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Abstract

The evolution of Large Language Models
(LLMs) has led to significant advancements,
with models like Claude and Gemini capa-
ble of processing contexts up to 1 million to-
kens. However, efficiently handling long se-
quences remains challenging, particularly dur-
ing the prefilling stage when input lengths ex-
ceed GPU memory capacity. Traditional meth-
ods often segment sequence into chunks and
compress them iteratively with fixed-size mem-
ory. However, our empirical analysis shows
that the fixed-size memory results in wasted
computational and GPU memory resources.
Therefore, we introduces Incremental Memory
(IM), a method that starts with a small mem-
ory size and gradually increases it, optimiz-
ing computational efficiency. Additionally, we
propose Decremental Chunk based on Incre-
mental Memory (IMDC), which reduces chunk
size while increasing memory size, ensuring
stable and lower GPU memory usage. Our
experiments demonstrate that IMDC is consis-
tently faster (1.45x) and reduces GPU memory
consumption by 23.3% compared to fixed-size
memory, achieving comparable performance
on the LongBench Benchmark.

1 Introduction

The evolution of Large Language Models (LLMs)
has reached new frontiers, with models like Claude
(Anthropic, 2024) and Gemini (Reid et al., 2024)
capable of processing contexts spanning up to a 1
million tokens. However, the efficiency of process-
ing long sequences with LLM still faces significant
challenges.

The inference of LLM can be divided into two
parts: Prefilling and Decoding. LLM inference
for long documents faces significant challenges in
both stages. In the prefill stage, the model needs
to read long sequences and endure the quadratic
complexity of attention calculations with respect
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Figure 1: (a): The average attention scores of memory
at each step. (b): The distribution of memory content
across chunks, where we count the number of key-value
pairs in memory originating from each chunk. For both
Figure (a) and (b), we used KV Cache pruner (SnapKV
(Li et al., 2024) and StreamingLLM (Xiao et al., 2023))
to compress memory and chunk.

to the sequence length. During the decoding stage,
decoding each token requires accessing the sub-
stantial Key-Value (KV) Cache generated in the
prefill stage. Most efforts to optimize the effi-
ciency of LLM for long sequence focus on the
decoding stage, particularly on compressing the
KV Cache (Xiao et al., 2023; Zhang et al., 2023;
Liu et al., 2024c; Hooper et al., 2024; Liu et al.,
2024a; Sun et al., 2024). However, when the input
length during the prefilling stage exceeds the maxi-
mum length supported by GPU memory capacity,
even prefilling cannot proceed. Existing works (Bu-
latov et al., 2023a,b; Ge et al., 2023b; Liu et al.,
2020; Munkhdalai et al., 2024) tackle this problem
by dividing the sequence into chunks with the same
size and iteratively compress these chunks with a
fixed-size buffer as memory.

In this work, we made an empirical investigation
on the chunked prefilling with compressed KV-
Cache, which we refer to simply as memory. Our
anlysis on the memory displayed in Figure 1 re-
veals that: 1) the attention scores of memory starts
at a relatively low value and gradually increases
throughout the prefill process (Figure 1a.), which
suggests that early-stage memory has minimal in-

21021



fluence on the next-step computation; 2) once the
prefill phase concludes, the memory distribution is
primarily concentrated at the end of the sequence
(Figure 1b), implying that most of the early-stage
memory is not retained by the end of the prefill.

Overall, our findings suggest that the early-stage
memory in the prefill phase is less impactful com-
pared to the later-stage memory. It is unnecessary
to maintain a large memory size at the early stage
of prefilling. This implies that approaches (Bula-
tov et al., 2023a,b; Ge et al., 2023b; Munkhdalai
et al., 2024) that maintaining a fixed-size buffer
to compress long sequences may result in wasted
computational and memory resources.

To avoid computational waste during the early
stage of prefilling, we propose Incremental Mem-
ory (IM), which starts with a small memory size
and gradually increases it until the end of the pre-
filling phase. During this growth phase, the mem-
ory size of IM remains smaller than the maximum
length, resulting in greater efficiency compared to
the commonly used fixed-size memory.

While analyzing memory distribution across dif-
ferent layers1, we observed that higher layers ex-
hibit a more uniform memory distribution com-
pared to lower layers. Consequently, we propose
an adaptive memory growth strategy to set mem-
ory sizes for each layer based on the proportion
of memory retained after compression, with lay-
ers retaining more memory being allocated larger
memory sizes.

Although IM is faster than fixed-size memory, it
does not significantly reduce peak GPU memory
usage, as the memory size of IM is the same as
that of fixed-size memory at the end of the prefill-
ing phase. Therefore, we propose Decremental
Chunk based on Incremental Memory (IMDC),
which starts with a large chunk size that decreases
as memory size increases. When the memory size
is small, the chunk size is large, and vice versa. The
incremental memory and decremental chunk strate-
gies complement each other, maintaining stable
GPU memory usage that is lower than fixed-size
memory, which is illustrated in Figure 2.

Our experiments show that IMDC is consistently
faster (1.45x) than fixed-size memory and con-
sumes less GPU memory (23.3% reduction) during
the prefill stage, yielding comparable results on
LongBench Benchmark (Bai et al., 2023).

Contributions Our main contributions include:
1The results are shown in Figure 6.

Figure 2: The illustration of Fixed-Size Memory, In-
cremental Memory (IM) and Incremental Memory with
Decremental Chunk (IMDC).

• Our analysis on memory reveals that, the
early-stage memory in the prefilling is less
impactful than the later-stage memory.

• Based on this finding, we propose the In-
cremental Memory and Decremental Chunk
(IMDC) approach, which dynamically in-
creases memory size while decreasing chunk
size.

• Our experiments demonstrate that IMDC is
1.45 times faster than the commonly used
fixed-size memory and consumes 23.3% less
GPU memory during the prefill stage, with-
out sacrificing performance on long-context
benchmarks.

2 Related Works

The long-context efficiency of LLM has been
widely studied, which can be classified into two
categories: prefilling and decoding.

Prefilling The prefilling of LLM encounters
quadratic complexity in attention calculations with
respect to sequence length. Numerous research
efforts have sought to reduce this quadratic com-
plexity through methods such as low-rank approx-
imation (Wang et al., 2020; Peng et al., 2021;
Choromanski et al., 2020) and sparsification (Child
et al., 2019; Vyas et al., 2020; Kitaev et al., 2020).
Tay et al. (2023) provided a comprehensive re-
view of these approaches. These methods mod-
ify the computation mode of attention, often re-
sulting in a trade-off with model performance. In
contrast, flash attention (Dao et al., 2022) identi-
fied that the efficiency bottleneck lies primarily in
input/output (I/O) operations rather than compu-
tational processes. By implementing CUDA op-
erations, they significantly accelerated attention
calculations without altering the fundamental com-
putation of attention. RMT (Bulatov et al., 2023a)
proposed an iterative compression scheme for long
texts, maintaining and dynamically updating a
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Figure 3: The illustration of iterative compression with Fixed-Size Memory (FM), Incremental Memory (IM) and
Decremental Chunk based on Incremental Memory (IMDC). The iterative compression involves multiple steps of
compression on the KV cache of memory and chunk.

fixed-size memory, which is followed by (Bula-
tov et al., 2023b; Ge et al., 2023b; Liu et al., 2020;
Munkhdalai et al., 2024). AutoCompressors (Liu
et al., 2020) also introduced incremental memory,
but different from our method, they increase mem-
ory size to enhance the model performance, which
results in significant overhead. 2

Decoding Most efforts to optimize the efficiency
of long-context decoding have focused on KV
Cache compression. Research in this area can
be categorized into KV Cache Pruning (Zhang
et al., 2023; Xiao et al., 2023; Liu et al., 2023),
low-rank approximation (Shazeer, 2019; Ainslie
et al., 2023; Shao et al., 2024), quantization (Liu
et al., 2024c; Hooper et al., 2024; Liu et al., 2024b),
and layer sharing (Liu et al., 2024a; Sun et al.,
2024; Brandon et al., 2024). Key works in KV
Cache pruning include H2O (Zhang et al., 2023)
and StreamingLLM (Xiao et al., 2023). H2O se-
lects important KVs based on cumulative attention
scores, while StreamingLLM retains only the KVs
closest to the end of the sequence. Subsequent
works (Oren et al., 2024; Ge et al., 2023a; Dong
et al., 2024; Ren and Zhu, 2024; Li et al., 2024)
proposed several improvements to H2O, all of
which determine KV importance based on attention
scores. Notable approaches for low-rank approx-
imation include multi-query attention (Shazeer,
2019) and grouped query attention (Ainslie et al.,

2We demonstrate the superiority of our method compared
to AutoCompressors empirically in Appendix B.4.

2023), where different queries share the same KVs.
Layer sharing methods (Liu et al., 2024a) identify
redundancy among the KV Caches of different lay-
ers, retaining only the KVs of certain layers. Quan-
tization compression (Liu et al., 2024c) reduces KV
Cache precision from fp16 to int8 through various
quantization methods (Dettmers et al., 2022).

Our research adopted the iterative compression
method from RMT. However, unlike RMT (Bulatov
et al., 2023a), which compresses sequences into
Soft Tokens, we used StreamingLLM and SnapKV
to compress KV Cache, because they do not require
training and can maintain a constant memory size
during the iteration.

3 Method

3.1 Iterative Compression

When the input sequence length during the prefill
stage exceeds the maximum length supported by
the GPU memory limit, the sequence is segmented
into multiple chunks and compressed iteratively, as
illustrated in Figure 3. In each iteration, the LLM
reads the memory as the KV cache for attention.
After the attention computation, the newly gener-
ated KV cache is sent to the compressor, which
updates the memory.

The process of iterating through chunks is simi-
lar to a recurrent neural network, while the compu-
tation within each chunk operates in parallel, akin
to a transformer. 3

3The intriguing intersection between KV Cache Pruning

21023



3.2 Incremental Memory

Based on the finding from Figure 1 that it is un-
necessary to keep a large memory size at the early
stage of prefilling, we propose Incremental Mem-
ory (IM), which increases memory size during the
iteration of compression. We explore various incre-
mental functions to increase memory size: Linear
Function (Section 3.2), Adaptive Function (Sec-
tion 3.2), and other increasing functions detailed in
Appendix A.1.

Linear Function Suppose the number of chunks
is n, the memory size increase from m0 to mmax
linearly:

mi =
(mmax −m0)i

n− 1
+m0, (1)

where n denotes the number of chunks. The middle
section of Figure 3 illustrates the linear increase of
memory size.

Adaptive Function By visualizing the memory
distribution across layers in Figure 6, we observed
significant differences in memory usage between
high and low layers. Consequently, we propose
Adaptive Function to allocate appropriate memory
sizes for different layers. We record the memory
retention ratio (the proportion of memory retained
after the compression) of various layers. Suppose
the memory of the j-th layer at the i-th step is Mj

i ,
the memory retention ratio corresponding to that is
defined as:

pji =
|Mj

i−1 ∩Mj
i |

|Mj
i |

. (2)

Intuitively, the more memory retained from the
compression, the larger the memory size should be,
and vice versa. Therefore, we can determine the
memory size of each layer based on its memory
retention ratio. We take the linear function as the
basis, and scale it with the normalized memory
retention ratio. Suppose that the number of layers
is N , the memory size of the linear incremental
memory of the j-th layer at the i-th step is bji , then
the memory size for adaptive incremental memory
is:

mj
i =

{
bj0 if i = 0
pj∑
pj
Nbji if i > 0

(3)

and recurrent neural networks is also discussed in Oren et al.
(2024).

3.3 Time Complexity Analysis
The acceleration of IM over fixed-size Memory is
determined by two factors: 1) the relative sizes of
the memory size and chunk size; 2) the proportion
of the total computation time occupied by the atten-
tion calculation. Assuming the maximum memory
size is mmax, the memory size at the i step is mi,
the chunk size is c, the number of chunks is n , then
the acceleration of IM over fixed-size Memory is
given by:

r(
mmax + c

m̂+ c
− 1) + 1, (4)

where m̂ =
∑n−2

i=0 mi

n−1 . Therefore, when mmax ≫ c
and r is close to 1, incremental memory achieves
an ideal acceleration ratio: mmax

m̂ .
IM reduces the time complexity of the attention

calculation from O(ms+ s2) to O(f(m, s) + s2),
where f depends on the specific incremental func-
tion. For example, if f is a power function, the
time complexity is O(ms).

3.4 Decremental Chunk
Although incremental memory (IM) is faster than
fixed-size memory, it does not significantly reduce
peak GPU memory usage. To address this issue,
we propose Decremental Chunk based on Incre-
mental Memory (IMDC). IMDC begins with a
large chunk size and decreases it as the memory
size increases.

Regardless of changes in memory size and chunk
size, IMDC maintains a constant average chunk
size: ∑n−1

i=0 ci
n

= c, (5)

where ci represents the chunk size at the i-th step, n
is the number of chunks, and c denotes the average
chunk size. Since the memory is not involved in the
attention computation at the first step, the chunk
size of IMDC at the first step is set to the average
chunk size (c0 = c).

At the i-th step, the attention key-value (KV)
is the concatenation of the chunk at the i-th step
and the memory at the i − 1-th step. Therefore,
the length of the attention KV at the i-th step is
ci +mi−1. We set the chunk size to ensure that the
attention KV length remains constant:

ci +mi−1 =

∑n−1
i=1 (c+mi−1)

n− 1
(i > 0), (6)

where mi−1 is the memory size at the i − 1-th

step, and
∑n−1

i=1 (c+mi−1)
n−1 is the average length of
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the attention KV across all steps except the first
step. Therefore, the chunk size of IMDC at the i-th
step is:

ci =

{
c if i = 0

c+ m̂−mi−1 if i > 0
(7)

where m̂ =
∑n−2

i=0 mi

n−1 .
IMDC is illustrated on the bottom section of Fig-

ure 2, where the memory size increases while the
chunk size decreases. When the memory size is
small, the chunk size is large, and vice versa. The
incremental memory and decremental chunk strate-
gies complement each other, maintaining stable
GPU memory usage. The attention KV length of
IMDC remains constant at c+ m̂ (except for step
0), whereas for fixed-size memory it is c+mmax.
Since the memory size is incremental, we have
mmax > m̂. Therefore, IMDC consumes less GPU
memory than fixed-size memory.

4 Experiments

4.1 Experiment Settings
Iterative Compression We divided the sequence
into non-overlapping windows and encode position
embedding for memory and chunk at each itera-
tion independently instead of reusing the position
embedding from the previous steps. Incremental
Memory employs the linear increase, with the ini-
tial memory size defined as mmax

n , where mmax is
the maximum memory size and n is the number
of chunks. Unless otherwise specified, the con-
figurations of Incremental Memory adhere to this
setup.

KV Cache Compression We tried two prun-
ing algorithms: SnaKV (Li et al., 2024) and
StreamingLLM (Xiao et al., 2023). SnaKV fil-
ters important key-value pairs based on attention
scores, while StreamingLLM selects the most re-
cent key-value pairs without relying on attention
scores.

Models We compared our methods with Fixed-
Size Memory, abbreviated as FM. Our methods are
labeled as IM (Incremental Memory) and IMDC
(Incremental Memory with Decremental Chunk).
Our experiments were conducted on LLaMA-2-
7B (Touvron et al., 2023), Tiny-LLaMA (Zhang
et al., 2024) (1.1B), and InternLM2 (Cai et al.,
2024) (7B). We used Dynamic NTK (bloc97, 2023)
to extend the context length of LLama2-7b and

GPU Method Save Logits Max length

RTX 3090
Full Attention Yes 8192

Iterative Compression Yes 65536
Iterative Compression No infinity

A800
Full Attention Yes 65536

Iterative Compression Yes 262144
Iterative Compression No infinity

Table 1: The maximum input length supported by Full
Attention and Interative Compression on A100 and RTX
3090 was evaluated. "Save Logits" refers to whether the
model’s output logits should be saved. We use IM for
iterative compression which utilizes the StreamingLLM
Pruner, both the chunk size and memory size of which
are set to 1024.

Tiny-LLama. We used flash attention (Dao et al.,
2022) to accelerate the attention calculation. How-
ever, SnapKV requires attention scores hence is not
compatible with flash attention.

Evaluation We used Collie (Lv et al., 2023) to
implement our methods and evaluate our methods
on LongBench (Bai et al., 2023) with OpenCom-
pass (Contributors, 2023). Our Perplexity evalu-
ation used the data collected by Liu et al. (2020),
which are sampled from the Github and Arxiv sub-
sets of Redpajama (Computer, 2023).

4.2 Why We Need Iterative Compression

To verify the advantages of iterative compression
over Full Attention, we compared the maximum
sequence length that iterative compression and Full
Attention support at the prefilling stage. We use
IMDC for iterative compression and set both the
memory size and chunk size to 1024. We use the
StreamingLLM pruner as the compressor.

The results are shown in the Table 1. Whether on
the A800 or 3090, the maximum sequence length
supported by iterative compression is far greater
than that supported by Full Attention (4 times
greater). If we do not save model’s logits, iter-
ative compression can support infinite sequence
lengths. This characteristic is particularly impor-
tant for deploying LLMs on devices with limited
GPU memory, such as mobile phones.

4.3 Efficiency Improvement

We evaluated the efficiency of our methods (IM and
IMDC) on both NVIDIA A800 and NVIDIA RTX
3090 GPUs. 4 The results are shown in Figure 4.

4Detailed experimental settings are shown in Appendix
B.1.
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(a) TTFT Comparison (Seconds). TTFT (Time To First Token) refers to the time cost associated with the model encoding the
input sequence.
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Figure 4: TTFT and GPU Memory Usage of LLama2-7B with Fixed-Size Memory (FM) vs. that with our methods
including Incremental Memory (IM) and Incremental Memory with Decremetnal Chunk (IMDC). We use different
memory sizes for SnapKV and Streaming LLM, because SnapKV requires attention scores which does not support
flash attention.

Time Efficiency We compared the time effi-
ciency of our method versus FM in terms of the
time to first token (TTFT), the results of which are
shown in Figure 4a. We found that our IM and
IMDC consistently demonstrates greater efficiency
than FM, regardless of the pruners used and the
devices employed. Furthermore, the efficiency gap
between them widens as the memory size increases.
It is because that the larger memory size has a larger
impact on the computation time.

In the A800 experiments, IMDC achieved
up to approximately 1.45x (SnapKV) and 1.26x
(StreamingLLM) speedup over FM. In the RTX
3090 experiments, the speedup of IM was 1.2x
(SnapKV) and 1.08x (StreamingLLM). Increasing
the memory size would make the speedup more
significant.

The acceleration of our methods on SnapKV is
more significant than that on StreamingLLM. This
is because that SnapKV cannot use flash attention,
leading to a higher proportion of time spent on at-
tention calculation. Currently, the majority of prun-
ing methods also requires attention scores (Zhang
et al., 2023; Oren et al., 2024; Liu et al., 2023; Ren
and Zhu, 2024). Our methods can also achieve
significant speedup for these approaches. These
empirical results align with our theoretical analysis
in Section 3.3 that the acceleration of incremental
memory is influenced by two factors—the memory

size and the proportion of time spent on attention
calculation relative to total computation time.

GPU Memory Efficiency We evaluated the peak
memory usage during model prefilling. The results,
presented in Figure 4b, indicate that both IM and
IMDC consume less GPU memory compared to
FM. As the memory size increases, our methods
save even more memory compared to the FM.

In experiments conducted on the A800, the
IMDC reduced GPU memory usage by up to 23.3%
for SnapKV and 16.2% for StreamingLLM com-
pared to FM. Similarly, on the RTX 3090, the
reductions were 11% for SnapKV and 8% for
StreamingLLM.

IM also conserves GPU memory usage because
the chunk at the i-th step is concatenated with the
memory produced at the i− 1-th step for attention.
Assuming the iteration involves n chunks (0, 1, ...,
n − 1), the peak GPU memory is determined by
the memory size at the (n− 2)-th step rather than
the last step. However, the GPU memory reduction
achieved by IM is not as significant as that achieved
by IMDC, especially in the SnapkV experiment,
where the number of chunks is large.

4.4 Perplexity Comparison

We compared the perplexity (PPL) of LLama2-7b
when using different types of memory: FM, IM and
IMDC. The test data for perplexity is sampled from
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Model Pruner Memory Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Code Avg

LLaMA2-7b

Full-Attn NA 16.4 7.89 11.61 50.58 3.68 63.34 28.15

SnapKV
FM 15.63 8.78 11.83 48.17 3.50 63.57 27.85
IM 15.53 8.75 11.74 48.70 4.41 63.51 27.99
IMDC 15.64 8.47 11.95 46.78 4.58 63.32 27.65

StreamingLLM
FM 12.89 7.90 10.96 45.86 3.40 61.65 26.32
IM 13.22 7.92 10.90 44.47 3.86 61.44 26.14
IMDC 12.95 8.19 10.78 44.88 3.90 61.23 26.15

InternLM2-7b

Full-Attn NA 40.93 34.79 22.78 57.78 33.23 59.44 42.56

SnapKV
FM 23.50 21.39 17.88 46.60 6.92 59.87 31.64
IM 22.36 21.54 17.41 45.90 6.05 59.62 31.13
IMDC 23.38 22.38 17.66 48.67 8.45 59.66 32.24

StreamingLLM
FM 23.14 21.49 16.79 46.34 4.88 59.31 31.00
IM 22.42 21.00 16.22 47.07 5.21 59.95 30.99
IMDC 23.06 20.89 16.61 47.31 5.73 59.88 31.25

Tiny-LLaMA

Full-Attn NA 2.77 0.99 5.76 2.12 0.59 18.06 5.78

SnapKV
FM 16.06 9.43 16.91 33.60 2.95 50.27 23.50
IM 16.22 9.41 15.74 31.09 2.85 50.75 22.98
IMDC 17.59 9.94 17.25 33.16 3.27 49.58 23.69

StreamingLLM
FM 16.31 10.07 16.77 31.46 2.96 51.92 23.60
IM 16.32 9.85 17.07 30.37 3.33 51.81 23.45
IMDC 16.99 10.27 17.38 31.52 2.41 52.11 23.81

Table 2: The performance comparison on LongBench. Full-attn: Full Attention; FM: Fixed-Size Memory; IM:
Incremental Memory (ours); IMDC: Incremental Memory with Decremental Chunk (ours). For all models, both the
chunk size and memory size are set to 1024.
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Figure 5: Perplexity of LLama2-7B with Fixed-Size
Memory (FM) versus that with our methods (Incremen-
tal Memory (IM) and Incremental Memory with Decre-
mental Chunk (IMDC)).

Redpajama and encompasses two domains (GitHub
and ArXiv). The sequence length and chunk size
configurations adhere to the A800 settings specified
in Appendix B.1.

The results shown in Figure 5 indicate that
there is no significant difference in perplexity be-
tween IM/IMDC and FM for either SnapKV or
StreamingLLM. When the memory size is 1024,

IM/IMDC even performs slightly better than FM.
We hypothesize that IM/IMDC selects KV pairs
more concentrated towards the end of the sequence,
which is beneficial for lowering PPL.

Additionally, we observe that SnapKV achieves
significantly lower perplexity than StreamingLLM
under identical conditions. This indicates that effi-
ciency improvements on SnapKV are more critical.
Our experiments in Section 4.3 demonstrate that
IM and IMDC achieve more substantial accelera-
tion and memory reduction on SnapKV.

4.5 Benchmark Comparison

We compared the performance of our methods in-
cluding IM and IMDC versus FM on LongBench.
As shown in Table 2, the performance differences
between IM and FM are minimal (<=0.5) under
any settings. In most experiments, the performance
differences between IM and FM are within 0.15.
On InternLM2 and Tiny-LLaMA, IMDC is even
better than FM. This may be because the uneven
Chunk Size is more closed to the full attention.
An extreme case is that a sequence of length n is
divided into two chunks with length n− 1 and 1.

We also found that the average score of Full At-
tention on Tiny-LLaMA is only 5.78, even with
the Dynamic NTK. It is because that the maximum
sequence length that Tiny-LLaMA supports is lim-
ited to 2048 tokens. In contrast, the average scores
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Method Memory Size Single-Doc QA Time (seconds)

Iterative Compression

1024 22.36 3181.7
2048 27.34 3187.2
4096 34.88 3693.2
8192 39.16 3802.9

Full Attention NA 40.93 12101.4

Table 3: The performance and inference time of Full
Attention Versus Iterative Compression with different
memory sizes evaluated on a subset of LongBench
(Single-Document QA). We use IM for iterative com-
pression and LLama2-7b for the test model.

Model Method Seq len Loss TTFT GPU Memory

LLama2-7B

Full Attention 128k - - OOM
FM 1M 2.00 505 36
IM 1M 2.08 351 35
IMDC 1M 2.11 328 27

LLama2-13B

Full Attention 64k - - OOM
FM 1M 1.83 711 59
IM 1M 1.85 517 59
IMDC 1M 1.87 506 46

Table 4: The performance of Full Attention and it-
erative compression (FM, IM, and IMDC) evaluated
with 1M tokens sampled from Github subsets of Red-
pajama (Computer, 2023). The iterative compression
used Streaming-LLM Pruner for KV-Cache Compres-
sion. Time to First Token (TTFT) and GPU memory
usage were measured in seconds and gigabytes (GB),
respectively.

of all iterative compression methods ( FM, IM and
IMDC) exceed 20, indicating the superiority of
iterative compression over full attention.

In Table 2, the performance of InternLM2-7B
with full attention is much better than iterative com-
pression (FM/IM/IMDC), particularly in QA tasks.
We hypothesize that the small memory size is the
main cause of this discrepancy. Consequently, we
conducted a comparative study of iterative compres-
sion and Full Attention with an increased Memory
Size.

The results are shown in Table 3, where we can
observe that increasing memory size is beneficial
to narrow the gap between iterative compression
and full attention. If the memory size is set to
8192, the performance of iterative compression on
Single-Document QA is comparable with that of
full attention, while requiring only 31% inference
time.

4.6 Scaling to 1M tokens
In Section 4.2, we validated that iterative compres-
sion can handle sequences of infinite length without
encountering out-of-memory issues. However, it re-
mains unclear whether iterative compression expe-

Pruner Incremental Function Single-Doc QA TTFT Time

SnapKV LINEAR 22.35 5.11
SQRT 23.35 5.83
SQUARE 21.90 4.49
SQUARE-SQRT 23.24 5.15
ADAPTIVE 23.20 5.13

Streaming LLM LINEAR 22.41 2.34
SQRT 22.27 2.42
SQUARE 22.08 2.27
SQUARE-SQRT 21.97 2.35
ADAPTIVE 22.36 2.36

Table 5: Performance comparison of different incre-
mental functions. LINEAR: linear growth; SQRT:
fast initial growth that slows down, in the form of
x1/2; SQUARE: slow initial growth that speeds up,
in the form of x2; SQUARE-SQRT: growth in the form
of SQUARE in low layers and SQRT in high layers;
ADAPTIVE: set the memory size based on the memory
retention ratio in each layer. 5

riences extrapolation issues during infinite-length
prefilling. To address this, we evaluated the per-
formance of LLama2-7B and LLama2-13B using
one million tokens on the A800. The results are
presented in Table 4.

The results show that iterative compression
(FM/IM/IMDC) does not exhibit extrapolation is-
sues, despite the original model supporting an input
length of only 4096. This is because relative posi-
tions, rather than absolute positions, are encoded
for memory and chunks. In iterative compression,
the maximum position is the sum of the memory
size and chunk size, which is smaller than 4096.
As a result, iterative compression avoids extrapola-
tion issues regardless of input length. Furthermore,
IM/IMDC achieve perplexity (PPL) comparable
to FM while significantly reducing both prefilling
time (TTFT) and GPU memory usage

4.7 Optimal Incremental Strategy

In this experiment, we explored different func-
tions to increase memory size and compared
their impact on the performance and efficiency
of the InternLM2-7b. We used InternLM2-7b for
evaluation because the performance gap between
IM/IMDC and FM on InternLM2-7b is more signif-
icant than that on LLama-7b. The results are shown
in Table 5. The outcomes for SnapKV matched
our expectations. The SQRT function achieved
the best performance, significantly outperforming

5The specific formulas for the SQRT and SQUARE func-
tions are described in Appendix A.1, and the implementation
details of the ADAPTIVE function are presented in Section
3.2. We set both Chunk Size and Memory Size to 1024.
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Pruner Compression Rate Context\Depth
Percentage

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Full Attention -

8k 1 1 1 1 1 1 1 1 1 1
16k 1 1 1 1 1 1 1 1 1 1
24k 1 1 1 1 1 1 1 1 1 1
32k 1 1 1 1 1 1 1 1 1 1

FM (SnapKV)

25% 8k 1.0 0.6 0.8 0.8 1 1 1 1 1 1
12.5% 16k 1.0 0.4 0 0.2 0 0.8 0.8 1 1 1
6.25% 24k 1.0 0 0 0 0.2 0.2 0.2 1 1 1
3.125% 32k 1.0 0 0 0 0 0 0 0.2 0.6 1

IM (SnapKV)

25% 8k 0 0 0 0.6 1 1 1 1 1 1
12.5% 16k 0 0 0 0.6 0.8 1 1 1 1 1
6.25% 24k 0 0 0 0 1 1 1 1 1 1
3.125% 32k 0 0 0 0.2 1 1 1 1 1 1

Table 6: The performance of full-attention, IM and IMDC on the needle-in-a-haystack test.

the LINEAR function, but it was also the slow-
est among the five functions. This is reasonable
because the memory size of the SQRT function
is larger than that of the other functions. Both
SQUARE-SQRT and ADAPTIVE are designed to
set the appropriate memory size for different layers.
They exhibited the same performance as the SQRT
function and the same efficiency as the LINEAR
function. The SQUARE function was the most effi-
cient among the five functions, but its performance
was the worst.

4.8 Needle-in-a-Haystack Test

We conducted a needle-in-a-haystack test based on
the pass-key retrieval task (Mohtashami and Jaggi,
2023). The LLama3-7B model fine-tuned on long
context served as the base model.6 To compress
the KV Cache, we employed SnapKV (Li et al.,
2024) with a chunk size of 1024 and a memory
size of 2048. The results are presented in Table 6.
A depth of 0% indicates the passkey is placed at
the beginning of the sequences, whereas a depth of
90% denotes the passkey is placed at the end of the
sequences.

Our findings indicate that Full Attention can
successfully complete the 32k length needle-in-
a-haystack test. Although FM and IMDC do not
perform as well as Full Attention, they can han-
dle most deep retrievals when the context length is
within 16k, which compresses the KV Cache to 1/8
of its original size.

We observed that IM, in comparison to FM, has
difficulty retrieving information from the beginning
of sequences. This is expected, as the memory size

6https://huggingface.co/winglian/
Llama-3-8b-64k-PoSE

of IM during the early stage of prefill is relatively
small. However, when the sequence length exceeds
24k, IM outperforms FM. This is because maintain-
ing a smaller memory size during the initial prefill
stage can reduce noise within the memory when
useful information is not located at the beginning
of the sequence.

We believe that with the larger memory size, KV
Cache pruning has the potential to effectively han-
dle needle-in-a-haystack retrieval tasks. Currently
the maximum memory size can only be set to 2048,
since SnapKV relies on attention scores, which is
not compatible with flash attention.

5 Conclusion

In this paper, we addressed the inefficiencies in
long-context prefilling of LLM by introducing two
novel techniques: Incremental Memory and Decre-
mental Chunk. Incremental Memory optimizes
memory usage by dynamically increasing the mem-
ory size during prefilling, avoiding unnecessary
computational overhead. Decremental Chunk com-
plements this approach by dynamically adjusting
the chunk size, maintaining stable and lower GPU
memory usage. Experiments show that the com-
bination of these methods significantly improves
efficiency, with less prefilling times and GPU mem-
ory consumption compared to traditional fixed-size
memory approaches.
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Limitations

1. In our experiments, we tested the performance
and efficiency of our methods using sequences
with length of 32k tokens. However, iterative
compression can support inputs of unlimited
length. We have not yet validated the effec-
tiveness of our method on longer sequences,
such as those with one million tokens.

2. We have evaluated our methods on LLama2-
7b, InternLM2-7b, and Tiny-LLama. How-
ever, due to limitations in computational re-
sources, we have not tested our model on the
larger models, such as LLama2-70b. Never-
theless, we believe our method is more suit-
able for larger models because the memory
bottleneck is more pronounced in these cases.
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A Supplementary Method Details

A.1 Alternative Incremental Functions
We present several alternatives to the linear func-
tion for increasing memory size, namely the SQRT
and the SQUARE:

m
square
i =

(mmax −m0)i
2

(n− 1)2
+m0 (8)

m
sqrt
i =

(mmax −m0)
√
i√

n− 1
+m0 (9)

The growth rate of the SQRT is initially slow but
accelerates over time, whereas the SQUARE func-
tion exhibits the opposite behavior. The memory
size of the SQUARE function is smaller than that
of the LINEAR, which in turn is smaller than that
of the SQRT function.

Based on the memory distribution visualization
in Section B.2, we observed that the memory distri-
bution in the higher layers of LLaMA2-7b is more
uniform compared to the lower layers. Therefore,
we propose a new increase function, SQUARE-
SQRT, which combines the SQUARE and SQRT
function: using SQUARE function for the lower
layers, and SQRT function for the higher layers.

The integral of the sum of SQUARE and SQRT
function (mhigh

i +mlow
i ) over the interval [0, n− 1]

equals n(mmax +m0)/2, which is the same as that
of linear function. Therefore, theoretically, the
computational cost of SQUARE-SQRT is equiva-
lent to that of LINEAR.

B Supplementary Experiments

B.1 Experiment Setting of Chunk size and
Sequence Length

Since the GPU memory of A800 is much larger
than that of RTX 3090, we set a larger sequence
length and chunk size for the experiment on A800.
Furthermore, SnapKV does not support flash atten-
tion, hence the chunk size and sequence of which
is larger than that of StreamingLLM. We report the
detail setting in Table 7. Both the experiments of
Efficiency Comparison (4.3) and PPL Comparison
(4.4) follow this setting.

B.2 Visualization of Memory Map
We conducted a statistical analysis of the memory
distribution across chunks by recording the chunk

Device Pruner Chunk Size Sequence Length

A800 SnapKV 1024 32k
StreamingLLM 8192 32k

RTX 3090 SnapKV 512 8k
StreamingLLM 2048 8k

Table 7: Setting of Chunk Sizes and Sequence Lengths
for Different Devices and Pruners
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Figure 6: The memory distribution across different
chunks in various layers for LLaMA2-7b and Internlm2-
7b. The horizontal axis represents the Chunk ID, while
the vertical axis represents the Layer ID. The intensity
of the color reflects the proportion of memory distribu-
tion, with brighter colors indicating a higher proportion
of memory within a given chunk. We have excluded the
last column, as the majority of memory key-value pairs
are concentrated in the final chunk.

ID of each key-value pair in the memory.7 For this
analysis, we utilized fixed-size memory instead
of incremental memory. The results illustrated in
Figure 1 indicate that the majority of the memory
is concentrated in the last few chunks, irrespective
of the models or pruners used.

We further investigated memory distribution
across different layers for both LLaMA2-7b and
InternLM2-7b. The results are shown in Figure 6.
We found significant variation in memory distribu-
tion across different layers of LLaMA2-7b, with
higher layers exhibiting a more uniform distribu-
tion than lower layers. Conversely, for InternLM2-
7b, the differences in memory distribution across
layers are minimal.8

B.3 Incremental Long-Term Memory

The test data was sampled from the Github and
Arxiv subsets of RedPajama, with each sample
containing 32k tokens. During the iteration, the
memory is continuously updating. We visualized
the memory retention ratio defined in Equation 2
in Figure 7.

7The data for this evaluation is the same as that used for
the PPL Comparison in Section 4.4.

8We propose adaptive Incremental Memory in Section 3.2
inspired by this observation.
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Figure 7: The variation of the Memory Retention Ratio
during the iteration. The Memory Retention Ratio is
defined as the proportion of memory retained after com-
pression, see Equation 2. The higher Memory Retention
Ratio indicates the less memory being forgotten after
compression. The pruner used is SnapKV.

We observed that the memory retention ratio for
LLaMA2-7b and Tiny-LLaMA increases linearly
with iterations, whereas the memory retention rate
for Internlm2-7b exhibits fluctuations. The increas-
ing memory retention ratio suggests that as the
model undergoes more iterations, it tends to retain
more long-term memory.

B.4 Incremental Fixed Memory Versus
Incremental Dynamic Incremental

AutoCompressors (Liu et al., 2020) also dynami-
cally increases the memory size while iterating over
chunks. Although their memory size grows incre-
mentally, they do not compress the existing mem-
ory; instead, they append the compressed chunks to
the existing memory. In other words, their memory
consists entirely of long-term memory that is nei-
ther updated nor forgotten. Conversely, our method
updates the memory content through compression
at each step.

Which kind of incremental memory is better?
We compared the performance of them by evalu-
ating the perplexity of LLaMA2-7b. The exper-
imental setup is consistent with that in Section
subsection 4.4, and the results are shown in Fig-
ure Figure 8. We refer to AutoCompressors (Liu
et al., 2020) as Incremental Fixed Memory, and our
method as Incremental Dynamci Memory.

According to Figure 8, the perplexity of Dy-
namic Incremental Memory is significantly lower
than that of Fixed Incremental Memory in almost
all configurations, which demonstrates the supe-
riority of our method and suggests that memory
needs to be updated, i.e., long-term memory alone
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Figure 8: Incremental Fixed Memory (Liu et al., 2020)
versus Incremental Dynamic Memory (ours). The data
for evaluation is the same as that used in PPL Compar-
ison (Section 4.4). Both approaches increase memory
size linearly during iterative compression. For both
methods, the chunk size and the maximum memory size
are set to 1024.

is insufficient.
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