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Abstract

In recent studies, researchers have used large
language models (LLMs) to explore semantic
representations in the brain; however, they have
typically assessed different levels of semantic
content, such as speech, objects, and stories,
separately. In this study, we recorded brain
activity using functional magnetic resonance
imaging (fMRI) while participants viewed 8.3
hours of dramas and movies. We annotated
these stimuli at multiple semantic levels, which
enabled us to extract latent representations of
LLMs for this content. Our findings demon-
strate that LLMs predict human brain activ-
ity more accurately than traditional language
models, particularly for complex background
stories. Furthermore, we identify distinct
brain regions associated with different semantic
representations, including multi-modal vision-
semantic representations, which highlights the
importance of modeling multi-level and multi-
modal semantic representations simultaneously.
We will make our fMRI dataset publicly avail-
able to facilitate further research on aligning
LLMs with human brain function. 1

1 Introduction

Language models, which learn the statistical struc-
ture of languages from large corpora to enable ma-
chines to understand semantics, have made signifi-
cant advances (Devlin et al., 2018; Radford et al.,
2019; Zhang et al., 2022; Touvron et al., 2023). Be-
cause semantic comprehension is fundamental to
human intelligence, the correspondence between
human brain activity and the latent representations
of language models has been an intriguing sub-
ject of research. To examine the correspondence
between human and language models, in recent
studies, researchers used brain encoding mod-
els (Naselaris et al., 2011; Nishimoto et al., 2011;

*Equal first author.
†Equal last author.
1https://github.com/yu-takagi/drama2brain

Huth et al., 2012) to predict brain activity based
on the high-dimensional latent representations of
language models (Jain and Huth, 2018; Jat et al.,
2019; Toneva and Wehbe, 2019; Caucheteux et al.,
2021; Schrimpf et al., 2021; Goldstein et al., 2022;
Caucheteux et al., 2022; Antonello et al., 2023).
The quantitative assessment of the correspondence
between the two can serve as a unique benchmark
for modern large language models (LLMs) because
it potentially provides a biological benchmark for
the alignment between LLMs and humans.

In previous studies, researchers typically focused
on a single aspect of semantic comprehension (e.g.,
speech content); however, realistic scenarios are
inherently multifaceted. For instance, a scene in
which two people are speaking can be depicted
through multiple semantic levels in language: their
speech content, their identities and the visual ap-
pearance of their outfits, the location and time of
the scene, and the broader context of the conversa-
tion. In traditional studies, researchers often ad-
dress these levels of semantics separately, which
leads to a lack of clarity on how multiple levels of
semantic content are attributed to brain activity and
how the latent representations of language models
might align with the human brain processing of
multiple levels of content.

In this study, we address these issues by record-
ing human brain activity using functional magnetic
resonance imaging (fMRI) while participants view
8.3 hours of videos of dramas or movies. Impor-
tantly, we heavily annotate these videos across mul-
tiple levels of semantic content related to the drama,
including speech dialogue, visual objects, and back-
ground story. We extract latent representations of
these annotations from LLMs, then build encoding
models that predict brain activity from these latent
representations to quantitatively compare how each
type of information is represented in different brain
regions. Furthermore, we quantitatively assess
how each brain region uniquely captures differ-
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ent aspects of semantic content using different
types of latent representations derived from LLMs
and multi-modal LLMs.

Our contributions are as follows:

1. Unlike previous researchers, who modeled
various semantic modalities independently,
we demonstrate that different semantic modal-
ities uniquely account for brain activity in dis-
tinct brain regions.

2. We show that the superiority of LLMs is not
uniform across different modalities: LLMs
are particularly effective in modeling story-
related information.

3. We show that latent representations of multi-
modal vision-semantic LLMs predict brain
activity and uniquely capture representations
in the association cortex better than unimodal
models combined .

4. We collect densely annotated fMRI datasets
acquired while the participants watch 8.3
hours of videos as another benchmark for the
biological metric of the alignment between
LLMs and humans. We will publish these
datasets.

2 Related work

In numerous previous studies, researchers exam-
ined the relationship between the latent represen-
tations of language models and brain activity dur-
ing speech comprehension. These researchers pri-
marily focused on the correspondence between la-
tent representations of language models obtained
from speech transcriptions and brain activity (Huth
et al., 2016; Jat et al., 2019; Toneva and Wehbe,
2019; Schmitt et al., 2021; Caucheteux et al., 2021,
2022). Recent findings have further demonstrated
that LLMs provide a better explanation of brain ac-
tivity than traditional language models (Schrimpf
et al., 2021; Goldstein et al., 2022; Antonello et al.,
2023; Tuckute et al., 2024).

Regarding the semantic content of the visual
object in the scene, the correspondence between
the latent representations of deep learning models
related to the displayed objects and human brain
activity have been studied extensively (Güçlü and
van Gerven, 2015; Horikawa and Kamitani, 2017;
Groen et al., 2018; Wen et al., 2018; Khosla et al.,
2021; Allen et al., 2022; Chen et al., 2023; Wang

et al., 2023; St-Yves et al., 2023; Takagi and Nishi-
moto, 2023; Luo et al., 2023). In most of these
studies, researchers used neuroimaging data while
participants watched static images or short video
clips.

Although several neuroscience studies have been
conducted in which researchers explored high-level
story content in the brain using a naturalistic movie
watching experiment (Hasson et al., 2008; Wehbe
et al., 2014; Aw and Toneva, 2022; Chang et al.,
2021; Nastase et al., 2021), these researchers typi-
cally did not explicitly model high-level story con-
tent using language models. Furthermore, they
have not examined the unique explanatory power
story-specific semantic content exerts on brain ac-
tivity compared with other types of semantic con-
tent.

There is a growing consensus that LLMs mir-
ror human brain activity more accurately than tra-
ditional language models during semantic com-
prehension; however, in the individual studies de-
scribed above, the reseachers addressed discrete
aspects of semantic comprehension independently.
This is problematic because humans process dif-
ferent types of semantic content simultaneously in
naturalistic scenarios, and such content may be rep-
resented differently in LLMs and the human brain.
Here, we address these issues by evaluating how
much each level of semantic content uniquely ex-
plains brain activity compared with other semantic
content.

3 Methods

3.1 fMRI experiments

We collect brain activity data from six healthy par-
ticipants with normal and corrected-normal vision
(three females; age 22–40, mean = 28.7) while
they freely watch 8.3 hours of videos of movies
or drama series. All participants are right-handed,
native Japanese speakers. They provided written in-
formed consent for the study and the release of their
data. The ethics and safety committees approved
the experimental protocol.

MRI data are acquired using a 3T MAGNETOM
Vida scanner (Siemens, Germany) with a standard
Siemens 64-channel volume coil. Blood oxygena-
tion level-dependent (BOLD) images are acquired
using a multiband gradient echo-planar imaging
sequence (Moeller et al., 2010) (TR = 1,000 ms,
TE = 30 ms, flip angle = 60◦, voxel size = 2×2×2
mm3, matrix size = 96× 96, 72 slices with a thick-
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Figure 1: Overview of the experiment and brain encoding models. a In the experiment, participants watch 8.3
hours of videos of dramas or movies while we measure their brain activity inside an fMRI scanner. We densely
annotate the videos with multiple levels of semantic content, which are used for extracting latent representations
from multiple language models. The annotations provide examples from specific scenes in the series ’Suits’. b For
each semantic feature obtained by the language models, we estimate linear weights for predicting brain activity
across the cerebral cortex from the feature using ridge regression. We subsequently apply the estimated weights
to the features of the test data to estimate brain activity. We calculate prediction performance using Pearson’s
correlation coefficient between the predicted and actual fMRI responses.

ness of 2 mm, slice gap 0 mm, FOV = 192× 192
mm2, bandwidth 1736Hz/pixel, partial Fourier 6/8,
multiband acceleration factor 6). Anatomical data
were collected using the same 3T scanner using
T1-weighted MPRAGE (TR = 2530 ms, TE = 3.26
ms, flip angle = 9◦, voxel size = 1 × 1 × 1 mm3,
FOV = 256× 256 mm2). The preprocessing of the
functional data includes motion correction, coregis-
tration, and detrending. See Section A.1 for details
of the acquisition and preprocessing procedures.

3.2 Stimuli

We use nine videos of movies or drama series as
stimuli (10 episodes in total), with dense annota-
tions related to those videos. The videos encom-
pass various genres. Eight are international videos
and one is a Japanese animation. The average play-

back time of the 10 episodes is 49.98 minutes (rang-
ing from 21 minutes to 125 minutes). We divide
each episode into two to nine parts, each approxi-
mately 10 minutes long, for use as stimulus videos
during the fMRI experiment. We play all the inter-
national videos in Japanese dubbed versions and
the subjects understand them in Japanese. We will
make our fMRI dataset publicly available for fu-
ture research on acceptance. See Section A.1.1 for
details of data collection.

The annotations include five levels of semantic
content from the videos: transcriptions of spoken
dialogue (Speech), objects in the scene (Object),
background story of the scene (Story), summary of
the story (Summary), and information about time
and location (TimePlace) (Figure 1a). The seman-
tic content consists of annotations that describe the
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stimulus videos in natural language. This content
differs in the nature of the description and the times-
pan of the annotations. Specifically, Speech corre-
sponds to the intervals of speaking, whereas Object
is annotated every second, Story every 5 seconds,
Summary approximately every 1-3 minutes, and
TimePlace every time the screen changes. While
there may still be some overlap among annotations,
the motivation behind this annotation scheme is to
capture different aspects of objective and narrative
information. Multiple annotators independently
label each level of semantic content, except for
Speech: five for Object, three each for Summary
and TimePlace, and two for Story. Before starting
the work, annotators were explicitly informed that
these descriptions are distinct from other annota-
tions. For all five classes of semantic annotations,
at least two researchers independently and regu-
larly review the annotations, making corrections
if any errors are found in the descriptions. While
all annotations are originally described in Japanese,
they are translated into English using DeepL and
we used language models mainly trained on a En-
glish corpus.2 We also quantitatively confirm that
the results are robustly reproduced when the anno-
tators or data are divided. See Sections A.2 and
A.3 for details of annotations and quality control.

We divide the data into training and test datasets,
and calculate all the prediction performance re-
sults presented in this paper using the test dataset.
Specifically, we use the fMRI scanning sessions
corresponding to the last split of each movie or
drama series, 7,737 seconds in total, as test data.
We use the remaining sessions, 22,262 seconds in
total, as training data.

3.3 Feature extraction

We obtain latent representations from five language
models (Figure 1a): Word2Vec (Mikolov et al.,
2013), BERT (Devlin et al., 2018), GPT2 (Radford
et al., 2019), OPT (Zhang et al., 2022), and Llama
2 (Touvron et al., 2023). We use Word2vec as
a traditional language model. The summary of
these language models is presented in Table 1. See
Section A.1.5 for the information of the models we
used.

We extract the latent representations of the lan-
guage models for the annotations from each of the
hidden layers, except for Word2Vec, from which

2We have confirmed that similar results are obtained by us-
ing LLMs trained in Japanese with original Japanese captions.

Model Layers Width Params.
Word2Vec
(Mikolov et al., 2013) 1 300 900M3

BERT
(Devlin et al., 2018) 12 768 110M

GPT2
(Radford et al., 2019) 36 1280 812M

OPT
(Zhang et al., 2022) 32 4096 6.7B

Llama 2
(Touvron et al., 2023) 32 4096 6.74B

Table 1: Summary of the five language models.

we obtain word embeddings. For each latent rep-
resentation from each hidden layer, we build brain
encoding model (see Section 3.4). We first extract
the latent representations of annotations, each of
which consists of several tokens or words, for each
time point. Then, we average the latent represen-
tations of the LLMs across tokens or average the
word embeddings of Word2Vec across words. Be-
cause multiple annotations exist for each second,
except for Speech annotations, we calculate the
latent representations for each annotator for each
language model and then average the latent rep-
resentations across all annotators. For OPT and
Llama 2, we reduce the dimensions of the flattened
stimulus features using principal component anal-
ysis (PCA) and set the number of dimensions to
1280 (the same dimension as GPT2). We calculate
the PCA loadings based on the training data and
apply these loadings to the test data. In the main
analysis we calculate latent representations using
the annotation that correspond to the TR (1 sec-
ond). We confirm that the results do not change
significantly when we use longer context-lengths
(see Figure A.8).

We also explore how uniquely different levels of
semantic content explain brain activity compared
with features from other modalities: vision, audio,
and vision-semantic. For visual features, we extract
latent representations from DeiT (Touvron et al.,
2021) and ResNet (He et al., 2016). We input the
first and middle frames of each second of the video
into the model and extract the output from each
hidden layer. For audio features, we extract the
latent representations of audio data in the video
using AST (Gong et al., 2021) and MMS (Pratap
et al., 2023). We input audio data into the model
in 1-second intervals. We extract the output from
each hidden layer in response to the input. For
both the vision and audio modalities, we reduce
the dimensions of the flattened stimulus features
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using PCA and set the number of dimensions to
1280. We calculate the PCA loadings based on the
training data and apply these loadings to the test
data.

In addition to the unimodal feature, we ex-
tract vision-semantic multi-modal representations
from GIT (Wang et al., 2022), BridgeTower (Xu
et al., 2023), and LLaVA-v1.5 (Liu et al., 2023).
To obtain vision-semantic representations, we fed
paired visual and semantic data into the vision-
semantic models, using the same input format as
for the unimodal models. We use output from the
text-decoder in GIT, the cross-modal encoder in
BridgeTower, and the text-decoder in LLaVA-v1.5
as vision-semantic features. We average the latent
representations of text and images across tokens, re-
spectively. We finally reduce the dimensions of the
flattened features using PCA and set the number of
dimensions to 1280. In variance partitioning analy-
sis used to investigate unique variance explained by
multi-modal features compared with unimodal fea-
tures (see Section 3.7), we use Vicuna-v1.5 (Zheng
et al., 2024), which is the base model of the text
decoder of LLaVA-v1.5, and CLIP (Radford et al.,
2021), which is the image encoder of LLaVA-v1.5.
For CLIP, we use the model in LLaVA-v1.5, and
for Vicuna-v1.5, we use the model provided by
lmsys.

3.4 Brain encoding models
To investigate how different levels of semantic con-
tent are represented differently in the human brain,
we first build brain encoding models to predict
brain activity from the latent representations of lan-
guage models for each semantic content indepen-
dently (see Figure 1b). We separately construct en-
coding models for each subject, feature, and layer
(if applicable).

We model the mapping between the stimulus
features and brain responses using a linear model
Y = XW , where Y denotes the brain activity of
voxels from fMRI data, X denotes the correspond-
ing stimulus features, and W denotes the linear
weights on the features for each voxel. We esti-
mate the model weights from training data using
L2-regularized linear regression, which we subse-
quently apply to test data. We explore regulariza-
tion parameters during training for each voxel us-
ing cross-validation procedure. Because the dataset
contains nine dramas and movies, to tune the reg-
ularization parameters during training, we select
sessions from two to three dramas or movies as

validation data and use the remaining videos as
training data. We repeat this procedure across all
dramas and movies. For the evaluation, we use
Pearson’s correlation coefficients between the pre-
dicted and measured fMRI signals. We compute
the statistical significance using blockwise permu-
tation testing. Specifically, to generate a null distri-
bution, we shuffle the voxel’s actual response time
course before calculating Pearson’s correlation be-
tween the predicted response time course and the
permuted response time course. During this pro-
cess, we shuffle the actual response time course in
blocks of 10TRs to preserve the temporal correla-
tion between slices. We identify voxels that have
scores significantly higher than those expected by
chance in the null distribution. We set the thresh-
old for statistical significance to P < 0.05 and
correct for multiple comparisons using the FDR
procedure. We conduct all encoding analyses using
the himalaya library4(la Tour et al., 2022). We will
make our code publicly available on acceptance. In
the analysis for comparing different language mod-
els (Figures 2 and 3), we assume hemodynamic
delays of 8-10 seconds from neural activity to the
BOLD signal. We confirm that choice of delay
time does not significantly affect on the results
(See Figure A.7). In the analysis for comparing
multi-modal features (Figure 5), we use the delay
time of 6-8 seconds for the analysis of all features.

3.5 Comparison of different levels of semantic
content

To examine how uniquely each level of semantic
content explains brain activity, we construct a brain
encoding model that incorporates all the semantic
features and evaluate the unique variance explained
by each semantic feature using variance partition-
ing analysis (la Tour et al., 2022). In variance
partitioning analysis, we determine the unique vari-
ance explained by subtracting the prediction perfor-
mance of a model with a certain feature of interest
removed from the prediction performance of the
full model that includes all features. To estimate
the model weights, we use banded ridge regression
(la Tour et al., 2022), which can optimally estimate
the regularization parameter for different feature
spaces. For variance partitioning analysis, we use
Llama 2 as LLMs, and use the latent representa-
tions from the layers that demonstrate the highest
accuracy in cross-validation within the training data

4https://github.com/gallantlab/himalaya
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for each level of semantic content in the previous
encoding model analysis.

3.6 Principal component analysis

For interpretation purposes, we apply PCA to the
weight matrix of the encoding model (Huth et al.,
2012). Here, we focus on the representation of the
Story feature because the representation of such
high-level semantic content in the brain has not
been quantitatively evaluated in previous studies.
We use only the voxels with top 5,000 prediction
performance. To interpret the estimated PCs, we
project randomly selected 1,640 Story annotations
onto each PC, thus acquiring PC scores for the an-
notation. To further interpret the PC scores, we use
GPT-4 (gpt-4-1106-preview in the OpenAI API)
to classify these annotations into five semantic at-
tributes that are commonly present throughout the
annotations. Finally, we interpret PC1, PC2 and
PC3 as axes that represent content related to the
environment, interaction and cooperation in the
drama respectively. See Section A.1.4 for details.

3.7 Comparison of different modalities

Taking advantage of the fact that our stimuli con-
sist of visual, auditory, and semantic multi-modal
elements, we compare the prediction performance
of the visual, auditory, and semantic modalities of
brain activity. Thus, we use not only unimodal
features but also multi-modal features of the vision-
semantic modality. We build the encoding model
following the same procedure described previously
and compare its whole-brain prediction perfor-
mance.

Furthermore, we test whether the multi-modal
features can predict brain activity components that
unimodal features cannot. For this purpose, we use
variance partitioning analysis as described earlier.
The analysis procedure remains nearly identical
to the procedure we use for the different levels
of semantic content. We concentrate this analysis
on LLaVA-v1.5, which performs particularly well
among multi-modal models. As unimodal mod-
els, we use Vicuna-v1.5 for the semantic modality,
CLIP for the vision modality, and AST for the au-
dio modality. Here, we use Speech as semantic
features.

4 Results

4.1 Comparison of the language models

We first evaluate how different levels of seman-
tic content explain brain activity independently.
Figure 2a shows that Speech, Object, and Story
content predict brain activity with higher accu-
racy than Summary and TimePlace content. No-
tably, the larger the model, the better the predic-
tion performance, and in particular, Llama 2 con-
sistently achieves higher prediction performance
than Word2Vec for all subjects for Speech, Object,
and Story (P < 0.05, paired t-test). It also shows
that large models achieve higher prediction per-
formance for high-level background Story content.
See Figure A.1 for the results for all subjects. Fig-
ure 2b shows the prediction performance of the
whole-brain voxel-wise encoding model with all
five levels of semantic content simultaneously with
Llama 2. It demonstrates that we can predict brain
activity across a wide range of brain regions in-
volved in high-level cognition, in addition to sen-
sory areas that include vision and audio.

4.2 Variance partitioning analysis

In the previous analysis, we showed that the LLMs’
latent representations of Speech, Object, and Story
content predict brain activity well. However, the
unique contribution of each level of semantic con-
tent to the explanation of brain activity remains
unclear. Next, we use variance partitioning anal-
ysis (la Tour et al., 2022) to determine the extent
to which the different types of semantic content
uniquely account for brain activity.

Figure 3 shows that the latent representations
of Llama 2 for the semantic content of Speech,
Object, and Story correspond to spatially distinct
brain regions. By contrast, Summary and Time-
Place do not have unique variance (see Figure A.3).
Specifically, Speech is associated with the auditory
cortex, Object with the visual cortex, and Story
with a broader brain region, including the higher
visual cortex, precuneus, and frontal cortex. See
Figure A.2 for the results at the level of ROIs. Fur-
thermore, when we perform similar analysis using
Word2Vec with Story, the unique variance is lower
than that of Llama 2. This suggests that our en-
coding results obtained by LLMs reflect high-level
semantic information representations in the brain
(see Figure A.4).

These findings are consistent with those of previ-
ous researchers who focused on individual modali-
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Figure 2: Encoding model results. a Prediction performance (measured using Pearson’s correlation coefficients)
when predicting the brain activity of a single participant (DM09) from the latent representations of different language
models for five distinct levels of semantic content. The figure presents the average prediction performance on the
test dataset for the top 5,000 voxels, which we select within the training cross-validation folds in the layer that
exhibits the highest prediction performance. We choose layers and voxels for each semantic content and each
language model, respectively. The error bars indicate the standard error of the mean across voxels. b Prediction
performance for a single subject (DM09) when all five levels of semantic content are used simultaneously using
Llama 2, projected onto the inflated (top, lateral, and medial views) and flattened cortical surface (bottom, occipital
areas are at the center), for both the left and right hemispheres. Brain regions with significant accuracy are colored
(all colored voxels P < 0.05, FDR corrected). Black contours show several representative, anatomically defined
regions of interest (ROIs)

Figure 3: Variance partitioning analysis. Unique variance explained by the latent representations of the semantic
content of (a) Speech, (b) Object, and c Story for a single subject (DM09). We use Llama 2 as a language model.
For illustration purposes, we color only the voxels with a unique variance above 0.03.

Figure 4: Principal component analysis. PCA on the encoding weight matrix of the latent representations of
Llama 2 identifies the first three PCs for two subjects (Left, DM03; Right, DM09). Only the voxels with top 5,000
prediction performance are used for PCA.
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Figure 5: Comparisons among the modalities. a Prediction performance when predicting the brain activity of a
single participant (DM09) from the latent representations of the feature modalities. The results for Llama 2 are the
same as those in Figure 2b. b Unique variance explained by four modality features for a single subject (DM09).
Here, we use Speech as semantic features for Vicuna-v1.5 and LLaVA-v1.5. For illustration purposes, we color only
the voxels with unique variance above 0.03.

ties (e.g. (Huth et al., 2016)). However, a critical
distinction from earlier work is that we focus
on the unique explanatory power of individual
modalities when compared with other modal-
ities; that is, building on insights from previous
studies, we present the first comprehensive results
that integrate various semantic content into a single
study. Figure A.3 shows the results for all subjects
for all semantic content.

4.3 Principal component analysis
Thus far, we have demonstrated that different levels
of semantic content uniquely explain spatially dis-
tinct brain regions. Next, we analyze what specific
information is captured by our encoding models by
applying PCA to the weight of the encoding model
for the latent representations of Llama 2 for Story
content.

The first three PCs explain the weight matrices
of the top 5000 voxels, based on prediction perfor-
mance, with explained variance ratios of 27.2 ±
4.5%, 13.7± 1.3%, and 7.6± 1.6% (mean±s.t.d,
N=6). Figure 4a presents the projection of PC
scores computed for each voxel for two example
participants (DM03 and DM09). While high-level
semantic content within Story annotations is pre-
sumed to vary significantly between individuals,
we observe certain trends across participants, par-
ticularly PC1 and PC2. See Figure A.5 for the
results for all subjects.

4.4 Comparisons among the modalities
Given the multi-modal nature of the stimuli in our
study, we can quantitatively compare the prediction
performance of latent representations of semantics

with that of other modalities, such as vision and
audio.

Figure 5a shows the prediction performance of
each modality’s latent representation. Similar to the
semantic features, the visual and auditory features
predict brain activity well. Interestingly, the multi-
modal features (e.g. LLaVA-v1.5) predict brain
activity better than all other features.

Figure 5b demonstrates that the multi-modal fea-
tures (LLaVA-v1.5) uniquely predict brain activ-
ity in the association cortex, which cannot be ex-
plained by the unimodal features.

Together, these results suggest that the informa-
tion processing style of state-of-the-art multi-modal
deep learning models corresponds to human brain
activity better and more uniquely than the unimodal
models. This is intriguing because human cog-
nition is inherently multi-modal and multi-modal
models might capture such a computational process
in their latent representations. See Figure A.6 for
the results for all subjects.

5 Discussion and conclusions

In this study, we quantitatively compared the re-
lationship between different latent representations
of LLMs and brain activity using diverse anno-
tations of semantic content. To achieve this, we
collected 8.3 hours of an fMRI dataset of brain
activity recorded while participants watched exten-
sively annotated videos. We demonstrated that the
LLMs’ latent representations explain brain activity
particularly well for high-level background story
content compared with traditional language models.
Moreover, our results show that different levels of
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semantic content are distributed differently in the
brain. Finally, we demonstrated that multi-modal
vision-semantic models explain brain activity better
and more uniquely than unimodal models. While
our findings align with prior work, we extend it
by simultaneously providing a more detailed anal-
ysis of uniquely explained variances across mul-
tiple levels of semantic representations and brain
regions, particularly when comparing multimodal
and unimodal models. Overall, our findings pro-
vide valuable insights into interpreting LLMs from
a neuro-AI perspective, offering a finer-grained
understanding of the similarities between human
cognition and AI compared to previous studies.

We reemphasize that these insights were not ap-
parent from the modeling of individual features, as
was performed in previous studies. For instance,
the absence of unique variance for Summary and
TimePlace is a significant insight, which indicates
that simply including these types of information
in encoding analysis might not be sufficient for
capturing high-level semantic representations in
the brain. Our results do not indicate that such
information is absent in the brain but the absence
could be caused by the limitations of the modeling
approaches or fMRI measurement. Hence, in fu-
ture work, we need to consider how to model these
types of high-level information using our data as a
new biological benchmark for alignment between
LLMs and humans.

6 Limitations

Firstly, we constructed our encoding models using
multiple (five) levels of semantic content. Although
this approach is more comprehensive compared to
previous research, which typically used only one
level of semantic content, our study still does not
encompass the full diversity of semantic content
processed in reality. Moving forward, it will be cru-
cial to use resources like LLMs to annotate stimuli
and model a richer human semantic experience.

In this study, our focus was on the individual
level, which is the most typical approach in the
field of brain encoding models. We did not exten-
sively compare how the representations of semantic
content differ or shared among individuals. Since
our dataset includes six individuals viewing the
same stimuli, it will be crucial to compare these
results in future research.

In this study, we used vision-language models
to examine the importance of multi-modal fea-

tures. However, human perception encompasses
a broader range of modalities, including not just
vision and language, but also hearing and other
senses. To comprehensively understand these pro-
cesses, it is important for future research to utilize
models that can handle a greater variety of modali-
ties.

In this study, while we used LLMs (e.g. Llama2)
and multi-modal LLMs (e.g. Llava-v1.5), which
were commonly used at the time of the research,
more powerful models has been introduced con-
tinuously. It is important to examine whether the
accuracy will improve further by using these more
powerful models.

The overall accuracy for Summary and Time-
Place were low, even when using LLMs. We be-
lieve this is not because LLMs do not correspond
with the human brain in terms of these annotations,
but rather due to potential issues with the modeling
approach. In future studies, it will be necessary to
develop methods that can more precisely capture
such high-level information.
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A Appendix

A.1 fMRI dataset and preprocessing
A.1.1 Stimuli
In our study, we used multi-modal stimuli from
nine DVDs, which encompassed 10 episodes of
television drama series and a feature film, as de-
tailed in Table A.2. The selection of these nine
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DVDs adhered to specific criteria: We chose 1) in-
ternationally acclaimed dramas and films, premised
on the belief that their fame ensured the compelling
nature of their content. This was intended to capti-
vate the participants’ attention during the narratives
in our study. 2) We included a diverse range of
genres. Typically, a single story predominantly fea-
tures certain characters whose dialogue and actions
reflect the genre. In such limited scenarios, when
deploying algorithms based on machine learning
to analyze BOLD signals, ensuring the generaliz-
ability of results may prove to be challenging. To
cover a broad spectrum of scenarios, we included
films from multiple genres; The average total du-
ration for the 10 episodes was 49.98 minutes (Ta-
ble A.2). Each episode was segmented into two
to nine segments for use in our imaging sessions.
We chose the segmentation points to maintain seg-
ment lengths of approximately 10 minutes and to
coincide with transitions between narrative scenes,
thereby facilitating the participants’ comprehen-
sion of each episode. For each segment, except
the initial segment, we included the concluding
20 seconds of the preceding segment. The result-
ing segments varied in length from 512 seconds to
1271 seconds, with an average of 746.8 seconds
(Table A.2). Instead of converting each segment
into a separate film file, we designated specific play-
back intervals to the respective DVDs using the
intervals as visual stimuli in each imaging session.
All films, with the sole exception of “Ghost in the
Shell” (originally produced in Japanese), were pre-
sented in the Japanese-dubbed version, considering
that all participants in our study were Japanese.

A.1.2 Procedures
fMRI BOLD signals were recorded as participants
viewed the audiovisual content (the film segments)
from 10 episodes across nine DVDs. The visual
stimuli were projected centrally with a visual angle
of 26.78 × 15.85 degrees at 25 or 30 Hz. MR-
compatible headphones delivered the auditory stim-
uli. Prior to the viewing sessions, the audio levels
were calibrated using non-experimental test clips
to ensure clarity and a comfortable volume for par-
ticipants. Participants were instructed to view the
film segments casually, mirroring their everyday
television-watching experience. For each partici-
pant, fMRI data were acquired over 10 distinct ses-
sions. During each session, participants watched
one or two episode segments over three to five seg-
ments (each segment lasting approximately 10 min-

utes) (Table A.2). Because of its extended length
(about 2 hours), “Dream Girls” was viewed over
two sessions. Each segment’s film content was
displayed by cueing the respective DVD to play
at specific times using the VLC media player’s
(VideoLAN, France) command line interface. This
interface was set up to commence playback coin-
ciding with the scan’s start. Manual termination of
the scan followed the film segment’s conclusion,
thereby accommodating the varying durations of
playback across segments and sessions. In total,
around 9 hours (31905 seconds) of film content
were presented to the participants across 10 ses-
sions for fMRI data collection.

A.1.3 Preprocessing
For individual preprocessing of EPI
data for each participant, the Statisti-
cal Parameter Mapping toolbox (SPM8,
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/)
was used. EPI images were motion-corrected by
aligning them to the initial image recorded in the
first session for each participant. Voxel responses
were standardized by deducting the average
response over all time points. Subsequently,
prolonged trends in the standardized responses
were mitigated by detracting the outcome of
median filter convolution with a 120-second time
frame. Data standardization and detrending were
conducted for each movie segment for each voxel.
Data captured within the initial 20 seconds of the
scan were deemed susceptible to artifacts from
startup transients and thus excluded from the
analysis. The analysis considered data from 20
seconds post-scan initiation to the conclusion of the
film content. ). To account for the hemodynamic
response function (HRF), stimulus features were
time-shifted by 8s and then averaged with the
stimulus feature corresponding to each volume
and the feature corresponding to the subsequent
two-second volume. See Figure A.7

A.1.4 Interpretation of PCA
In the annotation process using GPT-4, we allowed
the annotations to be associated with multiple se-
mantic attributes. Then, we evaluated each PC ac-
cording to the average scores for the five attributes.
The five attributes depict a tense or peaceful envi-
ronment (“Tense confrontations or crime” and “Ev-
eryday interaction or peaceful living”), represent
individual or collective decision-making (“Personal
growth, change, or determination”, and “Decision-
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making or role of leaders”), and illustrate inter-
action or cooperation with others (“Mutual assis-
tance or cooperation’). We also define these five
attributes using GPT-4 by asking GPT-4 to identify
common attributes across annotations.

To further interpret information content in the
PCs, we projected Story annotations on each PC.
Again, we observed consistent trends in PC1 and
PC2. Figure 4b shows that PC1 contrasts annota-
tions related to individual or collective decision-
making (“Decision-making or role of leaders” and
“Personal growth, change, or determination”) with
annotations depicting environment or background
scenario (“Tense confrontations or crime” and “Ev-
eryday interaction or peaceful living”). Regarding
PC2, it contrasts annotations that indicate coop-
eration with others (“Decision-making or role of
leaders” and “Mutual assistance or cooperation”)
with more personal scenarios (“Decision-making or
role of leaders”, “Everyday interaction or peaceful
living,” and “Tense confrontations or crime”). Re-
garding PC3, although there was a tendency among
participants to contrast cooperation (“Mutual as-
sistance or cooperation”) with other attributes, the
variation across participants was large.

A.1.5 Feature extraction
We use bert-base-uncased, gpt2-large,
facebook/opt-6.7bm, meta-llama/Llama-2-
7b-hf, MIT/ast-finetuned-audioset-10-10-0.4593,
facebook/mms-1b-models, facebook/deit-base-
distilled-patch16-224, microsoft/resnet-50,
microsoft/git-base, BridgeTower/bridgetower-
base, and llava-hf/llava-1.5-7b-hf models
available on Hugging Face for BERT, GPT2,
OPT, Llama2, AST, MMS, DeiT, ResNet,
GIT, BridgeTower, and Llava-v1.5. We use
GoogleNews-vectors-negative300 model available
on https://code.google.com/archive/p/word2vec/.

A.2 Annotation procedure

Each video was annotated for five types of seman-
tic content, including utterance sounds, context,
and background stories. These annotations were
selected because they are critical for narrative un-
derstanding. While other annotations, such as dis-
course structure, dialogue acts, and various syn-
tactic and semantic analyses, are useful, our study
specifically aims at the natural flow and compre-
hension of narratives.

The annotations were performed by one or sev-
eral annotators, employed by external agencies, for

each type of semantic content.
Note that Speech annotations refer to the exact

content spoken by actors in a video (e.g., “Hey
John, how are you feeling?” “Great”). These can
indeed be expressed as language descriptions. On
the other hand, Story pertains not to the direct dia-
logue but to the context or background information
(e.g., “Mary and John, who have been childhood
friends, are reuniting after two years”). This allows
it to be described as a separate linguistic content
from the spoken dialogue.

The overview of each annotation and attributes
of the annotators are as follows. The details of
the annotation procedures will be more thoroughly
explained in the documentation accompanying the
future release of the dataset.

1. Speech: Describe the speech and narration
content, specifying the start and end times of
each segment. A single male annotator in his
40s annotated all the content.

2. Object: Describe the content displayed on the
screen every second. The descriptions should
be in natural language and range from one to
several sentences. Thirteen annotators anno-
tated the content, with 3 in their 30s, 7 in their
40s, and 1 in 50s. Eleven of the annotators
were female.

3. Story: Approximately every five seconds, de-
scribe the story based on the content of the
narrative. Three annotators annotated the con-
tent, with 1 in 30s and 2 in their 40s. Two of
the annotators were female.

4. Summary: Approximately every 1–3 minutes,
or at points where the overall flow of the
story changes, describe the content of each
section and provide summaries of the actions
performed by each character. Eight annotators
annotated the content, with 7 in their 30s and
1 in 40s. Six of the annotators were female.

5. TimePlace: At each scene transition, describe
the time of day and location. Three annotators
annotated the content, with 1 in 30s and 2 in
their 40s. Two of the annotators were female.

Note that, for Speech annotations, we transcribed
the words actually spoken in the video. Specifically,
we collected speech transcription from two annota-
tors. One of the annotators was an English speaker
and transcribed English speech while watching
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the movie with English audio. The other was a
Japanese speaker and transcribed Japanese speech
while watching a Japanese-dubbed version of the
movie. For each language, we split the speech into
units as short as possible to maintain the mean-
ing of sentences, and annotated the transcription
and the onset/offset of each speech part. The tran-
scription included speech, filler, and non-verbal
utterances (e.g. laughing voice and a cough) at-
tributed to each character. Note that English and
Japanese speeche coincided in both the timing of
delivery and the intended meaning, but they were
not entirely congruent.

Below are three example annotations from three
different scenes in our dataset. For Summary, the
description of the content section is extracted and
displayed:

• Scene from Suits:

– (Speech) A novel? A grade schooler?
– (Object) The face of a man in a suit is

shown large in the center of the screen.
The man looks forward, mouth closed,
and appears to have a serious expression
on his face.

– (Story) Harvey expressed surprise that
Mike, an elementary school student, was
reading an adult novel. Mike replied that
he loved books.

– (Summary) Harvey Spector is interview-
ing Mike Ross. He is interested in Mike
Ross when he hears how he was able to
identify him as a police officer. He gives
Mike Ross a question to test his knowl-
edge. Harvey Spector notices that Mike
Ross has a good memory and is smart,
and decides to hire Mike Ross as an as-
sociate.

– (TimePlace) Noon. Hotel. Room.

• Scene from The Crown:

– (Speech) It’s okay. It’s all right.
– (Object) A man is shown in the center

looking to the left. Behind the man is a
stained glass window, and several figures
are vaguely visible.

– (Story) Philip was waiting for the woman
(Elizabeth) in the church with a nervous
look on his face. He told himself over
and over again that he would be fine.

– (Summary) In front of the church altar,
Philip looks nervous as he waits for the
ceremony to begin. Former Prime Minis-
ter Winston Churchill and his wife arrive
at the church, where the attendees stand
to greet them.

– (TimePlace) Morning. Chapel.

• Scene from Ghost in the Shell: STAND
ALONE COMPLEX:

– (Speech) Hey, what’s going on?
– (Object) Two men are wearing uniforms

and have their hands clasped behind
their backs, as if guarding a figure sitting
in a chair. Behind them, a sharp-eyed
man appears to be on the phone..

– (Story) At air traffic control, one man
with glasses is impatient and tries to fig-
ure out what’s going on by whispering
on the phone.

– (Summary) A tank suddenly starts mov-
ing inside the experimental facility of
Kenryo Heavy Industries. When a
worker calls out to it, it stops, turns
around, and attacks the worker and other
tanks with a machine gun and cannon.
Unrest spreads among the workers and
air traffic controllers. Ohba watches the
scene from a short distance outside the
fence.

– (TimePlace) Morning. Inside the Dome.
Management Office.

A.3 Quality control of the dataset
To verify the quality of the dataset, we split the
dataset and annotations as follows to ensure that the
results were consistent when the encoding model
was built separately for each split.

First, we split the entire training dataset into two
parts: runs of the first and second halves of the
data used in the main analysis. We used the same
videos for testing dataset. Regarding ’Breaking
Bad,’ because only one run of data was used in
the main analysis, we excluded it from this control
analysis. The comparison shows that the results
for the two encoding models using different data
splits produced quite similar results across cortical
voxels (see Figure A.9).

We also checked the quality at the annotation
level. For our data, there were two annotators for
Story and five for Object. Therefore, for Story, we
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split the two annotators and these split are used to
create their respective encoding models. For Ob-
ject, we split the annotators into groups of three
and two and used to create their respective encod-
ing models to compare the results. The comparison
shows that the results for the two encoding models
using different annotator splits produced quite sim-
ilar results across cortical voxels (see Figure A.10).

Finally, for the Speech annotations, we per-
formed analysis to verify the consistency in the
speech transcription between Japanese and English.
Specifically, we compared the results for the encod-
ing models when we used Japanese Speech annota-
tion with the results when we used English Speech
annotation with the latent representations of GPT2.
In this analysis, we constructed the encoding model
for the two languages, respectively, and compared
the prediction accuracies across voxels for each
participant. We then examined whether the predic-
tion accuracies exhibited a similar pattern between
two annotations. We observed strong correlation
across all participants (DM01: Pearson’s r = 0.90,
DM03: r = 0.85, DM06: r = 0.91, DM07: r = 0.90,
DM09: r = 0.92, DM11: r = 0.82), which indicates
that the latent features for the two languages had
similar information to explain brain activity.

A.4 Additional results of encoding models
Figures A.1, A.3, A.5, and A.6 show additional
results for all subjects for Figures 2, 3, 4, and 5, re-
spectively. They show that our results were robust
across subjects.
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Title Created by EAN
Volume #, Episode #
(Total duration (s))

Play time for each run
(hour: minute: second)

Breaking Bad Vince Gilligan 4547462088963 Vol. 1, Ep. 1 (3479)

[run1] 00:00:00 – 00:11:19
[run2] 00:10:59 – 00:22:48
[run3] 00:22:28 – 00:34:23
[run4] 00:34:03 – 00:46:05
[run5] 00:45:45 – 00:57:59

Big Bang Theory
Chuck Lorre,
Bill Prady

4548967168747 Vol. 1, Ep. 1 (1374)
[run1] 00:00:00 – 00:12:27
[run2] 00:12:07 – 00:22:54

The Crown Peter Morgan 4547462113825 Vol. 1, Ep. 1 (3507)

[run1] 00:00:00 – 00:10:38
[run2] 00:10:18 – 00:20:43
[run3] 00:20:23 – 00:32:14
[run4] 00:31:54 – 00:45:58
[run5] 00:45:38 – 00:58:27

Heroes Tim Kring 4988102075101 Vol. 1, Ep. 1 (3194)

[run1] 00:00:00 – 00:10:17
[run2] 00:09:57 – 00:20:36
[run3] 00:20:16 – 00:28:48
[run4] 00:28:28 – 00:41:22
[run5] 00:41:02 – 00:53:14

Suits Aaron Korsh 4988102341596 Vol. 1, Ep. 1 (2362)
[run1] 00:00:00 – 00:12:34
[run2] 00:12:14 – 00:28:22
[run3] 00:28:02 – 00:39:22

Dream Girls Bill Condon 4988102646882 N/A (7481)

[run1] 00:00:00 – 00:12:44
[run2] 00:12:24 – 00:26:05
[run3] 00:25:45 – 00:39:22
[run4] 00:39:02 – 00:48:54
[run5] 00:48:34 – 01:07:12
[run6] 01:06:52 – 01:18:23
[run7] 01:18:03 – 01:32:46
[run8] 01:32:26 – 01:43:50
[run9] 01:43:30 – 02:04:41

Glee
Ryan Murphy,
Brad Falchuk,
Ian Brennan

4988142968722 Vol. 1, Ep. 1 (2877)

[run1] 00:00:00 – 00:12:02
[run2] 00:11:42 – 00:25:14
[run3] 00:24:54 – 00:34:55
[run4] 00:34:35 – 00:47:57

The Mentalist Bruno Heller 4548967348217 Vol. 1, Ep. 1 (2704)

[run1] 00:00:00 – 00:12:17
[run2] 00:11:57 – 00:22:04
[run3] 00:21:44 – 00:32:44
[run4] 00:32:24 – 00:45:04

Ghost in the Shell Kenji Kamiyama 5022366203746
Vol. 1, Ep. 1 (1510)
Vol. 1, Ep. 2 (1505)

[run1] 00:00:00 – 00:13:24
[run2] 00:13:04 – 00:25:10
[run3] 00:00:00 – 00:11:13
[run4] 00:10:53 – 00:25:05

Table A.2: Videos used for the experiment.

20328



Figure A.1: All subject results for comparing prediction performances among different language models for different
semantic contents.
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Figure A.2: Single subject (DM09) result for comparing prediction performances among different ROIs for different
semantic contents. Each bar represents averaged unique variance explained across voxels within each ROI
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Figure A.3: All subject results for comparing unique variance explained among different semantic contents using
variance partitioning analysis.
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Figure A.4: All subject results for unique variance explained of for Story feature for Llama 2 (Left) and Word2Vec
(Right), respectively.
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Figure A.5: All subject results for principal components analysis. We project each caption onto the PC space and
then calculated the PC scores for each attribute assigned to the caption. The error bars represent the standard error
of the mean PC scores across annotations belonging to each attribute.
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Figure A.6: All subject results for comparing the prediction performance among semantics, audio, visual, and
vision-semantic features.
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Figure A.7: Results for the encoding models under the assumption of different BOLD signal time delays, using
the Llama 2 with Story Feature. Changing the settings used in the main analysis (8-10s) does not affect the overall
patterns of results.
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Figure A.8: Result for the encoding models using the Story feature of Llama 2 with different context widths (w).
Changing the setting used in the main analysis (w=1s) does not affect the overall patterns of results.
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Figure A.9: Results for encoding models when training data are split in half (Split A and Split B) and the models are
built independently. We observe no significant difference in the distribution of the flat map in both splits. Also, when
comparing prediction performance across voxels between Split A and Split B, the results are generally reproduced
in both splits (see scatter plots).
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Figure A.10: Results for encoding models when annotations are divided into two splits (Split A and Split B) and the
models are built independently. We observe no significant difference in the distribution of the flat map in both splits.
Also, when comparing prediction performance across voxels between Split A and Split B, the results are generally
reproduced in both splits (see scatter plots).
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