translated the
questions into English and conducted annotation
as detailed in Section 2.1 (i.e., hard labeling). Ta-
ble 6 displays the macro F1 scores of the QTC
model, measured based on ground-truth labels con-
structed in two ways. Since most Wh-questions
can be paraphrased into questions beginning with
“what” and “which,”7 we also evaluate the QTC
performance in a setting where “what” and “which”
are accepted as additional gold labels (i.e., relaxed
labeling). According to the results measured with
the relaxed labels, the model correctly classified
more than 90% of questions. This suggests that the
error propagation resulting from misclassification
in QTC is minimal throughout the entire pipeline.

5.5 Case Study

We analyzed the questions generated by the mod-
els we used in the experiments, particularly focus-
ing on Swahili, where our model received lower
rating than GPT-3.5-turbo10 in human evaluation.
In Figure 4, we can see that the question gener-
ated by QuIST is insufficient to explain the given
answer, and these incorrect generations resulted
in the low “Answer-Match” score. We also note
that BaselineEncDec and BaselineEnc encounter
code-switching issues, and the question generated
by BaselineMulti contains information that is not
present in the context. Furthermore, the question
generated by BaselineAdapter was assessed as not
being a question, as it is a descriptive sentence
ending with a question mark.

7For example, “How large is the Mupartifad village?” is
equivalent to “What is the area of Mupartifad village?”

Context: Malawi, Zambia na Zimbabwe wakati mwingine zinehesabiwa

kuwa sehemu ya Afrika ya Kusini (zamani zilikuwa pamoja kama Rhodesia 

ya Kusini, Rhodesia ya Kaskazini na Unyasa katika Shirikisho la Afrika ya

Kati)

(Malawi, Zambia and Zimbabwe are sometimes considered part of South 

Africa (they used to be together as Southern Rhodesia, Northern Rhodesia 

and Nyasa in the Central African Federation))

Answer: Zambia

BaselineEncDec Along with Malawi, Zimbabwe and Zimbabwe, which 

nations sometimes zinehesabiwa sehemu ya Africa ya

Kusini?
(Along with Malawi, Zimbabwe and Zimbabwe, which 

nations are sometimes considered part of South Africa?)

BaselineEnc What nchi zinahesabiwa kuwa sehemu ya Afrika ya 

Kusini?
(What countries are considered to be part of South Africa?)

BaselineMulti Malawi, Zimbabwe, na eneo gani lilikuwa "mji mzuri

zaidi nchini Uingereza" mbele ya Southampton mnamo

2007?
(Malawi, Zimbabwe, and which region was the "best city in 

England" ahead of Southampton in 2007?)

BaselineAdapter Malawi, Zimbabwe na Zimbabwe wakati mwingine

zinahesabiwa kuwa sehemu ya Afrika ya Kusini
(Malawi, Zimbabwe and Zimbabwe are sometimes 

considered part of South Africa?)

GPT-3.5-turbo10 Ni nchi gani inahesabiwa kuwa sehemu ya Afrika ya

Kusini pamoja na Malawi na Zimbabwe?
(Which country is considered part of South Africa along with 

Malawi and Zimbabwe?)

QuIST Ni nchi ipi iliyohesabiwa kuwa sehemu ya Afrika ya

Kusini? 
(Which country is considered part of South Africa?)

Ground-Truth Je, Rhodesia ya Kaskazini ina jina gani kwa sasa?
(What is the current name of Northern Rhodesia?)

Figure 4: Examples of synthetic questions in Swahili.

6 Related Work

Prior work on XLT for NLG tasks has primar-
ily focused on training models with source lan-
guage datasets while maintaining the ability to gen-
erate outputs in the target language. For exam-
ple, Mallinson et al. (2020) and Chi et al. (2020)
leveraged parallel corpora to improve the align-
ment between source and target languages, facil-
itating a more effective transfer of task-related
knowledge. Similarly, Maurya et al. (2021) en-
hanced the mPLM model through an auxiliary
task closely related to the downstream task, us-
ing only monolingual data, and applied it to vari-
ous NLG tasks in the XLT setting. In another ap-
proach, Vu et al. (2022) demonstrated that prompt-
tuning effectively mitigated catastrophic forgetting
of the target language in zero-shot cross-lingual
summarization. More recently, researchers such as
Wu et al. (2022b), Deb et al. (2023), and Pfeiffer
et al. (2023) have explored methods to separate the
acquisition of language-specific knowledge from
language-agnostic knowledge, aiming to improve
cross-lingual performance.

Unlike most generation tasks that focus on pro-
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ducing declarative sentences, QG involves the
additional complexity of generating interrogative
sentences designed to elicit specific information.
While our approach avoids training models using
target language data, much of the prior research
has relied on such data. For instance, Kumar et al.
(2019) utilized a combination of English QA data
and a limited amount of target language data. In
contrast, Shakeri et al. (2021) trained their model
using a denoising task on a question corpus in the
target language. Additionally, Agrawal et al. (2023)
prompt-tuned the PaLM-540B model using five
sets of target language QA examples and used the
model to synthesize multilingual QA dataset. Fi-
nally, Chi et al. (2020) adopted a language model-
ing approach with parallel corpora and restricted
the question decoding phase to tokens from the
target language vocabulary.

7 Conclusion

In this paper, we proposed a simple yet effective
XLT-QG approach, where the question generation
model is trained solely on an English QA dataset
and leverages a small set of target language ques-
tions during inference. By incorporating question
exemplars from target languages, our method en-
ables the model to learn the interrogative structures
of those languages, effectively addressing the issue
of code-switching.

Experimental results demonstrate that this ap-
proach significantly outperforms several XLT-QG
baselines and achieves performance comparable to
GPT-3.5-turbo across a variety of languages. Ad-
ditionally, we validated the utility of our method’s
synthetic data for training multilingual QA models.

A key strength of our method lies in its scalabil-
ity and parameter efficiency, as it relies exclusively
on English QA data during training. This enables
the seamless extension to new languages without
the need for additional parameter updates. More-
over, in contrast to LLMs, our approach employs
smaller backbone models, offering the advantages
of lower deployment costs and reduced computa-
tional requirements, making it more accessible for
practical use in diverse multilingual settings.

8 Limitations

While our model demonstrates strong cross-lingual
capabilities, its applicability remains constrained
to the languages on which the mPLMs have been
trained. Although the mT5 model employed in

our study was pre-trained on a diverse set of 101
languages, there remain many underrepresented or
low-resource languages where the model’s perfor-
mance may be limited.

Another limitation is the instability in model per-
formance, which can vary depending on the con-
figuration of the question exemplars in the target
language. Some questions generated by the model
continue to exhibit code-switching issues. While
this issue may affect the grammatical and linguis-
tic consistency of the outputs, it can be mitigated
through the use of a simple rule-based filtering tech-
nique. Nonetheless, this solution may not entirely
eliminate the problem and could require further
refinement, particularly in more complex multilin-
gual contexts.
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Hesslow, Roman Castagné, Alexandra Sasha Luc-
cioni, François Yvon, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Han Wu, Haochen Tan, Kun Xu, Shuqi Liu, Lianwei Wu,
and Linqi Song. 2022a. Zero-shot cross-lingual con-
versational semantic role labeling. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 269–281.

Ting-Wei Wu, Changsheng Zhao, Ernie Chang,
Yangyang Shi, Pierce Chuang, Vikas Chandra, and
Biing Juang. 2023. Towards zero-shot multilingual
transfer for code-switched responses. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7551–7563.

Xianze Wu, Zaixiang Zheng, Hao Zhou, and Yong Yu.
2022b. Laft: Cross-lingual transfer for text genera-
tion by language-agnostic finetuning. In Proceedings
of the 15th International Conference on Natural Lan-
guage Generation, pages 260–266.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mt5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

A Static and Dynamic Exemplars

Since gathering sufficient question samples in the
target languages is challenging, we used fixed ques-
tion exemplars during inference. In contrast, En-
glish question exemplars can be easily sourced
from QA datasets. Thus, we experimented with
two approaches for creating question exemplars to
train the QG model: (1) Static exemplars, which
use fixed exemplars across all training examples,
and (2) Dynamic exemplars, which are sampled
from the English QA dataset for each training ex-
ample.

Language Dynamic Static

bn 20.40 ± 0.40 20.13 ± 0.71
de 26.53 ± 0.19 26.84 ± 0.26
fi 35.91 ± 1.35 43.09 ± 2.18
hi 26.97 ± 0.44 27.72 ± 0.28
id 27.42 ± 2.04 29.96 ± 2.22
ko 23.35 ± 0.37 27.01 ± 0.83
sw 27.57 ± 0.86 32.01 ± 1.09
te 27.64 ± 0.99 32.96 ± 1.17
zh 47.29 ± 0.22 47.64 ± 0.26

AVG 29.23 31.93

Table 7: Comparison of models using dynamic and
static exemplars during training. We report SP-ROUGE
scores for Chinese and ROUGE-L scores for other lan-
guages. The scores for the static setting are based on the
English exemplars, representing median performance.

As shown in Table 7, both approaches demon-
strate effective performance in target languages
compared to the existing XLT-QG baseline models
(Table 2). However, the static exemplar method
achieves better overall performance across various
languages. During training, our model generates
questions by leveraging the syntactic information
from the exemplars while utilizing the semantic
information from the input context and answer. We
hypothesize that the model trained with static ex-
emplars was better able to focus on the syntactic
structures of the example questions, leading to im-
proved performance. Consequently, we utilized
static exemplars in all our experiments.
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B Implementation Details

We utilized a single NVIDIA Tesla A100-
80GB GPU for model training. The QTC
and QG models were initialized using
bert-base-multilingual-cased with 110M
parameters and google/mt5-large with 1.2B
parameters, sourced from HuggingFace8. Training
was conducted employing stochastic gradient
descent with the AdamW optimizer (Loshchilov
and Hutter, 2018) coupled with a linear learning
rate scheduler encompassing 1000 warm-up steps.
Batch sizes and learning rates were set as (8, 1e-5)
and (16, 5e-5) for QTC and QG, respectively.
Training ceased upon optimization of the models
on the validation set.

Due to variations in the number of examples
across different question types, we employed data
upsampling based on the type with the highest num-
ber of examples for training the QTC model. Dur-
ing the inference stage, we determined the question
type with the highest predicted probability from
the QTC model and generated questions using the
beam search algorithm with a beam size of 4.

To train multilingual QA models in Section 5.2,
we adopted the methodologies used by Agrawal
et al. (2023). Each QA model underwent train-
ing using a combination of English data sourced
from the TyDiQA training set and synthetic data
for all languages, generated by each XLT-QG
model. Given the unavailability of the TyDiQA test
set, we evaluated the validation performance in-
stead. The backbone of the QA model consisted of
google/mt5-xl with 3.7B parameters, fine-tuned
with a learning rate of 2e-4 and a batch size of
64. We selected the model checkpoint yielding
the highest EM score for each language, following
the strategy of Agrawal et al. (2023), and reported
the average scores obtained from utilizing three
different random seeds.

C Metric

C.1 Automatic Evaluation

In accordance with previous studies on QG, we use
BLEU4 (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), ROUGE-L (Lin, 2004) as au-
tomatic evaluation metrics. These metrics measure
the n-gram similarity between model predictions
and references. However, these evaluation metrics
are not suitable for Chinese (zh), where words are

8https://huggingface.co

not separated by white space. Therefore, we ad-
ditionally used SP-ROUGE (Vu et al., 2022) that
using SentencePiece sub-word tokenization (Kudo
and Richardson, 2018).

C.2 Human Evaluation
We enlisted three native speakers for each language
via Upwork9 to evaluate the quality of our synthetic
questions. The questions were rated based on five
criteria:

• Interrogative Sentence evaluates whether the
question has an interrogative structure.
0: This is not a question.
1: This is a question, but it doesn’t have the
typical structure of an interrogative sentence.
2: This is a natural interrogative structure.

• Grammatical Correctness evaluates the gram-
matical accuracy of the question.
0: Numerous grammatical errors make the
question unacceptable.
1: Some errors exist but do not hinder under-
standing of the question.
2: The question is grammatically correct.

• Clarity determines whether the question is
clear and easily understandable given the con-
text. Answer yes or no.

• Answerability determines whether the ques-
tion can be answered using information from
the context. Answer yes or no.

• Answer-Match determines whether the input
answer could be a valid answer to the ques-
tion considering the content of the provided
context. Answer yes or no.

If a score of “0” is assigned to the Interrogative
Sentence category, evaluations for the remaining
categories did not conducted. Additionally, if a
score of 0 is rated in Grammatical Correctness, or
if “no” is selected for Clarity, Answerability, or
Answer-Match categories, subsequent evaluations
can not be carried out. Therefore, in this case, the
lowest scores were assigned for these criteria.

D Data Usage

We used SQuAD1.1 (Rajpurkar et al., 2016) as the
English QA data C-Q-Aen for training our models.
As only training and validation sets are publicly

9https://www.upwork.com

3205

https://huggingface.co
https://www.upwork.com


available, we partitioned the training set and em-
ployed a portion of the examples for validation
purposes. The original validation set served as our
test set. The training, validation, and test sets com-
prised 79,321, 8,283, and 1,190 examples, respec-
tively. Furthermore, the distribution of examples
by question type is summarized in Table 8.

Question Type # Examples

What 33,777
Who 7,951

Hownumber 5,657
When 4,780
Which 3,931
Where 2,953

Howway 1,600
Why 1,054

Table 8: Number of examples by question type in train-
ing set of C-Q-Aen.

Language Code
# Examples

Train Test

Bengali bn 2,390 113
Chinese zh 5,137 1,190
German de 4,517 1,190
Finnish fi 6,855 782
Hindi hi 4,918 1,190

Indonesian id 5,702 565
Korean ko 1,625 276
Swahili sw 2,755 499
Telugu te 5,563 669

Table 9: Language codes and the number of examples
in C-Q-Atgt dataset. In our method, only a small portion
of the training examples are used as question exemplars.

Table 9 presents the statistics of target language
QA data C-Q-Atgt utilized by our models during
inference. Note that training examples were solely
employed for sampling question exemplars Qtgt.
Test examples in Chinese, German, and Hindi were
collected from the XQuAD (Artetxe et al., 2020)
test set, whereas training examples were sourced
from the MLQA (Lewis et al., 2020) validation
set, as XQuAD does not provide a training set for
the target languages. Training and test examples
in other languages were obtained from TyDiQA
(Clark et al., 2020).

E Prompt Template for GPT-3.5-turbo

We evaluated the zero-shot and few-shot perfor-
mance of gpt-3.5-turbo-0125 model. We ex-

tracted sets with different numbers of examples: 1,
3, 5, and 10, from C-Q-Aen to employ for few-shot
inference. In addition, we used five versions of
each set, varying the random seed. Based on the
English validation set, we determined the optimal
number of examples (see Table 10), and used the
set with the median performance as the component
in the few-shot prompt. Subsequently, we con-
ducted zero-shot and 10-shot inference for various
languages using the prompts described in Figure 5
and 6, respectively.

Prompt Type BLEU-4 METEOR ROUGE-L

Zero-shot 15.01 53.28 40.32

Few-shot

1 17.58 ± 3.04 52.99 ± 0.80 40.20 ± 3.11
3 18.28 ± 1.82 53.43 ± 1.01 41.10 ± 1.71
5 19.09 ± 0.85 54.02 ± 1.11 41.40 ± 1.27
10 19.42 ± 1.02 54.37 ± 0.69 42.10 ± 1.01

Table 10: Performance of GPT-3.5-turbo on the
SQuAD1.1 validation set. We report the mean and stan-
dard deviation of the few-shot inference results.

Input Template

Considering the given context, generate a question for the given 

answer in the same language as the given context:

Context: {context}
Answer: {answer}
Question:

Model Prediction

{question}

Figure 5: The input and output template for zero-shot
inference of GPT-3.5-turbo.

Additionally, we empirically observed that spec-
ifying the language of the questions to be gener-
ated is essential for effective few-shot inference.
Even when the input context and answer are in
non-English languages, the model frequently gen-
erated English questions when the language to be
generated was not specified.

F Automatic Evaluation Results

Table 11, 12, and 13 show detailed results for the
experiments in Section 4.

G GPT-3.5-turbo few-shot Inference with
Question Type Classification

We additionally investigated whether the QTC
model and question exemplars are beneficial for
few-shot inference of GPT-3.5-turbo. In this ex-
periment, we utilized the exemplar set that exhib-
ited the best performance for each language in
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Input Template

Considering the given context, generate a question for the given 

answer in the same language as the given context:

[Example 1]

Context: … In total, Afrikaans is the first language in South Africa 

alone of about 6.8 million people and is estimated to be a second 

language for at least 10 million people worldwide, compared to over 

23 million and 5 million respectively, for Dutch.

Answer: 6.8 million

English question: About how many South Africans speak Afrikaans 

as their primary language?

…

[Example 10]

Context: … In ring-porous species, such as ash, black locust, catalpa, 

chestnut, elm, hickory, mulberry, and oak, the larger vessels or pores 

(as cross sections of vessels are called) are localised in the part of the 

growth ring formed in spring, thus forming a region of more or less 

open and porous tissue. The rest of the ring, produced in summer, is 

made up of smaller vessels and a much greater proportion of wood 

fibers. …

Answer: ring-porous

English question: What species of hardwood are hickory and 

mulberry trees?

[Example 11]

Context: {context}
Answer: {answer}
{language} question:

Model Prediction

{question}

Figure 6: The input and output template for 10-shot
inference of GPT-3.5-turbo.

our method. We supplemented these exemplars
with the statement “The followings are examples
of language questions:” placed before the prompt
in Figure 6. According to the results in Table 14,
leveraging the QTC model and question exemplars
leads to particularly improved performance in low-
resource languages such as Bengali, Telugu, and
Swahili.
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Model en bn de fi hi id ko sw te Avg

BaselineEncDec 23.45 0.00 3.62 2.91 0.35 5.59 0.00 4.46 0.97 2.24
BaselineEnc 23.72 5.64 13.57 6.27 10.01 10.11 4.38 5.80 3.64 7.43
BaselineMulti 23.45 2.04 9.38 3.17 3.63 6.46 1.85 2.35 1.77 3.83
BaselineAdapter 21.79 6.96 11.34 5.57 12.28 9.10 4.41 6.38 6.41 7.81

QuIST1 22.32 ± 0.06 5.18 ± 0.72 12.97 ± 0.39 13.02 ± 2.04 7.78 ± 1.31 12.81 ± 0.88 2.54 ± 1.50 8.24 ± 2.18 3.41 ± 1.05 8.24
QuIST5 22.20 ± 0.13 6.62 ± 0.97 13.43 ± 0.30 20.50 ± 1.54 7.84 ± 1.19 14.78 ± 0.79 5.57 ± 4.21 15.07 ± 2.87 9.38 ± 4.27 11.65
QuIST10 22.17 ± 0.14 7.88 ± 0.70 13.43 ± 0.26 19.71 ± 2.57 9.44 ± 0.75 15.59 ± 0.94 10.87 ± 1.97 18.29 ± 1.39 13.19 ± 3.84 13.55
QuIST15 21.90 ± 0.10 7.20 ± 0.75 13.49 ± 0.27 20.46 ± 2.52 9.15 ± 0.38 15.34 ± 1.38 11.26 ± 1.07 17.34 ± 1.37 13.83 ± 3.05 13.51

GPT-3.5-turbozero 12.27 7.76 11.53 11.84 7.53 11.25 5.40 10.90 4.59 8.85
GPT-3.5-turbo10 15.50 7.77 12.40 15.45 7.30 12.84 7.82 11.55 5.30 10.05

Table 11: Automatic evaluation results using BLEU4.

Model en bn de fi hi id ko sw te Avg

BaselineEncDec 50.98 6.95 16.09 21.72 6.29 25.25 10.38 22.85 13.06 15.32
BaselineEnc 50.68 22.21 31.23 27.92 27.73 35.10 17.78 25.79 23.05 26.35
BaselineMulti 50.99 11.68 24.88 23.16 18.24 28.36 14.99 18.76 16.93 19.63
BaselineAdapter 48.11 24.96 31.30 29.47 33.47 36.57 16.04 28.03 23.50 27.92

QuIST1 48.67 ± 0.12 21.69 ± 1.60 30.57 ± 0.74 34.14 ± 2.87 25.15 ± 3.01 36.99 ± 1.74 17.26 ± 1.01 31.73 ± 3.01 22.09 ± 1.69 27.45
QuIST5 48.56 ± 0.14 23.66 ± 1.23 31.39 ± 0.40 41.57 ± 1.60 25.36 ± 2.69 40.85 ± 1.07 19.94 ± 4.24 40.19 ± 3.25 27.59 ± 3.99 31.32
QuIST10 48.51 ± 0.19 25.22 ± 1.28 31.33 ± 0.40 41.78 ± 1.59 28.85 ± 1.60 41.66 ± 1.96 24.74 ± 3.52 43.89 ± 1.31 30.62 ± 3.18 33.51
QuIST15 48.22 ± 0.12 24.49 ± 1.45 31.43 ± 0.47 42.38 ± 2.64 29.51 ± 0.79 42.38 ± 2.39 27.65 ± 2.47 43.15 ± 1.80 32.65 ± 1.77 34.21

GPT-3.5-turbozero 47.61 27.08 35.50 41.48 28.84 45.81 23.19 41.10 24.16 33.40
GPT-3.5-turbo10 49.29 26.82 37.43 44.72 30.16 47.05 27.98 40.96 27.49 35.33

Table 12: Automatic evaluation results using METEOR.

Model en bn de fi hi id ko sw te zh Avg

BaselineEncDec 44.25 0.72 10.11 14.48 2.11 13.33 2.17 16.07 3.92 27.63 10.06
BaselineEnc 44.45 14.53 25.00 19.95 23.45 20.37 11.76 16.72 14.79 40.83 20.82
BaselineMulti 41.84 6.23 19.11 15.65 15.12 15.92 7.92 13.65 8.72 30.93 14.81
BaselineAdapter 44.16 19.29 23.44 20.26 31.41 22.73 15.75 21.09 22.21 44.60 24.53

QuIST1 43.48 ± 0.04 14.96 ± 2.05 25.75 ± 0.87 27.73 ± 3.87 21.82 ± 3.50 23.06 ± 2.14 11.51 ± 1.07 20.84 ± 2.44 10.44 ± 3.22 42.40 ± 2.32 22.06
QuIST5 43.47 ± 0.07 17.47 ± 1.49 26.80 ± 0.61 37.89 ± 2.37 22.44 ± 3.08 27.04 ± 1.09 15.90 ± 5.63 27.82 ± 3.56 20.57 ± 7.14 46.09 ± 2.24 26.89
QuIST10 43.40 ± 0.11 20.23 ± 1.14 27.08 ± 0.52 38.36 ± 1.92 27.26 ± 1.78 28.32 ± 1.76 23.86 ± 2.51 31.32 ± 2.38 29.98 ± 3.29 47.82 ± 0.61 30.47
QuIST15 43.08 ± 0.06 19.07 ± 1.47 26.84 ± 0.49 38.79 ± 3.36 27.56 ± 0.63 28.36 ± 2.63 25.14 ± 1.69 30.59 ± 1.39 30.74 ± 2.02 47.71 ± 0.41 30.53

GPT-3.5-turbozero 33.98 21.30 27.76 35.55 24.84 31.18 18.56 27.90 17.31 41.67 27.34
GPT-3.5-turbo10 37.63 21.51 29.49 39.41 26.60 32.54 22.28 30.12 23.13 44.47 29.95

Table 13: Automatic evaluation results using ROUGE-L and SP-ROUGE.

Model bn de fi hi id ko sw te zh Avg

GPT-3.5-turbo10 21.51 29.49 39.41 26.60 32.54 22.28 30.12 23.13 44.47 29.95
w/ QTC & Target language Question Exemplars 21.97 28.08 38.99 26.01 34.63 20.15 32.43 26.46 43.16 30.21

Table 14: Performance of GPT-3.5-turbo10 employing the QTC model and question exemplars in target languages.
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