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Abstract

Recent studies have explored the working
mechanisms of In-Context Learning (ICL).
However, they mainly focus on classification
and simple generation tasks, limiting their
broader application to more complex gener-
ation tasks in practice. To address this gap,
we investigate the impact of demonstrations
on token representations within the practical
alignment tasks. We find that the transformer
embeds the task function learned from demon-
strations into the separator token representation,
which plays an important role in the genera-
tion of prior response tokens. Once the prior
response tokens are determined, the demon-
strations become redundant. Motivated by this
finding, we propose an efficient Progressive In-
Context Alignment (PICA) method consisting
of two stages. In the first few-shot stage, the
model generates several prior response tokens
via standard ICL while concurrently extract-
ing the ICL vector that stores the task func-
tion from the separator token representation. In
the following zero-shot stage, this ICL vector
guides the model to generate responses with-
out further demonstrations. Extensive exper-
iments demonstrate that our PICA not only
surpasses vanilla ICL but also achieves com-
parable performance to other alignment tuning
methods. The proposed training-free method
reduces the time cost (e.g., 5.45×) with im-
proved alignment performance (e.g., 6.57+).
Consequently, our work highlights the appli-
cation of ICL for alignment and calls for a
deeper understanding of ICL for complex gen-
erations. The code will be available at https:
//github.com/HITsz-TMG/PICA.

1 Introduction

In-Context Learning (ICL) has attracted growing
attention alongside the scaling of Large Language
Models (LLMs) (Brown et al., 2020). By condition-
ing on a handful of input-label pairs as examples,

BCorresponding author.

LLMs achieve notable improvements and produce
impressive few-shot performance across a range
of downstream tasks (Wei et al., 2022). After that,
numerous studies have explored the working mech-
anism of ICL and propose several effective methods
to enhance ICL (Hendel et al., 2023; Todd et al.,
2023; Wang et al., 2023a; Li et al., 2024).

However, these works mainly focus on classi-
fication tasks and simple generation tasks, which
limits the exploration of these methods in more
complex generation tasks, such as aligning LLMs
with human preferences. As a complex and practi-
cal task, alignment typically requires training the
model, such as Supervise Fine-Tuning (SFT) (Zhou
et al., 2023) and Reinforcement Learning from Hu-
man Feedback (RLHF) (Ouyang et al., 2022). A
recent work (Lin et al., 2023) proposed URIAL, a
simple method using in-context examples to align
several powerful base LLMs and achieves notable
instruction-following performance. The success of
URIAL demonstrates the feasibility of in-context
alignment and encourages us to explore and opti-
mize ICL in the alignment task.

In this paper, we investigate the impact of demon-
strations during in-context alignment. We visualize
the token distribution KL-divergence of instruc-
tions and responses in zero-shot and few-shot set-
tings (Figure 1). To reduce context noise, we set up
two few-shot settings with different demonstrations
as control groups and have the following observa-
tions through comparative experiments: (1) The
model likely stores the task function learned from
the demonstration in the separator token representa-
tion. (2) Demonstrations play a crucial role in prior
response generation but are redundant in posterior
response generation. These observations highlight
the influence of demonstrations on token represen-
tation in ICL for alignment tasks, indicating that
demonstrations are not always indispensable during
the entire response generation stage.

Motivated by these findings, we propose a

2743

https://github.com/HITsz-TMG/PICA
https://github.com/HITsz-TMG/PICA


Progressive In-Context Alignment (PICA) method
to enhance both the efficiency and effectiveness of
regular ICL. Specifically, Our approach involves
a two-stage progressive generation strategy: the
few-shot stage and the zero-shot stage. During the
few-shot stage, the model generates prior part of
the response using the standard ICL settings. After
generating a specific number of tokens, we transi-
tion the model into the zero-shot stage, eliminating
the need for further demonstrations to generate
the remaining part of the response. To capitalize
on the task-related information embedded in the
separator tokens, we introduce an ICL vector guid-
ance method. Inspired by the work of task vector in
ICL (Hendel et al., 2023; Todd et al., 2023; Li et al.,
2024), we extract the ICL vector from the hidden
states of specific transformer layers. This vector is
then used to steer the model during the zero-shot
stage by intervening in the forward pass. PICA
minimize the need for demonstrations while im-
proving output quality, thereby reducing the com-
putational cost associated with demonstrations and
enhancing overall performance. Extensive experi-
ments show that PICA outperforms regular ICL in
both of efficiency and effectiveness. As a training-
free method, it is also comparable to other align-
ment methods (i.e., SFT and RLHF). For example,
on average, our PICA boosts the performance of
Mistral-7b to reach 90% of the performance of
GPT-4-0613. These results support our observa-
tions and show the effectiveness of our method in
various aspects of alignment. Additionally, we con-
duct ablation studies to investigate the robustness
and generalizability of our method. Our contribu-
tions are summarized as follows:

• We delve into the impact of demonstrations on
token representation in ICL and qualitatively ex-
plore the working mechanism of task functions
learned from demonstrations in complex align-
ment tasks.

• We propose a progressive in-context alignment
method that incorporates progressive generation
and ICL vector guidance. This method efficiently
aligns models and significantly reduces the com-
putational cost associated with demonstrations.

• We conduct extensive evaluation and ablation ex-
periments on the proposed method, where the
results have fully demonstrated its efficiency and
effectiveness. Our experiments and analyses pro-
vide in-depth insights for future research on in-

context alignment.

2 Related Work

LLM Alignment. Prior works have explored
alignment tuning through supervised fine-tuning us-
ing public instruction datasets (Wang et al., 2022;
Zhou et al., 2023; Stiennon et al., 2020) or rein-
forcement learning from human feedback (Stien-
non et al., 2020; Rafailov et al., 2023). A common
approach is to fine-tune models using instruction
data to enable them to follow instructions effec-
tively. To rapidly accumulate a vast amount of in-
struction tuning data, Wang et al. (2023b) proposes
a pipeline to obtain instruction data from power-
ful models, such as GPT-4. LIMA leverages only
1000 high-quality instruction data points to fine-
tune a 65B parameter LLM (Zhou et al., 2023). It
shows that the minimal tuning surprisingly results
in a high win rate against ChatGPT. Following in-
struction fine-tuning, the reinforcement learning is
applied to further align the models (Stiennon et al.,
2020). Rafailov et al. (2023) introduces a train-
ing method for alignment that does not require a
reward model. Its powerful convenience and effec-
tiveness have made it one of the de facto methods.
However, these methods necessitate substantial re-
sources and there is evidence to suggest that such
training approaches cause model forgetting of pre-
viously acquired knowledge in base LLMs (Wang
et al., 2023b; Shen et al., 2023; Wang et al., 2022).
In contrast to training-based methods, Lin et al.
(2023) experiment with ICL for LLM alignment
and Confirm the feasibility of ICL for the align-
ment task. Building on this finding, we explore a
training-free ICL approach. We do not merely uti-
lize ICL. Instead, we initially investigate its work-
ing mechanism in token representation learning.
This investigation helps enhance the effectiveness
of in-context alignment. Similar to us, a very recent
concurrent work (Zhan et al., 2024) also identifies
the critical role of prior answer token selection
in alignment tasks, and proposes a SFT model or
external resources guided generation method for
multilingual instruction following. Differing from
their approach, we focus on the working mech-
anisms and optimization methods of ICL in the
mainstream English alignment tasks.

In-context Learning Working Mechanism. Re-
cent studies have explored the working mecha-
nisms within ICL. Several works try to theoreti-
cally demonstrate a strong similarity between the
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(a) Input Experimental Group
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(b) Input Control Group
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(c) Output Experimental Group
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(d) Output Control Group

Figure 1: The KL-divergence of token probability distributions on Llama2-7b. Experimental Group compares zero-shot and
few-shot settings, while Control Group compares two few-shot settings with different demonstrations. We visualize the input and
output separately and mark the prior query tokens and prior response tokens with purple circles.

attention patterns in ICL and the process of gradi-
ent descent (Akyürek et al., 2023; Dai et al., 2023).
From a more practical perspective, another line of
research suggests that the ICL may function by
learning a mapping function from demonstrations,
which it then applies to input queries to make pre-
dictions (Hendel et al., 2023; Todd et al., 2023; Li
et al., 2024). Hendel et al. (2023) extract an ICL
task vector from the hidden states and utilize it for
intervention during zero-shot inference. Todd et al.
(2023) extract a function vector from attention acti-
vations using the causal mediation method, which
is subsequently added to the hidden states of cer-
tain transformer layers during inference. Li et al.
(2024) derive a state vector from attention activa-
tions and propose several optimization strategies.
Unlike these works, we focus on using comparative
experiments to explore the impact of demonstra-
tions on token representation, and leverage these
findings to enhance the efficiency of ICL.

3 Motivation

In this section, we aim to shed light on the working
mechanisms of in-context learning by investigat-
ing the following question: What is the impact
of demonstration on token representation in in-
context alignment? To explore this, we design a
comparative experiment to highlight how token rep-
resentations differ between zero-shot and few-shot
settings. We use token probability distributions
as a proxy for token representations and utilize
KL-divergence to measure the shifts in these distri-
butions. By visualizing and quantifying the shifts
in token probability distributions caused by demon-
strations, we can understand the role of demon-
strations in aligning the model and provide further
optimization for in-context alignment.

Regarding the experimental setup, we randomly

selected 100 data instances of similar length from
Ultra-chat (Ding et al., 2023), a commonly used
dataset for alignment tuning, as our experimental
dataset. For the input prompt, we use a straightfor-
ward design by adding several tokens at the end of
the query to serve as separator tokens, explicitly
distinguishing between the query and the response.
We present the visualization results based on the
Llama2-7b model in the Figure 1, while the results
for other models are provided in Appendix C. We
break the token distribution of the whole instance
into the input and output parts. A straightforward
reason is that the input token distribution shift rep-
resents differences in understanding the instruction,
while the output token distribution shift represents
the ability to respond. By observing and analyzing
the visualization, we have two hypotheses: (1) the
ICL alignment task function might be encoded into
the separator token representation. (2) the quality
of response is highly reliant on the quality of prior
response tokens.

Input Token Distribution. By comparing the
input token probability distributions between zero-
shot and few-shot settings, a significant shift is ob-
served in both the prior tokens of the query and the
separator tokens. The KL-divergence decreases as
the number of query tokens increases. By compar-
ing the experimental group and the control group,
we find that the shift in the query distribution also
occurs in the control group. However, this shift
in the separator tokens is not consistent across dif-
ferent demonstration settings, suggesting distinct
underlying causes for these shifts. We attribute
the shift in the query’s prior token distribution to a
“context shift”, and we attribute the shift in the sep-
arator tokens distribution to a “task shift”. Given
that LLMs are trained to predict the next token

2745



based on the provided context, altering the context
directly impacts the token distribution, which we
refer to as the “context shift”. However, as the num-
ber of query tokens increases, the decision space
gradually aligns for both zero-shot and few-shot
settings, leading to higher consistency in query to-
ken prediction and thus a reduced KL-divergence.
On the contrary, the trend observed in the query
distribution is not mirrored in the separator token
distribution. In the control group, the separator
token representations remain highly similar. We at-
tribute the large KL-divergence observed in the sep-
arator token distribution of the experimental group
to the differing tasks, indicating that separator to-
kens likely encode task-specific information during
ICL. We reasonably speculate that the primary im-
pact of demonstration on instruction understanding
is reflected in the encoding of separator tokens,
where the alignment task function learned through
ICL is stored. This hypothesis aligns with prior
work (Hendel et al., 2023; Li et al., 2024), yet our
findings contribute additional evidence supporting
this perspective.

Output Token Distribution. Observing the vi-
sualization of output token distribution, we find
that when comparing zero-shot and few-shot set-
tings, the response token distribution shows simi-
larity in the posterior tokens. This indicates that
the model selects posterior tokens with high con-
sistency in both zero-shot and few-shot settings.
When comparing the prior response tokens of the
experimental group and the control group, we ob-
serve a pattern similar to that of the separator to-
kens, suggesting that demonstrations play a cru-
cial role in the prior response tokens. Based on
these observations and analyses, we speculate that
the primary impact of demonstrations on response
generation is reflected in the generation of prior
answer tokens. Compared to zero-shot settings,
demonstrations guide the generation of accurate
prior response tokens, which implicitly helps the
model successfully follow the instructions. This
observation also suggests that once the prior re-
sponse tokens are determined, the influence of the
demonstration diminishes and becomes redundant.

4 Method

Observations from §3 reveal that demonstrations
are not always indispensable during the entire re-
sponse generation stage. To minimize the need
for demonstrations while preserving alignment per-
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Figure 2: Overview of PICA, which include few-shot stage
and zero-shot stage. The gray block denotes the hidden state
and orange block denotes the separator token hidden state that
forms the ICL vector. The blue block denotes the generated
answer token from few-shot stage.

formance, we introduce a progressive in-context
alignment approach. This methodology enhances
the efficiency and efficacy of in-context alignment
through two innovations: (1) a progressive gen-
eration strategy that reduces the computational
cost associated with demonstrations, and (2) in-
context learning vector guidance that compresses
the task function from demonstrations to assist in
high-quality response generation.

Inspired by underscoring the redundancy of
demonstrations once the pivotal prior response to-
kens are determined, we introduce a progressive
generation strategy, dividing response generation
into few-shot and zero-shot stages. During the few-
shot stage, the model generates a specific number
of prior response tokens by employing a standard
in-context learning:

Y few
i = argmax

Y ∈V
P (Y |D,Q, S, Y few

1:i−1), (1)

where D is the demonstration, Q is the query, S
is the separator token, and Y few

i is the i-th answer
token generated in few-shot stage. After obtain-
ing several prior answer tokens, the model oper-
ates within a more certain and simplified decision
space for token generation, allowing the omission
of the demonstration to reduce computational costs.
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Therefore, in the zero-shot stage, the model com-
pletes the response based on the existing prior re-
sponse tokens:

Y zero
i = argmax

Y ∈V
P (Y |Q,S, Y few

1:N , Y zero
1:i−1), (2)

where N is the number of prior tokens, and Y zero
i

the i-th answer token generated in zero-shot stage.

In-context Learning Vector Guidance. We ob-
serve that transformers show task-specific encod-
ing behavior with the separator token. Recent
works (Hendel et al., 2023; Todd et al., 2023) have
similar observations, demonstrating that functions
learned by ICL can be represented through com-
pressed vectors derived from transformers and can
perform simple generation tasks in zero-shot set-
tings. Building on this, we propose the ICL vector
guidance to assist the model in generating high-
quality responses during the zero-shot stage. Un-
like these previous works that intervene single hid-
den state of the last separator token, we intervene
in the initial L layer of all separator tokens. Our
preliminary experiments found that this method is
more effective for the alignment task, where the
output is much longer than that of the simple gen-
eration tasks focused on in previous works.

Specifically, during the forward pass in the few-
shot generation, we extract the separator token hid-
den state H few

i from the first L layers, which we
combine and refer to as the ICL vector. Subse-
quently, in the zero-shot stage, we intervene in the
separator token representation by replacing the hid-
den state with the extracted hidden state from the
few-shot stage:

Hzero
i =

{
H few

i if i ≤ L

Layer(Hzero
i−1 ) otherwise

, (3)

where Layer(·) is the process function of trans-
former layer. By intervening with the ICL vec-
tor, the model receives implicit guidance from the
demonstration during generation, thereby improv-
ing the quality of the zero-shot stage responses.

Overall, Our progressive in-context alignment
process is: In the few-shot stage, we utilize stan-
dard ICL to generate pivotal prior response tokens
while extracting the ICL vector from the separator
token representation. Subsequently, we discard the
demonstration and employ the ICL vector to guide
the model in generating the complete response in
the zero-shot setting. This dual-stage progressive
in-context alignment approach fully capitalizes on

the potential of the ICL vector and the text comple-
tion capabilities of foundational language models
in the zero-shot setting. By effectively harnessing
these capabilities, the approach not only reduces
computational cost but also maintains high fidelity
in response generation across various settings.

5 Experiment

5.1 Datasets and Models

Recent research demonstrates that utilizing power-
ful AI assistants such as ChatGPT and GPT-4 for
scoring and comparing achieves close alignment
with human evaluations while reducing costs (Liu
et al., 2023; Dubois et al., 2024). Consequently,
we evaluate our method using two automatic align-
ment benchmarks: alpaca-eval (2.0) (Dubois et al.,
2024) and just-eval (Lin et al., 2023). Alpaca-eval
comprises 805 instructions and provides a length-
controlled win rate from the judge model by com-
paring the assessed results with those from a refer-
ence model. For fast and validated evaluation, we
select GPT-3-text-davinci-003 and GPT-4 as refer-
ence models, while employing GPT-4-0314 as the
judge model. Just-eval includes 800 regular instruc-
tions and 200 red-teaming and malicious instruc-
tions selected from diverse open-source datasets,
offering detailed evaluations across six aspects. On
each aspect, scores range from 1 to 5, represent-
ing the degree of evaluation. In line with prior
work (Lin et al., 2023), we use GPT-4-0314 as the
evaluator and report the performance across three
random seeds. For efficiency analysis, we evaluate
the average inference time on 1000 test data with
strictly generated 4096 tokens without using any
additional decoding optimization techniques. We
report the speedup compared to the standard ICL.

We conduct our experiments using three prin-
cipal fundamental LLMs: Llama2-7b, Llama2-
13b (Touvron et al., 2023) and Mistral-7b
(v0.1) (Jiang et al., 2023). These models are se-
lected based on their moderate sizes, open-source
availability, and proficiency in ICL. For compara-
tive analysis, we utilized their respective alignment-
tuned versions: Llama2-7b-chat, Llama2-13b-chat,
and Mistral-7b-Instruct, facilitating a direct com-
parison with SFT and RLHF. Additionally, our
study includes results from OpenAI’s GPT models
(i.e., GPT-3.5-turbo-0611 and GPT-4-0613), allow-
ing comparison with the state-of-the-art AI assis-
tants. We follow the inference guidelines provided
by the authors of these tuned models.
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5.2 Implementation Detail

For the in-context learning prompt, we follow previ-
ous work (Lin et al., 2023) and use the mainstream
system message employed in aligned LLMs. We
meticulously designed the demonstrations for in-
context learning, creating six examples for alpaca-
eval and three examples for just-eval, as they em-
phasize different evaluation aspects. We utilize
greedy generation with a beam size of 1 and set
the maximum token length to 4096. The in-context
learning vector guidance method we described ear-
lier has a key hyper-parameter, specifically the
layer L. Previous studies (Hendel et al., 2023) have
demonstrated that the choice of L influences perfor-
mance. We determine the intervention layer based
on the win rate on alpaca-eval. We set the number
of prior tokens to 10 as a trade-off between gener-
ation quality and efficiency. For consistency and
reproducibility, we apply greedy decoding across
all experiments. All experiments were conducted
on a single NVIDIA A800 80G GPU, with each ex-
periment consuming between 3 to 5 hours of GPU
time, depending on the dataset and models used.

5.3 Baseline

In the paper, we compare our method with the fol-
lowing methods and ablation variants:

• SFT or RLHF is the baseline with alignment
tuning method. We strictly follow the guidelines
provided by the creators of these tuned models
during inference.

• Zero-shot is the baseline for the zero-shot set-
ting that uses only the given query as input, and
Vanilla ICL is the regular ICL which makes pre-
dictions on the label by taking both demonstra-
tion and instruction.

• Vec. is the ablation variants that only utilize ICL
vector guidance in zero-shot setting, while Prog.
is the ablation variants that apply progressive
generation strategy without ICL vector guidance
during zero-shot stage.

5.4 Main result

Table 1 presents the win rates of each baseline on
alpaca-eval and the scores on just-eval, as well as
the speedup for efficiency analysis. In addition
to our complete PICA method, we also present
evaluation results for two ablation variants (i.e.,
‘Vec.’ and ‘Prog.’) to explore the effectiveness of

the two proposed innovations. The combination of
these innovations constitutes our PICA method.

PICA outperforms the baseline with tuning-free
baselines. As shown in the Table 1, our method
outperforms zero-shot and vanilla ICL baselines
across three models on alpaca-eval. On the just-
eval dataset, our PICA also surpasses the tuning-
free baseline in the majority of aspects. Compared
to regular ICL, our method effectively improves
helpfulness, factuality, engagement, and safety.
However, in terms of clarity and depth, our method
shows a minor decline. We attribute this to the fact
that our approach still has limitations in generating
consistently information-rich responses, indicating
that the ICL vector cannot fully encapsulate all the
information provided by the demonstration.

PICA is comparable to the alignment tuning
methods. When compared to SFT or RLHF mod-
els, our approach demonstrates superior perfor-
mance on the alpaca-eval dataset, indicating an
overall advantage over SFT and RLHF methods.
However, on the just-eval dataset, the results vary
across different aspects. For instance, in the aspects
of helpfulness and factuality, our method excels,
highlighting its capability to follow instructions
and generate high-quality and accurate responses.
This also supports the widespread hypothesis that
alignment tuning may cause models to forget some
of their knowledge (Wang et al., 2023b; Shen et al.,
2023). Conversely, in terms of clarity, depth, and
engagement, our method lags slightly, suggesting
that SFT and RLHF have an advantage in produc-
ing high-quality response styles over ICL. In terms
of safety, our method surpasses SFT but does not
exceed RLHF, indicating that ICL provides rela-
tively basic safety alignment. On the other hand,
with strong models such as Llama2-13b or Mistral-
7b, the performance of our PICA can reach 90% of
the performance of GPT-3.5 and GPT-4.

PICA achieves high efficiency compared to
vanilla ICL. Analyzing the speedup shown in Ta-
ble 1, our method significantly reduces the time
cost compared to vanilla ICL (e.g., achieving a
5.45× speedup on Llama2-7b) and is close to the
zero-shot method across three models. This im-
provement is attributed to our progressive genera-
tion strategy, which successfully saves a substan-
tial amount of time by discarding the demonstra-
tion. Notably, our method is orthogonal to attention
speedup techniques, such as flash attention (Dao
et al., 2022) and page attention (Kwon et al., 2023).
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Models + Alignment Methods
Alpaca-eval Just-eval

Speedupvs GPT-3 vs GPT-4 Helpful Clear Factual Deep Engaging Safe
GPT-3.5-turbo-0611 69.51 46.46 4.82 4.97 4.84 4.33 4.66 4.99 -
GPT-4-0613 72.51 53.52 4.86 4.99 4.90 4.49 4.61 4.97 -
Llama2-7b-chat (RLHF) 40.50 17.49 4.12 4.84 4.13 4.18 4.77 5.00 5.68
Llama2-7b (Zero-shot) 24.65 11.74 2.78 3.01 3.11 2.27 2.29 1.05 5.81
Llama2-7b (Vanilla ICL) 42.47 15.00 4.01 4.10 4.16 3.50 3.31 1.98 1.00
Llama2-7b (Vec.) 36.51 13.73 3.68 3.72 3.80 3.01 2.94 1.73 5.43
Llama2-7b (Prog.) 42.13 16.23 3.78 3.82 3.94 3.26 3.04 1.78 5.53
Llama2-7b (PICA) 45.90 21.57 4.21 4.09 4.30 3.41 3.42 2.09 5.45
Llama2-13b-chat (RLHF) 55.30 38.60 4.36 4.94 4.36 4.55 4.83 5.00 4.97
Llama2-13b (Zero-shot) 33.73 15.20 3.26 3.65 3.60 2.63 2.62 1.86 5.31
Llama2-13b (Vanilla ICL) 59.82 37.61 4.38 4.70 4.68 4.37 4.24 4.09 1.00
Llama2-13b (Vec.) 53.57 24.43 4.24 4.45 4.24 3.85 3.79 2.22 4.84
Llama2-13b (Prog.) 58.14 34.91 4.25 4.33 4.35 3.60 3.48 4.01 4.78
Llama2-13b (PICA) 62.78 40.15 4.58 4.66 4.68 4.16 4.15 4.37 4.83
Mistral-7b-instruct (SFT) 62.78 43.30 4.72 4.75 4.30 4.41 4.37 2.00 4.95
Mistral-7b (Zero-shot) 43.32 22.55 3.86 4.14 4.05 3.38 3.31 1.61 5.23
Mistral-7b (Vanilla ICL) 62.03 40.35 4.70 4.87 4.81 4.32 4.38 3.03 1.00
Mistral-7b (Vec.) 61.19 37.61 4.76 4.81 4.74 4.36 4.32 2.48 5.02
Mistral-7b (Prog.) 62.75 39.73 4.76 4.84 4.77 4.42 4.61 4.17 4.83
Mistral-7b (PICA) 66.38 44.33 4.79 4.86 4.79 4.42 4.59 4.34 4.93

Table 1: Comparison of alignment performance and efficiency. Alpaca-eval presents the win rate against competitor models,
while Just-eval presents the scores across six aspects (scores are on a scale of 1-5). Results highlighted in gray represent our
methods: Vec. denotes the ICL vector guidance and Prog. denotes progressive generation ablation variants. The best results in
each aspect are marked in bold. Speedup indicates the efficiency improvement compared to vanilla ICL.

We will leave further exploration for future work.

Both progressive generation strategy and ICL
vector guidance contribute to performance im-
provement. We conduct ablation experiments on
our proposed progressive generation strategy and
ICL vector guidance, as indicated by the results
highlighted in grey in Table 1. When only one of
these methods is used, the model’s performance de-
clines, with a more significant drop observed when
the progressive generation strategy is removed.
This clearly demonstrates the effectiveness of both
methods, with the progressive generation strategy
playing a more critical role. It also indicates the
limitations of ICL vector guidance, which, while
effective in simpler tasks (Hendel et al., 2023; Todd
et al., 2023), shows constraints in more complex
alignment tasks.

Overall, our method outperforms ICL in perfor-
mance and efficiency, achieving results comparable
to alignment tuning. These promising outcomes
validate the effectiveness of our approach and em-
pirically support our understanding of the role of
demonstrations in in-context alignment.

6 Analysis

6.1 Layer Selection

We delve into the impact of layer selection on the
extraction of the ICL vector. We evaluate the per-
formance based on the win rate compared to GPT-
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Figure 3: Win rate comparing with GPT-3-text-davinci-003
on alpaca-eval for each choice of the intermediate layer L.

3-text-davinci-003 on the alpaca-eval datasets, as
shown in Figure 3. Our results reveal a dual-phase
trend: initially, increasing the number of layers im-
proves performance, but this improvement stops or
slightly declines in the later layers. This indicates
that the ICL function is dynamically stored within
the separator token representation. In the initial lay-
ers, transformers primarily focus on learning and
encapsulating the ICL function within the hidden
state, where additional layers enhance the richness
of the functional information in the ICL vector. In
contrast, the later layers prioritize applying this
learned information for prediction tasks. Here, ad-
ditional layers tend to introduce noise, causing a
slight drop in performance. This also suggests that

2749



1 2 3 4 5 6 7 8 9 10
Number of Prior Tokens

0.7

0.8

0.9

1.0

1.1
%

IC
L

Mistral-7b-v0.1
Llama2-7b
Llama2-13b
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Figure 5: The mean and standard error of ICL and PICA
performance with five demonstration across three models.

our method is not significantly affected by layer se-
lection, confirming the robustness of our approach.

6.2 Prior token Ablation

Figure 4 presents an ablation study on the number
of prior tokens across three models, normalized by
the vanilla ICL results. An intuitive conclusion is
that increasing the number of prior tokens improves
the model’s performance, and with about 8 prior
tokens, PICA surpasses vanilla ICL. However, this
improvement trend gradually diminishes. When the
number of prior tokens reaches 10, the performance
gain becomes less significant. This indicates that
the demonstration aligns approximately the first 10
tokens to human performance. After generating 10
tokens, the base model can largely complete the
response generation independently.

6.3 Robustness Analysis

In this section, we examine the robustness of PICA
to demonstration selection. Specifically, we evalu-
ate the performance of ICL and PICA across three

Winner Ratio (%)

Mistral-7b (PICA) 35.4
Mistral-7b-instruct (SFT) 24.1
Tie 40.5

Llama2-13b (PICA) 34.6
Llama2–13b-chat (RLHF) 21.3
Tie 44.1

Table 2: Results of human evaluation: The win rate of pairwise
comparisons between PICA and SFT or RLHF.

models using five different sets of demonstrations.
The results, including the mean and standard devia-
tion of the performance metrics, are shown in Fig-
ure 5. We observe that the ICL method is more sen-
sitive to changes in the demonstrations compared to
the PICA method across all three models. This in-
dicates that PICA effectively enhances robustness.
We attribute this to our approach of explicitly incor-
porating demonstrations only in the prior response
tokens, while using implicit demonstration repre-
sentations during the zero-shot generation stage.
This strategy effectively mitigates the impact of
suboptimal demonstrations on performance.

6.4 Human Evaluation

We randomly sampled 100 examples each from
the alpaca-eval and just-eval datasets, presenting
the responses generated by PICA alongside those
from the SFT or RLHF models to computer science
graduate students who serve as annotators. We
asked the annotators to choose which response was
better or if it was a tie. Table 2 shows the results,
which align with the automated evaluation.

7 Conclusion

In this paper, we investigate and analyze the im-
pact of demonstrations on token representation in
in-context alignment through comparative exper-
iments. Based on our observations and analyses,
we introduce a novel progressive in-context align-
ment method that significantly reduces the need for
demonstrations while preserving alignment perfor-
mance. Extensive experiments indicate that PICA
outperforms tuning-free baselines in both effective-
ness and efficiency, achieving performance that is
better or comparable to SFT or RLHF. Our exper-
iments and analyses provide in-depth insights for
future research on ICL in alignment. In the fu-
ture, we aim to further explore the mechanisms and
optimizations of ICL in more complex tasks.
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Limitations

Despite our discoveries and improvements, we
must acknowledge certain limitations in our work:

Model Size: We evaluated our method on
Llama2-7b, Llama2-13b, and Mistral-7b, and these
experiments were conducted on a limited scale with
moderately sized models. This limits our explo-
ration of the application of PICA on larger models.
We will explore the use of PICA on larger models
such as llama2-70b in future work.

Theoretical Foundation: Our conclusions about
the role of demonstration and ICL working mech-
anism lack rigorous theoretical grounding. In ex-
ploring the working mechanism of ICL, we de-
rived some hypotheses through comparative ex-
periments on token representation. While these
hypotheses provided insights, they lack solid math-
ematical derivation and a theoretical basis, limiting
the generalizability of our method. For example, in
Appendix B, we analyze a kind of instruction that
PICA does not handle well.

Evaluation Datasets: Most of our experiments
utilized the alpaca-eval and just-eval datasets,
which are based on AI assistant automated evalua-
tion pipelines. Related work (Dubois et al., 2024)
has shown that these GPT-4-based evaluation meth-
ods can introduce biases, such as a preference for
longer responses, which may affect the accuracy of
our experimental results. Additionally, our dataset
quantity is still limited, and the evaluation metrics
do not fully cover all aspects of alignment, such
as mathematics, reasoning, and coding. We will
continue to explore our method with more compre-
hensive evaluation metrics in future work.
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A Case Study

We present a case study comparing SFT, ICL, and
PICA on Mistral-7b in Figure 6. The SFT model
incorrectly stated that Canada was colonized by
the British in 1607, leading to poor performance in
factuality with a score of 1. This highlights a com-
mon issue with SFT models, where they may forget
acquired knowledge over time. As a result, the SFT
model received low marks in helpfulness (3) and
engagement (2), despite a reasonable clarity score
(4). This misrepresentation shows the limitations
of the SFT approach in retaining and accurately re-
calling historical facts. The ICL model is relatively
better in factuality. However, the generated con-
tent lacked depth and richness, scoring 2 in depth
and 2 in helpfulness, suggesting that while the ICL
method generates some stylistic tokens, it does not
produce sufficiently detailed or useful responses.
Our PICA model provided a comprehensive and
accurate response, detailing the colonization his-
tory of Canada, resulting in high scores across all
aspects: helpfulness (5), clarity (5), factuality (5),
depth (4), and engagement (4). The PICA model
effectively combined stylistic tokens with detailed
and accurate information, showcasing its capabil-
ity to generate high-quality responses that are both
informative and engaging.

B Error Analysis

In our preliminary experiments, we found that the
proposed PICA approach frequently performed
poorly in generating enumeration-type responses
(e.g. “Give me a list of some famous world mu-
sic artists.”). Consequently, we analyzed the KL-
divergence of responses to these instructions in
zero-shot and few-shot settings. The visualization
results are shown in Figure 7. Our observations
indicate that, although the trend of KL-divergence
is generally similar to what we observed in §3 there
are differences in each enumeration of the response.
We found that the KL-divergence of prior tokens is
usually larger than the posterior tokens in each enu-
meration, indicating that these prior enumeration
tokens are pivotal. The quality of responses to enu-
merative instructions is influenced not only by the
selection of prior response tokens but also by the
selection of prior enumeration tokens. We attribute
this to the fact that each enumerated item is rela-
tively independent of each other. When generating
these enumerations, the model requires more sub-
stantial guidance from the demonstrations. How-

ever, the proposed ICL vector and the positions
of previous enumeration responses do not provide
enough information for generation, thus reducing
the quality of each enumeration. This highlights a
limitation of our current PICA approach, which we
will explore and optimize in future work.

C More Exploration on Demonstration

We present additional comparative experiments to
further delve into the impact of demonstrations on
token representation. We conduct experiments on
Llama2-7b and Mistral-7b models with the same
data as in §3. The experimental group includes both
zero-shot and few-shot methods, while the control
group includes two different demonstrations in few-
shot settings. In addition to the KL-divergence of
token distributions, we introduce two new metrics
for measuring the difference between the two meth-
ods, i.e., Top Token Prob and Top Token Rank.

Top Token Rank refers to the ranking position of
a token predicted by one method within the token
distribution of another method. Specifically, given
the context, we first obtain the next predicted to-
ken from one method and then determine its rank
within the token distribution of the other method.
A lower Top Token Rank manifests a greater over-
lap in the decision space under the greedy search
setting. Analogously, Top Token Prob indicates
the probability of a token predicted by one method
within the distribution of another method. In this
case, we first obtain the next predicted token from
one method and then report its probability in the
token distribution of the other method. A higher
Top Token Prob manifests a higher likelihood of ob-
taining the same result under the greedy sampling
setting. These metrics directly reflect the similarity
between the generation results of the two methods.
By evaluating both Top Token Rank and Top Token
Prob, we can obtain a comprehensive understand-
ing of how closely the methods align in terms of
their token predictions.

The KL-divergence results on Mistral-7b are
shown in Figure 8, and we find a similar pattern to
that in Figure 1.

The Top Token Rank results are shown in Fig-
ure 9 and Figure 10. For convenience, we set the
rank of the token to 10 if it is greater than 10. We
find that tokens with a large KL-divergence differ-
ence typically also have a higher Top Token Rank,
indicating that our understanding of demonstra-
tions applies to this observation as well. Notably,
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When was Canada colonized?

Canada was colonized by the British in 1607. The first successful British colony was established 
at Jamestown, Virginia, in 1607, and three years later, the Pilgrims established the Plymouth 
Colony in present-day Massachusetts. Over the next two centuries, the British gradually 
established more colonies along the eastern seaboard, eventually forming the thirteen colonies 
that would become the United States.

Hello, I'm happy to help you! Canada was colonized by European settlers in the 16th century. The 
first European settlement in Canada was established by the French in 1534, when Jacques Cartier 
explored the St. Lawrence River and claimed the land for France. The British later established 
their own colonies in Canada, and the two nations fought for control of the territory for centuries. 
The British eventually gained control of most of Canada, and the country became a self-governing 
dominion of the British Empire in 1867. Canada gained full independence from Britain in 1982, 
and has since become a thriving democracy and a leading member of the international community.

Hello! I'm happy to help you with your question about the history of Canada. Canada was first 
colonized by the French in the 16th century, with the establishment of the colony of New France 
in 1534. 

Instruction

Mistral-7b (SFT)

Mistral-7b (ICL)

Mistral-7b (PICA)

Helpfulness: 3 Factuality: 1 Depth: 3 Engagement: 2Clarity: 4

Helpfulness: 2 Factuality: 3 Depth: 2 Engagement: 3Clarity: 4

Helpfulness: 5 Factuality: 5 Depth: 4 Engagement: 4Clarity: 5

Figure 6: Case study of SFT, ICL, and PICA on Mistral-7b. We report results of the five regular evaluation aspects on just-eval.
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Figure 7: KL-divergence of response token distributions of enumerative instructions on Llama2-7b and Mistral-7b.

even though the separator token distribution dif-
fers significantly, the Top Token Rank remains low.
This observation suggests that though demonstra-
tions have a lot of influence on the separator token
representation, the predicted next token rank still
remains unchanged.

The Top Token Prob results are shown in Fig-
ure 11 and Figure 12, where we find that tokens
with a large KL-divergence difference typically
also have a low Top Token Prob. This further sup-
ports our understanding of the role that demonstra-
tions play in the ICL. Similar to the result of Top
Token Rank, the predicted separator token proba-
bility is high, indicating that demonstration will not
change the selection of separator token.

Overall, we observe similar patterns across KL-
Divergence, Top Token Rank, and Top Token Prob
metrics, despite minor differences. This demon-
strates the generalizability and universality of our
understanding of the impact of demonstrations.

D PICA Prompt

We present the default version prompt with one
example used in our experiment in the Table 3.

E Additional Experiment

In this section, we present the performance of PICA
on the larger Llama2-70B model. As shown in the
table 4, the PICA consistently achieves comparable

2755



0 20 40 60 80 100 120 140
Position

0

1

2

3

4

5

K
L 

D
iv

er
ge

nc
e

Query Token
Separator Token

(a) Input Experimental Group

0 20 40 60 80 100 120 140
Position

0

1

2

3

4

5

6

7

8

K
L 

D
iv

er
ge

nc
e

Query Token
Separator Token

(b) Input Control Group
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(c) Output Experimental Group
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Figure 8: The KL-divergence of token probability distributions on Mistral-7b. Experimental Group compares zero-shot and
few-shot settings, while Control Group compares two few-shot settings with different demonstrations. We visualize the input and
output separately and mark the prior query tokens and prior response tokens with purple circles.
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Figure 9: Average Top Token Rank on Llama2-7b. Experimental Group compares zero-shot and few-shot settings, while Control
Group compares two few-shot settings with different demonstrations. We visualize the input and output separately
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Figure 10: Average Top Token Rank on Mistral-7b. Experimental Group compares zero-shot and few-shot settings, while Control
Group compares two few-shot settings with different demonstrations. We visualize the input and output separately
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(a) Input Experimental Group
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(c) Output Experimental Group
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Figure 11: Average Top Token Prob on Llama2-7b. Experimental Group compares zero-shot and few-shot settings, while Control
Group compares two few-shot settings with different demonstrations. We visualize the input and output separately

2756



0 20 40 60 80 100 120 140
Position

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

To
p 

To
ke

n 
Pr

ob

Query Token
Separator Token

(a) Input Experimental Group

0 20 40 60 80 100 120 140
Position

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

To
p 

To
ke

n 
Pr

ob

Query Token
Separator Token

(b) Input Control Group

0 20 40 60 80 100 120 140
Position

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p 

To
ke

n 
Pr

ob

Response Token

(c) Output Experimental Group
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Figure 12: Average Top Token Prob on Mistral-7b. Experimental Group compares zero-shot and few-shot settings, while Control
Group compares two few-shot settings with different demonstrations. We visualize the input and output separately

The default version of PICA prompt with an example

# Instruction

Below is a list of conversations between a human and an AI assistant (you).
As an AI assistant, you will engage in conversations with users, responding to their queries which are presented under
the heading "# Query:".
Your responses should be entered under the heading "# Answer:".
You excel in a wide range of tasks including, but not limited to, providing general information, conducting reasoning,
engaging in role-play, creative writing, planning, and solving mathematical and coding problems.
Your responses should be well-structured, comprehensive, and aim to thoroughly address the user’s query or problem at
hand.
When enumerating items in your responses, limit the examples to no more than ten, and avoid completely redundant
content.
Please ensure that your responses are encapsulated within triple backticks (“```”) at the start and end to maintain
formatting consistency throughout the conversation.

# Query:
```
Find poems that mention the moon, including the poem titles and their poets.
```

# Answer:
```
These are some examples of poems that mention the moon.
1. "The Moon and the Yew Tree" by Sylvia Plath
2. "The Moon" by Robert Louis Stevenson
3. "Above the Dock" by T. E. Hulme (...)
```

Table 3: The default version of PICA prompt with an example

Models + Alignment Methods
Alpaca-eval Just-eval

Speedupvs GPT-3 vs GPT-4 Helpful Clear Factual Deep Engaging Safe
GPT-4-0613 72.51 53.52 4.86 4.99 4.90 4.49 4.61 4.97 -
Llama2-70b-chat (RLHF) 69.58 47.19 4.90 4.96 4.88 4.72 4.80 5.00 6.92
Llama2-70b (Zero-shot) 24.65 11.74 2.78 3.01 3.11 2.27 2.29 1.05 5.81
Llama2-70b (Vanilla ICL) 66.03 44.18 4.83 4.89 4.78 4.52 4.56 4.71 1.00
Llama2-70b (Vec.) 58.63 35.47 4.72 4.79 4.71 4.15 4.25 3.71 6.81
Llama2-70b (Prog.) 63.13 42.61 4.79 4.85 4.76 4.19 4.31 4.68 6.70
Llama2-70b (PICA) 68.66 45.31 4.85 4.85 4.82 4.21 4.58 4.70 6.73

Table 4: Comparison of alignment performance and efficiency on Llama2-70b. Alpaca-eval presents the win rate against
competitor models, while Just-eval presents the scores across six aspects (scores are on a scale of 1-5). Results highlighted in
gray represent our methods: Vec. denotes the ICL vector guidance and Prog. denotes progressive generation ablation variants.
Speedup indicates the efficiency improvement compared to vanilla ICL.

results relative to vanilla ICL and RLHF methods.
The observed performance improvements can be
attributed to the proposed progressive generation
strategy and ICL vector guidance. Notably, when

implemented on the Llama2-70B model, PICA
achieves 95% of GPT-4’s performance. These re-
sults demonstrate that the PICA remains effective
even in larger model configurations.
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