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Abstract

When presented with questions involving vi-
sual thinking, humans naturally switch rea-
soning modalities, often forming mental im-
ages or drawing visual aids. Large language
models have shown promising results in arith-
metic and symbolic reasoning by expressing
intermediate reasoning in text as a chain of
thought, yet struggle to extend this capability
to answer text queries that are easily solved
by visual reasoning, even with extensive mul-
timodal pretraining. We introduce a simple
method, whiteboard-of-thought prompting, to
unlock the visual reasoning capabilities of mul-
timodal large language models across modal-
ities. Whiteboard-of-thought prompting pro-
vides multimodal large language models with a
metaphorical ‘whiteboard’ to draw out reason-
ing steps as images, then returns these images
back to the model for further processing. We
find this can be accomplished with no demon-
strations or specialized modules, instead lever-
aging models’ existing ability to write code
with libraries such as Matplotlib and Turtle.
This simple approach shows state-of-the-art re-
sults on four difficult natural language tasks
that involve visual and spatial reasoning. We
identify multiple settings where GPT-40 using
chain-of-thought fails dramatically, including
more than one where it achieves 0% accuracy,
while whiteboard-of-thought enables up to 92%
accuracy in these same settings. We present a
detailed exploration of where the technique suc-
ceeds as well as its sources of error.

1 Introduction

Which lowercase letter is a circle with a vertical
line touching it to the right going down?

This Question may sound rather trivial. Likely,
you solved it by forming a mental image as you
proceeded through the sentence, first placing the
circle then adding the line to recognize the letter
‘q.” If there had been more pieces to keep track

of, you might instead resort to pen and paper, but
follow a similar process.

Humans excel at this type of visual thinking.
We readily interweave reasoning in words and
reasoning in images to solve problems and
communicate ideas (Tversky, 2011); we form
images not only for directly visual reasoning, but
also to draw maps during spatial navigation (Card
et al., 1999) and even process abstract concepts
(Bobek and Tversky, 2016).

Large language models (LLMs) have revolution-
ized NLP (Brown et al., 2020; Vaswani et al., 2017),
showing the power of scaling parameter count and
training data in all sorts of reasoning tasks. Chain-
of-thought (CoT) prompting (Wei et al., 2022; Ko-
jima et al., 2023), which allows a language model
to solve complex problems by writing out interme-
diate steps as text before producing a final answer,
and similar techniques have shown huge promise
in tasks such as arithmetic and symbolic reasoning.
It is thus natural to ask: can LLMs solve tasks that
we, as humans, solve with visual thinking?

We find that for some tasks involving visual and
spatial reasoning, even the best LLMs fail dramat-
ically. In Fig. 1, we see GPT-40 (OpenAl et al.,
2023) claim the answer to our earlier question is
in fact ‘b’; it does not perform the correct implicit
visual reasoning about left, right, up, and down to
reach the correct answer. ‘b’ was observed sam-
pling deterministically; with temperature, it picks
randomly among ‘b’, ‘p’, ‘d’, and ‘q’, i.e., the
letters with the correct features but in different ar-
rangements. It references the ‘bowl’ and the ‘stem’
to narrow down potential options then fails to per-
form the spatial reasoning to determine what the
described orientation means. A formal background
in typography should not be needed to answer the
question; anyone who can create the correct visual
with a basic level of visual recognition will solve
it easily. This highlights the significant differences
between the two reasoning processes.

20016

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 20016-20031
November 12-16, 2024 ©2024 Association for Computational Linguistics


http://whiteboard.cs.columbia.edu

Chain-of-Thought

To identify the lowercase letter that
matches the description of “a circle with a
vertical line touching it to the right going
down,” let’s break down the description
step by step:

Query: Which lowercase letter is a circle with a vertical line touching it to the right going down?

Whiteboard-of-Thought
[Visualization Code]

import turtle

# Create a turtle object
pen = turtle.Turtle()

# Draw the circle
pen.penup()

pen.goto(@, -50) # Move to the starting position

1. **Circle**: This suggests a round shape.
2. **\/ertical line touching it to the right
going down**: This indicates that there is
a straight line attached to the right side of
the circle, extending downward.

pen.pendown()
pen.circle(50) # Draw a circle with radius 50

# Draw the vertical line

pen.penup()
pen.goto(50, ©) # Move to the right edge of the circle

pen.pendown( )

When we combine these two elements,
we get a shape that looks like this: "b".

pen.goto(50, -100) # Draw the vertical line downwards

¢ ﬁ Python Interpreter

The lowercase letter "b" consists of a
circular shape (the bowl) with a vertical

[Visualization Image]

line (the stem) attached to the right side
of the circle, extending downward.

Therefore, the lowercase letter you are
describing is "b".

Answer: “b”

u_ n

Answer: “Q

Figure 1: For queries that are trivial with visual reasoning, chain-of-thought (which produces the text on the left)
can fail in surprising ways. Whiteboard-of-thought (which produces the code, image, and text on the right) provides
an alternative to perform intermediate reasoning with images.

Our key idea is that visual reasoning tasks de-
mand visuals. We leverage the abilities of mul-
timodal large language models (MLLMs), which
accept inputs not only in text but other modalities
such as images, to achieve this. We show that pro-
viding MLLMs the ability to create and reason with
explicit visuals — like a whiteboard showing inter-
mediate thoughts — unlocks capabilities resembling
visual thinking.

We thus introduce ‘whiteboard-of-thought
(WoT)’: we provide MLLMs with a metaphorical
‘whiteboard’ to draw out the results of intermediate
reasoning steps as images, then prompt them to use
their visual input capabilities to produce answers
or perform further reasoning from the visuals made
by the model itself. We find that leveraging models’
existing ability to write code with visual graphics
libraries such as Turtle and Matplotlib proves suf-
ficient to create visuals useful for solving visual
reasoning tasks without requiring a single example.

We demonstrate the potential of this idea on
three BIG-Bench (Srivastava et al., 2022) tasks
involving understanding ASCII art, as well as a

recent difficult benchmark probing spatial reason-
ing abilities (Yamada et al., 2024), establishing a
large perfomance gap between WoT and CoT. We
further breakdown what types of problems are best
suited to performing reasoning on visual tokens
rather than text tokens. Finally, we identify cur-
rent limitations of MLLM abilities and provide a
detailed analysis of where WoT fails.

2 Preliminaries

We provide a brief overview of the main concepts
underlying this work here.

LLMs and MLLMs Large language models
have seen substantial success across a wide range
of natural language tasks by scaling data and pa-
rameter counts (Brown et al., 2020; Vaswani et al.,
2017). Recent work has extended advances in
language modeling to the multimodal input set-
ting, leading to multimodal large language models
(MLLMs). These models generate text conditioned
on not other text as context, but also inputs from
other modalities, enabling tasks such as caption-
ing or visual question answering. Of particular
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note for this work, the large amount of image-and-
text data available on the Internet has enabled this
effort to prove especially successful for image in-
puts, achieving state-of-the-art results across a wide
range of computer vision tasks (Li et al., 2023;
Alayrac et al., 2022; Liu et al., 2023) .

Chain of thought prompting Despite the suc-
cesses of scaling for large language models, di-
rectly producing answers to complex, multi-step
reasoning tasks, such as arithmetic or symbolic
tasks, historically has remained difficult. Wei et al.
(2022) introduced a simple technique to substan-
tially improve LLMs’ performance on these tasks:
few-shot chain-of-thought, prompting the model
to break down complex queries and answer step-
by-step by providing examples of the desired step-
by-step reasoning as context. Kojima et al. (2023)
broke this reliance on in-context exemplars to de-
velop zero-shot chain-of-thought (in this work, re-
ferred to as simply ‘chain-of-thought’ or CoT). In-
stead of using handwritten examples, they perform
two simple steps to elicit step-by-step reasoning.
First, they prompt the model with the query and an
additional instruction to ‘think step by step’; the
model then generates text comprising a reasoning
trace. Second, they feed the reasoning trace back to
the model, along with the instruction to produce an
answer. This approach highlighted the substantial
potential benefits of intermediate reasoning in the
attractive zero-shot setting.

Tool augmented large language models Other
work has shown that large language models can be
induced to use external tools, such as calculators,
to aid this intermediate reasoning. Nye et al. (2021)
provide language models with a scratchpad: a ded-
icated buffer of text designated for intermediate
computation, trained to mimic Python code exe-
cution. Gao et al. (2023b) and Chen et al. (2023)
instead use LLMs’ ability to write code to delegate
simple computation to the Python interpreter, pro-
viding the computed results back to the LLM as
text. To the best of our knowledge, we are the first
to consider this ability’s potential for generating
visualizations to aid with intermediate reasoning.

3 Whiteboard-of-Thought

The goal of this work is to equip MLLMs with the
ability to create images and visually process them
to better answer queries. Our approach operates
this whiteboard by synthesizing drawing code, exe-

cuting this code to create the drawing, and parsing
the resulting image before producing a final answer.
Fig. 1 shows an example of the full procedure.

Creating visuals with MLLMs. Current
MLLMs typically do not inherently possess the
ability to produce outputs in the visual domain.
Instead, we will show how we can create visuals
using a model that only produces text.

The images we create for visual reasoning tend
to be minimal, abstract, and symbolic (Tversky,
2011). We use code as a natural way to create such
visuals. Leveraging what models already know
about common Python libraries like Matplotlib
or Turtle enables this capability to emerge zero-
shot, without needing any specialized, hand-crafted
modules (though these could be made to adapt the
technique to specific domains). We discuss other
approaches such as text-to-image models in the
Appendix.

In order to generate the code, we provide
the MLLM with the query and prompt it to
write code to visualize it. For each query, we
prompt the MLLM with the input You write
code to create visualizations using the
{Matplotlib/Turtle} 1library in Python,
which the wuser will run and provide
as images. Do NOT produce a final
answer to the query until considering the
visualization. along with the query. The model
then decides what visualization code to write based
on the query. Full prompting and inference details
for code generation can be found in the Appendix.

The resulting code is then passed to a runtime
environment to render it in image form. In this case,
we use the Python interpreter with the previously-
mentioned visualization libraries.

Processing the generated visuals. To process
the resulting image, we make use of the MLLM’s
intrinsic multimodal input capacity. This obviates
the need for external tools, like handcrafted visual
modules (Gupta and Kembhavi, 2022; Suris et al.,
2023), leading to a tightly self-contained method.

In summary, the model is given a prompt includ-
ing the query, the knowledge that it can use the
aforementioned visualization libraries, and that it
will be provided the resulting images along with
the query to perform further steps towards produc-
ing a final answer. It produces code, which is then
executed to create an image. The resulting visual
is returned back to the model to perform the next
step or produce an answer.
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Figure 2: Example queries for each of the three ASCII
understanding BIG-Bench tasks (Srivastava et al., 2022)
we consider, along with the WoT visualization for each.

S ##

4 Experiments

We conduct experiments in two broad classes of
natural language tasks that involve visual reasoning.
First, we consider three datasets from BIG-Bench
(Srivastava et al., 2022) that involve understand-
ing information represented as ASCII text graphics.
Next, we consider tasks involving natural language
navigation under different spatial conditions (Ya-
mada et al., 2024).

We perform all experiments in the zero-shot
regime, and compare to two baselines without vi-
sualization: directly prompting the model for an
answer (‘Direct’) and zero-shot chain-of-thought
(Kojima et al., 2023) (‘CoT’). We use a tempera-
ture of 0 and greedy decoding for generation. For
all experiments, we use GPT-40 (gpt-40-2024-05-
13) as the underlying MLLM as it has each of the
necessary capabilities enabling our model and the
baselines — zero-shot chain-of-thought as well as
the ability to produce code outputs and to accept
image inputs. We explore preliminary experiments
with alternative models in Appendix F, with results
reflecting similar trends. Full prompts and other
generation details can be found in the Appendix.

4.1 ASCII Understanding

We begin with a clearly visual task found in BIG-
Bench: ASCII understanding. Recent work has
shown that even the strongest language models
struggle to recognize ASCII representations, and
that this failure can even be exploited to perform
highly effective jailbreak attacks resulting in unin-
tended and unsafe behaviors that bypass state-of-
the-art defense techniques (Jiang et al., 2024).
ASCII art highlights our ability to subcon-
sciously switch between processing modalities: it
requires reinterpreting characters that usually pos-
sess some natural language interpretation (e.g., ‘=’
as an equals sign) in a visual context, focusing on

MNIST Word Kanji
Direct 19.6 24.8 1.1
CoT 21.6 27.2 1.1
WoT (ours) 66.0 66.4 73.8

Table 1: ASCII recognition accuracy. MLLMs fail to
perform the task with text alone. WoT unlocks visual
processing to achieve substantial gains.

their arrangement and spatial relationships (e.g.,
======" as a horizontal line). For humans, writ-
ten text is typically processed with the same input
modality as images (our eyes), allowing us to en-
gage in visual thinking without any intermediate
processing.

Consider the difficulty of understanding ASCII
art being read aloud. This can be thought of as
similar to how LLMs process ASCII: as text tokens,
distinct from any visual tokens they may be able to
process if they have multimodal capabilities. Thus,
ASCII presents an interesting testing ground for
evidence of visual thinking in MLLMs.

We consider three domains of ASCII understand-
ing each comprising a task in BIG-Bench (Srivas-
tava et al., 2022): ASCII MNIST digit recogni-
tion, ASCII word recognition, and ASCII kanji
(Japanese logographic character) recognition. Ex-
amples of each of these can be found in Fig.
2 (along with the WoT visualization for each).
Dataset and evaluation details can be found in the
Appendix.

Results can be found in Table 1. We find that
state of the art MLLMs are largely incapable of
performing visual representation on these textual
inputs. Prompting for step-by-step reasoning in
words provides little benefit. However, providing a
whiteboard to enable models to create and consider
their own visualizations unlocks the visual thinking
abilities latent in the MLLM, leading to substantial
performance improvements.

Text-based approaches vs visualization At first
glance, the baseline performance on the MNIST
and word recognition tasks may seem surprisingly
high, potentially giving the impression that with
sufficient scale, text alone could conceivably solve
these tasks. Upon deeper inspection of where the
baselines succeed compared to where WoT suc-
ceeds, however, this notion quickly falls apart.
Examining the word recognition task, we find
that the text-only baselines fail to solve every in-
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WoT Viz

3D

Basic

Bubble

Dot Matrix

Figure 3: The different forms of ASCII in the BIG-
Bench ASCII Word Recognition task and the visualiza-
tions made by WoT. Note that ‘Bubble’ simply includes
the word with some additional characters, and ‘Doh’
forms the shape of each letter out of itself. (CoT results:
‘ascii’, ‘hello’, ‘discovered’, ‘meet’, ‘goodbye’.) Best
viewed with zoom.

stance that actually requires visual understanding,
i.e., that does not directly use the characters from
the word to form the ASCII string. In more detail,
the BIG-Bench ASCII word recognition task uses
five forms of ASCII, shown in Fig. 3 along with
visualizations made by WoT for each. Note that
‘Bubble’ simply includes the word with some ad-
ditional characters, and ‘Doh’ forms the shape of
each letter out of itself. In other words, they can
be solved without considering the queries visually.
We see in Table 2 that the only examples which
the text-based approaches recognize come from
these categories. The small boost CoT provides
comes entirely from the ‘Doh’ category, which can
be solved with linguistic reasoning. On the other
hand, WoT achieves dramatically higher perfor-
mance on every category other than ‘Bubble’, that
being the only fully ‘non-visual’ of the five.

Does ASCII understanding necessitate ‘reason-
ing’? One might contend that, for the ASCII un-
derstanding task, ‘constructing’ a helpful visual
could simply be rendering the ASCII directly as
an image, i.e., a fixed procedure with no dynamic
reasoning involved. At a motivational level, we

are using these tasks to evaluate our more general-
purpose method; the goal is not to devise an ASCII-
specific technique. Nevertheless, we conduct an
experiment comparing to this fixed baseline for the
word recognition task. That is, rather than generat-
ing code on a per-query basis to create visualiza-
tions as in WoT, for this baseline we render the text
directly as images and evaluate whether MLLMs
can understand these images directly.

We find that this approach results in an accu-
racy of 22.0% — comparable to (and in fact lower
than) the text-only baseline. Why? We manually
inspect the results, and find the errors fall into two
broad qualitative categories. First, ASCII art ren-
dered as text seems to result in some level of task
confusion, similar to ‘typographic attacks’ (No-
ever and Noever, 2021; Menon et al., 2022; Goh
et al., 2021; Materzynska et al., 2022; Ilharco et al.,
2022), between performing the intended task and
the character-level OCR task. Second, many of
the produced outputs are ‘technology’-related, for
instance ‘hello world’ or ‘Google’; we hypothesize
this may stem from the style of ASCII writing may
be spuriously correlated with these concepts on the
Internet. At a high level, drawing yourself a con-
fusing visual is worse than drawing no visual at
all.

On the other hand, WoT allows the model to
reason about how to render the visual. As seen in
Fig. 3, different types of ASCII input can be better
served by different visuals. For instance, direct ren-
dering may be suitable for ‘Bubble’, while others
such as ‘3D’ can be made more legible — even for
humans — with more careful visualization.

Error analysis One of the benefits WoT presents
is the ease of error attribution: that is, for each in-
stance, was the error due to issues in producing the
visualization, such as code execution errors or in-
correct visualization, or issues in visual recognition
from the generated visuals?

As the ASCII MNIST dataset is originally de-
rived from actual images, it provides an avenue
to ‘ground truth visualizations.” By measuring the
performance of the MLLM on the real images as
an ‘upper bound,” we can obtain insight into how
much of the error can be attributed to each of these
causes. If the model were able to produce the ‘ideal’
visualization for every data point, how much would
its performance be limited by its visual perception
capabilities? We find that the MLLM obtains an
accuracy of 80.8% on actual MNIST images. This

20020



3D Basic Bubble Doh Dot Matrix
Direct 0.0 0.0 100.0 50.0 0.0
CoT 0.0 0.0 100.0 625 0.0
WoT (ours) 92.1 78.0 42.1 89.6 11.8

Table 2: ASCII word accuracy breakdown. Using text alone fails every instance of ‘visual’ ASCII (see Fig. 3).

Code Execution
4%

Poor Visualization
21%

Visual Perception
75%

Figure 4: A qualitative breakdown of the sources of
error for WoT evaluated on the ASCII MNIST task.

suggests a substantial proportion of the remaining
error can be attributed to perception.

To understand the remaining sources of error
for WoT further, we conducted an in-depth error
analysis of the results on the ASCII MNIST task.
For each error, we qualitatively categorized each
error by its apparent cause, finding three broad
categories. First, if no image was produced at all,
e.g. due to the visualization script raising an error,
we labeled the cause ‘code execution.” Otherwise,
the authors determined if they would find it easy
to produce the correct answer from the generated
image, judging it a visual perception error if so
and poor visualization if not. The results of this
analysis can be found in Fig. 4. We find that indeed,
the errors largely stem from visual perception.

4.2 Spatial Navigation

Next, we consider the task of understanding the
spatial implications of natural language navigation
instructions. Given a sequence of spatial instruc-
tions like in Fig. 5, humans typically solve these
tasks with visual thinking, such as creating a men-
tal image or drawing a physical map (Garvert et al.,

Whiteboard-of-Thought

SDuQ

Query:

You have been given a pointy-topped
regular hexagonal tile map consisting of
2 rows, where the first row has one

tile and the second row has two tiles.

Starting from a vertex, you will move
along the edges of these tiles.

Initially, you are positioned at the top
corner of the map, where you find a
soup bowl. You move down-right by one
step, where you find a Chihuahua. You
move down by one step, where you find Peac
a dome. You move down-left by one
step, where you find a peacock. You
move down by one step, where you find
a Norwich Terrier. You move down-right
by one step, where you find a barrel. You

American Robin

move up-right by one step, where you
find a sulphur-crested cockatoo. You
move up by one step, where you find an
American robin. You move up-left by
one step.

sulphur-crested Cockatoo
Norwich Jerrier
N

S

What do you find at the final position? " ”
Answer: “dome” v

Figure 5: Example WoT visual for spatial navigation.

2017; Tversky, 2011; Bobek and Tversky, 2016).
We aim to understand whether MLLMs can solve
these tasks in text alone, possibly suggesting some
level of implicit visual thinking for spatial navi-
gation, or if providing a whiteboard to draw an
explicit map can provide additional value .

A simple navigation task appeared in BIG-Bench
(Srivastava et al., 2022), but only considers move-
ment forwards and backwards in a straight line.The
recent work of Yamada et al. (2024) presents a
more complex evaluation suite for probing the spa-
tial understanding of LLMs, including navigation
across a variety of spatial structures. In particular,
we note a distinction between the 2D grid naviga-
tion setting — ‘Square’ and ‘Rhombus’, here defined
as the square rotated 45 degrees — and the non-grid
geometries (‘Circle’, ‘Hexagon’, and ‘Triangle’).
We therefore elect to consider this evaluation suite.
We present an example, along with the WoT visu-
alization result, in Fig. 5. Details can be found in
the Appendix.

We present the results for navigation on differ-
ent spatial structures from Yamada et al. (2024) in
Table 3. Consistent with Yamada et al. (2024), we
observe that LLLMs using text excel in the 2D grid
setting but not other geometries, which Yamada
et al. (2024) hypothesize may be due to the grid
setting 1) being more easily represented as coordi-

20021



Non-Grid Structures 2D Grids Overall
Circle Hexagon Triangle Square Rhombus Avg
Direct 14 3 16 68 63 33
CoT 25 8 26 98 51 42
WoT (ours) 41 61 55 50 52 52

Table 3: Spatial navigation results. While reasoning in text may be suitable for 2D grid structures, non-grid

geometries see large improvements from drawings.

nates in text than any other setting, especially as an
upright ‘Square,” and 2) potentially having more
data presented in that form on the Internet, e.g., re-
lated to tabular data, city grids, and 2D maze coding
problems. We note that while humans may write
about square grids most often in text, grid cells
— which humans use to navigate physical spaces
and even map conceptual spaces (Constantinescu
et al., 2016) — represent space as a hexagonal grid
(Hafting et al., 2005), raising interesting questions
about how spatial comprehension differs between
LLMs and humans. WoT shows more consistent
performance across different geometries, obviat-
ing the reliance on 2D-grid specific textual knowl-
edge and highlighting the general applicability of
the approach. This results in reduced performance
on square grids, but higher performance across all
other shapes, with the difficult hexagon geometry in
particular seeing a jump from 8% with CoT to 61%.

5 In-the-Wild Examples

G in-of-
Query: e Chain-of-Thought

ETIN The poem is arranged in a way that creates a
GS visual image. The lines are centered and vary in
2 length, creating a shape that resembles a tongue

AR

TH or a speech bubble.
OF

T E Whiteboard-of-Thought

The visual layout of the poem is not just a
random arrangement of words but a
deliberate design to evoke the image of
the Eiffel Tower, symbolizing Paris. This
adds a layer of meaning to the poem,
connecting the text to the iconic structure
and the cultural significance of Paris.

ENT TONGUE

WHICH POKES
FROM YOUR MOUTH

0 PARIS

AND WILL POKE
FOR EVER
AT THE

GER MANS
What is the visual meaning of this poem?

Figure 6: Calligram understanding: WoT correctly iden-
tifies the meaning behind the poem, while CoT picks up
on the word ‘TONGUE’ to hallucinate a response.

In this section we showcase some instances of
WoT in the wild.

Calligrams Calligrams are poems where the vi-
sual organization of the words adds to the meaning
of the poem. Fully understanding a calligram re-
quires consideration of the text not only from a
linguistic perspective, but also a visual one. The

Whiteboard-of-Thought

The drawing your child made
in Minecraft appears to
resemble the face of a
Creeper, a well-known
character from the game.

Query:

My child made a drawing in Minecraft. It
makes an 8 by 8 grid.

He placed blocks left to right, top to
bottom.

First he put down 15 brown wool blocks.
Then he alternated 2 brown wool, 2
orange wool, for 4 times.

Then 4 brown wool, 2 orange wool, 5
brown wool, 4 orange wool, 4 brown
wool, 4 orange wool, 4 brown wool, 1
orange wool, 2 brown wool, 1 orange
wool, and finally 2 brown wool. There
were no empty blocks.

What did he draw?

The Creeper's face is
typically characterized by a
square shape with two eyes
and a mouth, which is
represented here by the
orange wool blocks against a
brown wool background.

Figure 7: WoT could be used in settings like video
games, where actions are expressed in text (e.g., code
or logs) but have visual results.

famous poem by Guillaume Apollinaire — En-
glish translation: Claudia Habergham (Feshchenko,
2019) — in Fig. 6 is meant to evoke the Eiffel
Tower. Despite being given the same input infor-
mation, CoT hallucinates the shape of tongue or
speech bubble, likely due to the word ‘tongue’ ap-
pearing in the poem. WOoT, on the other hand, is
able to correctly analyze the poem by first creating
a visual. (Interestingly, we find GPT-40 has the
original French poem memorized, and claims the
words form the Eiffel Tower regardless of the ac-
tual shape given; perhaps unsurprising, as this may
be one of the most famous calligrams ever made.)

Video game art Video games and other digital
spaces allow for players to interact with virtual
worlds, rendered visually, through predefined ac-
tions. This has long led to players creating art
through any means the game offers, often with im-
pressive results. For games aimed at children in
particular, it is an important task to detect if the vi-
suals players create are content-appropriate. Given
only text logs or description of a player’s actions,
it is difficult for models to process the visual im-
plications of said actions, even though the actions
fully define the resulting visuals. WoT provides a
solution to this, by actually producing what the re-
sult would look like. We provide a simple example
towards this goal in Fig. 7.
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6 Related Work

6.1 Intermediate reasoning for language
models

The success of chain-of-thought (Kojima et al.,
2023; Wei et al., 2022) in arithmetic and sym-
bolic reasoning tasks led to substantial interest in
the area from the NLP community and beyond.
(Yao et al., 2023) generalizes CoT to perform
search over trees of candidate rationales. The
concurrent ‘Visualization-of-Thought’ (Wu et al.,
2024) prompts models to produce a text pseudo-
visualization, e.g., ASCII, and present results sug-
gesting this may improve spatial reasoning as mea-
sured in the 2D grid navigation setting of Yamada
et al. (2024); compared to our approach, this re-
stricts the category of what can be visualized, and
cannot use what the model may have learned in
other modalities. Zhang et al. (2023) and Lu et al.
(2022) use chain-of-thought style rationales with
image and text inputs.

All of these works, ultimately, express their in-
termediate results as text in some form; our work
instead considers the potential of using images to
express intermediate reasoning for MLLMs.

6.2 Tool usage and code augmentation

Scratchpads Nye et al. (2021) form a philosophical
parallel to our whiteboards, aiming to augment a
language model allowing for additional computa-
tion (in their case, a text buffer trained on Python
execution traces). PAL and PoT (Gao et al., 2023b;
Chen et al., 2023) achieve impressive results on
arithmetic word problems by using the Python in-
terpreter. Toolformer (Schick et al., 2023) demon-
strates a training method to induce language models
to invoke API calls to tools. VisProg (Gupta and
Kembhavi, 2022) and ViperGPT (Suris et al., 2023)
provide an API of visual modules to an LLM to
perform visual reasoning, using a domain specific
language and the Python interpreter respectively.
HuggingGPT (Shen et al., 2023) shows LLMs can
instead use existing models from the HuggingFace
Transformers library (Wolf et al., 2020).

6.3 Visual and spatial reasoning in LLMs and
MLLMs

We are by no means the first to observe the limited
success of LLMs and MLLMs on tasks requiring
visual and spatial reasoning. The capacity of these
models for grounding — tying knowledge from the
textual domain to that of other modalities, such as

vision — is controversial. Patel and Pavlick (2022)
suggests LLLMs that have only seen text can per-
form few-shot mapping of new concepts, such as
spatial directions and color, onto grounded world
representations. Prompted by this, Yamada et al.
(2024) perform an in-depth evaluation of the spatial
understanding of state-of-the-art LLMs, creating
an extensive benchmark assessing understanding
of navigation instructions on different spatial struc-
tures; they find that while GPT-4 in particular per-
forms successful spatial navigation on 2D grids but
that in general, this does not hold for other spatial
structures. Jiang et al. (2024) shows that LLMs
are not capable of recognizing ASCII art which re-
quires visual rather than simply textual understand-
ing, and make use of this shortcoming to develop
a jailbreak method that bypasses all current meth-
ods for defense and elicits unsafe behavior from
state-of-the-art LLMs.

Zhang et al. (2024); Gao et al. (2023a); Kazemi
et al. (2023) show that current MLLMs struggle
to understand mathematical diagrams, such as ge-
ometric figures and graphs. Concurrent work by
Wang et al. (2024) finds the same, suggesting a
domain-specific language for vector graphics as an
alternative input to images for LLMs to perform
low-level visual reasoning. Meanwhile, Huang
et al. (2023) and Han et al. (2023) show MLLMs
perform poorly on chart understanding. As dis-
cussed in the Limitations section, these weaknesses
pose barriers to the application of WoT in these do-
mains with current models. We are confident that
as the visual capabilities of MLLMs continue to
improve in these domains, WoT’s performance will
similarly grow.

7 Conclusions

We propose whiteboard-of-thought, a simple, zero-
shot method to unlock visual reasoning across
modalities in multimodal large language models.
We accomplish this by generating code that can
create a visual, then returning the visual back to
the model for further reasoning. This work demon-
strates whiteboard-of-thought’s capabilities across
multiple tasks requiring visual and spatial reason-
ing that have thus far proved challenging for current
state-of-the-art models with text reasoning. As the
abilities of these models to generate code, under-
stand visual inputs, and perform general reason-
ing continue to improve, we expect the results of
whiteboard-of-thought to similarly grow.
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8 Limitations

One challenge is that WoT requires accurate vision
systems. As detailed in the discussion of Fig. 4,
a large proportion of the current errors stem from
visual perception. Computer vision has advanced
substantially in recent years, but there are still limi-
tations.

For example, a natural domain in which humans
apply visual thinking is geometry; yet, even state-
of-the-art MLLMs are not yet capable of under-
standing detailed geometric figures (see Related
Work). As computer vision advances, our method
will only grow more useful.
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A Discussion of Text-to-Image Models

Another interesting option to consider might be
text-to-image models (Rombach et al., 2022; Sa-
haria et al., 2022; Ho et al., 2022), which are al-
ready integrated into some LLMs (?), or MLLMs
that natively generate sequences of multiple modal-
ities (Yu et al., 2023; Koh et al., 2023b,a). Text-to-
image models have seen great successes, creating
diverse and high-quality images from given text
prompts(Rombach et al., 2022; Saharia et al., 2022;
Ho et al., 2022). Despite this, it remains difficult
to use them to create precise figures and drawings
that would be suitable for visual reasoning, though
there are exciting preliminary works in this direc-
tion (Rodriguez et al., 2023a,b; Jain et al., 2023;
Xing et al., 2023). As more effective methods for
precisely controlling text-to-image models emerge,
these could be easily integrated into WoT.

B Code and Details for Qualitative
Examples

All qualitative examples created with temperature
0, max tokens of 2048, top p of 1, frequency
penalty of O, presence penalty of 0, and with his-
tory (when the model considers the image, it also
sees previous exchanges including the generated
code, discussed more in Experimental Details). All
generated code for qualitative figures will be re-
leased with the code for experiments. We present
an example for the ASCII creation setting (from
Fig. 3) here.
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Python Code for ASCII Art

Listing 1: Python Code for ASCII Art

import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import numpy as np

# Define the ASCII art
ascii_art = [

T kkkkokk L kkokkok L kkokkkk "

R L VR L NN s NN E L

P KkxxxK [ Kkkkkkk | kxxxxxx "

NN VALY NN L VN NN AL N

T kkkkkk [ [xkkkkk /[ [kxkxkkxk "

R Y NN R NN Y
]

# Define the color mapping
color_map = {
v, 1, 1), # white
"x': (@, 0, 0), # black
'/': (0.5, 0.5, 0.5) # gray
}

# Determine the size of the grid
rows = len(ascii_art)
cols = max(len(row) for row in ascii_art)

# Create an array to hold the colors
image = np.ones((rows, cols, 3))

# Fill the array with colors based on the ASCII art
for i, row in enumerate(ascii_art):
for j, char in enumerate(row):
if char in color_map:
image[i, j1 = color_map[char]

# Create the figure and axis
fig, ax = plt.subplots(figsize=(6, 6))

# Display the image
ax.imshow(image, interpolation='nearest')

# Remove the axes
ax.axis('off ')

# Show the plot
plt.show()

. J

C Experimental Details

Here we provide details relevant to each experi-
ment.

For all experiments, we use GPT-40 (gpt-4o-
2024-05-13) as the underlying MLLM as it has
each of the necessary capabilities enabling WoT —
in particular, the ability to produce code outputs
and to accept image inputs. For the initial query,
we use a temperature of 0, max tokens of 2048,
top p of 1, frequency penalty of 0.05, and pres-
ence penalty of 0. We use these settings for all
direct queries and chain-of-thought experiments as
well. For the subsequent image query, we use the
same settings but with max tokens set to 256 and
no frequency penalty.

As all experiments use a temperature of 0 and
deterministic sampling, we do not perform multiple
runs.

We do not use any GPU resources of our own
for these experiments, instead using the OpenAl
API for LLM/MLLM queries.

The core prompt enabling WoT is “You write
code to create visualizations using the {Matplotlib/-
Turtle} library in Python, which the user will run
and provide as images.", provided as a system
prompt. We describe some additional details here
that we used to condition current MLLMs into the
desired behavior. For all experiments, we append
“Do NOT produce a final answer to the query un-
til considering the visualization." to the system
prompt, as we found GPT-40 would often directly
produce an answer without waiting for an image to
be provided otherwise, often by hallucinating that
it already had seen the image. Curiously, we found
that the OpenAl content filter initially flagged a
large proportion of examples, especially those that
appeared pixelated and stretched to the borders,
as inappropriate content. We added a white bor-
der and resized all images before sending them as
queries, which somehow avoids the filter. We use
the prompt from (Yamada et al., 2024) for direct
answer prompting: “You are given a task to solve.
Make sure to output an answer after "Answer:"
without any explanation."

The code from the produced response for visual-
ization typically is contained as a code block in a
broader response. We extract this with the regular
expression re.findall(r"“‘python(.*?)“‘",
text, re.DOTALL); we note this may present a
source of error in failing to detect code that is not
enclosed in such a block.

We found that providing both the previous his-
tory and the image in the image understanding
query as opposed to passing on just the image ob-
tained results within 1% for our evaluation setting,
so we elect to use the latter in general as it uses
substantially fewer tokens. This choice could have
interesting implications for e.g., faithfulness, where
the result is guaranteed to be faithful to the image
with this approach (vs not in the other case). We
leave this to future work.

The ASCII understanding tasks from BIG-Bench
(Srivastava et al., 2022) were not included in BIG-
Bench Hard (Suzgun et al., 2022) due to being “not
even worth attempting with chain-of-thought." As
such, we follow a similar procedure to construct
evaluation splits here. In particular, we take a sub-
set of 250 randomly chosen examples from the
evaluation splits of each of the three tasks, and man-
ually verify that they can be answered. (Running
69984 queries would also be prohibitively costly.)
We remove the choices for all multiple choice ques-
tions (e.g., MNIST being given options 0-9.) For
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the kanji recognition task, we only include prob-
lems from the pronunciation subtask rather than
the translation subtask due to lack of data. We in-
voke Matplotlib as the visualization tool for each
of these experiments. For the image creation query,
we provide the ASCII content and append each of
the following: “Write Python code with Matplotlib
to render the ASCII art as an image." This avoids
the model forgetting its task and directly answer-
ing. “Let the main figure be called fig with size
6,6." This makes it easy for us to save the generated
figures. “Ensure each character in the input is con-
sidered. Remember colors are matplotlib.colors,
and colors must be RGB to be displayed. Remem-
ber not all rows are necessarily the same length."
These prevented common execution errors that did
not seem to reflect the true visualization capabili-
ties of the model or were due to formatting issues
in the original ASCII. For the image prompt, While
we hope that as models continue to improve, these
additions will be less necessary, we believe they do
not detract from the results. To evaluate answers,
we convert MNIST digits to integers and compare
equality with ground truth, marking an instance
incorrect if the type conversion fails; for word and
kanji recognition, we convert the output string to
lowercase and perform exact string matching.

We use data created by (Yamada et al., 2024) to
evaluate spatial understanding of LLMs for the spa-
tial navigation experiments. In particular, we use
the set described in Section 3.1 of that work, “Do
different spatial structure features affect model per-
formance?" In particular, this includes the ring/cir-
cle, hexagon, square, rhombus, and triangle, with
100 examples for each for 500 total. We use Tur-
tle as the visualization tool for this task. For the
image creation query, we provide the navigation in-
structions and append each of the following: “Use
Python code with Turtle to visualize each step."
As otherwise the model would still forget its in-
structions and produce an answer directly. “All
directions are in reference to up at setheading(90)."
To provide a frame of reference for the language
given. “Name the turtle t; let the step size be 200;
mark the final position with a red dot (do not write
the final position as text). All other steps may be
written as text." This allows us to easily save the
resulting visualization. We found one limitation of
the current method to be that the created visual was
often correct, but had text overlap that prevented
legibility (e.g., writing ‘Final Position’ on top of
the item found at that spot); this could be avoided

by returning the image back to the model and ask-
ing it to modify the code, but doing this for every
query is costly, resulting in these modifications. It
may be interesting to explore models revising their
own visuals as future work.

D Potential Risks

While this work may help against some forms of vi-
sual adversarial attacks (Jiang et al., 2024), opening
up the possibility for text queries to involve image
processing could have unforeseen consequences
for new forms of attacks. In addition, improving
the reasoning abilities of LLMs and MLLMs in
general may involve some risks, such as to certain
forms of employment; however, we do not see par-
ticular ways our technique contributes to that past
the general setting.

E Notes on Artifacts Used

The primary scientific artifacts used in this work
are the ASCII task datasets from BIG-Bench (Sri-
vastava et al., 2022) and the spatial navigation
dataset of Yamada et al. (2024). BIG-Bench uses
an Apache 2.0 license. The ASCII MNIST dataset
contains handwritten digits in Arabic numerals
(common worldwide); ASCII words includes only
English words; and ASCII kanji includes only
Japanese kanji. The spatial navigation dataset of
Yamada et al. (2024) uses an MIT license and only
includes English words. By the way the data are
constructed the data does not include names or
personal information. The uses here as evaluation
suites are consistent with the intents in both cases.

Code will be made available. Copilot and GPT-
4 were used in the creation of the code for e.g.,
processing CSV files.

F Alternative Models

Here we conduct preliminary experiments with
models other than the GPT-40 model used in the
main paper.

In particular, we consider Claude 3.5 Sonnet
and LlaVA-1.6 34B. Due to cost and rate limits,
we experimented with the ASCII word recognition
task and (a 50% subset of) the spatial navigation
task as representative.

Broadly, our findings are that Claude follows the
same trends that we observed for GPT-40, while
LlaVA does not have the necessary code generation
capabilities to use the method (the code it writes to
generate a visual does not execute successfully).
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3D Basic Bubble Doh Dot Matrix
Direct 0.0 6.0 100.0 70.8 0.0
CoT 0.0 6.0 100.0 83.3 0.0
WoT (ours) 77.7 68.0 63.1 41.6 3.9

Table 4: Claude ASCII word accuracy breakdown.

We see a similar trend as with GPT-40, with text-only

reasoning performing poorly for ‘visual’ ASCII recognition.

Non-Grid Structures 2D Grids Overall
Circle Hexagon Triangle Square Rhombus Avg
Direct 14 7 37 68 72 39.6
CoT 33 14 38 85 63 46.6
WoT (ours) 40 55 54 48 52 49.8

Table 5: Claude spatial navigation results. We again see largely similar trends as with GPT-4o.

Claude ASCII Word Recognition

The results can be seen in Table 4. We find that
the direct approach obtains an accuracy of 30%,
chain-of-thought obtains 32%, and whiteboard-of-
thought obtains 52%. This is a substantial gap.
Breaking down the types of successes and mis-
takes, we find the same trend as with GPT: the
text-only approaches perform poorly on every cate-
gory that requires any visual understanding (recall
Figure 3 for what each font looks like; ‘bubble’ and
‘doh’ are the fonts that can be solved with textual
reasoning alone).

Claude Spatial Navigation

The results can be seen in Table 5. We again ob-
serve similar behavior to WoT with the GPT-40
model. WoT achieves stronger performance on the
non-square grid structures, while text alone per-
forms better for the square and rhombus (rotated
square in this benchmark), which are easy to reason
about in coordinates. The Claude model generally
performs better with text than GPT-40 does, re-
sulting in a smaller gap in the averages, but the
differences when broken down by geometry tell the
fuller story.

LlaVA-1.6 34B Experiments

We also experimented with LlaVA-1.6 34B, which
is one of, if not the strongest, open MLLM cur-
rently available. However, we found that it was
largely unable to write appropriate code. Out of
250 instances of the word recognition task that we
tried, it did not write code that successfully resulted
in an image a single time. We are excited for up-

coming open MLLMSs, such as Llama-V-405B, that
appear to have stronger code generation capabili-
ties; we hope to conduct experiments with those
models once they are available.
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