
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 22699–22714
November 12-16, 2024 ©2024 Association for Computational Linguistics

Initialization of Large Language Models via Reparameterization
to Mitigate Loss Spikes

Kosuke Nishida Kyosuke Nishida Kuniko Saito
NTT Human Informatics Laboratories, NTT Corporation

{kosuke.nishida, kyosuke.nishida, kuniko.saito}@ntt.com

Abstract

Loss spikes, a phenomenon in which the loss
value diverges suddenly, is a fundamental issue
in the pre-training of large language models.
This paper supposes that the non-uniformity of
the norm of the parameters is one of the causes
of loss spikes. Here, in training of neural net-
works, the scale of the gradients is required to
be kept constant throughout the layers to avoid
the vanishing and exploding gradients problem.
However, to meet these requirements in the
Transformer model, the norm of the model pa-
rameters must be non-uniform, and thus, param-
eters whose norm is smaller are more sensitive
to the parameter update. To address this issue,
we propose a novel technique, weight scaling
as reparameterization (WeSaR). WeSaR intro-
duces a gate parameter per parameter matrix
and adjusts it to the value satisfying the require-
ments. Because of the gate parameter, WeSaR
sets the norm of the original parameters uni-
formly, which results in stable training. Experi-
mental results with the Transformer decoders
consisting of 130 million, 1.3 billion, and 13
billion parameters showed that WeSaR stabi-
lizes and accelerates training and that it outper-
formed compared methods including popular
initialization methods.

1 Introduction

Transformer-based large language models (LLMs)
have attracted remarkable attention (Vaswani et al.,
2017; Brown et al., 2020). The discovery of a
scaling-law (Kaplan et al., 2020) has been driving
the model and corpus sizes ever larger, causing
huge computational costs for pre-training. During
pre-training of LLMs, the loss value often diverges
suddenly (Chowdhery et al., 2023; Zhang et al.,
2022), as illustrated at the top of Figure 1. This
phenomenon, known as loss spikes, is a fundamen-
tal issue in the LLM pre-training because it not only
increases the final loss value, but also causes the
pre-training to fail if the loss diverges completely.

2.5

3

4

5

6
7
8

Proposed: Loss
Baseline: Loss

1B 2B 3B 4B 5B
Tokens

0.0

0.005

0.01

0.015
Proposed: Wd / Wd

Baseline: Wd / Wd

Proposed: Wu / Wu

Baseline: Wu / Wu

Figure 1: Loss of Transformer models with 13 bil-
lion (13B) parameters at the beginning of training
(top). Update ratios for the up and down projection
in the last feed-forward layer, ∥∆Wu∥/∥Wu∥ and
∥∆Wd∥/∥Wd∥, of the same (bottom). The horizontal
lines are the update ratios before the largest spike. The
baseline sets ∥Wd∥ smaller than the other parameters.
The update ratio of Wd is larger at the very beginning
and gets smaller after loss spikes occur. The baseline
uses standard techniques for stable training, such as gra-
dient clipping.

Here, let ∆W be the update of the parameter W
at an optimization step. ∥∆W ∥/∥W ∥ represents
the magnitude of the parameter update relative to
the parameter itself, and we call it the update ratio.
The bottom of Figure 1 shows the update ratios.
We consider that different scales of update ratios
among parameter matrices can lead to unstable
training. Indeed, before the loss spike, the update
ratio of Wd is larger than that of Wu. That is, Wd

undergoes a more pronounced change. After the
spike, the difference between the update ratios de-
creases. This observation motivated us to regulate
the update ratios in the model in a certain range.

We consider that uneven and large update ratios
are due to non-uniformity of the norm of the pa-
rameters. With the current initialization methods,
Wd is set smaller than other parameters, which is
required to avoid the vanishing and exploding gra-

22699

dients problem. Consequently, by definition, the
update ratio of Wd tends to be larger.

To address this issue, we propose a novel tech-
nique, called weight scaling as reparameterization
(WeSaR). WeSaR introduces a gate parameter α ∈
R for each parameter matrix W and uses αW in-
stead of W inside the model. WeSaR relieves the
parameter W of non-uniformity by adjusting α
to the values required to avoid the vanishing and
exploding gradients problem. Moreover, WeSaR
enables an arbitrary small common standard devi-
ation to set be for all parameters, which results in
not only stable, but also accelerated, training.

We conducted pre-training of Transformer de-
coders consisting of 130 million (13M), 1.3 billion
(1.3B), and 13B parameters. Our experimental re-
sults show that WeSaR stabilized and accelerated
their training due to the stable and equal-scale up-
date ratios, as shown in Figure 1. We also con-
firmed that WeSaR outperformed compared meth-
ods, including a initialization method widely used
for pre-training LLMs (Nguyen and Salazar, 2019)
and the existing reparameterization methods (Sal-
imans and Kingma, 2016; Zhai et al., 2023; Noci
et al., 2022).

Our contributions can be summarized as follows:

• We clarify one of the causes of loss spikes, i.e.,
the non-uniformity of parameters that arises
to meet the requirements for avoiding the van-
ishing and exploding gradients problem.

• We address the non-uniformity problem by
reparameterizing the parameter as αW with
a gate parameter α. α determines the scale of
αW . W is initialized with a small common
standard deviation throughout the model.

• Experimental results show that the proposed
method stabilizes and accelerates training. It
outperformed compared methods, including a
popular initialization method of LLMs.

2 Preliminaries

We consider Transformer models (Vaswani et al.,
2017) consisting of the following layers: an em-
bedding layer with We, self-attention layers with
Wq, Wk, Wv, and Wo (query, key, value, and out-
put projections), feed-forward layers with Wu and
Wd (up and down projections)1, and a prediction

1We did not use GLU (Shazeer, 2020) for simplicity.

layer with Wp. Each parameter W· is initialized
according to a Gaussian distribution N (0, σ2

·).
The input first passes through the embedding

layer; then it is processed by N Transformer blocks,
which consist of self-attention layers and feed-
forward layers. The transformation f of the self-
attention layer and the feed-forward layer with a
residual connection can be written as

y = f(LN(x)) + x, (1)

where LN indicates a layer normalization (Ba et al.,
2016) that is applied after the residual connection,
called the Pre-LN type (Liu et al., 2020).

In this section, we first review the back-
propagation algorithm (Rumelhart et al., 1986).
Then, we describe the initialization strategies of
the Transformer models to avoid the vanishing and
exploding gradients problem.

2.1 Back-Propagation
Back-propagation passes the gradients of the loss
function from the top layer to the bottom layer
through the network. Here, to avoid the vanishing
and exploding gradients problem in deep neural
networks, the scale of the gradients must be kept
constant throughout the model. Let us consider a
layer y = g(x) (y ∈ Rdout ,x ∈ Rdin). L de-
notes the loss, and δ ∈ Rdout denotes the gradient
of the loss with respect to the output ∂L

∂y . To keep
the scale of the gradients before and after the layer,
a layer g must satisfy the condition,

E

[∥∥∥∥
∂L
∂x

∥∥∥∥
2
]
= E

[∥∥∥∥
∂y

∂x
δ

∥∥∥∥
2
]
= E

[
∥δ∥2

]
. (2)

Back-propagation is a chain of differentiation.
Therefore, the scale of the gradients in the entire
model is maintained when each layer in the model
meets this requirement.

2.2 Initialization Strategies of Transformer
Embedding Scaling. σe plays an essential role
in back-propagation through the Transformer lay-
ers (Takase et al., 2023). Here, we use the RM-
SNorm y = γLN ⊙

√
dx√
∥x∥2

(Zhang and Sennrich,

2019) as the layer normalization, where γLN is a
parameter, d is the number of dimensions, and ⊙
indicates the Hadamard product. Back-propagation
through RMSNorm is

∂y

∂x
=

√
d

∥x∥2
(
I − xx⊤

∥x∥2
)
diag(γLN),

22700

where diag(·) is a diagonal matrix and I is an iden-
tity matrix. Because

√
d

∥x∥2 is the inverse of the
standard deviation of x if the mean of x is zero,
the standard deviation of x affects the norm of the
gradients. The standard deviation of the embedding
matrix σe influences the standard deviation of the
input in RMSNorm through the residual connec-
tions (Equation 1). Thus, to avoid the vanishing
and exploding gradients problem, σe should be set
to 1.

On the basis of the above discussion, Takase
et al. (2023) presented two previous studies achiev-
ing a standard deviation of 1 for x without directly
setting σe = 1. The first way multiplies the out-
put of the embedding layer by a constant 1/σe.
This technique was introduced in the original Trans-
former (Vaswani et al., 2017) but was deleted from
the implementations. The second way adds the
layer normalization to the top of the embedding
layer (Le Scao et al., 2022).

Residual Scaling. σo and σd are also important
factors for stable training. The residual scaling
technique was introduced to Transformer by GPT-
2 (Radford et al., 2019) without explanation. Here,
we present a theoretical analysis (Taki, 2017) origi-
nally designed for ResNet (He et al., 2016) while
modifying it for Transformer. The analysis in a
formal form is presented in Appendix A.

The back-propagation through Equation 1 is

∂L
∂x

=
∂L
∂y

∂y

∂x
= δ

(
∂f(LN(x))

∂x
+ I

)
. (3)

Let s2 be E

[∥∥∥∂f(LN(x))i
∂x

∥∥∥
2
]

. Thus, a residual

connection causes an (s2 + 1)-fold increase in the
squared norm of the gradient E

[∥∥∂L
∂x

∥∥2
]
. As a

result, the gradient explodes exponentially with
respect to the depth of layers throughout the propa-
gation. This exponential increase is unacceptable
for LLMs consisting of many Transformer blocks.

To alleviate this problem, the residual scaling
multiplies σo and σd by 1√

2N
since the model

has 2N residual connections. This multiplication
achieves E[s2] = O

(
1
2N

)
, and the scale of the ex-

ploding gradient (s2 + 1)2N converges to Napier’s
constant e in the limit N → ∞. This avoids an
exponential explosion with respect to N .

3 Existing Methods and Their Problems

Here, we review two of the existing initialization
methods and their problems. The methods are sum-
marized in Table 1.

3.1 He Initialization

He initialization (He et al., 2015) is one of the most
popular initialization methods for neural networks.
It is designed to keep the scale of the gradients
constant throughout the network to meet the re-
quirement of Equation 2. In the case of a linear
layer y = Wx (y ∈ Rdout ,x ∈ Rdin ,W ∈
Rdout×din), the requirements can be written as

E

[∥∥∥∥
∂L
∂x

∥∥∥∥
2
]
= E

[∥∥∥W⊤δ
∥∥∥
2
]
= Var

[∥∥∥W⊤δ
∥∥∥
]

= dinVar [W]E
[
∥δ∥2

]
= E

[
∥δ∥2

]
.

Thus, the parameter W ∈ Rdout×din must be ini-
tialized with the standard deviation σ = 1√

din
. Note

that the numerator, called the gain, is determined
depending on the activation function. We assume
the identity function in the above discussion for
simplicity. For ReLU activation, the gain is

√
2.

3.2 Small Initialization

Small initialization (Nguyen and Salazar, 2019)
is based on empirical findings that a small stan-
dard deviation leads to stable training. It sets a

common small standard deviation
√

2
5d for all pa-

rameters except for the 1/
√
2N scaling of σo and

σd. Here, we should note that
√

2
5d is the standard

deviation which Xavier initialization (Glorot and
Bengio, 2010) specifies for Wu and Wd, and it is
the smallest standard deviation among all of the
parameters in the Transformer layers.

3.3 Problems

Although the He and Small initializations with the
embedding and residual scaling stabilize the train-
ing, they often cause loss spikes, as shown at the
top of Figure 1. Deep neural networks are designed
to keep the scale of the gradients constant through-
out the model. Therefore, in the parameters whose
norm is smaller than that of the others, the update
ratios ∥∆W ∥/∥W ∥ are larger. Because the up-
date ratio indicates the magnitude of the effect of
the update on the parameter, parameters with large
update ratios are fragile.

22701

He Small WeSaR
Gate Weight Gate Weight Gate Weight

We 1
√

1
d

1
√

2
5d

1 σ

Wk N/A
√

1
d

N/A
√

2
5d

√
1
d

σ

Wq N/A
√

1
d

N/A
√

2
5d

√
1
d

σ

Wv N/A
√

1
d

N/A
√

2
5d

√
1
d

σ

Wo N/A
√

1
2Nd

N/A
√

2
10Nd

√
1

2Nd
σ

Wu N/A
√

1
d

N/A
√

2
5d

√
1
d

σ

Wd N/A
√

2
8Nd

N/A
√

2
10Nd

√
2

8Nd
σ

Wp N/A
√

1
d

N/A
√

2
5d

√
1
d

σ

Table 1: Standard deviations of initialization methods
before and after the gate2. We assume that He and
Small initializations use embedding scaling (Vaswani
et al., 2017; Takase et al., 2023). The proposed method
initializes all parameters with a common σ. We adopt
the popular setting where dout of Wu and din of Wo

are 4d and din and dout of the other parameters are d.

The bottom of Figure 1 shows the update ra-
tios in the last feed-forward layer: ∥∆Wd∥/∥Wd∥
and ∥∆Wu∥/∥Wu∥. The update ratio of Wd is
larger than that of Wu because the residual scaling
multiplies ∥Wd∥ by 1/

√
2N (in the 13B model,

1/
√
2N ≈ 0.11). The update ratio of Wd is espe-

cially large at the very beginning. After the pre-
training on 1B tokens with some loss spikes, it
stays within a certain range. However, it is still
much larger than that of Wu. After the largest loss
spike occurs, the update ratio of Wd gets closer to
that of Wu. Therefore, we consider that uneven
and large update ratios can cause loss spikes, and
we can mitigate loss spikes by regulating them.

4 Proposed Method

We propose WeSaR as a way to meet the two con-
flicting aforementioned requirements: (i) the crite-
ria of any initialization method designed to avoid
the vanishing and exploding gradients problem, as
discussed in §2.2, and (ii) the common scales of
all parameters to keep stable and uniform update
ratios for mitigating loss spikes, as discussed in
§3.3. In addition to stabilizing the training, WeSaR
enables a hyperparameter setting that achieves a
rapid decrease in loss.

2We approximate the gain of the activation function used
in the feed-forward layer to that of ReLU (i.e.,

√
2).

4.1 Initialization via Reparameterization
We consider a situation where the parameter W·
is initialized according to N (0, σ2

·). Here, the pro-
posed method initializes W· by using a common
standard deviation σ among all parameters and uses
W̄· instead of the original W· inside the model,

W· ∼ N (0, σ2)

W̄· =
σ·
σ
W· = α·W·,

where σ is a hyperparameter, and α·,W· are train-
able parameters. The gate parameter α· is initial-
ized to σ·

σ . We call W· an actual parameter and
W̄· = α·W· a virtual parameter.

Beyond introducing the gate parameters to all pa-
rameter matrices, WaSAR is designed to initialize
the actual parameters with uniform standard devi-
ations σ while aligning the standard deviations of
the virtual parameter σ· to the criteria of the initial-
ization methods by adjusting the gate parameter α·.
Therefore, WeSaR eliminates the non-uniformity
of ∥W·∥ and ∥∆W·∥/∥W·∥. The effect of WeSaR
is shown at the bottom of Figure 1. Because Wd

and Wu are initialized equally, their update ratios
are comparable and stable during training.

Because just one trainable parameter is added
to each parameter matrix W· ∈ Rdout×din , WeSaR
has little effect on the number of trainable parame-
ters and the training cost. Moreover, it has no effect
on the inference because the gate parameter can be
merged after the training.

We can align the backbone initialization of We-
SaR to any existing initialization methods. In this
paper, we adopt He initialization gain√

din
with the

embedding and residual scaling for the virtual pa-
rameter α·W· to avoid gradient decay throughout
the Transformer layers.

4.2 Theoretical Justification
Here, we explain that WeSaR does not affect the
training dynamics of Transformer. We assume that
the optimizer is Adam (Kingma and Ba, 2015) be-
cause of its benefits to Transformer (Zhang et al.,
2020; Pan and Li, 2022; Zhang et al., 2024). Let us
consider a parameter update ∆Wt at step t. The
update of Adam is

∆Wt = µt
Mt√
Vt

, (4)

where Mt is the exponential moving average of
the gradient ∂L

∂W , Vt is that of the squared gradient,
and µt is the learning rate.

22702

Because of

∂L
∂W·

=
∂L
∂W̄·

∂W̄·
∂W·

=
σ·
σ

∂L
∂W̄·

,

the gradient is multiplied by σ·
σ through the gate.

From the definition of Adam (Equation 4), the
Adam states Mt and

√
Vt are multiplied by σ·

σ
equally, and thus the reparameterization does not
affect the parameter update µt

Mt√
Vt

. Therefore, the
parameter update is independent of σ· if we use
Adam.

That is, WeSaR relieves the actual parameters
and their update of the restriction with respect to σ·
that is specified in order to avoid the vanishing and
exploding gradients problem. Secondarily, differ-
ent from the existing methods that define the stan-
dard deviations as functions of d, we can determine
the standard deviation of the actual parameters in-
dependently of d, because the gate α undertakes
the dependence on d.

4.3 Hyperparameter Setting
Here, we explain the hyperparameter setting that
enables a stable and rapid loss decrease. Different
from conventional initialization methods, WeSaR
can set the common standard deviation σ to an
arbitrary value. In addition, the stability afforded
by WeSaR enables us to set the learning rate and
batch size to accelerate training.

Standard Deviation σ. In this paper, we set to
σ2 = 4e-5, unless otherwise mentioned. This
setup corresponds to d = 10, 000 in the Small ini-

tialization criteria
√

2
5d . That is, our σ setup is

smaller than those of conventional setups3. We can
expect a rapid decrease in loss with the same learn-
ing rate because of the large parameter update ∆W
relative to the parameter W itself. Zhang et al.
(2019a) confirmed the preference to a smaller stan-
dard deviation in the Transformer models, which
justifies our setup.

Learning rate. Because WeSaR enables stable
training, we can increase the learning rate from the
conventional values (an order of 1e-4). Here, we
set it to 1e-3.

Batch size. In the conventional pre-training of an
LLM, the batch size is set to a large value (e.g., 4M
tokens) to avoid loss spikes. We can decrease the
batch size for a rapid loss decrease if the training

3Even in LLaMA3 70B, d = 8192 (AI@Meta, 2024).

130M 1.3B 13B

Param. 134.1M 1,339.1M 12,911.0M
Hidden Size d 768 2048 5120
Layer N 12 24 40
Attention Head 12 16 40

Table 2: Model configuration.

Rapid Setting Stable Setting

Batch Size [tokens] 1M 4M
Learning rate µ 1e-3 5e-4
Warmup Steps 100 2000
Gradient Clipping Threshold 1
Weight decay 0.01
Z-loss 1e-4

Table 3: Training configuration.

is stable. However, the batch size has to be large
enough in order to pre-train the model efficiently
on large numbers of GPUs, as is commonly done
when pre-training LLMs. Thus, we set the batch
size to 1M tokens.

5 Experimental Evaluation

5.1 Experimental Setup

We pre-trained the 130M, 1.3B, and 13B models
on the basis of the configuration listed in Table 2.
The model architecture was based on LLaMA (Tou-
vron et al., 2023), except for the feed-forward layer
with gelu activation. Our experiments mainly fo-
cused on the 1.3B models. The training was based
on the hyperparameters listed in Table 3. There
were two settings for the learning rate, batch size,
and warmup steps: One was a conventional setting
emphasizing on a stable training; the other empha-
sized a rapid decrease in loss. We used perplexity
as a metric. Appendix B describes the detailed
configuration.

5.2 Dataset

We sampled 30B tokens from RefinedWeb (Penedo
et al., 2023) and used them as the pre-training cor-
pus. Hoffmann et al. (2022) found that the optimal
pre-training corpus size is roughly 20 tokens per
model parameter. Thus, 30B tokens were sufficient
for our main experiments using 1.3B models. For
the 13B models, we investigated the behavior in
the first 1/10th of the training. For the evaluation,
we used LAMBADA (Paperno et al.) and Wiki-
Text (Merity et al., 2017).

22703

Method Weights Train Norm Scale

Weight Normalization all ✓ ✓ by-row
σReparam all ✓ ✓ by-matrix
Residual Scaling Wo, Wd by-matrix

WeSaR all ✓ by-matrix

Table 4: Comparison of reparameterization methods.
“Weights” means the reparameterized weight matrices.
"Train" means that each method uses trainable gate pa-
rameters. “Norm” means that each method uses repa-
rameterization via weight-based normalization. “Scale”
means the unit of scaling in the reparameterization.

5.3 Compared Models

As a baseline, we trained the model with the most
popular method, i.e., Small initialization.

In addition, we compared the proposed method
with the three reparameterization methods listed in
Table 4. Because all methods have their own mo-
tivation, we discuss the detailed difference in Ap-
pendix C. In short, the difference from the former
two methods is efficiency because WeSaR does not
conduct any normalization. From the last method,
WeSaR reparameterizes all parameters and sets a
common small value to the standard deviations of
all parameters.

Weight Normalization. Weight Normaliza-
tion (Salimans and Kingma, 2016) was proposed
to decouple the length of the weight vectors from
their direction. It conducts L2 normalization
and scaling of each row of the parameter matrix
w ∈ Rdin as w̄ = α

∥w∥w.

σReparam. σReparam (Zhai et al., 2023) was
proposed to control the spectral norm (i.e., the max-
imum singular value) of the parameter for stable
Transformer training. It conducts spectral normal-
ization (Miyato et al., 2018) and scaling of the pa-
rameter matrix W ∈ Rdout×din : W̄ = α

∥W ∥2W ,

where ∥W ∥2 is the spectral norm. The original
σReparam adopts Post-LN; and we tried both Post-
LN and the more popular Pre-LN.

Residual Scaling as Reparameterization. Noci
et al. (2022) overcomes the limitation of the
(1/

√
2N)-fold multiplications of σo and σd caused

by the residual connection (Equation 1). It modifies
the residual connection to y = 1√

2N
f(LN(x))+x.

Different from the original residual scaling, which
changes the standard deviations, this equation can
be viewed as a reparameterization of Wo and Wd

because of its linearity.

WikiText LAMBADA

13
0M

Small Init. (Rapid) 26.57 33.56
Small Init. (Stable) 37.68 40.41

WeSaR 25.07 31.89

1.
3B

Small Init. (Rapid) 16.55 26.29
Small Init. (Stable) 21.44 28.81

WeSaR 14.51 22.87

13
B

Small Init. (Rapid) 12.72 21.79
Small Init. (Stable) 18.66 25.34

WeSaR 12.05 21.57

Table 5: Main results.

5B 10B 15B 20B 25B 30B
Tokens

2

3

4

5

6
Proposed
Baseline (Rapid)
Baseline (Stable)

Figure 2: Loss of 13B models during training.

Setup. For Weight Normalization and σReparam,
which reparameterize all parameters, we tuned σ2

in {1, 4, 16, 64, 256}e-5 and set the initial α to the
values defined by each method. Because residual
scaling does not reparameterize all of the param-
eters and does not specify a backbone initializa-
tion method, we chose the He and Small initializa-
tions. All methods used embedding scaling because
Takase et al. (2023) confirmed its benefit.

5.4 Results and Discussion

Main results. Table 5 shows the main results.
WeSaR outperformed the widely used Small ini-
tialization. Figure 1 and 2 show the decrease in
loss of the 13B models at the beginning of and over
the whole training, respectively. We found that
WeSaR achieved stable training, whereas Small
initialization caused loss spikes. Moreover, under
the hyperparameter setting that aimed to stabilize
training, Small initialization still caused loss spikes
and eventually had higher (i.e., worse) perplexity
due to the small learning rate and large batch size.
As well, due to the lower learning rate, the stable
setting took more steps until reaching stable states
without loss spikes. Thus, we used the rapid hy-
perparameter setting in the following experiments.
The loss decreases for the 130M and 1.3B models
are shown in Appendix E.

22704

WikiText LAMBADA Time # Param. Best σ2

Small Init. 20.64 (0.52) 29.50 (0.53) 18.88 1,339.1M N/A

Weight Normalization 18.87 (0.59) 27.69 (0.86) 21.27 (+12.6%) 1,339.6M 16e-5

σReparam w./ Pre-LN 25.26 (1.65) 30.74 (0.74) 20.06 (+6.25%) 1,339.1M 64e-5
σReparam w./ Post-LN 23.64 (1.03) 30.56 (0.89) 20.09 (+6.39%) 1,339.1M 16e-5

Residual Scaling w./ He 23.15 (0.37) 31.03 (0.20) 19.19 (+1.66%) 1,339.1M N/A
Residual Scaling w./ Small 23.56 (1.03) 30.78 (0.35) 19.18 (+1.58%) 1,339.1M N/A

WeSaR 17.74 (0.05) 27.52 (0.28) 19.25 (+1.95%) 1,339.1M 4e-5

Table 6: Comparison of reparameterization methods in five runs based on 10B tokens. Mean and standard deviation
are listed. The best method is in bold, and the methods within one standard deviation are underlined.

1B 2B 3B 4B 5B
Tokens

0

50

100

150

Proposed: Wd

Proposed: dWd

Baseline: Wd

Proposed: Wu

Proposed: uWu

Baseline: Wu

Figure 3: Norm of parameters ∥Wd∥ and ∥Wu∥ in the
last layer at the beginning of the training. ∥Wd∥ and
∥Wu∥ of the proposed method overlap.

WikiText LAMBADA

Small Init. 16.55 26.29
He Init. 16.70 26.50

WeSaR (w./ He Init.) 14.51 22.87
w./ Small Init. 15.91 24.37
w./ fixed α 15.21 25.61

Table 7: Ablation studies.

Why does the reparameterization stabilize
training? The bottom of Figure 1 shows that,
during the training using Small initialization,
∥∆Wd∥/∥Wd∥ was large at the very beginning
of the training and became small and stable after
the loss spikes occurred. However, the proposed
method kept ∥∆Wd∥/∥Wd∥ and ∥∆Wu∥/∥Wu∥
in a certain range during the training, which led to
stable training. The update ratios in other parame-
ters are shown in Appendix F.

To investigate the reason for this remarkable
difference, we analyzed the values of ∥Wd∥ and
∥Wu∥ in the last layer during training. As shown
in Figure 3, ∥Wd∥ and ∥Wu∥ of Small initializa-
tion became larger during training because of the
small initial values. To achieve such large change
in Wd and Wu, the parameter update should be
also large enough. Therefore, the update ratios of
Small initialization were larger and more unstable

than those of WeSaR. A large update is especially
harmful to Wd due to the non-uniformity, which
causes the training to become unstable.

Although the virtual parameters αdWd and
αuWu of WeSaR changed their norms during train-
ing, WeSaR assigned the role of changing the norm
to the gate parameter αd and αu. Therefore, the
norm of the actual parameters ∥Wd∥ and ∥Wu∥
did not change by much. This nearly constant scale
of the actual parameters contributed to the stability.

Is the reparameterization effective? Table 7
shows the results of the ablation studies. Among
the existing methods, Small initialization outper-
formed He initialization. He initialization also
caused loss spikes. Thus, as Nguyen and Salazar
(2019) confirmed, Small initialization is more suit-
able than He initialization for pre-training LLMs.

However, He initialization outperformed Small
initialization as a backbone initialization method of
WeSaR. We consider that He initialization is suit-
able for propagating the gradients to lower layers,
although a small standard deviation (e.g., Small ini-
tialization) is suitable as the parameter itself. The
advantage of WeSaR is that it sets the standard de-
viations of the actual parameter to smaller values,
while it sets the norm of the virtual parameter to a
sufficient value for the back-propagation.

Also, in relation to discussed with Figure 3, the
trainability of the gate parameter α contributes to
the model performance.

Does WeSaR outperform the existing reparame-
terization methods? We compared WeSaR with
the existing reparameterization methods, shown in
Table 6. In pilot experiments, we confirmed that
the pre-training on 10B tokens is sufficient to rank
the methods. Thus, we conducted five runs of each
method with 10B tokens and report the means and

22705

Dataset BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Total

Metric ACC ACC F1 ACC ACC EM F1 ACC ACC ACC ACC EM F1

Small Init. 60.28 32.14 22.26 73.00 46.12 73.23 73.93 53.43 50.00 40.38 51.73 73.23 73.65

Weight Normalization 58.27 42.86 25.13 69.00 57.32 75.11 75.83 57.76 50.00 36.54 57.18 75.11 75.55

σReparam w./ Pre-LN 61.19 48.21 28.78 66.00 50.08 68.32 69.02 52.71 50.00 44.23 54.16 68.32 68.79
σReparam w./ Post-LN 57.65 46.43 26.63 68.00 52.83 71.69 72.41 53.79 50.00 52.88 54.46 71.69 72.16

Residual Scaling w./ He 57.80 33.93 33.28 69.00 57.10 72.17 72.82 54.15 50.00 51.92 56.70 72.17 72.60
Residual Scaling w./ Small 60.73 33.93 23.04 66.00 57.08 71.32 72.01 51.62 50.00 42.31 57.51 71.32 71.74

WeSaR 61.62 41.07 38.54 76.00 56.81 76.68 77.37 50.54 48.75 44.23 57.73 76.68 77.16

Table 8: Evaluation of 1.3B models on downstream tasks. The best method is in bold, and the methods within one
standard deviation are underlined.

the standard deviations. The single runs on the full
30B tokens are described in Appendix D.

WeSaR achieved a lower (i.e., better) perplexity
on average and smaller (i.e., more stable) standard
deviations than Weight Normalization. In addition,
Weight Normalization took the longest time. This
is because that it calculates the back-propagation
through the normalization, different from the other
methods. We confirmed that our simple reparam-
eterization without normalization is efficient and
effective for LLM’s pre-training.

Moreover, WeSaR outperformed σReparam.
Whereas σReparam controls the attention entropy
for stability, WeSaR stabilizes the training by shar-
ing the standard deviations of all of the parameters
even without spectral normalization. In addition,
we consider that setting the initial standard devi-
ation to the criteria of He initialization achieved
a more rapid decrease in loss than did setting the
initial maximum singular value to 1.

Third, WeSaR outperformed residual scaling in
terms of perplexity. Because residual scaling only
reparameterizes Wo and Wd, we consider that the
relief of all of the parameters from the require-
ments by the back-propagation, which also results
in smaller standard deviations than in the conven-
tional setting, is important for a stable and rapid
decrease in loss.

Is WeSaR effective on downstream tasks? To
confirm the effectiveness of WeSaR on downstream
tasks, we evaluated the compared models on the
SuperGLEU dataset (Wang et al., 2019) via lm-
evaluation-harness (Gao et al., 2024). We used
BoolQ (Clark et al., 2019), CB (De Marneffe
et al., 2019), COPA (Roemmele et al., 2011), Mul-
tiRC (Khashabi et al., 2018), ReCoRD (Zhang
et al., 2018), RTE (Dagan et al., 2006; Bar Haim

WikiText LAMBADA

13
0M

(d
=

7
6
8

) σ2 = 16e-5 (d = 5000) 28.64 36.52
σ2 = 4e-5 (d = 10000) 25.07 31.89
σ2 = 1e-5 (d = 20000) 24.51 33.46

µ = 2e-3 24.55 33.15
µ = 1e-3 25.07 31.89
µ = 5e-4 24.50 33.25

1.
3B

(d
=

2
0
4
8

) σ2 = 16e-5 (d = 5000) 16.37 26.05
σ2 = 4e-5 (d = 10000) 14.51 22.87
σ2 = 1e-5 (d = 20000) 14.85 24.19

µ = 2e-3 14.67 24.02
µ = 1e-3 14.51 22.87
µ = 5e-4 15.98 25.59

Table 9: Robustness versus standard deviation σ and
learning rate µ. The parentheses in the second columns
indicate the number of dimensions measured against the
criteria of Small initialization.

et al., 2006; Giampiccolo et al., 2007; Ben-
tivogli et al., 2009), WiC (Pilehvar and Camacho-
Collados, 2019), and WSC (Levesque et al., 2011)
with the official metrics in lm-evaluation-harness.
We did not conduct fine-tuning and report the re-
sults with 3-shot in-context learning.

Table 8 lists the results. In addition to the
perplexity as language modeling, the model pre-
trained with WeSaR outperformed the compared
models on the downstream tasks on average.

Are the hyperparameter settings robust to
changes in model size? Table 9 clarifies the ro-
bustness with respect to the model size.

Here, we observed that the σ2 = 4e-5 setting
outperformed the other settings in the 1.3B model
experiments, while the σ2 = 4e-5 and 1e-5 settings
achieved comparable performance in the 130M
model experiments. Although there remains room
for tuning the hyperparameters, we found that the

22706

optimal standard deviations are not necessarily pro-
portional to the dimension size d, different from the
conventional setup; a larger model does not always
prefer a smaller standard deviation. This is because
the back-propagation to lower layers must depend
on d and the proposed method assigns the role of
ensuring this dependence to the gate parameter.
Second, regarding the learning rate, we confirmed
that WeSaR achieves stable training even with a
higher rate (order of 1e-3) than that of conventional
settings (order of 1e-4).

6 Related Work

Loss spikes. PaLM (Chowdhery et al., 2023) and
OPT (Zhang et al., 2022) found the loss spike
phenomenon and used a simple strategy against
it that restarts the training from an earlier check-
point and skips batches that may have caused the
spike. GLM (Zeng et al., 2023) found that the ab-
normal gradients of the embedding layer usually
cause spikes and proposed to shrink the gradients of
We. Li et al. (2022) and Zhai et al. (2023) argued
that large context lengths and abnormal attention
behavior lead to spikes. Molybog et al. (2023) in-
dicated that the Adam optimizer, which assumes
time-domain independence of gradients, induces
loss spikes. Takase et al. (2023) presented embed-
ding scaling (Vaswani et al., 2017) and LayerNorm
on the top of the embedding layer (Le Scao et al.,
2022) by focusing the differentiation of the layer
normalization. The causes of loss spikes are still
under intense discussion. We clarified that one of
the causes is the non-uniformity of the parameter
norms and provided a method to address this issue.

Residual scaling. The (1/
√
2N)-fold initializa-

tion of σd, σo was first proposed in LLM studies
by GPT-2 (Radford et al., 2019). Apart from Trans-
former, Taki (2017); Hanin and Rolnick (2018);
Zhang et al. (2019b) presented a weight scaling
for ResNet (He et al., 2016) together with a math-
ematical justification. Some recent studies have
proposed weight scaling for Transformer and have
given theoretical analyses, including O(N−1/4)-
fold scaling of Wv,Wo (Huang et al., 2020),
O(N−1/2) of Wo,Wd as reparameterization (Noci
et al., 2022), and O(N−1/4) of Wv,Wo,Wu, and
Wd (Wang et al., 2022). We have extended this line
of work to the novel reparameterization method.
Although we used the most popular GPT-2’s strat-
egy for the initial scale, we can use any of the
scaling strategies described above.

Initialization methods. Some studies have de-
termined the initial scale of the parameters
with a prior optimization phase before the pre-
training (Dauphin and Schoenholz, 2019; Zhu et al.,
2021; Yang et al., 2022; Bingham and Miikku-
lainen, 2023). Our method can use them as the
backbone initialization instead of He initialization.

7 Conclusion

Loss spikes are a fundamental issue in pre-training
of LLMs because they increase the pre-training cost
and degrade the performance of the model. To ad-
dress this problem, we identified one of the causes
as the non-uniformity of the norm of the model pa-
rameters. We proposed a novel reparameterization
method, WeSaR, that addresses the non-uniformity
problem by adjusting the gate parameter to the re-
quired scale and initializing the actual parameters
with a common standard deviation. WeSaR not
only stabilizes the pre-training, but also acceler-
ates the pre-training by setting a standard deviation
smaller than in the conventional setting. Experi-
mental results showed that WeSaR outperformed
the compared methods, and the parameters and
their update ratios were stable during pre-training.

The use of LLMs has been spreading. We be-
lieve this study to be a significant contribution that
increases both the efficiency of the LLM’s pre-
training and the effectiveness of the pre-trained
LLMs.

Limitations

The proposed method and the presented theoreti-
cal analysis focus on one aspect of the loss spike
problem and does not solve it entirely. In the exper-
iments, we used various techniques designed for
stable training: warmup, Adam β2 = 0.95, gradi-
ent clipping, weight decay, and Z-loss. We do not
insist that such techniques are no longer required.
For example, in pilot experiments with the 1.3B
model, we found that no warmup or no gradient
clipping training achieved higher perplexity due
to unstable behavior at the very beginning of the
training. We argue that there is no silver bullet
against loss spikes and that we should address this
issue with a combination of techniques, including
WeSaR.

Another limitation is the restriction of the com-
putational resources. For example, our experi-
ments investigated the behavior of the models with
up to 13B parameters. Moreover, we did not

22707

use SWiGLU activation (Shazeer, 2020) in the
feed-forward layers, as has been done in popular
LLMs, e.g., PaLM (Chowdhery et al., 2023) and
LLaMA (Touvron et al., 2023). However, we note
that the effectiveness of SWiGLU remains contro-
versial in the community: Narang et al. (2021) has
a positive opinion, and Allen-Zhu and Li (2024)
a negative one. In spite of these restrictions, our
experiments showed the effectiveness of WeSaR
on a standard Transformer architecture. Our ex-
periments took 30,272 GPU hours on H100 totally.
This would cost $148,824 if the experiments were
conducted on Amazon Web Service in June, 2024.
We believe that our findings based on the intensive
experiments shed new light on LLMs.

References
AI@Meta. 2024. Llama 3 model card.

Zeyuan Allen-Zhu and Yuanzhi Li. 2024. Physics of lan-
guage models: Part 3.3, knowledge capacity scaling
laws. arXiv preprint arXiv:2404.05405.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second PASCAL recognising
textual entailment challenge.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The fifth
PASCAL recognizing textual entailment challenge.

Garrett Bingham and Risto Miikkulainen. 2023. Au-
toinit: Analytic signal-preserving weight initializa-
tion for neural networks. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(6):6823–
6833.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of NAACL-HLT 2019.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evaluat-
ing predictive uncertainty, visual object classification,
and recognising tectual entailment, pages 177–190.
Springer.

Yann N Dauphin and Samuel Schoenholz. 2019.
Metainit: Initializing learning by learning to initial-
ize. In Advances in Neural Information Processing
Systems, volume 32.

Marie-Catherine De Marneffe, Mandy Simons, and
Judith Tonhauser. 2019. The Commitment-
Bank: Investigating projection in naturally oc-
curring discourse. To appear in proceedings of
Sinn und Bedeutung 23. Data can be found at
https://github.com/mcdm/CommitmentBank/.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. 2007. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9. Association for Computa-
tional Linguistics.

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics,
volume 9 of Proceedings of Machine Learning Re-
search, pages 249–256.

Boris Hanin and David Rolnick. 2018. How to start
training: The effect of initialization and architecture.
In Advances in Neural Information Processing Sys-
tems, volume 31.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEE International Conference
on Computer Vision.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

22708

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1609/aaai.v37i6.25836
https://doi.org/10.1609/aaai.v37i6.25836
https://doi.org/10.1609/aaai.v37i6.25836
https://proceedings.neurips.cc/paper_files/paper/2019/file/876e8108f87eb61877c6263228b67256-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/876e8108f87eb61877c6263228b67256-Paper.pdf
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/d81f9c1be2e08964bf9f24b15f0e4900-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d81f9c1be2e08964bf9f24b15f0e4900-Paper.pdf

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims
Volkovs. 2020. Improving transformer optimization
through better initialization. In Proceedings of the
37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning
Research, pages 4475–4483.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Teven Le Scao, Thomas Wang, Daniel Hesslow, Stas
Bekman, M Saiful Bari, Stella Biderman, Hady Elsa-
har, Niklas Muennighoff, Jason Phang, Ofir Press,
Colin Raffel, Victor Sanh, Sheng Shen, Lintang
Sutawika, Jaesung Tae, Zheng Xin Yong, Julien Lau-
nay, and Iz Beltagy. 2022. What language model to
train if you have one million GPU hours? In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 765–782.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2011. The Winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning, volume 46, page 47.

Conglong Li, Minjia Zhang, and Yuxiong He. 2022.
The stability-efficiency dilemma: Investigating se-
quence length warmup for training gpt models. In
Advances in Neural Information Processing Systems,
volume 35, pages 26736–26750.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen,
and Jiawei Han. 2020. Understanding the difficulty
of training transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5747–5763.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama,
and Yuichi Yoshida. 2018. Spectral normalization
for generative adversarial networks. In International
Conference on Learning Representations.

Igor Molybog, Peter Albert, Moya Chen, Zachary De-
Vito, David Esiobu, Naman Goyal, Punit Singh
Koura, Sharan Narang, Andrew Poulton, Ruan
Silva, et al. 2023. A theory on adam instability

in large-scale machine learning. arXiv preprint
arXiv:2304.09871.

Sharan Narang, Hyung Won Chung, Yi Tay, Liam
Fedus, Thibault Fevry, Michael Matena, Karishma
Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong
Lan, Yanqi Zhou, Wei Li, Nan Ding, Jake Marcus,
Adam Roberts, and Colin Raffel. 2021. Do trans-
former modifications transfer across implementations
and applications? In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5758–5773.

Toan Q. Nguyen and Julian Salazar. 2019. Transformers
without tears: Improving the normalization of self-
attention. In Proceedings of the 16th International
Conference on Spoken Language Translation, Hong
Kong. Association for Computational Linguistics.

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Anto-
nio Orvieto, Sidak Pal Singh, and Aurelien Lucchi.
2022. Signal propagation in transformers: Theoret-
ical perspectives and the role of rank collapse. In
Advances in Neural Information Processing Systems,
volume 35, pages 27198–27211.

Yan Pan and Yuanzhi Li. 2022. Toward understand-
ing why adam converges faster than SGD for trans-
formers. In OPT 2022: Optimization for Machine
Learning (NeurIPS 2022 Workshop).

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. The LAMBADA dataset: Word predic-
tion requiring a broad discourse context. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1525–1534.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The refinedweb dataset
for falcon llm: outperforming curated corpora with
web data, and web data only. arXiv preprint
arXiv:2306.01116.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: The word-in-context dataset for evalu-
ating context-sensitive meaning representations. In
Proceedings of NAACL-HLT.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In 2011 AAAI Spring Symposium Series.

22709

https://proceedings.mlr.press/v119/huang20f.html
https://proceedings.mlr.press/v119/huang20f.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2022.findings-emnlp.54
https://doi.org/10.18653/v1/2022.findings-emnlp.54
https://proceedings.neurips.cc/paper_files/paper/2022/file/aac02401755a65904cf977a33136af4a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/aac02401755a65904cf977a33136af4a-Paper-Conference.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.463
https://doi.org/10.18653/v1/2020.emnlp-main.463
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/forum?id=B1QRgziT-
https://doi.org/10.18653/v1/2021.emnlp-main.465
https://doi.org/10.18653/v1/2021.emnlp-main.465
https://doi.org/10.18653/v1/2021.emnlp-main.465
https://aclanthology.org/2019.iwslt-1.17
https://aclanthology.org/2019.iwslt-1.17
https://aclanthology.org/2019.iwslt-1.17
https://proceedings.neurips.cc/paper_files/paper/2022/file/ae0cba715b60c4052359b3d52a2cff7f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ae0cba715b60c4052359b3d52a2cff7f-Paper-Conference.pdf
https://openreview.net/forum?id=Sf1NlV2r6PO
https://openreview.net/forum?id=Sf1NlV2r6PO
https://openreview.net/forum?id=Sf1NlV2r6PO
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1986. Learning representations by back-
propagating errors. nature, 323(6088):533–536.

Tim Salimans and Durk P Kingma. 2016. Weight nor-
malization: A simple reparameterization to acceler-
ate training of deep neural networks. In Advances in
Neural Information Processing Systems, volume 29.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun
Suzuki. 2023. Spike no more: Stabilizing the pre-
training of large language models. arXiv preprint
arXiv:2312.16903.

Masato Taki. 2017. Deep residual networks and weight
initialization. arXiv preprint arXiv:1709.02956.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. SuperGLUE: A stick-
ier benchmark for general-purpose language under-
standing systems. arXiv preprint 1905.00537.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang,
Dongdong Zhang, and Furu Wei. 2022. Deepnet:
Scaling transformers to 1,000 layers. arXiv preprint
arXiv:2203.00555.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Yibo Yang, Hong Wang, Haobo Yuan, and Zhouchen
Lin. 2022. Towards theoretically inspired neural ini-
tialization optimization. In Advances in Neural Infor-
mation Processing Systems, volume 35, pages 18983–
18995.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan
Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023.
GLM-130b: An open bilingual pre-trained model. In
The Eleventh International Conference on Learning
Representations.

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin,
Dan Busbridge, Jason Ramapuram, Yizhe Zhang,
Jiatao Gu, and Joshua M. Susskind. 2023. Stabilizing
transformer training by preventing attention entropy
collapse. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
40770–40803.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. In Advances in Neural Informa-
tion Processing Systems, volume 32.

Biao Zhang, Ivan Titov, and Rico Sennrich. 2019a. Im-
proving deep transformer with depth-scaled initial-
ization and merged attention. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing, pages
898–909.

Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma.
2019b. Residual learning without normalization via
better initialization. In International Conference on
Learning Representations.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas
Veit, Seungyeon Kim, Sashank Reddi, Sanjiv Kumar,
and Suvrit Sra. 2020. Why are adaptive methods
good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
ReCoRD: Bridging the gap between human and ma-
chine commonsense reading comprehension. arXiv
preprint 1810.12885.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li,
Ruoyu Sun, and Zhi-Quan Luo. 2024. Why trans-
formers need adam: A hessian perspective. arXiv
preprint arXiv:2402.16788.

Chen Zhu, Renkun Ni, Zheng Xu, Kezhi Kong,
W. Ronny Huang, and Tom Goldstein. 2021. Gra-
dinit: Learning to initialize neural networks for sta-
ble and efficient training. In Advances in Neural
Information Processing Systems, volume 34, pages
16410–16422.

A Analysis of Residual Scaling

Here, we present the detailed explanation of resid-
ual scaling. The back-propagation through Equa-
tion 1 is

∂L
∂x

=
∂L
∂y

∂y

∂x
= δ

(
∂f(LN(x))

∂x
+ I

)
. (5)

22710

https://proceedings.neurips.cc/paper_files/paper/2016/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7886b9bafe76c52fd568db10ff9772df-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7886b9bafe76c52fd568db10ff9772df-Paper-Conference.pdf
https://openreview.net/forum?id=-Aw0rrrPUF
https://proceedings.mlr.press/v202/zhai23a.html
https://proceedings.mlr.press/v202/zhai23a.html
https://proceedings.mlr.press/v202/zhai23a.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://doi.org/10.18653/v1/D19-1083
https://doi.org/10.18653/v1/D19-1083
https://doi.org/10.18653/v1/D19-1083
https://openreview.net/forum?id=H1gsz30cKX
https://openreview.net/forum?id=H1gsz30cKX
https://proceedings.neurips.cc/paper_files/paper/2021/file/88ae6372cfdc5df69a976e893f4d554b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/88ae6372cfdc5df69a976e893f4d554b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/88ae6372cfdc5df69a976e893f4d554b-Paper.pdf

130M 1.3B 13B

Hidden Size d 768 2048 5120
Layer N 12 24 40
Attention Head 12 16 40
Context Length 2048
Vocabulary Size 32000
RMSNorm ϵ 1e-5
Positional Encoding RoPE
Bias in Linear none

Table 10: Detailed model configuration.

Rapid Setting Stable Setting

Batch Size [tokens] 1M 4M
Learning rate µ 1e-3 5e-4
Warmup Steps 100 2000
Precision bfloat16
Corpus Size [tokens] 30B
Adam β1 0.9
Adam β2 0.95
Gradient Clipping Threshold 1
Weight decay 0.01
Z-loss 1e-4

Table 11: Detailed training configuration.

We assume that δi and ∂f(LN(x))i
∂xj

are independent

and the average of ∂f(LN(x))i
∂xj

is zero. Let s2 be

E

[∥∥∥∂f(LN(x))i
∂x

∥∥∥
2
]

. Here, the expectation of the

norm of Equation 5 is

E

[∥∥∥∥δ
(
∂f(LN(x))

∂x
+ I

)∥∥∥∥
2
]

= E

[∥∥∥∥δ
∂f(LN(x))

∂x

∥∥∥∥
2
]
+ E

[
∥δ∥2

]

= dindoutE
[
∥δi∥2

]
E

[∥∥∥∥
∂f(LN(x))i

∂xj

∥∥∥∥
2
]

+ doutE
[
∥δi∥2

]

=

(
dinE

[∥∥∥∥
∂f(LN(x))i

∂xj

∥∥∥∥
2
]
+ 1

)
E
[
∥δ∥2

]

= (s2 + 1)E
[
∥δ∥2

]
.

Thus, a residual connection causes an (s2 + 1)-
fold increase in the squared norm of the gradient
E
[∥∥∂L

∂x

∥∥2
]
.

B Experimental Setup

Table 10 and 11 list the detailed model and train-
ing configurations, respectively. We used eight
NVIDIA H100 (80GB) GPUs for pre-training the

130M and 1.3B models and 64 GPUs for pre-
training the 13B models. The pre-trainings took
roughly 12 hours, 60 hours, and 40 hours, respec-
tively. We used the Adam optimizer (Kingma and
Ba, 2015), PyTorch (ver. 2.1.0)4 (Paszke et al.,
2017), transformers (ver. 4.37.2)5 (Wolf et al.,
2019), and llm-foundry (ver. 0.5.0) 6.

C Relation to Existing
Reparameterization Methods

C.1 Weight Normalization

Weight Normalization (Salimans and Kingma,
2016) conducts L2 normalization and scaling of
each row of the parameter matrix w ∈ Rdin :

w̄ =
α

∥w∥w.

It differentiates the whole operation including the
normalization and propagates the gradient to w. It
determines the initial α from the value of the for-
ward computation in the first step. The proposed
method is efficient because it does not conduct
normalization and provides a matrix-wise reparam-
eterization; the number of the additional parameter
α per parameter matrix is one.

C.2 σReparam

σReparam (Zhai et al., 2023) conducts spectral
normalization and scaling of the parameter matrix
W ∈ Rdout×din ,

W̄ =
α

∥W ∥2
W ,

where ∥W ∥2 is the spectral norm (i.e., the maxi-
mum singular value). The maximum singular value
is calculated by the power method that is iterated
once per batch (Miyato et al., 2018). It does not
differentiate the spectral normalization. σReparam
is based on the fact that the entropy in the self-
attention affects the stability of the training. It reg-
ulates the singular value of W̄ so as to control the
entropy. α is initialized to 1. Therefore, σReparam
is different from the proposed method, which is de-
signed to align the virtual parameter α·W· to any
initialization algorithm, such as He initialization,
while setting the standard deviations of the actual
parameter W· independently.

4https://pytorch.org/
5https://github.com/huggingface/transformers
6https://github.com/mosaicml/llm-foundry

22711

https://pytorch.org/
https://github.com/huggingface/transformers
https://github.com/mosaicml/llm-foundry

WikiText LAMBADA

Small Init. 16.55 26.29

Weight Normalization 14.13 24.97

σReparam w./ Pre-LN 18.83 26.22
σReparam w./ Post-LN 16.52 25.58

Residual Scaling w./ He Init. 19.05 27.36
Residual Scaling w./ Small Init. 18.03 26.88

WeSaR 14.51 22.87

Table 12: Comparison of reparameterization methods
on 30B tokens.

C.3 Residual Scaling as Reparameterization

Noci et al. (2022) overcomes the limitation of the
(1/

√
2N)-fold multiplication of σo and σd caused

by the residual connection (Equation 1). It modifies
the residual connection to

y =
1√
2N

f(LN(x)) + x.

Different from the original residual scaling, which
changes the standard deviations, this equation can
be viewed as a reparameterization of Wo and Wd

because of its linearity. The proposed method can
be interpreted as a generalization of the reparam-
eterization to all parameters. Because of the gen-
eralization, the proposed method overcomes any
limitations to the norms of the parameters that is
caused by an initialization algorithm. Therefore, it
can determine a common σ for all parameters even
without a dependence on d. Also, it makes the gate
parameters trainable.

D Comparison of Reparameterization
Methods on 30B Tokens

We compared WeSaR with the existing reparam-
eterization methods on 30B tokens. The results
shown in Table 12 achieved the same tendency
as the results on 10B tokens. In particular, sim-
ilar to the results of five runs on 10B tokens in
Table 6, Weight Normalization achieved compara-
ble performance. However, Weight Normalization
took the longest time for the training due to the
back-propagation through the normalization. Thus,
WeSaR’s simple reparameterization is efficient and
effective for LLM’s pre-training.

E Loss Values without Loss Spikes

Figure 4 and 5 show the loss decrease and the up-
date ratios at the beginning of the training of the

2.5

3

4

5

6
7
8

Proposed: Loss
Baseline: Loss

1B 2B 3B 4B 5B
Tokens

0.0

0.005

0.01

0.015
Proposed: Wd / Wd

Baseline: Wd / Wd

Proposed: Wu / Wu

Baseline: Wu / Wu

Figure 4: Loss of the 1.3B Transformer models at
the beginning of the training (top). Update ratios
∥∆Wd∥/∥Wd∥ and ∥∆Wu∥/∥Wu∥ of the same (bot-
tom).

2.5

3

4

5

6
7
8

Proposed: Loss
Baseline: Loss

1B 2B 3B 4B 5B
Tokens

0.0

0.005

0.01

0.015
Proposed: Wd / Wd

Baseline: Wd / Wd

Proposed: Wu / Wu

Baseline: Wu / Wu

Figure 5: Loss of the 130M Transformer models at
the beginning of the training (top). Update ratios
∥∆Wd∥/∥Wd∥ and ∥∆Wu∥/∥Wu∥ of the same (bot-
tom).

1.3B models and the 130M models, respectively.
Because the 1.3B and 130M models did not cause
loss spikes, we did not observe a drastic decrease in
the update ratios like with the 13B models. Except
for that point, the update ratio behaved similarly to
the 13B models. We should note that, in smaller
models, the effect of (1/

√
2N)-fold scaling gets

smaller, and thus there is less difference between
the baseline method and WeSaR. Figure 6 and 7
show the loss values during the training.

Moreover, we confirmed that WeSaR outper-
formed Small initialization both in the loss values
in Figure 1, 2, 4, 5, 6, and 7 and the perplexity in
Table 5. We consider that the small standard devia-
tion σ2 = 4e-5, which corresponds to d = 10, 000
in the Small initialization criteria, accelerated the
training.

22712

5B 10B 15B 20B 25B 30B
Tokens

2

3

4

5

6
Proposed
Baseline

Figure 6: Loss of 1.3B models during training.

5B 10B 15B 20B 25B 30B
Tokens

2.5

3

4

5

6
Proposed
Baseline

Figure 7: Loss of 130M models during training.

0.00

0.02

0.04

0.06

0.08

0.10 Proposed: L/ Wd

Baseline: L/ Wd

Proposed: L/ Wu

Baseline: L/ Wu

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07 Proposed: L/ Wo

Baseline: L/ Wo

Proposed: L/ Wv

Baseline: L/ Wv

1B 2B 3B 4B 5B
Tokens

0.000

0.005

0.010

0.015

0.020
Proposed: L/ Wq

Baseline: L/ Wq

Proposed: L/ Wk

Baseline: L/ Wk

Figure 8: Norm of the gradient of the parameters at the
40th layer of 13B models during training.

F Update Ratios in Other Layers and
Comparison with Gradient Norm

Figure 9, 10, 11, and 12 show the update ratios
∥∆W·∥/∥W·∥ of all linear layers at the 40th, 27th,
14th, and 1st Transformer layers in the 13B models,
respectively. Because the 1.3B and 130M models
did not cause loss spikes as shown in Figure 4 and
Figure 5, we only list the update ratios of the 13B

models.
We observed that the update ratios

∥∆Wd∥/∥Wd∥ and ∥∆Wo∥/∥Wo∥ in the
baseline method decreased after loss spikes, except
for Wo in the 1st layer. We consider that Wd and
Wo, the parameters whose norm is smaller than
the others, caused loss spikes due to their large
update ratios. We also confirmed that the update
ratios trained with WeSaR were stable among all
layers and all parameters.

The existing studies that tackled loss
spikes (Zeng et al., 2023; Zhai et al., 2023;
Molybog et al., 2023; Takase et al., 2023) focused
on the gradient norm ∥ ∂L

∂W ∥ as a clue to understand
loss spikes. However, instead of the gradient norm
itself, we focused the update ratio. Figure 8 shows
the norm of the gradients of the parameters at the
last layer of the 13B models, which corresponds to
the update ratios shown in Figure 9. We observed
that a phenomenon of a drastic change in scale
before and after loss spikes only appeared in the
update ratio. Thus, we introduced the update ratio
as a novel clue to understand loss spikes.

22713

0.0

0.005

0.01

0.015
Proposed: Wd / Wd

Baseline: Wd / Wd

Proposed: Wu / Wu

Baseline: Wu / Wu

0.0

0.005

0.01

0.015
Proposed: Wo / Wo

Baseline: Wo / Wo

Proposed: Wv / Wv

Baseline: Wv / Wv

1B 2B 3B 4B 5B
Tokens

0.0

0.005

0.01

0.015
Proposed: Wq / Wq

Baseline: Wq / Wq

Proposed: Wk / Wk

Baseline: Wk / Wk

Figure 9: Update ratio at the 40th layer of 13B models
during training.

0.0

0.005

0.01

0.015
Proposed: Wd / Wd

Baseline: Wd / Wd

Proposed: Wu / Wu

Baseline: Wu / Wu

0.0

0.005

0.01

0.015
Proposed: Wo / Wo

Baseline: Wo / Wo

Proposed: Wv / Wv

Baseline: Wv / Wv

1B 2B 3B 4B 5B
Tokens

0.0

0.005

0.01

0.015
Proposed: Wq / Wq

Baseline: Wq / Wq

Proposed: Wk / Wk

Baseline: Wk / Wk

Figure 10: Update ratio at the 27th layer of 13B models
during training.

0.0

0.005

0.01

0.015
Proposed: Wd / Wd

Baseline: Wd / Wd

Proposed: Wu / Wu

Baseline: Wu / Wu

0.0

0.005

0.01

0.015
Proposed: Wo / Wo

Baseline: Wo / Wo

Proposed: Wv / Wv

Baseline: Wv / Wv

1B 2B 3B 4B 5B
Tokens

0.0

0.005

0.01

0.015
Proposed: Wq / Wq

Baseline: Wq / Wq

Proposed: Wk / Wk

Baseline: Wk / Wk

Figure 11: Update ratio at the 14th layer of 13B models
during training.

0.0

0.005

0.01

0.015
Proposed: Wd / Wd

Baseline: Wd / Wd

Proposed: Wu / Wu

Baseline: Wu / Wu

0.0

0.005

0.01

0.015
Proposed: Wo / Wo

Baseline: Wo / Wo

Proposed: Wv / Wv

Baseline: Wv / Wv

1B 2B 3B 4B 5B
Tokens

0.0

0.005

0.01

0.015
Proposed: Wq / Wq

Baseline: Wq / Wq

Proposed: Wk / Wk

Baseline: Wk / Wk

Figure 12: Update ratio at the 1st layer of 13B models
during training.

22714

