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Abstract

Large language models (LLMs) have demon-
strated exceptional abilities across various do-
mains. However, utilizing LLMs for ubiqui-
tous sensing applications remains challenging
as existing text-prompt methods show signifi-
cant performance degradation when handling
long sensor data sequences. We propose a vi-
sual prompting approach for sensor data us-
ing multimodal LLMs (MLLMs). We design
a visual prompt that directs MLLMs to uti-
lize visualized sensor data alongside the tar-
get sensory task descriptions. Additionally,
we introduce a visualization generator that
automates the creation of optimal visualiza-
tions tailored to a given sensory task, eliminat-
ing the need for prior task-specific knowledge.
We evaluated our approach on nine sensory
tasks involving four sensing modalities, achiev-
ing an average of 10% higher accuracy than
text-based prompts and reducing token costs
by 15.8x. Our findings highlight the effec-
tiveness and cost-efficiency of visual prompts
with MLLMs for various sensory tasks. The
source code is available at https://github.
com/diamond264/ByMyEyes.

1 Introduction

Large language models (LLMs) have shown re-
markable performance in tasks across diverse do-
mains, including science, mathematics, medicine,
and psychology (Bubeck et al., 2023). The recent
advent of multimodal LLMs (MLLMs), e.g., GPT-
40 (OpenAl, 2024), has further expanded their ca-
pabilities to images and audio inputs, broadening
their use in fields such as industry and medical
imaging (Yang et al., 2023).

Meanwhile, sensor data—including measure-
ments from smartphones, wearables, IoT (Dian
et al., 2020), and medical equipment (Pantelopou-
los and Bourbakis, 2009)—holds potential for ubiq-
uitous applications when effectively integrated with
MLLMs. Sensory tasks involve extensive and
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Figure 1: An example of solving a sensory task using an
MLLM with visual prompts. The visualization genera-
tor generates an appropriate visualization for the given
sensor data, and the visualized data is provided as an
image to the MLLM for solving the task.

significant applications, ranging from authentica-
tion (Abuhamad et al., 2020) and healthcare (Wang
et al., 2019) to agriculture (Sishodia et al., 2020)
and environmental monitoring (Feng et al., 2019).
However, MLLMs remain underutilized. The diver-
sity of sensors (Wang et al., 2019) and the hetero-
geneity among them (Stisen et al., 2015) hinder the
implementation of a foundational model that gener-
alizes across various sensing tasks. The expensive
data collection (Vijayan et al., 2021) often results
in insufficient training data, further complicating
the development of such capability.

Recent studies explored leveraging pre-trained
LLMs to solve general sensory tasks (Yu et al.,
2023; Liu et al., 2023; Kim et al., 2024). One
approach extracts task-specific features from sen-
sor data and composes them as prompts (Yu et al.,
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2023). However, designing such prompts requires
specific domain knowledge. Alternatively, incor-
porating raw sensor data as text prompts (Kim
et al., 2024; Liu et al., 2023) has been a widely
used method to handle sensory data with LLMs
as a more generalizable solution. Yet, we empir-
ically found that providing raw sensor data with
text prompts shows poor performance in real-world
sensory tasks with long-sequence inputs and incurs
high costs due to an extensive number of tokens.

To address these challenges, we propose provid-
ing visualized sensor data as images to MLLMs
that support visual inputs. Leveraging MLLMs’
growing ability to interpret visual aids (Yang et al.,
2023), we explore their effectiveness in analyzing
plots generated from sensor data. We designed a
visual prompt comprising visualized sensor data
and task-specific instructions to solve sensory tasks.
In addition, we present a visualization generator
that enables MLLMs to independently generate
optimal visualizations using tools available in pub-
lic libraries. This generator filters potential visu-
alization methods based on the task description
and assesses the resulting visualizations of each
method to determine the best visualization. Fig-
ure 1 compares the existing text-only prompts with
our method for sensory tasks.

Evaluations on nine sensory tasks involving four
different modalities showed that visual prompts
generated from the visualization generator signifi-
cantly improved performance by an average of 10%
while reducing token costs by 15.8x compared
with the existing baseline. Our findings highlight
the effectiveness and efficiency of visualized sensor
data with MLLMs in various applications.

We summarize our contributions as follows:

* We propose to ground MLLMs with sensor
data by providing visualized sensor data as
images, achieving improved performance at
reduced costs than the text-based baseline.

* We present a visualization generator that auto-
matically generates suitable visualizations for
various sensory tasks using public libraries.

* We conduct experiments on nine different sen-
sory tasks across four modalities, demonstrat-
ing the broad applicability of our approach.

2 Related Work

LLMs with sensor data. Sensory tasks involve
sequences of numbers indicating values over time.

Initial research for handling sequential data focused
on time-series forecasting (Zhang et al., 2024c).
Converting time-series data into text prompts for
forecasting has been proposed in PromptCast (Xue
and Salim, 2023) and LLMTime (Gruver et al.,
2024). Other studies (Zhou et al., 2023; Jin et al.,
2023a) used specialized encoders to create embed-
dings compatible with pre-trained LLMs.

Beyond forecasting, LLMs have been explored
in healthcare for their ability to answer questions
using physiological sensor data (Liu et al., 2023).
For example, LLMs have been used for ECG diag-
nosis (Yu et al., 2023) by integrating ECG-specific
features and knowledge from ECG databases. Pen-
etrative Al (Xu et al., 2024) and Health-LLM (Kim
et al., 2024) have used raw sensor data in text
prompts to solve health problems without task-
specific processing. Our study examines whether
existing methods can generalize to broader sens-
ing tasks with high-frequency, long-duration data.
Building upon these works, we propose visualizing
sensor data for MLLMs to improve their perfor-
mance and cost efficiency.

Multimodal large language models (MLLMs).
Advancements in MLLMs (Zhang et al., 2024a)
have equipped popular models such as Chat-
GPT (OpenAl, 2022) with vision capabilities (Ope-
nAl, 2024). Recent studies explored the in-context
learning (Brown et al., 2020) abilities of MLLMs,
showing that they can understand images with
the interleaved text and few-shot examples (Tsim-
poukelli et al., 2021; Alayrac et al., 2022). This ca-
pability has been applied in medical diagnostics, in-
cluding analyzing radiology and brain images with
accompanying text instructions (Wu et al., 2023).
Our work explores using MLLMs to analyze visu-
alized sensor data for broader applications.

Using tools with LLLMs. Recent research has
shown that augmenting LLMs with external tools
can extend their capabilities. Toolformer (Schick
et al., 2024) enables LLMs to access public
APIs and search engines, while Visual Program-
ming (Gupta and Kembhavi, 2023) uses LLMs to
generate and execute codes. HuggingGPT (Shen
et al., 2024) and Chameleon (Lu et al., 2024) in-
tegrated multiple expert models to enhance func-
tionalities. Recently, Data Interpreter (Hong et al.,
2024) enabled LLMs to analyze data and build task-
specific models for data interpretation. Building on
them, our work leverages MLLMs to utilize sensor
data visualization tools. Importantly, unlike exist-
ing approaches that rely on external tools as the pri-
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mary task solvers, we propose positioning MLLMs
as the main solvers for sensory tasks, leveraging
their in-context learning abilities. Our approach
aims to eliminate the need for additional data col-
lection and training, thereby addressing the scarcity
of public resources for sensory tasks. Furthermore,
we introduce a design in which MLLMs perform
demonstration-based assessments to evaluate their
task-solving effectiveness, ensuring optimal visual-
ization for specific tasks.

3 Limitations of Representing Sensor
Data as Text-based Prompts

Existing approaches for grounding language mod-
els with sensor data primarily rely on text-based
prompts (Liu et al., 2023; Jin et al., 2023b; Zhang
et al., 2024c¢; Yu et al., 2023). One approach uses
prompts with specialized features extracted from
sensor data for specific tasks, such as R-R inter-
vals for ECG-based applications (Yu et al., 2023).
While this approach effectively handles known sen-
sory tasks, feature-based prompts often require do-
main knowledge, which is not generalizable for
non-expert users. Instead, a more common ap-
proach (Kim et al., 2024; Xu et al., 2024; Liu et al.,
2023) incorporates raw sensor data sequences di-
rectly into prompts without data processing. How-
ever, most studies focus on short sequences (e.g.,
fewer than 100 elements) (Kim et al., 2024) and
simple tasks (e.g., binary classification) (Liu et al.,
2023).

Real-world sensor data often entail long numeric
sequences with high sampling rates and long du-
rations. For example, arrhythmia detection (Wag-
ner et al., 2020) requires ECG data sampled at
100Hz over 10 seconds, resulting in 1,000 elements.
This section investigates the limitations of using
text-based prompts to represent such complicated
sensor data in language models. We focus on the
capability to interpret sensor data and the token
consumption costs associated with long numeric
sequences.

Language models struggle to interpret long
numeric text sequences. Language models in-
terpret simple numeric sequences by performing
arithmetic operations (Achiam et al., 2023) and un-
derstanding sequential data (Gruver et al., 2024;
Mirchandani et al., 2023). However, we empiri-
cally revealed that their performance declines sig-
nificantly with longer sequences inside the prompt,
such as those exceeding 100 numbers, common in
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Figure 2: Performance of GPT-40 on arithmetic opera-
tion (mean prediction) and pattern recognition (sine and
sawtooth wave classification) tasks for varying lengths.

sensor data.

We conducted experiments with two specific
tasks: mean prediction to evaluate arithmetic ca-
pabilities (Pirttikangas et al., 2006) and wave clas-
sification to assess pattern recognition (Liu et al.,
2016) in sequences. The defined tasks represented
the basic functionalities for sensor data interpreta-
tion, serving as typical feature extraction methods.
Using randomly generated sine and sawtooth waves
with varying lengths, we asked a language model,
GPT-40 (OpenAl, 2024), to calculate mean values
and classify wave types using one-shot examples
for each task. Each task was repeated 30 times to
ensure robustness.

Figure 2 shows the results. In arithmetic op-
erations, error rates consistently increased with
the length. In pattern recognition, performance
declines significantly for sequences longer than
100 elements, approaching the performance of a
random classifier at 500 elements. While recent
models such as GPT-40, with its 128K context win-
dow, support long input lengths, our results indicate
that interpreting sensor data with long numeric se-
quences still remains challenging.

Sensor data in text is costly. The computa-
tional and financial burdens for API users of lan-
guage models scale with the number of tokens in
the prompt. Representing sensor data in textual for-
mat leads to extensive token usage, thereby increas-
ing costs. For instance, performing passive sens-
ing to track activities with smartphone accelerome-
ters (Stisen et al., 2015) uses sensor data sampled
at 100 Hz. Collecting this data over a minute re-
sults in a prompt of 18K numbers, translating to
90K tokens. This leads to a huge cost of $450 per
hour when using GPT-40 API to classify six activi-
ties with one example for each. Higher sampling
rates or longer durations further increase the costs,
making such applications infeasible.
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N example images

### Instruction
You are an expert in sensor data analysis. Given the

{{Label of example 1}}

3 {Visualization method}}

{{Label of example 2}}

{Visualization method)

sensor data, determine the correct answer from the
options listed in the question. Provide the answer with

e

Sensor data
[[0.65, ©.62, -0.36],

o0l

the format of <answer>ANSWER</answer>, where
ANSWER corresponds to one of the options listed in
the question. If the answer is not in the options, choose
the most possible option.

[0.65, 0.63, -0.37],

{{data description}}

[0.65, 0.62, -0.38],
[0.65, 0.61, -0.38],

[0.65, 0.63, -0.35],
[0.65, ©.63, -0.36],

Target data image

Please refer to the examples provided in the images

{{Label of example N}}

{{Visualization method}}

Target Data

{{Visualization method}}

and use them to answer the following question for the
target data.

Visualization Generator]
(e.g., raw waveform)

el

FA

### Question

Question: When the sensor data is used for
{{task description}}, what is the most likely answer
among {{classes}}?

Answer:

\

J

Figure 3: Overview of our visual prompt. Sensor data are transformed into annotated images with labels and
visualization methods. Additionally, instructions are provided to the MLLM, detailing the task and relevant data
descriptions. These instructions guide the MLLM on effectively utilizing the provided images to solve the task.

Transition to visual prompts. Language mod-
els such as ChatGPT (GPT-40 (OpenAl, 2024)) and
Gemini (DeepMind, 2024) have expanded capabili-
ties to include multimodal inputs (e.g., vision and
audio). Recent Multimodal Large Language Mod-
els (MLLMs) demonstrate an increasing ability to
identify patterns and interpret visual data (Achiam
et al., 2023). This opens new opportunities for sen-
sory tasks, as sensor data are often visualized for
analysis. Visualizations make complex data more
interpretable and condense long data sequences
into a single image, significantly reducing token
costs. Building on this capability, we exploit visu-
alized sensor data instead of text-based prompts.

4 Method

We introduce our method for handling sensory
tasks by providing sensor data as image inputs to
MLLMs. Section 4.1 overviews our prompt design
strategy. Section 4.2 introduces our visualization
generator, which automatically generates suitable
visualizations for heterogeneous sensor data.

4.1 Visual Prompt Design

To leverage MLLMs for sensory tasks, we propose
a visual prompt, as illustrated in Figure 3. The key
idea is to transform numeric sequences of sensor
data into visual plots using various methods, such
as raw waveforms and spectrograms. Detailed in-
formation about these visualization methods is in
Section 4.2. For few-shot examples, each plot in-
cludes a label as a title above it (i.e., {{Label of
example X}}). For unlabeled target data used in
queries, the title is simply stated as “target data”.

We provide textual instructions to clarify the data
collection process and the task’s objectives. These
instructions ensure that MLLMs can effectively
interpret and utilize the visualized sensor data.

4.2 Visualization Generator

In our proposed visual prompt, the choice of vi-
sualization method is crucial, as it significantly
influences the MLLM’s ability to comprehend the
sensor data. For example, raw waveform plots are
ideal for tasks involving amplitude pattern recogni-
tion over time, while spectrograms (Ito et al., 2018)
are suitable for tasks relying on frequency features.
We introduce a visualization generator that auto-
matically chooses the most suitable visualization
tool from available public libraries, enabling non-
expert users to effectively utilize visual prompts.
This generator operates in two main phases: (i) vi-
sualization tool filtering and (ii) visualization selec-
tion (see Figure 4).

Visualization tool filtering. Public libraries offer
a vast array of sensor data visualizations. However,
trying each out to identify the optimal visualization
is computationally expensive. To minimize the
cost, we employ a filtering approach. By providing
available visualization tools, descriptions of the
task, and data collection, we ask MLLMs to select
a list of visualization methods useful for the target
task.

As shown in Figure 4 (green box), we pro-
vide a full list of available visualization methods
found in public libraries (e.g., Matplotlib (Hunter,
2007), Scipy (Virtanen et al., 2020), and Neu-
rokit2 (Makowski et al., 2021)) along with task and
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1. Visualization tool filtering

### Instructions

You need to determine effective visualizations for the given
task. Explain how to use the information to solve the task. You
can provide several candidates. Generate the answer in the
following format:

[{"func": visualization_method, "args": {"arg1": arg1_val, ...},
"knowledge": knowledge}, ...]

The available visualization methods are as follows:
{{visualization tool 1}}: {{visualization description 1}}
{{visualization tool 2}}: {{visualization description 2}}

### Demonstrations
{{demonstrations}}

### Question

Task description: {{fask description}}
Data description: {{data description}}
Response:

Output (example)

[{"func": "raw waveform", "args": {}, "knowledge": "..."},
{"func": "spectrogram", "args": {"nfft": 128, ...}, ...}, ...]

Vs

,

2. Visualization selection

Sensor data
[0.71, 1.23, 1.09, ...

v

Visualization Tools

S (@

### Instruction

You do not have prior knowledge about sensor data visualization.
Based solely on the visual cues in the provided images, identify
the visualization that most visually distinguishes all different
classes for the given task.

Generate the answer in the following format:

{"func": visualization_method}

### Question

Visualization methods: {{visualization shortlist}}
Task description: {{task description}}

Data description: {{data description}}

Output (example) Visual Prompt for

Task Solving

Response:

Wil

{"func": "raw waveform”}

|\

J

Figure 4: Overview of our visualization generator. First, visualization tool filtering generates a filtered list of
visualization tools from public libraries based on the task and data descriptions. Next, visualization selection
generates and selects the most effective visualization by asking MLLMs to observe visualized sensor data prepared

for the task using all the filtered visualization methods.

data collection descriptions to MLLMs. We also
leverage the in-context learning ability of MLLMs
to enhance response quality by providing demon-
strations of optimal visualizations chosen for differ-
ent tasks. The MLLM is instructed to output a list
in JSON format, which is suitable for automated
parsing at a later stage. Appendix E shows the full
list of available visualization tools and demonstra-
tions.

Visualization selection Sensor data exhibit vari-
ations by instance due to user-specific behaviors,
environmental factors, or device settings (Stisen
et al., 2015), which cannot be fully captured in task
and data descriptions. This variability limits the
reliability of selecting visualizations based solely
on the descriptions. To address this, we visualize
the sensor data using all filtered visualization tools
and ask the MLLM to select the one that provides
the best visual information for the task.

The blue box in Figure 4 illustrates this proce-
dure. First, different visualizations are generated
using the filtered tools. With the images, we in-
struct the MLLM to select the best visualization
by providing a textual prompt, including the visu-
alization methods, task, and data details. We found
that MLLM often makes incorrect decisions by pri-
oritizing the task description over the visual aids.
To prioritize visual efficacy, we explicitly instruct

the MLLM to avoid relying on prior knowledge
about sensor data and focus on the provided im-
ages. Finally, our automated framework conveys
the selected visualization to the visual prompt for
task solving.

S Experiments

We evaluate the applicability of our approach with
MLLMs by conducting experiments on a range of
sensory tasks.

5.1 Setups

We assume a practical scenario where non-expert
users attempt to solve sensory tasks using MLLMs
(1) without prior knowledge of relevant features
and (2) without external resources to fine-tune the
MLLM. Given the constraints, we leveraged the
few-shot prompting (Brown et al., 2020) approach.
For the main evaluation, we used 1-shot examples
where users provide the MLLM with minimal ex-
amples to guide task-solving.

Sensory tasks We established nine different sen-
sory tasks across four sensor modalities: ac-
celerometer, electrocardiography (ECG) sensor,
electromyography (EMG) sensor, and respiration
sensor. We used three datasets for tasks using ac-
celerometers: HHAR (Stisen et al., 2015) for basic
human activity recognition (running and walking),
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Table 1: Comparison of the text prompts and visual prompts for solving sensory tasks using GPT-40. The highest
accuracy values are highlighted in bold. The visual prompts (multi-shot) utilize the maximum number of examples

by matching the token size of the 1-shot text prompts.

Accelerometer

ECG EMG Resp

UTD- . PTB-XL PTB-XL PTB-XL PTB-XL

Method HHAR  \iyAD Swim (CD) (MI) (HYP) (STTC) Gesture WESAD Avg.
Accuracy
Task-specific model 0.95 0.95 0.99 0.88 0.86 0.90 0.90 0.64 0.69 0.86
Text-only prompt 0.66 0.10 0.51 0.73 0.62 0.47 0.53 0.27 0.48 0.49
Visual prompt (ours) 0.67 0.43 0.73 0.80 0.68 0.55 0.57 0.30 0.61 0.59
Number of tokens
Text-only prompt 52910 50439 16586 3204 2766 2757 3596 88655 60253 31244
Visual prompt (ours) 2020 5963 1768 943 943 943 946 3073 1211 1979

(262x1) (85x)  (94x)) (Bdx)) (9%  (29x)) (38x)) (289x)) @9.8x)) (158x))

UTD-MHAD (Chen et al., 2015) for complex ac-
tivity recognition with fine-grained arm motions,
and a swimming style recognition dataset (Brun-
ner et al., 2019). We use the PTB-XL (Wagner
et al., 2020) dataset for the arrhythmia diagnosis
tasks that use ECG. The dataset includes detection
tasks for four different types of arrhythmia symp-
toms. For EMG data, we used a dataset (Ozdemir
et al., 2022) for hand gesture recognition. Finally,
we used a stress detection task using respiration
sensors provided by the WESAD (Schmidt et al.,
2018) dataset. Details on each task, including the
classes, sampling rates, windowing durations, and
specific configurations, are in Appendix F.

Data processing. We normalized data using the
mean and standard deviation values calculated for
each user. Test splits were created by randomly
sampling 30 samples per class. For the UTD-
MHAD dataset, we sampled 10 samples per class
due to the limited sample availability. Examples of
few-shot prompting were randomly sampled, ensur-
ing no overlap with the test set. Each task employed
the window sizes and sampling rates specified in
the original dataset descriptions (see Appendix F).
Baselines. We set fext-only prompts for convey-
ing sensor data to MLLMs as the main baseline
to be compared with our visual prompts. Text-
only prompts represented sensor data as numbers
within the prompt. We designed text-only prompts
by following the latest prompting studies incorpo-
rating sensor data into LLMs for healthcare (Liu
et al., 2023). Additionally, to establish an upper
bound for task-specific performance, we included
a fully-supervised baseline using neural networks
trained on 75% of the entire data after excluding
the test and validation sets. We adopted architec-
tures widely accepted for each type of sensor data:

1D CNNss for activity recognition with accelerome-
ters (Chen et al., 2021) and EMG data (Xiong et al.,
2021), as well as for WESAD (Vos et al., 2023),
and XResNet-101 for PTB-XL (Strodthoff et al.,
2023).

Implementation. We used GPT-40 from the Ope-
nAl API (OpenAl, 2024) as MLLM. The text-only
prompts contained the same information as the gen-
erated visualization to ensure a fair comparison
between text-only and visual prompts. For exam-
ple, if the visualization generator outputs a plot
with peak notations, the corresponding text-only
prompt contains the same features, including the
peak values with their indices. When the informa-
tion could not fit within the token limit (128K), we
used the raw waveform.

Metrics. We evaluated the experimental results
based on accuracy. We also assess the number of
tokens used by each prompt method. Tokens are
counted using the 0200k_base encoding used for
GPT-4. To estimate the token cost for images in
the same space as text, we follow the computation
guidelines provided by OpenAl (OpenAl, 2024).

5.2 Results

Performance. Table 1 shows the overall perfor-
mance of utilizing visual prompts for solving sen-
sory tasks. For the same 1-shot prompting, visual
prompts consistently showed enhanced accuracies
than text-only prompts, achieving an average in-
crease of 10%. Notably, the UTD-MHAD task
exhibited a significant accuracy gain of up to 33%.
See Appendix G for prompt examples with result-
ing visualizations.

In addition to achieving higher accuracy, visual
prompts are more cost-effective. The number of
tokens used for visual prompts in Table 1 shows a
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Text-only prompt
== \/isual prompt

1-shot
3-shot
5-shot

PTB-XL (CD) PTB-XL (MI)
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0.74 0.73
3 0.67 0.68 07
©
3 0.73 0.7 d.72
2 0.63 0.62
0.57
800 3200 12800 800 3200 12800
Number of Tokens Number of Tokens
PTB-XL (HYP) PTB-XL (STTC)
2 0.67 0.67
0.6
2 A
2 0.62 0.62
0.53 0.55
0.47 0.48
800 3200 12800 800 3200 12800

Number of Tokens

Number of Tokens

Figure 5: Accuracy of arrhythmia detection tasks using
visual and text-only prompts with different shots.

substantial reduction, averaging 15.8x fewer than
text-only prompts. MLLMs calculate token costs
for images within the same token space as text
but with distinct counting criteria. In our experi-
ments, GPT-40 counts tokens for images based on
the number of 512 x 512 pixel blocks (V) covering
the image input, calculated at 85 4+ 170 x N. Our
visualized sensor data was represented within a sin-
gle 512 x 512 pixel image, regardless of the sensor
data length, significantly reducing costs. Note that
the number of tokens from visual prompts is only
affected by the number of examples, as all images
are the same size. In contrast, text prompts are
heavily influenced by high sampling rates and long
durations.

To further understand the effectiveness of visual
prompts with small tokens, we analyzed the infor-
mation capacity at the same token cost. Consider-
ing a budget of 500 tokens, text-based prompts can
include approximately 2,000 ASCII characters. In
contrast, visual prompts can input two 512 x 512
px images. In terms of bytes, 2,000 ASCII char-
acters amount to 2 KB, whereas two RGB images
occupy 1.57 MB, which is 785x larger. Although
this calculation does not directly translate to the
exact amount of useful information, it suggests that
well-designed visual prompts can convey a wider
range of information than text prompts within the
same cost constraint.

Effect of number of examples. To investigate the
impact of varying numbers of examples, we ex-

perimented using different numbers of examples
(1-shot, 3-shot, and 5-shot) within the prompts. We
used the ECG dataset, allowing multiple examples
with text-only prompts due to its lower token con-
sumption.

Figure 5 depicts the results. Prompting meth-
ods are color-coded (blue for visual and green
for text-only), and different markers indicate the
number of shots. We compared the accuracy and
counted the tokens for each setting. We found that
visual prompts constantly outperformed text-only
prompts with the same number of examples, indi-
cating the robustness of our method in different
few-shot examples.

Additionally, when comparing visual prompts
and text-only prompts under the same token bud-
get (5-shot visual prompt versus 1-shot text-only
prompt), visual prompts often performed signif-
icantly better (MI and HYP detection). This
highlights the advantage of token-efficient visual
prompts that can utilize more resources for better
performance under the same token constraint.

Unlike our expectations, additional examples

did not always result in better performance. This
result aligns with existing reports indicating that
more examples do not always guarantee better re-
sults (Perez et al., 2021; Lu et al., 2021). We fur-
ther hypothesize that a longer context might hin-
der the MLLM'’s ability to retrieve important in-
formation (Liu et al., 2024b). Our findings sug-
gest that the impact of shots is data-dependent,
and effectively utilizing more examples for con-
sistent improvement remains an open question for
further research. Note that our visual prompts
consistently outperformed text prompts, even on
datasets where additional shots negatively affect
performance. This supports that the main improve-
ment of our approach stems from using the visual
modality for data interpretation, not merely from
the token length reduction.
Effect of visualization generator. We conducted
an ablation study to assess the impact of the visual-
ization generator. We compared the visualization
generator against two different baselines: (1) using
a fixed visualization that defaults to raw waveform
plots, and (2) a method that selects visualizations
based solely on a text description of the task and
data. For the second baseline, we utilized our vi-
sualization tool filtering prompt (see Appendix G
for an example) to generate a single visualization,
rather than filtering multiple tools.

Figure 6 summarizes the visualizations selected
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Visualizations Selected

mmm ECG Individual heart beats
EMG signal

mmmm EMG muscle activation

mmm raw waveform
mmmm spectrogram
mmm ECG signal and peaks

Fixed
(waveform)
HHAR I
UTD-MHAD I
Swim I
PTB-XL (CD) N
PTB-XL (M) I
PTB-XL (HYP) N
PTB-XL (STTC)
Gesture [INGINININIGG
WESAD I

0 100

VisGen
(ours)

Desc.-
based

o
=
o
S}

0 10

=]

Proportion (%)

Figure 6: Proportion of selected visualization methods
from the baselines and our visualization generator across
different tasks.

Raw waveform Individual heart beats

I Average beat shape
+ P-waves
+ Q-waves
+ Swaves
+ T-waves

Figure 7: Examples of ECG visualizations. The visual-
ization generator selected the individual heartbeats plot.

by the baselines and our visualization generator.
The selection from the description-based method
(Desc.-based) and our visualization generator (Vis-
Gen) varied primarily based on sensor modali-
ties. Our visualization generator mainly selected
raw waveforms, occasionally spectrograms for ac-
celerometer tasks (the same for WESAD). For ECG
and EMG datasets, it selected specialized visualiza-
tions, such as ECG individual heart beats plot. The
description-based method also selected modality-
aware visualizations, but these differed from those
chosen by ours. For instance, it selected spec-
trograms for the accelerometer tasks and signal
and peak plots for ECG datasets. The key differ-
ence stemmed from whether the MLLM referenced
the visualized image itself. Note that within each
dataset, the target task and data collection protocol
was consistently controlled, so the visualizations
selected for samples within each dataset remained
almost identical, despite our design allowing for
sample-wise visualization selection.

The performance comparison of different visu-
alization selection methods is shown in Table 2.
Overall, our visualization generator achieves the

Table 2: Performance of using different visualization
methods for visual prompts. We compare a fixed raw
waveform plot (Fixed), visualizations selected based
solely on a text description (Desc.-based), and visualiza-
tions from our visualization generator (VisGen). Ours
is highlighted in blue cells, and performances from vi-
sualizations on certain tasks that show significant per-
formance drops more than 10% compared to the highest
are colored red.

Visualization Method

Dataset Fixed Desc.- VisGen
(waveform)  based (ours)

Accelerometer

HHAR 0.70 0.34 0.67

UTD-MHAD 0.41 0.05 0.43

Swim 0.74 0.20 0.73

ECG

PTB-XL (CD) 0.60 0.69 0.80

PTB-XL (MI) 0.58 0.65 0.68

PTB-XL (HYP) 0.53 0.52 0.55

PTB-XL (STTC) 0.53 0.57 0.57

EMG

Gesture 0.30 0.31 0.30

Respiration

WESAD 0.62 0.60 0.61

best or comparable performance. In contrast, the
baseline methods show significant perforemance
degradation in certain tasks. For example, using
a fixed raw waveform leads to a significant 20%
performance drop for ECG tasks, as raw wave-
forms fail to provide insightful visual insights due
to the complex structure of ECG (Figure 7). This
illustrates that a fixed visualization cannot be gen-
eralized across different sensory tasks.

Similarly, the description-based method faces
challenges with accelerometer tasks. It selects
spectrograms, likely due to the world knowledge
from public datasets, which may lead the MLLM
to consider frequency features as the optimal infor-
mation for motion data analysis. However, the
dense and complex features in spectrogram im-
ages were difficult for the MLLM to interpret,
leading to near-random performances. In contrast,
our visualization generator compares visualized
images, consistently avoiding suboptimal choices
such as spectrograms for accelerometer tasks. This
self-assessment mechanism ensures that the visual-
ization generator selects the optimal visualization
method among the possible options.
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6 Conclusion

We addressed sensory tasks by providing visualized
sensor data as images to MLLMs. We designed a
visual prompt to instruct MLLMs in using visual-
ized sensor data, provided with textual descriptions
of the task and data collection methods. Addition-
ally, we introduced a visualization generator that
automatically selects the best visualization method
for each task using visualization tools available in
public libraries. We conducted experiments across
nine different sensory tasks and four sensor modal-
ities, each with a distinct task. Our results suggest
that the visual prompts generated by our visualiza-
tion generator not only improve accuracy by an
average of 10% over text-based prompts but also
significantly reduce costs, requiring 15.8x fewer
tokens. This indicates that our approach with visual
prompts and a visualization generator is a practical
solution for general sensory tasks.
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Limitations

Our study demonstrates the effectiveness of vi-
sual prompts on nine different sensory tasks, pri-
marily focusing on classification. While visual
prompts effectively highlight patterns over im-
ages, for tasks requiring numerical retrieval or pre-
cise computations—where exact values are criti-
cal—text prompts can be more effective due to
their inclusion of specific numeric data, which are
omitted in visual representations. Notably, our ap-
proach integrates both images and texts in prompts,
allowing the inclusion of numerical values in the
text. Determining the optimal distribution of in-
formation between images and text to compose
a prompt that effectively addresses sensory tasks
presents a future direction for this work. More-
over, the inclusion of numeric values can result

in long prompts, which affect both cost and per-
formance. Extracting only the useful information,
such as statistics or specific time splits, requires
further research.

Visualizing sensor data as plots often presents
challenges. For instance, brain wave analysis us-
ing high-density EEG involves up to 256 chan-
nels (Fiedler et al., 2022), complicating their rep-
resentation in a single visual plot. We denote dif-
ferent channels as distinct notations within a plot,
making densely populated plots visually indeci-
pherable. An alternative method of plotting distinct
channels across separate subplots was explored but
resulted in a significant drop in performance (see
Appendix 6). We hypothesize that this limitation
arises from the dispersion of information across
various areas, highlighting that effective visualiza-
tion of large-channel datasets remains challenging.
This underscores the need for improved visualiza-
tion techniques in such scenarios.

Our visual prompt design does not incorporate
Chain-of-Thought (CoT) prompting (Kojima et al.,
2022). Experiments using zero-shot CoT on our
datasets revealed inconsistent benefits (see Ap-
pendix A), unlike the widely known effect of CoT
for enhancing performance. We suspect this may
be due to the complexities of reasoning over sen-
sory data. Given the observation, further research
is needed to develop methods that effectively inte-
grate reasoning and interpretation into the decision-
making processes for sensor data analysis.

Lastly, the high costs of text-only prompts in
sensory tasks constrained our testing to 30 samples
per class. Expanding the scale as resources allow
could provide a more robust analysis and poten-
tially validate a broader spectrum of applications.
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Table 3: Performance of text-only and visual prompts,
both with and without using CoT. The highest accuracy
values are noted in bold.

Table 4: Comparison of summarized text prompts with
long text-only and our visual prompts. The highest
accuracy values are noted in bold.

Accel. ECG

PTB-XL PTB-XL

Accel. ECG

PTB-XL PTB-XL

Prompt HHAR Swim (CD) (M) Avg. Prompt HHAR Swim (CD) (M) Avg.
Text-only 0.66 0.51 0.73 0.62 0.63 Summarized text 0.58 0.43 0.53 0.53 0.52
Text-only (CoT) 0.51 0.25 0.63 0.53 0.48 Text-only 0.66 0.51 0.73 0.62 0.63
Visual 0.67 0.73 0.80 0.68 0.72 Visual 0.67 0.73 0.80 0.68 0.72
Visual (CoT) 0.63 0.67 0.80 0.73 0.71

A Effect of Zero-shot Chain-of-Thoughts

We experimented with zero-shot Chain-of-Thought
(CoT) prompting (Kojima et al., 2022) by adding
"let’s think step-by-step" to our prompts, testing
this on two accelerometers and two ECG datasets.
Table 3 shows the findings. While CoT prompting
is generally known to enhance LLM response qual-
ity, our results showed inconsistent performance by
datasets. Notably, CoT consistently dropped perfor-
mance for text-only prompts. We analyzed the re-
sults by observing the CoT responses, illustrated as
examples in Figures 8 and Figure 9, showing wrong
predictions with CoT from the HHAR dataset. We
found that CoT reasoning in text-only prompts pri-
marily focused on simple statistical comparisons,
such as whether values were higher or lower. This
simplistic approach proved inadequate for analyz-
ing the complexities of sensor data, leading to sub-
optimal responses. Likewise, visual prompts indi-
cated reasoning centered around terms like "vari-
ations," "periodic,"” and "stable," but they lacked
the necessary depth to effectively assess more intri-
cate features like frequency trends or signal shapes.
This superficial reasoning suggests a significant
gap in the CoT approach, underscoring the need for
more task-specific reasoning prompts for sensory
data analysis.

B Effect of Text Summarization

As discussed in Section 3, long numeric sequences
in text increase costs and degrade performance.
One way to address the challenge is through text
summarization to reduce prompt length. However,
no established method effectively summarizes sen-
sor data, as different tasks require distinct features.
A potential solution is prompting-based summa-
rization (Zhang et al., 2023, 2024b) that instructs
MLLMs to extract key information using a gen-
eral prompt: "summarize the given text." To ex-
plore this, we prompted GPT-40 to "summarize the

pattern or tendency of the data" aiming to reduce
prompt length in text. We specified the focus on
patterns and tendencies to allow for fair compari-
son, as our visualizations typically capture these
aspects. This method was tested on two accelerom-
eter and two ECG datasets.

Table 4 presents the results. Although summa-
rized text showed feasibility over random predic-
tions, it underperformed compared to both text-
only and visual prompts. This highlights the chal-
lenge of summarizing sensor data effectively in text.
The results suggest that exploring generalizable ap-
proaches to reduce text for sensory tasks remains
an future research.

C Small MLLM:s on Sensory Tasks

We used GPT-40, the latest and most accessi-
ble model supporting both vision and text inputs.
To test the generalizability of our approach on
smaller MLLMs, we conducted experiments on
four datasets using LLaVa-7B (Liu et al., 2024a).
For the test, we used the interleaved version,
which allows multi-image input to enable few-shot
prompting. Due to memory limitations, LLaVa-
7B could not handle text-only prompts with large
tokens. For instance, prompts with more than
50K tokens from the HHAR dataset required over
150GB of VRAM per inference, making it infea-
sible. We evaluated text-only prompts of ECG
datasets, which contained fewer than 5K tokens.

As shown in Table 5, LLaVa-7B performed
poorly on sensory tasks, yielding results close to
random predictions for both text-only and visual
prompts. We believe this is due to the model’s
smaller size and lack of pre-training, limiting its
ability to interpret complex graphs, plots, and data
patterns. Its limited capacity for multi-image un-
derstanding (Zhao et al., 2024) may also have af-
fected its analysis of the provided examples. Future
research should focus on enhancing low-capacity
models for sensory data tasks.

2231



Table 5: Performance comparison of text-only and
visual prompts using LLaVa-7B and GPT-40 as the
MLLMs. Accelerometer text-only prompts were not
evaluated due to excessive VRAM consumption over
150GB during local inference with LLaVa. The highest
accuracy values are highlighted in bold.

Accel. ECG
. PTB-XL  PTB-XL

Prompt HHAR Swim (CD) (MD) Avg.
LLaVa-7B
Text-only - - 0.50 0.48 -
Visual 0.15 0.20 0.50 0.48 0.33
GPT-40
Text-only 0.66 0.51 0.73 0.62 0.63
Visual 0.67 0.73 0.80 0.68 0.72

D Use of Subplots for Multi-channel Data

Sensor data often include multiple channels. Our
visual prompts differentiated channels using vary-
ing colors within a single plot to maintain a shared
axis system. To assess the impact of different plot-
ting approaches, we conducted experiments using
accelerometer datasets, which have three channels.
Specifically, we compared visualizing three distinct
plots for each channel against our current approach.
Table 6 shows the results. The results indicated
that separated plots for each channel reduced per-
formance by 12%. We hypothesize that multiple
subplots distribute visual features over different
regions, resulting in problems in understanding
the relationship between different channels. To
this end, we recommend using an aggregated plot
when all channels can be represented within a plot.
However, for dense datasets, such as 256-channel
EEG (Fiedler et al., 2022), a single plot may not
suffice, highlighting a limitation in our current vi-
sualization approach. Addressing this challenge
will be a focus of future research.

E Visualization Tools

Our visualization generator employs tools avail-
able in public libraries to create visualizations.
We have equipped the visualization generator with
16 distinct visualization functions sourced from
widely used libraries such as Matplotlib (Hunter,
2007), Scipy (Virtanen et al., 2020), and Neu-
rokit2 (Makowski et al., 2021). The specific visual-
ization tools implemented in our generator and their
descriptions are outlined in Table 7. The descrip-
tions presented in the table were directly written
inside the prompt for the visualization tool filtering
(see Appendix G).

Table 6: Performance comparison of visualizing multi-
channel sensor data (accelerometer) using a single plot
versus multiple subplots. The single plot method com-
bines multiple waveforms in one shared-axis plot, each
channel distinguished by color coding.

UTD-

Plotting approach  HHAR MHAD Swim Avg.

Single plot 0.67 043 0.74 0.61
Multiple subplots 0.53 0.31 0.69 0.51

F Details of Sensory Tasks

We conducted experiments across nine sensory
tasks across four sensor modalities, each with
unique objectives. This section provides the details
of these tasks, including task descriptions, classi-
fications, sampling rates, window durations, and
data collection protocols. We directly followed
the given sampling rate with the original dataset
to represent data in text prompts. The descriptions
of each dataset are used to formulate the instruc-
tions for our visual prompts. The complete prompt
examples are in Appendix G.

Human activity recognition: We used the
HHAR (Stisen et al., 2015) dataset to classify six
basic human activities: sit, stand, walk, bike, up-
stairs, and downstairs. Data were collected from
the built-in accelerometers of smartphones and
smartwatches along with the x, y, and z axes. Due
to strong domain effects (Ustev et al., 2013), we ex-
clusively used smartwatch data for the experiment.
The data, sampled at 100Hz, were segmented into 5-
second windows following the established practice
for human activity recognition (Altun and Barshan,
2010).

Complex activity recognition: We used the UTD-
MHAD (Chen et al., 2015) dataset to classify a
wide array of 21 activities: swipe left, swipe right,
wave, clap, throw, arms cross, basketball shoot,
draw X, draw a circle (clockwise), draw a circle
(counter-clockwise), draw a triangle, bowling, box-
ing, baseball swing, tennis swing, arm curl, tennis
serve, push, knock, catch, and pickup and throw.
Accelerometers attached to the users’ right wrist
were used for data collection. We used data sam-
pled at 50Hz with 3-second windows as described
in the dataset documentation.

Swimming style recognition: The swimming
dataset (Brunner et al., 2019) involves accelera-
tion data from swimmers performing five different
styles: backstroke, breaststroke, butterfly, freestyle,
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To determine the most likely activity from the given sensor data, we need to analyze the patterns and characteristics of
the data along the x, y, and z axes. Let's break down the data step-by-step and compare it with the provided examples for
each activity.

### Analysis of the Given Data

1. **X-axis**: The values range from approximately -2.94 to 0.79.
2. **Y-axis**: The values range from approximately 1.3 to 2.71.
3. **Z-axis**: The values range from approximately -1.42 to 0.16.

### Comparison with Examples

#iHHE 1. *Bike*™:

- The bike data shows significant variations in all three axes, with values often exceeding 1.0 or -1.0.
- The given data does not show such high variations, especially in the x-axis and z-axis.

H#HHHE 2. **Sit™:
- The sit data shows relatively stable values, especially in the y-axis, which is consistently around -0.8.
- The given data has a y-axis range from 1.3 to 2.71, which is not consistent with sitting.

##H#H 3. **Stand**:
- The stand data shows relatively stable values, especially in the y-axis, which is consistently around -0.3.
- The given data has a y-axis range from 1.3 to 2.71, which is not consistent with standing.

H#HHHE 4. **Walk™:
- The walk data shows periodic variations in all three axes, with values often exceeding 1.0 or -1.0.
- The given data does not show such periodic variations, especially in the x-axis and z-axis.

##### 5. **Stairsdown™*:
- The stairsdown data shows significant variations in all three axes, with values often exceeding 1.0 or -1.0.
- The given data does not show such high variations, especially in the x-axis and z-axis.

#HH# 6. **Stairsup**:
- The stairsup data shows significant variations in all three axes, with values often exceeding 1.0 or -1.0.
- The given data does not show such high variations, especially in the x-axis and z-axis.

### Conclusion

The given data shows relatively stable values in the x-axis and z-axis, with the y-axis values consistently high (around 1.3
to 2.71). This pattern is most consistent with the activity of **sit**, where the y-axis values are stable but not as high as in
the given data. However, considering the options and the characteristics of the data, the most likely activity is **sit**.

<answer>sit</answer>

Figure 8: An example CoT response from a text-only prompt designed for the HHAR task. The correct prediction is
"walk", while the MLLM outputs "sit."

Let's analyze the target data step-by-step by comparing it with the provided examples:

1. **Sit**: The data for sitting shows very little variation in all three axes, with values remaining close to zero. The target
data shows significant variation, so it is not sitting.

2. **Stand**: The data for standing shows some variation, but it is relatively stable compared to other activities. The target
data shows more variation than the standing data, so it is unlikely to be standing.

3. **Walk**: The data for walking shows periodic variations in all three axes. The target data does not show such periodic
patterns, so it is unlikely to be walking.

4. **Stairsup**: The data for walking upstairs shows periodic variations similar to walking but with a different pattern. The
target data does not match this pattern.

5. **Stairsdown**: The data for walking downstairs also shows periodic variations. The target data does not match this
pattern.

6. **Bike**: The data for biking shows variations in all three axes, but it is less periodic and more irregular compared to
walking or stairs activities. The target data shows similar irregular variations.

Based on the comparison, the target data most closely resembles the data for biking.

<answer>bike</answer>

Figure 9: An example CoT response from a visual prompt designed for the HHAR task. The correct prediction is
"stand", while the MLLM outputs "bike."
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and stationary. This dataset evaluates performance
in sports-specific contexts. Data were collected
from wrist-worn accelerometers and sampled at
30Hz. We used the 3-second windows recom-
mended with the dataset.

Four arrhythmia detections: The PTB-XL (Wag-
ner et al., 2020) dataset contains ECG recordings
from patients with four different types: Conduction
Disturbance (CD), Myocardial Infarction (MI), Hy-
pertrophy (HYP), and ST/T Change (STTC). We
defined each type as a binary classification task.
The dataset comprises 10-second records from clin-
ical 12-lead sensors sampled at 100Hz. We used
lead II, the most commonly used lead for arrhyth-
mia detection (Goldberger et al., 2017).

Hand gesture recognition: We included a
dataset (Ozdemir et al., 2022) classifying ten differ-
ent hand gestures using EMG signals: rest, exten-
sion, flexion, ulnar deviation, radial deviation, grip,
abduction of fingers, adduction of fingers, supina-
tion, and pronation. Data were collected from four
forearm surface EMG sensors with a 2000Hz sam-
pling rate. We utilized all four channels with a
0.2-second window, following an existing practice
known to be effective (Georgi et al., 2015).

Stress Detection: The WESAD (Schmidt et al.,
2018) dataset is designed for stress detection (base-
line, stress, amusement) from multiple wearable
sensors. We focused exclusively on respiration
data measured from the chest for a distinct evalua-
tion setting. The sensor was attached to the users’
chests, with data collected at 700Hz. Following
the official guidelines, we employed the three-class
classification task (baseline, stress, amusement) us-
ing 10-second windows.

G Prompts

We present examples of prompts used in our exper-
iments. Figure 10 and Figure 11 illustrate two text-
only prompt examples derived from the HHAR and
PTB-XL (CD) datasets; in these examples, sensor
data is truncated after a certain point to conserve
space, though the format remains consistent with
varying values. Figure 12 and Figure 13 displays
the visual prompts created for the same datasets,
HHAR and PTB-XL (CD). Figure 14 details the
prompt for our visualization tool filtering specific to
the PTB-XL (CD) task, with demonstrations omit-
ted and presented separately in Figure 15. Lastly,
Figure 16 showcases the visualization selection
prompt for the PTB-XL (CD) dataset.
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### Instruction

You are an expert in sensor data analysis. Given the sensor data, determine the correct answer from the options listed in
the question. Provide the answer with the format of <answer>ANSWER</answer>, where ANSWER corresponds to one
of the options listed in the question. If the answer is not in the options, choose the most possible option.

The sensor data is collected from an accelerometer measuring acceleration along the x, y, and z axes. The data is
normalized with the statistics of the user's data. The data is collected over 5 seconds. The data is measured from a
smartwatch which was attached to the wrist of a user. Please refer to the provided examples and use them to answer the
following question for the target data.

#### Examples
*Example of stand*:
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[-0.75, 0.47, -1.27], [-0.75, 0.51, -1.28], [-0.75, 0.49, -1.26], ...

*Example of sit*:
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[0.78, -1.36, 1.11], [0.78, -1.37, 1.11], [0.78, -1.37, 1.11], ..

*Example of walk*:
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[-0.45, 0.44, -1.01], [-0.5, 0.6, -0.99], [-0.39, 0.54, -0.98], ...

*Example of stairsup*:
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[2.87, 0.65, -3.29], [2.75, 0.77, -3.43], [2.59, 0.86, -3.39], ...

*Example of stairsdown*:
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[-0.96, -0.32, 0.38], [-1.25, 0.02, 0.74], [-1.26, 0.09, 0.58], ...

*Example of bike*:
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[-0.44, 0.67, 0.59], [-0.64, 1.03, 0.97], [-0.84, 1.68, 0.05], ...

#### Question
Given sensor data (list of ['X-axis', 'Y-axis', 'Z-axis']): [[-0.38, 0.43, -0.88], [-0.16, 0.63, -0.91], [-0.19, 0.56, -0.91], ...

*Question*: When the sensor data is used for a task for classifying 6 human activities, bike, sit, stand, walk, stairsdown,
stairsup, using three-axis accelerometer data measured from a wrist-worn smartwatch, what is the most likely answer
among ['bike', 'sit', 'stand', 'walk’, 'stairsdown’, 'stairsup']?

*Answer*:

Figure 10: An example of a text-only prompt for solving the HHAR task. The sensor data represented in the text are
truncated beyond a certain point.
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### Instruction

You are an expert in sensor data analysis. Given the sensor data, determine the correct answer from the options listed
in the question. Provide the answer with the format of <answer>ANSWER</answer>, where ANSWER corresponds to
one of the options listed in the question. If the answer is not in the options, choose the most possible option.

The ECG data is collected from a lead || ECG sensor. The ECG data is recorded over 10 seconds. The data is
normalized with the statistics of the user's data. Please refer to the provided examples and use them to answer the
following question for the target data.

### Examples

*Example of normal*:

Average heartbeat in the ECG signal (list of ['lead 1I'): [-0.34, -0.34, -0.35, -0.35, -0.36, ...
ECG_P_Peaks in the ECG signal (list of (index, value)): [(21, 0.08), (129, 0.19), (239, 0.22), ...
ECG_Q_Peaks in the ECG signal (list of (index, value)): [(35, -0.61), (137, -0.46), (246, -0.48), ...
ECG_S_Peaks in the ECG signal (list of (index, value)): [(42, -1.4), (149, -1.35), (260, -1.33), ...
ECG_T_Peaks in the ECG signal (list of (index, value)): [(63, 2.18), (171, 2.11), (282, 2.31), ...

*Example of conduction disturbance*:

Average heartbeat in the ECG signal (list of ['lead II1): [-0.15, -0.24, -0.29, -0.31, -0.28, ...
ECG_P_Peaks in the ECG signal (list of (index, value)): [(4, 0.14), (57, 0.3), (103, 0.22), ...
ECG_Q_Peaks in the ECG signal (list of (index, value)): [(14, -0.05), (65, -0.05), (109, -0.07), ...
ECG_S_Peaks in the ECG signal (list of (index, value)): [(22, -2.28), (73, -2.1), (124, -2.35), ...
ECG_T_Peaks in the ECG signal (list of (index, value)): [(82, 0.03), (142, 0.64), (245, 0.25), ...

### Question

Average heartbeat in the ECG signal (list of ['lead 1I'): [-0.39, -0.39, -0.39, -0.39, -0.4, ...
ECG_P_Peaks in the ECG signal (list of (index, value)): [(15, 0.14), (94, -0.26), (173, -0.23), ...
ECG_Q_Peaks in the ECG signal (list of (index, value)): [(23, -0.27), (102, -0.81), (182, -0.55), ...
ECG_S_Peaks in the ECG signal (list of (index, value)): [(34, 0.15), (116, -0.51), (192, -0.45), ...
ECG_T_Peaks in the ECG signal (list of (index, value)): [(50, 1.39), (130, 1.1), (209, 1.31), ...

*Question*: When the sensor data is used for a task for classifying ECG data into 2 categories: conduction disturbance,
normal, what is the most likely answer among ['conduction disturbance’, 'normal?
*Answer*:

Figure 11: An example of a text-only prompt for solving the PTB-XL (CD) task. The sensor data represented in the
text are truncated beyond a certain point.

2236



sit stand walk

raw waveform raw waveform raw waveform
4 — xaxis 4 — Xaxis 4
—— Yaxis —— Yaxis
— Zzaxis — z-axis

o 2 o 2 v 2
] 5 $
B H —_— H

- 0 - 0 - 0
g g ]
& . - & —_—_— b

£ -2 £ -2 £ -2
S S S
2 2 2

-4 -4 -4

-6 -6 -6

o 1 2 3 4 5 0 1 2 3 4 H 0 1 2 3 4 H
Time [sec] Time [sec] Time [sec]
stairsup stairsdown bike
raw waveform raw waveform raw waveform
4 4 4

Normalized value
Normalized value
Normalized value

4 — Xaxis _4 4 — xaxis | -
— Yvaxis — Yaxis
s — Zaxis | — zaxis s
0 1 2 3 4 5 4 1 2 3 4 H 0 1 2 3 4 H
Time [sec] Time [sec] Time [sec]
target data
raw waveform
4 — Xaxis

Normalized value

o 1 2 3 4 5
Time [sec]

### Instruction

You are an expert in sensor data analysis. Given the sensor data, determine the correct answer from the options listed
in the question. Provide the answer with the format of <answer>ANSWER</answer>, where ANSWER corresponds to
one of the options listed in the question. If the answer is not in the options, choose the most possible option.

The sensor data is collected from an accelerometer measuring acceleration along the x, y, and z axes. The data is
normalized with the statistics of the user's data.The data is collected over 5 seconds. The data is measured from a
smartwatch which was attached to the wrist of a user. Please refer to the examples provided in the images and use
them to answer the following question for the target data.

#### Question

*Question*: When the sensor data is used for a task for classifying 6 human activities, bike, sit, stand, walk, stairsdown,
stairsup, using three-axis accelerometer data measured from a wrist-worn smartwatch, what is the most likely answer
among ['bike', 'sit', 'stand’, 'walk', 'stairsdown’, 'stairsup']?

*Answer*:

Figure 12: An example of a visual prompt for solving the HHAR task.
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### Instruction

You are an expert in sensor data analysis. Given the sensor data, determine the correct answer from the options listed
in the question. Provide the answer with the format of <answer>ANSWER</answer>, where ANSWER corresponds to
one of the options listed in the question. If the answer is not in the options, choose the most possible option.

The ECG data is collected from a lead || ECG sensor. The ECG data is recorded over 10 seconds. The data is
normalized with the statistics of the user's data. Please refer to the examples provided in the images and use them to
answer the following question for the target data.

### Question

*Question*: When the sensor data is used for a task for classifying ECG data into 2 categories: conduction disturbance,
normal, what is the most likely answer among [‘conduction disturbance’, 'normal‘]?

*Answer*:

Figure 13: An example of a visual prompt for solving the PTB-XL (CD) task.

### Instructions

You need to determine effective visualization methods for the given task. Provide visualization methods that aid in
analyzing the data for this task, along with the required arguments for that method. Additionally, explain how to use the
information from the visualization to solve the task. You can provide several candidates as a list. Generate the answer in
the following format:

[{"func": visualization_method, "args": {"arg1": arg1_val, "arg2": arg2_val, ...}], "knowledge": knowledge}, ...]

The available visualization methods are as follows:

*raw waveform*: This generates a raw signal of sensor data, displaying the amplitude of the signal over time. This is
usually used to visualize the raw data and identify patterns in the signal.
*spectrogram®: This generates a spectrogram of sensor data, ...

### Demonstrations

Data description: The sensor data is collected from an accelerometer measuring acceleration along the x, y, and z axes.
The data is normalized with the statistics of the user's data. The data is measured from an accelerometer attached to the
ankles of a user.

Task description: A task for classifying running and walking activities using accelerometer data measured from an ankle-
worn device.

Response: {"func": "raw waveform", "args": {}, "knowledge": "Use this to visualize the amplitude of the accelerometer
signal over time. For classifying running and walking, observe the patterns in the waveform: running typically shows
higher amplitude and more frequent peaks due to the higher impact and faster motion, while walking shows lower
amplitude and less frequent peaks."}

#### Question

Task description: A task for classifying ecg data into 2 categories: conduction disturbance, normal.

Data description: The ecg data is collected from a lead ii ecg sensor. the ecg data is recorded over 10 seconds. the data
is normalized with the statistics of the user's data.

Response:

Figure 14: An example prompt from our visualization generator for visualization tool filtering in the PTB-XL (CD)
task. Demonstrations are omitted in this example but can be found in Figure 15.
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### Demonstrations

Data description: The sensor data is collected from an accelerometer measuring acceleration along the x, y, and z axes.
The data is normalized with the statistics of the user's data. The data is measured from an accelerometer attached to the
ankles of a user.

Task description: A task for classifying running and walking activities using accelerometer data measured from an ankle-
worn device.

Response: {"func": "raw waveform", "args": {}, "knowledge": "Use this to visualize the amplitude of the accelerometer
signal over time. For classifying running and walking, observe the patterns in the waveform: running typically shows
higher amplitude and more frequent peaks due to the higher impact and faster motion, while walking shows lower
amplitude and less frequent peaks."}

Data description: The sensor data is collected from an accelerometer measuring acceleration along the x, y, and z axes.
The data is normalized with the statistics of the vehicle's data. The data is measured from an accelerometer attached to
a vehicle.

Task description: A task for classifying road types, such as asphalt, dirt, and cobblestone, using accelerometer data
measured from a vehicle.

Response: {"func": "spectrogram"”, "args": {"nfft": 128, "nperseg": 128, "noverlap": 120, "mode": "magnitude"],
"knowledge": "Use this to analyze the frequency components of the accelerometer signal over time. The colors in the
spectrogram represent the magnitude of the frequencies: brighter colors indicate higher magnitudes. For road type
classification, asphalt typically shows lower frequency components with smoother patterns, dirt shows higher frequency
components with irregular patterns, and cobblestone shows high-frequency components with periodic patterns due to the
regular bumps."}

Data description: The sensor data is collected from an ECG measuring the electrical activity of the heart. The data is
normalized with the statistics of the user's data. The data is measured using electrodes attached to the chest of a user.
Task description: A task for detecting sleep apnea using ECG data measured from chest electrodes.

Response: {"func": "ECG individual heart beats", "args": {}, "knowledge": "Use this to aggregate and visualize individual
heartbeats within an ECG recording. In normal beats, the P-wave precedes the QRS complex, and the T-wave follows it.
In sleep apnea, irregularities in the intervals between the P, Q, R, S, and T peaks can be observed. For instance, the
absence of regular QRS complexes or prolonged intervals can indicate episodes of apnea. The plot helps identify these
patterns by showing the average shape of the heartbeats and marking the specific peaks."}

Data description: The sensor data is collected from an EMG sensor measuring muscle electrical activity. The data is
normalized with the statistics of the user's data. The data is measured using electrodes attached to the forearm of a
user.

Task description: A task for recognizing finger gestures, such as numbers, using EMG data measured from forearm
electrodes.

Response: {"func": "EMG signal", "args": {}, "knowledge": "Use this to visualize the raw EMG signal over time. For
recognizing finger gestures, observe the patterns and amplitude of muscle activity. Different numbers (gestures) will
produce distinct patterns in the EMG signal. For example, bending more fingers usually results in higher amplitude
signals due to increased muscle activation."}

Data description: The sensor data is collected from an ECG measuring the electrical activity of the heart. The data is
normalized with the statistics of the user's data. The data is measured using electrodes attached to the chest of a user.
Task description: A task for detecting whether the user is running or not using ECG data measured from chest
electrodes.

Response: {"func": "ECG heart rate", "args": {}, "knowledge": "Use this to monitor heart rate over time and analyze
activity levels. A significant increase in heart rate can indicate that the user is running. The plot should show a higher
average heart rate during running periods compared to resting or walking periods. Sudden spikes and consistent high
heart rates are typical indicators of running."}

Figure 15: Demonstrations provided inside the visualization tool filtering prompt to enhance the response quality.
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### Instruction

You do not have any prior knowledge about sensor data and visualization techniques.

Based solely on the visual cues in the provided images,

identify the visualization that most visually distinguishes all different classes for the given task.
Generate the answer in the following format:

{"func": visualization_method}

#### Question

Visualization methods: ['ECG individual heart beats', 'ECG signal and peaks', 'ECG heart rate']

Task description: A task for classifying ecg data into 2 categories: conduction disturbance, normal.

Data description: The ecg data is collected from a lead ii ecg sensor. the ecg data is recorded over 10 seconds. the data
is normalized with the statistics of the user's data.

Response:

Figure 16: An example prompt from our visualization generator for visualization selection in the PTB-XL (CD)
task.
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Table 7:

Descriptions of the visualization tools provided to our visualization generator.

Visualization tool

Description

raw waveform

This generates a raw signal of sensor data, displaying the amplitude of the signal over time. This is
usually used to visualize the raw data and identify patterns in the signal.

spectrogram

This generates a spectrogram of sensor data, showing the density of frequencies over time. This is
usually used to visualize the frequency components for high-frequency data, which has features over
components but is hard to figure out in the raw plot. It takes the length of the FFT used (nfft), the
length of each segment (nperseg), and the number of points to overlap between segments (noverlap)
as parameters. Different modes (mode) can be defined to specify the type of return values: ["psd"
for power spectral density, "complex" for complex-valued STFT results, "magnitude” for absolute
magnitude, "angle" for complex angle, and "phase" for unwrapped phase angle]. (Arguments: nfft,
nperseg, noverlap, mode)

signal power spec-
trum density

This generates a power spectrum density plot, which shows the power of each frequency component
of the signal on the x-axis. This is usually used to analyze the signal’s power distribution of different
frequency components.

EDA signal

This generates a plot showing both raw and cleaned Electrodermal Activity (EDA) signals over
time. This is usually used to analyze the EDA signals for patterns related to stress, arousal, or other
psychological states.

EDA skin con-
ductance response
(SCR)

This generates a plot of skin conductance response (SCR) for EDA data, highlighting the phasic
component, onsets, peaks, and half-recovery times. This is usually used to study the transient
responses in EDA data related to specific stimuli or events.

EDA skin conduc-
tance level (SCL)

This generates a plot of skin conductance level (SCL) for EDA data over time. This is usually used
to analyze the tonic component of EDA data, reflecting the overall level of arousal or stress over a
period.

ECG
peaks

signal and

This generates a plot for Electrocardiogram (ECG) data, showing the raw signal, cleaned signal, and
R peaks marked as dots to indicate heartbeats. This is usually used to analyze the heartbeats and
detect anomalies in the ECG signal.

ECG heart rate

This generates a heart rate plot for ECG data, displaying the heart rate over time and its mean value.
This is usually used to monitor and analyze heart rate variability and trends over time.

ECG individual
heartbeats

This generates a plot of individual heartbeats and the average heart rate for ECG data. It aggregates
heartbeats within an ECG recording and shows the average beat shape, marking P-waves, Q-waves,
S-waves, and T-waves. This is usually used to study the morphology of individual heartbeats and
identify irregularities.

PPG
peaks

signal and

This generates a plot for Photoplethysmogram (PPG) data, showing the raw signal, cleaned signal,
and systolic peaks marked as dots. This is usually used to analyze the blood volume pulse and detect
anomalies in the PPG signal.

PPG heart rate

This generates a heart rate plot for PPG data, displaying the heart rate over time and its mean value.
This is usually used for PPG data to monitor and analyze heart rate variability and trends over time.

PPG individual
heartbeats

This generates a plot of individual heartbeats and the average heart rate for PPG data, aggregating
individual heartbeats within a PPG recording and showing the average beat shape. This is usually
used to study the morphology of individual heartbeats based on PPG data.

EMG signal

This generates a plot showing both raw and cleaned Electromyogram (EMG) signals over time. This
is usually used to analyze muscle activity and identify patterns in muscle contractions.

EMG muscle activa-
tion

This generates a muscle activation plot for EMG data, displaying the amplitudes of muscle activity
and highlighting activated parts with lines. This is usually used to study muscle activation levels and
identify specific periods of muscle activity.

EOG signal

This generates a plot showing both raw and cleaned Electrooculogram (EOG) signals over time, with
blinks marked as dots. This is usually used to analyze eye movement patterns and detect blinks.

EOG blink rate

This generates a blink rate plot for EOG data, displaying the blink rate over time and its mean value.
This is usually used to monitor and analyze the blink rate and detect irregularities.

EOG
blinks

individual

This generates a plot of individual blinks for EOG data, aggregating individual blinks within an EOG
recording and showing the median blink shape. This is usually used to study the morphology of
individual blinks and identify patterns in blink dynamics.
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