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Using the New York Times Connections Word Game
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Abstract

The New York Times Connections game has
emerged as a popular and challenging pur-
suit for word puzzle enthusiasts. We collect
438 Connections games to evaluate the perfor-
mance of state-of-the-art large language mod-
els (LLMs) against expert and novice human
players. Our results show that even the best-
performing LLLM, Claude 3.5 Sonnet, which
has otherwise shown impressive reasoning abil-
ities on a wide variety of benchmarks, can
only fully solve 18% of the games. Novice
and expert players perform better than Claude
3.5 Sonnet, with expert human players signif-
icantly outperforming it. We create a taxon-
omy of the knowledge types required to suc-
cessfully cluster and categorize words in the
Connections game. We find that while LLMs
perform relatively well on categorizing words
based on semantic relations they struggle with
other types of knowledge such as Encyclopedic
Knowledge, Multiword Expressions or knowl-
edge that combines both Word Form and Mean-
ing. Our results establish the New York Times
Connections game as a challenging benchmark
for evaluating abstract reasoning capabilities in
Al systems.

1 Introduction

Abstract reasoning represents a person’s ability to
solve problems, identify patterns, and work with
logical systems (Barrett et al., 2018; Johnson et al.,
2021; Ji et al., 2022). While the performance of
large language models (LLMs) on arithmetic and
language-based commonsense reasoning bench-
marks has been the subject of recent analyses, it is
unclear whether these LLMs possess abstract rea-
soning capabilities that are often challenging even
for humans (Xu et al., 2023). We propose the NYT
Connections Game as a test bed for investigating
the abstract reasoning capabilities of both humans
and large language models (LLMs).
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Create four groups of four!

MOBILE FOLLOWERS SHOVELS BUFFALO
LIKES INSULTS SHARES SHEEP
APARTMENT BILLINGS PUPPETS OPTIONS
EQUITY PHOENIX STOCKS LEMMINGS

(a) The unsolved connections game presented to a
player

CONFORMISTS
FOLLOWERS, LEMMINGS, PUPPETS, SHEEP

COMPANY OWNERSHIP OFFERS
EQUITY, OPTIONS, SHARES, STOCKS

U.S. CITIES
BILLINGS, BUFFALO, MOBILE, PHOENIX

WHAT “DIGS” MIGHT MEAN
APARTMENT, INSULTS, LIKES, SHOVELS

(b) The solved connections game with correct cat-
egories shown in ascending level of difficulty—
straightforward (yellow) to tricky (purple)

Figure 1: Example from a NYT Connections game

Connections is an engaging game launched by
the New York Times (NYT) in June 2023. This daily
game presents players with a 4x4 grid containing
16 words and tasks them with identifying four dis-
tinct clusters that link the corresponding four words
in each cluster through some shared characteristics
(Figures 1 [a] and [b]). Categories 1 (yellow), 2
(green), 3 (blue), and 4 (purple) are arranged in as-
cending level of difficulty. Category 1 is the most
intuitive, while Category 4 is the hardest. For in-
stance, in Figure 1 (b), the most straightforward
category is "Conformists" { Followers, Lemmings,
Puppets, Sheep}, while the most challenging cate-
gory includes {Apartment, Insults, Likes, Shovels}
and requires the understanding that a single word
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(in this case, "digs") can have multiple meanings
that differ in etymology or sense, depending on the
context.

While the task might seem easy, many words can
be grouped easily into multiple categories, acting
as red herrings. For instance, from the game in
Figure 1, Likes, Followers, Shares, Insult might be
categorized as “Social Media Interactions" at first
glance. Unlike common categories (e.g., “Fruit,"
“Furniture”), the game is designed to promote ad
hoc category formations that violate the correla-
tional structure of the environment and are not well
established in memory (Barsalou, 1983). To group
words across proper categories, as shown in Fig-
ure 1 (b), a player must reason with various forms
of knowledge spanning from Semantic Knowledge
(Conformists) to Encyclopedic Knowledge (U.S.
cities).

We test the capabilities of five state-of-the-art
large language models, namely Google’s Gemini
1.5 Pro (Team et al., 2023), Anthropic’s Claude
3.5 Sonnet (Anthropic, 2024), OpenAl’s GPT-
40mni (OpenAl, 2023), Meta’s Llama 3.1 405B,
(Al@Meta, 2024) and Mistral Large 2 (Mistral-Al,
2024) on 438 distinct NYT Connections games and
compare them with human performance on a subset
of these games. Our experimental results show that
while all LLMs can partially solve some games,
their performance is far from ideal. Even the best-
performing model Claude 3.5 Sonnet (with few-
shot and chain-of-thought prompting), can only
solve 18% of the games completely. In addition,
we recruit human players at novice and expert lev-
els of proficiency and compare their performance
to Claude 3.5 Sonnet. Our results show that the
NYT Connections game serves as a challenging
benchmark for reasoning, with novice players per-
forming marginally better than Claude 3.5 Sonnet
and expert players performing significantly better
than Claude 3.5 Sonnet in solving games perfectly
(Section 5).

In addition, to better understand the LLLMs ab-
stract reasoning capabilities or the lack thereof,
we propose a taxonomy of knowledge required to
group words into their respective categories (Sec-
tion 3.2). Our analysis at Section 6.1 shows that
while LL.Ms are relatively better at reasoning that
involve Semantic Relations, they struggle with
other types of knowledge such as Multiword Ex-
pressions and combined knowledge about Word
Form and Word Meaning (Section).

Our code and data will be made available to the

public at https://github.com/mustafamariam/
LLM-Connections-Solver.

2 Related Work

The growing popularity of Large Language Models
has led to an exciting array of research using natu-
ral language processing techniques for text-based
games. Recent work has studied whether these
models can act as players in agentic environments
(Huang et al., 2024; Wang et al., 2023; Wu et al.,
2023; Noever et al., 2020) or conversational set-
tings (Qiao et al., 2023). In addition to acting as
players, researchers have also tested the abilities of
transformer-based language models in generating
games (Ammanabrolu and Riedl, 2021; Todd et al.,
2023; Sudhakaran et al., 2024; Hu et al., 2024;
Chen et al., 2023; Merino et al., 2024)

Recent research has explored applying large lan-
guage models (LLMs) and other natural language
processing (NLP) techniques to solve and gener-
ate text-based puzzles. Wallace et al. (2022) pro-
pose automatic ways of solving crossword puzzles
by generating answer candidates for each cross-
word clue using neural question answering models
and combining loopy belief propagation with lo-
cal search to find full puzzle solutions. Zhao and
Anderson (2023) release PUZZLEQA, a multiple-
choice dataset comprising 15 years of on-air Sun-
day Puzzle word-games and show that while Chat-
GPT can solve these questions with an accuracy
of around 50%, they still struggle with generating
novel and engaging puzzles. Unlike the NYT Con-
nections game, PUZZLEQA relies on character-
level word transformations compared to encyclo-
pedic, associative, or semantic knowledge. Rozner
et al. (2021) examined the potential of using "cryp-
tic crossword" clues as an NLP benchmark.

Most relevant to our paper is the contempora-
neous work by Todd et al. (2024) who test the
performance of various LLMs (from BERT and
RoBERTA to GPT-4 and GPT-4 with Chain-of-
Thought prompting) in solving the NYT Connec-
tions game. Our work is similar in that it utilizes the
NYT Connections puzzles as a means to investigate
the abstract reasoning capabilities of state-of-the-
art LLMs. However, our contribution focuses not
only on the ability of LLMs to solve the game, but
also on studying the types of knowledge required
to so. Moreover, we evaluate both state—of-the-
art models (open and closed weights) and humans
(novices and experts). We also benchmark on a
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larger number of NYT Connections game. Addi-
tionally, Todd et al. (2024)’s experimental setup
mirrors the way the original NYT Connections
game is played (i.e., one category at a time, with an
allotment of 4 incorrect guesses), while we require
both humans and LLMs to provide all categories at
once in only one attempt.

The word association task (Galton, 1879) has
been used extensively in psychological and linguis-
tic research as a way of measuring connections
between words in the mental lexicon. Responses
in word association tasks have informed what we
know about the structure and organization of se-
mantic memory and the mental lexicon (De Deyne
and Storms, 2008). In this work, we similarly
show how one must utilize semantic and associative
memories to solve the NYT Connections game.

Chollet (2019) proposed the Abstraction and
Reasoning Corpus (ARC), built upon an explicit
set of priors designed to be as close as possible to
innate human priors and argued that it can be used
to measure a human-like form of general fluid intel-
ligence, enabling fair general intelligence compar-
isons between Al systems and humans. Recently
Xu et al. (2023) show that GPT-4 solves only 13/50
of the most straightforward ARC tasks, demon-
strating a significant gap in the abstract reasoning
capabilities of LLMs. Prior work has also stud-
ied abstract reasoning in Neural Networks (Barrett
et al., 2018) in the presence of distracting features
(Zheng et al., 2019). Our work builds upon these
and presents the NYT Connections game as a com-
pelling benchmark for abstract reasoning capabili-
ties of LLMs in the presence of distractors.

3 Data

3.1 Collection

To gather the necessary data, we found an archival
site consisting of all possible answer choices and
their corresponding categorizations. As the NYT
does not maintain an archive of NYT Connections
puzzles, we resorted to an external, third-party site
for data collection.! Our data spans daily problems
from the conception of NYT Connections in June
2023 to August 2024. In total, we gather 441 dis-
tinct games, out of which 3 are used for few-shot
prompting, while the remaining 438 comprise the
dedicated test set.

1https://tryhardguides.com/
nyt-connections-answers/

3.2 Types of Reasoning

Investigating the relationship between words of-
fers insights into both the structure of language
and the influence of cognition on linguistic tasks
(Stella et al., 2018). To solve the NYT Connections
game, players must draw on certain aspects of word
knowledge, such as a word’s meaning or form and
sometimes both simultaneously. To deepen our un-
derstanding, we bucket each <category, grouping>
into the types of knowledge that are primarily re-
quired to solve them. Three linguists annotate a
total of 1,752 samples coming from 438 games into
3 broader categories which give rise to 8 subcate-
gories (Figure 2). We take majority voting to arrive
at a unique label for each <category, grouping>.
We restrict annotations to sub-categories and not
sub-sub-categories (e.g., Types of Semantic Rela-
tions). We obtain a Fleiss Kappa of 0.78 showing
substantial agreement.

3.2.1 Word Form

Word Form refers to the specific shape or appear-
ance a word takes in a given context. It encom-
passes various aspects of a word’s structure and
representation and is broadly used in the NYT Con-
nections game, testing knowledge on Phonology,
Orthography, Morphology and Multiword Expres-
sions. Phonology in Word Form deals with the
sound structure of words, including pronunciation,
stress patterns, and phonetic variations. Orthog-
raphy relates to the conventional spelling system
of a language, which may not always directly cor-
respond to pronunciation. Morphology examines
the internal structure of words, including roots and
affixes and how they combine to create meaning.
For example, as shown in Figure 2, one needs mor-
phological knowledge to group Dom, Ion, Ness,
and Ship as “Noun Suffixes." Similarly, one needs
to rely on phonological knowledge of the sound
patterns of Answer, Two, Wrist, and Wrong to cat-
egorize them as “Silent “W’." Multiword Expres-
sions (MWE) have a fixed or semi-fixed form and
are typically non-compositional (i.e., their meaning
cannot be predicted from their individual compo-
nents) (Moon, 1998).

3.2.2 Word Meaning

Semantic Relations: The majority of instances
in the NYT Connections game require possessing
knowledge of semantic relations (Murphy, 2003;
Cruse, 1986), such as synonymy (words with the
same meaning), hypernymy/hyponymy (relation
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Figure 2: Proposed taxonomy of knowledge types required to solve the Connection games. In our evaluation we

used the categories in bold

between a generic term and its specific instance),
and homonymy and polysemy (many possible
meanings of a word). Figure 2 shows three ex-
amples of groups that use such semantic relations.

Associative Relations Prior work has studied
models of automatic priming for word identifica-
tion that are typically divided into groups based
on associative relations (e.g., spreading activation)
and others based on semantic similarity (e.g., dis-
tributed models) (Thompson-Schill et al., 1998). In
contrast to category members that share semantic
features and category nodes, Associative Relations
are elements of specific situations or thematic con-
texts, with little or no overlap between their seman-
tic features (e.g. “Things that are red": Mars and
Strawberry; Figure 2) (Rose and Rahman, 2016;
Shanks, 1995; Barsalou, 1983).

Encyclopedic We notice that to group certain
sets of words into their proper categories, one needs
knowledge that spans beyond concepts and relies
on entities in the real world found in knowledge
bases such as Wikipedia (Mihalcea and Csomai,
2007). This can be seen in Figure 2, where, to
bucket the words Globe, Mirror, Post, and Sun into
the category of “Newspaper Names," one needs to
possess knowledge that Globe refers to the Boston
Globe, Mirror to the Daily Mirror, a UK tabloid,
Post to the Washington Post and Sun to The Sun, an-
other UK tabloid. We label this type of knowledge

Encyclopedic.

3.2.3 Word Form + Word Meaning

Some of the hardest examples in the NYT Connec-
tions game require reasoning of both word form
and meaning. For instance, the example in Figure
2 shows that to group the words Book, Gram, In,
and Tube, one needs to identify that they are es-
sentially parts of closed compounds (Face+Book,
Insta+Gram, Linked+In, You+Tube) that also repre-
sent popular social media apps. This categorization
requires the use of knowledge on Word Meaning
(Encyclopedic) as well as Word Form (Morphol-

ogy).
4 Experimental Settings
4.1 LLMs as Game Players

To test the capabilities of large language models in
solving the NYT Connections game, we rely on re-
cent advancements in in-context learning and chain-
of-thought prompting (Wei et al., 2022). We pro-
vide 3 complete examples in our few-shot prompt
along with rules and common strategies that players
must use to solve the game. We also elicit chain-
of-thought reasoning (Wei et al., 2022), requiring
models to explain their groupings and categories
chosen. Formulation of the prompt involved trial
and error; the first iteration of the prompt included
the NYT Connections game instructions provided
by the New York Times (Liu, 2023a), and included
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Word Meaning

Word Form Word Meaning + Word Form
Phonology/Orthography/ | Multiword Semantic | Associative E lopedi
Morphology Expressions | Relations | Relations neyclopedic 92
44 168 1045 137 266

Table 1: Distribution of different knowledge types required to categorize words across 438 games

three demonstrations with gold labels asking the
LLM to explain its reasoning in a step-by-step man-
ner (Wei et al., 2022). We ran this first prompt on
a development set of 30 games, using 5 LLMs.
After identifying commonalities in the types of er-
rors made by the LLLMs while playing the game,
we added additional instructions, specified the re-
sponse format, and included some tips from a NYT
article about playing the NYT Connections game
(Aronow and Levine, 2023). The entire prompt is
in Appendix A. To ensure consistency and fairness
in performance, we prompt 5 LLMs — Gemini 1.5
Pro, Claude 3.5 Sonnet, GPT-40, and Llama 3.1
405B and Mistral Large 2 — with the same input.
We use the default sampling parameters (temper-
ature and top_p) and the scoring schema outlined
in Section 4.3 to evaluate how all models perform
in solving 438 NYT Connections games spanning
from June 2023 to August 2024.

4.2 Humans as Game Players

Alongside LLMs, we recruited 17 human evalua-
tors in two subgroups: 12 novice players with little
to no prior experience playing NYT Connections
and 5 expert or regular NY7T Connections players.
The novice and the expert evaluators were peers of
the first four authors, who volunteered to partici-
pate without any payment. We designed a human
evaluation interface and randomly sampled 100
games from our test set. Appendix E has more
information about the interface. The first screen
displays an abridged version of the instructions
from the LLM’s prompt so as to not overwhelm the
human players. To ensure that the humans solve the
game in a manner comparable to the LLMs setup,
they were given one try to solve the game (i.e.,
make all 4 categorizations at once). This aligns
with (Todd et al., 2024)’s challenge mode.

Playing these games is a significant cognitive
burden. As such, each novice human evaluator
played around 8-12 distinct games for a total of
100 randomly sampled games out of the 438 in
the test set, and expert participants each played 10
games for a total of 50 randomly sampled games.

4.3 Evaluation Criteria

Our scoring schema was developed as a means
to numerically interpret the outcome of each NYT
Connections game and to standardize the compari-
son across LL.Ms and human players. We outline
two processes to obtain clustering and categorical
reasoning scores for a game of Connections.

4.3.1 Clustering Score

The clustering score evaluates the ability to cor-
rectly group all the words in the game. We consider
two clustering scores. The first, or the unweighted
clustering score, is calculated independently of the
categories’ supposed difficulty. In this simple scor-
ing mechanism, we allocate one point for each
correct cluster (when all 4 words in the group clas-
sified by the player match the 4 words in the gold
category/grouping). Ideally, a player’s score should
be close to the maximum of 4, signifying that all 4
groups were correctly identified. The equation is
as follows:

score =ng+ ...+ n3 (1

where n, = 1 for each correct grouping = and
ny, = 0 for each incorrect grouping.

The second score, referred to as the weighted
clustering score, takes into account the difficulty
of each grouping. The worst weighted clustering
score a player can obtain is 0, meaning that no
words were grouped correctly. Ideally, a player’s
score should be close to the maximum of 10, signi-
fying that all 4 categories were correctly classified.
The equation for this score is as follows:

score =ng-wo+ ...+ n3-ws )

where n, represents one of the 4 categories and is
always equal to 1 for each category x. The reward
procedures are as follows: wy = 1 for a Yellow
(most straightforward) correct grouping, w; = 2
for a Green correct grouping, wo = 3 for a Blue
correct grouping, ws = 4 for a Purple (trickiest)
correct grouping. Our schema for the clustering
scores does not incorporate the number of tries as a
variable, since in our setup the LLMs are prompted
once and take one try to solve the game.
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Figure 3: Frequency of unweighted clustering scores for 5 LLMs across 438 games. The number of games in which
the respective unweighted clustering score was achieved is atop each bar. 0 means no correct clusters while 4 means

all correct clusters

4.3.2 Categorical Reasoning

While the weighted and unweighted clustering
scores are calculated for LLMs and humans, the
categorical reasoning score is used only for the
LLMs’ responses. If all 4 words in a category are
correctly identified by an LLM, we conduct further
analysis to evaluate whether the LLM reasoned cor-
rectly why the words in the groups belong together.
We make this distinction in our evaluation so that—
in conjunction with the taxonomy of knowledge
for NYT Connections categories (Section 3.2)—we
can assess the types of reasoning that the LLMs
are most or least adept in. Since our prompt asks
the LLM to include the category name and share
the reasons why it grouped words, we can evaluate
whether the reasoning in its response is seman-
tically analogous to the gold NYT Connections-
provided category name. The decision of semantic
equivalence between LLMs output and gold is done
manually by a human judge to ensure accuracy.

5 Results

5.1 LLM performance

Overall, we find that Claude 3.5 Sonnet performs
best across thw 438 games. Figure 3 shows the un-
weighted clustering scores for all 5 LLMs. Claude
has the lowest percentage of games in which it

made no correct clustering, at about 20%, and most
games solved perfectly at 18%. Mistral Large 2
performs the worst overall. It could not make any
correct clusters for 42% of the games, and it per-
fectly solved the least amount of games. In terms of

Gemini 1.5 Pro I 1

Claude 3.5 Sonnet I |

Model

GPT40] | |

Llama 3.1 4058

Mistral Large 2

Weighted Clustering Score

Figure 4: Spread of weighted clustering scores for each
model across 438 NYT Connections games

weighted clustering scores for each model (Figure
4), Gemini 1.5 Pro and Mistral Large 2 show sim-
ilar results. Most of their scores are concentrated
before 2, showing that these models had a higher
ability to correctly classify the easiest or second
easiest categories. GPT-40 and Claude 3.5 Son-
net had most of their weighted clustering scores
concentrated before 5, meaning they were better at
classifying more and harder categories. Weighted
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clustering scores > 8 are very rarely represented
in all the models. Appendix D.2 contains a more
detailed breakdown.

5.2 Human Performance

In human performance, we measure both novice
and expert players against the best overall perform-
ing Claude 3.5 Sonnet. For the 100 games played
by novices and 50 games played by experts, we
compare the same games played by Claude 3.5
Sonnet.

5.2.1 Novice Players

4 39 Claude 3.5 Sonnet

Novice Humans

IS
S

w
@

30

w
S

27

N
o

N
o

17 18

Number of Games

—
o

13 12

=
15}

w

0
T T T T T
0 1 2 3 4
Unweighted Clustering Score

Figure 5: Frequency of clustering scores of Claude 3.5
Sonnet and 12 novice humans across 100 games

In the 100 games that the novice players com-
pleted, their average unweighted clustering score
was 1.37, slightly worse than Claude’s average of
1.52 in the same 100 games. Claude and novice
humans also had similar weighted clustering score
distributions. More details are in Appendix D.1.
Due to the setup of the human interface, humans
could not receive a clustering score of 3 (if hu-
mans correctly solve 3 groupings, the fourth is also
correct). Because of Claude’s imperfect instruction-
following abilities (repeating or omitting words), it
was still able to obtain a clustering score of 3, as
shown in Figure 5.

5.2.2 Expert Players

Expert human players performed significantly bet-
ter than novices and Claude 3.5 Sonnet, with an av-
erage clustering score of 3.06 compared to Claude’s
1.78 (on the same 50 games). The distribution of
weighted clustering scores is also far more right-
skewed (see Appendix D.1 for more). Figure 6
shows that experts perfectly solved over 60% of
the 50 games, while Claude 3.5 Sonnet fully solved
20% of these.

Claude 3.5 Sonnet 32

- W Expert Humans
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«
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N
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0 1 2 3 4
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o

w

o

Figure 6: Frequency of clustering scores of Claude 3.5
Sonnet and 5 expert humans across 50 games

6 Discussion

6.1 What type of reasoning is hardest for
LLMs?

To answer this question we rely on our taxonomy
of reasoning types introduced in Section 3.2. The
breakdowns of the reasoning types for the 1752 cat-
egories in our 438-game dataset are shown in Table
1. Figure 7 shows the performance of each LLM by
reasoning type from our taxonomy of knowledge.
Because the total counts of types of reasoning re-
quired across the 1,752 categories are unbalanced,
the count of categories reasoned correctly is shown
above each bar. The categories were only counted
as correct if the model both clustered all the words
correctly and justified its reasoning in a manner se-
mantically analogous to the gold NYT Connections-
provided category name.

The patterns in performance across the types of
reasoning parallel the LLMs’ overall performances
for the most part, with Llama 3.1 405B’s perfor-
mance in Multiword Expressions and Word Mean-
ing + Word Form (slightly better than GPT-40) and
Mistral Large 2’s performance in Word Meaning
+ Word Form (slightly better than Gemini 1.5 Pro)
defying this pattern. The performance in reasoning
categories across models is ranked from best to
worst as follows: Semantic > Encyclopedic > As-
sociative > Morphology/Orthography/Phonology
> Multiword > Word Meaning + Word Form. This
aligns with the game makers’ perceived level of
category difficulty, as Word Meaning categories
appear most often as yellow or green (easier)
groupings, while Multiword Expressions and Word
Meaning + Word Form categories are usually the
purple groupings (most difficult). This is also con-
sistent with the fact that the two types of reasoning
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Figure 7: Percentage of categories from each knowledge type correctly classified and reasoned by the models
across 438 games. The counts of categories correctly reasoned are displayed above each bar.

LLMs performed best in—Semantic Relations and
Encyclopedic Knowledge—exist in web-scraped
information included in pre-training data, while
other types of knowledge are more obscure and re-
quire iterative and deductive reasoning within each
game. In every type of reasoning, however, LLMs
perform with less than 50% accuracy. Though they
may be clustering words together accurately, they
are not always justifying these clusters correctly,
and this is visible in the differences between the fre-
quencies of unweighted clustering scores of 4 and
categorical reasoning scores of 4 (Appendix D.2
Tables 5 and 6).

Since humans were not asked to provide justifica-
tions for their clusters, we do not include reasoning
comparisons between LLMs and humans.

6.2 How do distractors prevent LLMs and
humans from correct categorization?

The NYT Connections game is often formulated
with item overlap in mind, according to the NYT
Connections puzzle creator (Liu, 2023b). These
distractors, or red herrings, make the game far more
challenging. Red herrings can appear in two ways—

as a red herring category or red herring word. In
the former case, 3 ultimately unconnected words
seem to form a category of their own with 1 word
missing. In the latter, a category seems applicable
to more than 4 words, but the extras belong to a
separate grouping. Examples of each of these types
of red herrings are in Appendix C.

Mistakes resulting from red herrings often oc-
cur in categories related to Associative Knowledge.
Though the words may be associated in one di-
mension, the LLMs fail to conduct step-by-step
reasoning to find another, perhaps more obscure,
grouping (in the case of red herring categories) or
the outlier (in the case of red herring words).

6.3 How often do LLMs group the words
correctly but present incorrect reasons?

To measure the disparity between LLMs making
correct clustering and providing the correct rea-
soning or category name for their choice, we use
a measure calculated from the clustering and cat-
egorical reasoning scores. Since the categorical
reasoning score is the number of categories rea-
soned correctly and the clustering score considers
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whether the grouping was correct independent of

. .. categorical reasoning
the reason behind it, unweighted clustering tells us how

common it is for LLMs to cluster categories cor-
rectly by chance. The average ratios in Table 2 are

Model Average Ratio

Gemini 1.5 Pro 0.76
Claude 3.5 Sonnet 0.87
GPT-40 0.84
Llama 3.1 405B 0.81
Mistral Large 2 0.82

Table 2: Average categorical reasoning to unweighted
clustering score ratio by model

fairly high, close to or above 80%. The highest
overall performing models Claude 3.5 Sonnet and
GPT-40 have the highest ratios as well. Though it is
fairly uncommon that a model will correctly group
words without correctly naming the reasoning be-
hind that grouping, there are very few instances
where models received both a clustering score of
4 (fully solved game) and a categorical reasoning
score of 4.

6.4 How can future work improve on such a
benchmark?

Instead of choosing the first grouping, strategies
grounded in System?2 Thinking (Evans, 2003) could
improve performance on such a benchmark. Gen-
erating multiple chains-of-thought reasoning and
learning a model that assigns a higher reward to the
correct reasoning chain prevents the model from
arriving greedily to a suboptimal categorization.
Allowing LLMs to solve the game one category
at a time and incorporating the feedback present
to humans in the original NYT Connections game,
such as whether a grouping is correct (and what dif-
ficulty level it is by color), incorrect, or one word
away from a correct grouping, may improve per-
formance as well. Retrieval Augmentation from
WordNet or dictionaries for lexical connotations
(Allaway and McKeown, 2020) could further im-
prove such categorization. Finally, creating syn-
thetic training data and training an LLM on this
task could further close the gap between expert
human and LLLM performance. We leave such ex-
ploration for future work.

7 Conclusions

We introduced the NYT Connections games as a
benchmark to test abstract reasoning in state-of-the-

art LLMs and evaluate their performance against
expert and novice human players. We find that
Claude 3.5 Sonnet performs best, although it is
still no match for expert human players. By ex-
amining the performance through our knowledge
taxonomy, we obtain a more solid understanding of
areas in which LLMs can improve. Although most
LLMs possess Word Meaning reasoning capabili-
ties, they struggle with Multiword Expressions and
combined knowledge categories. In addition, red
herrings pose a challenge to current LLMs. Overall,
we find that solving the NYT Connections requires
a breadth of different knowledge types, which cur-
rent LLMs do not seem to fully master.

8 Limitations

Many of the limitations in this section stem from
the lack of data available forNYT Connections
games and disparities in the comparison between
LLMs and humans. Because it is a fairly recent in-
vention and only one puzzle is released per day,
there are only a few hundred games available.
Since there are some category patterns learned
through frequent play, ideally, a model trained on
past NYT Connections games might bridge the gap
between LLM and expert human evaluators’ per-
formance.

We acknowledge that human evaluators were not
required to add justifications for the groupings they
made. This might have made performance com-
parisons between humans and LLMs for the types
of reasoning more equal. Additionally, because a
score of 3 was impossible in the human evaluation
interface, we cannot be certain that humans were
adept in the type of knowledge of their last category
grouped, as this could simply have been a matter
of grouping all options left. Other limitations of
human evaluators include that because they were
all peers or acquaintances of the paper’s authors,
sampling bias could exist. Though the age range
of the humans recruited was 14-60, other demo-
graphic factors that not have been accounted for in
this sample.

9 Ethical Considerations

We collect the names of users in the human evalua-
tion game’s database simply for logistical purposes.
Other than this, no personal data is collected. The
data collected and its purpose were verbally con-
veyed to each evaluator before asking for their con-
sent. We remove the names of evaluators in the data
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release. Besides this, we ensure that now and in the
future, any data collection is transparent with users
and is used in an ethical and responsible manner.
Since our research primarily evaluates reasoning in
a game environment, there are fewer potential real-
world risks of its applications. However, biases in
LLMs may be reproduced.
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A Prompt

Solve today’s NYT Connections game. Here are
the instructions for how to play this game:

Find groups of four items that share something in
common.

Category Examples:

FISH: Bass, Flounder, Salmon, Trout

FIRE ___: Ant, Drill, Island, Opal

Categories will always be more specific than
‘5S-LETTER-WORDS’, ‘NAMES’, or ‘VERBS"’

Example 1:
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Words: [‘DART’, ‘HEM’, ‘PLEAT’, ‘SEAM’,
‘CAN’, ‘CURE’, ‘DRY’, ‘FREEZE’, ‘BITE’,
‘EDGE’, ‘PUNCH’, ‘SPICE’, ‘CONDQO’, ‘HAW’,
‘HERO’, ‘LOQO’]

Groupings:

1. Things to sew: [‘'DART’, ‘HEM’, ‘PLEAT",
‘SEAM’]

2. Ways to preserve food: [‘CAN’, ‘CURE’,
‘DRY’, ‘FREEZE’]

3. Sharp quality: [‘BITE’, ‘EDGE’, ‘PUNCH’,
‘SPICE’]

4. Birds minus last letter: [ CONDO’, ‘HAW’,
‘HERO’, ‘LOO’]

Example 2:

Words: [1COLLECTIVE’, ‘COMMON’, ‘JOINT’,
‘MUTUAL’, ‘CLEAR’, ‘DRAIN’, ‘EMPTY’,
‘FLUSH’, ‘CIGARETTE’, ‘PENCIL’, ‘TICKET’,

‘TOE’, ‘AMERICAN’, ‘FEVER’, ‘LUCID’,
‘PIPE’]
Groupings:
1. Shared: [‘COLLECTIVE’, ‘COMMON’,
‘JOINT’, ‘MUTUAL’]
2. Rid of contents: [‘CLEAR’, ‘DRAIN’,

‘EMPTY’, ‘FLUSH’]

3. Associated with “stub”: [‘CIGARETTE’,
‘PENCIL’, ‘TICKET’, ‘TOE’]

4. __ Dream: ['AMERICAN’, ‘FEVER’, ‘LU-
CID’, ‘PIPE’])

Example 3:

Words: ['HANGAR’, ‘RUNWAY’, ‘“TARMAC’,
‘TERMINAL’, ‘ACTION’, ‘CLAIM’, ‘COM-
PLAINT’, ‘LAWSUIT’, ‘BEANBAG’, ‘CLUB’,
‘RING’, ‘TORCH’, ‘FOXGLOVE’, ‘GUMSHOE’,
‘TURNCOAT’, “‘WINDSOCK’]

Groupings:

1. Parts of an airport: [ HANGAR’, ‘RUNWAY’,
‘TARMAC’, ‘TERMINAL’]

2. Legal terms: ['ACTION’, ‘CLAIM’, ‘COM-
PLAINT’, ‘LAWSUIT’]

3. Things a juggler juggles: [‘BEANBAG’,

‘CLUB’, ‘RING’, “TORCH’]

4. Words ending in clothing: [‘FOXGLOVE’,
‘GUMSHOE’, ‘TURNCOAT’, ‘WIND-
SOCK’]

Categories share commonalities:
* There are 4 categories of 4 words each
* Every word will be in only 1 category
* One word will never be in two categories

* As the category number increases, the connec-
tions between the words and their category
become more obscure. Category 1 is the most
easy and intuitive and Category 4 is the hard-
est

* There may be a red herrings (words that seems
to belong together but actually are in separate
categories)

» Category 4 often contains compound words
with a common prefix or suffix word

* A few other common categories include word
and letter patterns, pop culture clues (such as
music and movie titles) and fill-in-the-blank
phrases

You will be given a new example (Example 4) with
today’s list of words. First explain your reason
for each category and then give your final answer
following the structure below (Replace Category 1,
2, 3, 4 with their names instead)

Groupings:

Categoryl: [wordl, word2, word3, word4]
Category2: [word5, word6, word7, word8]
Category3: [word9, word10, word11, word12]
Category4: [word13, word14, word15, word16]

Remember that the same word cannot be re-
peated across multiple categories, and you need
to output 4 categories with 4 distinct words each.
Also do not make up words not in the list. This is
the most important rule. Please obey

Example 4:
Words : [InsertGame]
Groupings

B Disagreements in Annotations

There was some disagreement between Semantic
and Encyclopedic Knowledge labeling. One exam-
ple is the grouping pike, split, straddle, tuck which
are “Gymnastics Positions" and requires domain-
specific knowledge, meaning it could be thought of
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as Encyclopedic. However, it could also be classi-
fied under Semantic Relations (Type Of relation)
as many of these words appear in WordNet. There
can be confusion about what is considered to be
Semantic or Associative Knowledge. For example,
card, chocolate, heart, rose might be thought of to
be semantically related as gifts given to a loved one
and hence labeled under semantic relations; how-
ever, they can be viewed as elements of specific
situations or thematic context such as “Seen on
Valentine’s Day". Hence it falls more appropriately
under Associative Relations.

C Red Herrings

PLUM KISS WHOLE CLAW
SKIM PERFECT HUG SOy
OYSTER FRUIT oDD BRUSH
WITNESS X0 GRAZE PRIME

Figure 8: Example of red herring category where the 3
words outlined in red might seem as though they belong
together.

In the puzzle in Figure 8, a red herring cate-
gory is present. Gemini 1.5 Pro created a category
called "Milk" with Whole, Skim, and Soy and in-
cluded a random fourth word that did not fit. Each
of these three words, however, belongs to a differ-
ent category: Whole to Kinds of Numbers, Skim
to Touch Lightly, and Soy to Sauces in Chinese
Cuisine. In other puzzles including a red herring
category like this one, most models make similar
rationalizations.

The game in Figure 9 is an example of a game
with a red herring word. The five words that ap-
pear as though they belong together are outlined
in red. However, Mistletoe, Reindeer, Snowman,
and Stocking form the “Christmas Related" cate-
gory, while Candy Cane belongs to the category
“Things with Stripes". In this game, all models ex-
cept Claude 3.5 Sonnet made the mistake of group-
ing Candy Cane with some combination of three
of the other Christmas-related words.

SHOW DONUT STOCKING TIGER
LIFESAVER PRESENT CANDY CANE SNOWMAN
REINDEER CHEERIO EXHIBIT REFEREE

BAGEL DISPLAY CROSSWALK MISTLETOE

Figure 9: Example of red herring word where the 5
words outlined in red may seem like they belong to-
gether.

D Performance

D.1 Humans

The frequency of clustering scores for novice hu-
man players in 100 games and scores for Claude
3.5 Sonnet in the same games are shown in Table 3.
The frequency of clustering scores for expert hu-
man players in 50 games and scores for Claude 3.5
Sonnet in the same games are in Table 4.

Figures 10 and 11 show the distribution of the
weighted clustering scores for Claude 3.5 Sonnet
against novice humans and expert humans, respec-
tively.

Unweighted | - 4e 3.5 .
Clustering Novice Humans
Sonnet

Score

0 17 30

1 41 39

2 27 13

3 3 0

4 12 18

Table 3: Frequency of clustering scores 0-4 for GPT-40
and novice human players across 100NYT Connections
games

D.2 LLMs

Table 5 shows the frequency of the unweighted
clustering scores (number of categories correctly
grouped) for each LLM. The total number of games
played by each model is 438. Table 6 is slightly
different and shows the frequency of categorical
reasoning scores (the categories correctly grouped
and reasoned) for each model. Because a caveat for
receiving a categorical reasoning score greater than
0 is matching gold category words and names, a
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Unweighted | - 4e 3.5
Clustering Expert Humans
Sonnet
Score
0 6 2
1 20 7
2 13 9
3 1 0
4 10 32

Table 4: Frequency of clustering scores 0-4 for GPT-40
and expert human players across SONYT Connections
games

Claude 3.5 Sonnet | ‘

Player

Novice Human | ‘

0 2 4 6 8 10
Weighted Clustering Score

Figure 10: Spread of weighted clustering score for
Claude 3.5 Sonnet and novice human players across
100NYT Connections games

Claude 3.5 Sonnet | ‘

Player

Expert Human

0 2 4 6 8 10
Weighted Clustering Score

Figure 11: Spread of weighted clustering score for
Claude 3.5 Sonnet and expert human players across
S50NYT Connections games

score of 0 is more common than in the unweighted
clustering scores.

E Human Evaluation Interface

Figure 12 shows the two main screens of the evalu-
ation interface provided to both novice and expert
human players. (a) is the instruction screen, while
(b) is an example of a game screen after the user
hits the "Play" button. To solve the game in one
shot, all 16 words from a game are displayed on
the screen in separate boxes, with one drop-down

per box. The drop-down consists of four labels:
Group 1, Group 2, Group 3, and Group 4. The
user’s job is to create 4 groups of 4 words using the
given labels. Because the groups are chosen from a
drop-down menu where the default option is Group
1, a clustering score of 3 is impossible.

We stored the data collected in a SQLite
database. Other than any name of choice users
were prompted to enter in the "Name" text entry
box, no personal data was collected. Each evalu-
ator was then assigned initials in the final dataset
collected for evaluation. These initials are not in-
cluded in the data release. The data that would be
collected and its purpose were verbally conveyed
to each evaluator before asking for their consent.
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Unweighted

Clustering | Gemini 1.5 Pro | Claude 3.5 Sonnet | GPT-40 | Llama 3.1 405B | Mistral Large 2
Score

0 161 87 112 146 185

1 153 138 140 150 149

2 90 117 111 93 80

3 10 17 10 2 3

4 24 79 65 47 21

Table 5: Frequency of unweighted clustering scores 0-4 for 5 LLMs across 438NYT Connections games

Categorical
Reasoning | Gemini 1.5 Pro | Claude 3.5 Sonnet | GPT-40 | Llama 3.1 405B | Mistral Large 2
Score

0 203 101 131 176 215

1 154 152 157 151 144

2 59 109 94 73 61

3 16 53 36 25 13

4 6 23 20 13 5

Table 6: Frequency of categorical reasoning scores 0-4 for 5 LLMs across 438NYT Connections games
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(a) Instruction screen

Back to Instructions

Create four groups of fourl Game Number: 25

BANANAS STEADY FIGURE
Group1 B Group1 B Group1 B
SPUR SNACK MOZZARELLA
Group1 B Group1 B Group1 B
URGE FROZEN MEATBALL
Group1 B Group1 B Group1 B
FISH DAIRY EGG
Group1 B Group1 B Group1 B
Name:
submit

Click here to view the leaderboard + your score after submitting!!

(b) Example of game play

Figure 12: Human evaluation interface
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