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Abstract

Few-Shot Cross-Domain NER is the process
of leveraging knowledge from data-rich source
domains to perform entity recognition on data-
scarce target domains. Most previous state-of-
the-art (SOTA) approaches use pre-trained lan-
guage models (PLMs) for cross-domain NER.
However, these models are often domain spe-
cific. To successfully use these models for
new target domains, we need to modify either
the model architecture or perform model fine-
tuning using data from the new domains. Both
of these result in the creation of entirely new
NER models for each target domain which is
infeasible for practical scenarios. Recently,
several works have attempted to use LLMs
to solve Few-Shot Cross-Domain NER. How-
ever, most of these are either too expensive
for practical purposes or struggle to follow
LLM prompt instructions. In this paper, we
propose IF-WRANER (Instruction Finetuned
Word-embedding based Retrieval Augmented
large language model for Named Entity Recog-
nition), a retrieval augmented LLM, finetuned
for the NER task. By virtue of the regulariza-
tion techniques used during LLM finetuning
and the adoption of word-level embedding over
sentence-level embedding during the retrieval
of in-prompt examples, IF-WRANER is able
to outperform previous SOTA Few-Shot Cross-
Domain NER approaches. We have demon-
strated the effectiveness of our model by bench-
marking its performance on the open source
CrossNER dataset, on which it shows more
than 2% F1 score improvement over the previ-
ous SOTA model. We have deployed the model
for multiple customer care domains of an en-
terprise. Accurate entity prediction through IF-
WRANER helps direct customers to automated
workflows for the domains, thereby reducing
escalations to human agents by almost 15% and
leading to millions of dollars in yearly savings
for the company.

1 Introduction

Named Entity Recognition (NER) (Chinchor and
Robinson, 1997) is a key process in information
extraction, designed to identify and categorize enti-
ties in natural language into predefined entity types.
Due to the large variations in entities and the way
they are used across domains, NER has been a
challenging task in NLP. Most traditional NER
models require large volumes of labelled data for
training (Wang et al., 2022; Yu et al., 2020; Wang
et al., 2020b; Li et al., 2022a). However, collecting
large volumes of labeled data is both costly and
time consuming. Therefore, we need a model that
can perform NER on multiple domains with mini-
mal labeled examples from that domain. To tackle
this problem, several solutions have been proposed,
which attempt to transfer knowledge from data rich
source domain to perform NER on data-scarce tar-
get domain. This is referred to as Few-Shot Cross-
Domain NER.

The traditional way of solving this involves train-
ing PLMs with entity-tagged source domain data,
followed by fine-tuning them on target domain
data, thereby transferring knowledge from source
to target domain. This approach fails to address
the semantic gap that may exist between source
and target domains. To address this, some previ-
ous studies utilize adding auxiliary objects (Liu
et al., 2020a; Wang et al., 2020a) or designing new
model architectures (Jia et al., 2019; Liu et al.,
2020a; Jia and Zhang, 2020) to train with both
source and target domain data. Liu et al. lever-
ages continued pretraining with target domain data
for a better understanding of domain-specific data.
Another line of research (Zheng et al., 2022; Hu
et al., 2022) focuses on modeling the label relation-
ship across domains to improve label information
transfer. Specifically, LANER (Hu et al., 2022)
utilizes an architecture to better leverage seman-
tic relationships among domain labels to increase
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cross-domain performance.
Most Few-Shot Cross-Domain NER models

however, have one or both of the following weak-
nesses:

• Models like LANER (Hu et al., 2022), have ar-
chitectures that are very specific to the source
and target domain pairs. Making these mod-
els work well for a new target domain requires
tweaking the architecture.

• Other approaches require finetuning of model
on target domain data. This is not feasible in
real life scenarios due to computational resource
and time crunch.

Our approach involves a single model architecture,
finetuned only using entity tagged source domain
data. For adaptation to target domain, our model
does not require further fine-tuning.

Recently, with the advent of generative AI, many
researchers have tried to use LLMs to solve the
Few Shot Cross-Domain NER problem. GPT-NER
(Wang et al., 2023) and PromptNER (Ashok and
Lipton, 2023) have experimented with different
LLM prompting strategies for the task with vary-
ing degrees of success. GPT-NER further demon-
strates that using the Retrieval Augmented Genera-
tion (RAG) (Lewis et al., 2020) framework to select
the in-prompt examples further boosts NER per-
formance. One common theme that has emerged
from these works is that most of these approaches
demonstrate good performance with GPT4 as the
backbone LLM. Open source alternatives typically
fall well short of SOTA performance as they do
not seem to closely follow the prompt instructions.
This is a serious problem for real world scenarios
as the use of proprietary software like GPT4 can
be cost-prohibitive, especially for applications op-
erating at scale. In our approach, we finetune open
source LLMs (Touvron et al., 2023), so that they
can follow domain specific prompt instructions for
the NER task.

Like GPT-NER (Wang et al., 2023), we too
utilise the RAG framework for selecting in-prompt
examples. We store labelled domain data and their
vector embeddings in a vector store and extract
relevant domain examples from the store during
inference based on similarity between the infer-
ence query embedding and the embeddings stored.
Most applications using the RAG framework use
sentence level embeddings for similarity score cal-
culations. In our work, we show that for the NER
task, retrieving examples based on word-level em-

bedding similarity performs much better than that
based on sentence-level embedding similarity.

2 Background and Related Work

Traditional approaches to solve the NER problem
typically fall into one of the two categories:
• BERT-based (Devlin et al., 2018) models like

BERT-Tagger, introduced by Ding et al., 2021
are built by adding a linear classifier on top
of BERT such that each token in the sentence
is classified into one of the pre-defined entity
types. These models are generally trained with
a cross-entropy objective.

• Meta-learning approaches like ProtoBERT
(Snell et al., 2017), NN-Shot (Yang and Kati-
yar, 2020) and Struct shot (Yang and Katiyar,
2020) derive a prototype for each entity type by
computing the average of the contextual embed-
dings of the tokens that share the same entity
type. Nearest neighbour algorithms are then
used to classify each token of an input sentence
into one of the entity types based on similarity
between the token embedding and the embed-
dings of the prototypes.

While meta-learning based techniques fare better
than BERT based models in the few-shot setting,
they still require substantial amounts of data for
creating representative prototypes.

Cross-domain Named Entity Recognition (NER)
algorithms (Lin and Lu, 2018; Yang et al., 2018)
help to address the issue of data scarcity in the
target domain by leveraging data from source do-
mains. One commonly used strategy to tackle
Few-Shot Cross-Domain NER is multitask learn-
ing, which involves the use of auxiliary objects (Liu
et al., 2020a; Wang et al., 2020a) or the develop-
ment of fresh model structures (Jia et al., 2019; Liu
et al., 2020a; Jia and Zhang, 2020). These methods
aim to enhance the NER performance in the target
domain by training on data from both the source
and target domains. Another facet of cross-domain
NER research concentrates on the transfer of label
information across domains. As noted by Zheng
et al., 2022, the relationship of labels can be repre-
sented as a probability distribution to facilitate the
transfer of cross-domain knowledge in NER more
effectively. Hu et al., 2022 suggests a method to
capitalise on the semantic relationships between
domains more efficiently by utilising previous la-
bels (from the source) and the corresponding token.
Chen et al., 2023 introduces collaborative prefix
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tuning as a solution to the cross-domain NER is-
sue. Although prefix-tuning is considerably quicker
than complete fine-tuning, it still requires the ad-
dition and modification of new model parameters.
Unlike the above approaches, IF-WRANER does
not necessitate architectural alterations or model
fine-tuning/prefix-tuning to adapt to new target do-
mains, making it more suitable for practical appli-
cations.

Large language models (LLMs) (Mann et al.,
2020; Hoffmann et al., 2022) have demonstrated re-
markable proficiency in in-context learning, where
they can generate results for a new test input us-
ing only a handful of task-specific examples. Op-
erating under the in-context learning framework,
LLMs have yielded encouraging outcomes across
a range of NLP tasks, including Machine Transla-
tion (MT) (Vilar et al., 2022, Moslem et al., 2023),
Question Answering (QA) (Robinson et al., 2022,
Li et al., 2022b) etc. For Few-Shot Cross Domain
NER, PromptNER (Ashok and Lipton, 2023) and
GPT-NER (Wang et al., 2023) have utilized LLMs,
achieving a performance level comparable to the
industry benchmark through extensive prompt engi-
neering. GPT-NER has redefined the NER problem
from a sequence labeling task to a generation task
that LLMs can easily adapt to. On the other hand,
PromptNER uses the Chain-of-Thought Prompting
technique, which offers a precise, adaptable, and
user-friendly way to carry out Few-Shot NER and
requires prompting the LLM only once. In our ap-
proach, we instruct the LLM to provide responses
in a structured format and both the extraction of
entities and their categorization into entity types
happens in a single LLM call.

Another recent innovation that has gained
tremendous popularity and adoption post the ad-
vent of LLMs is Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020) with LLMs. For Few-
Shot Cross-Domain NER, we show that using pro-
prietary LLM like GPT4 with the RAG framework
we are able to obtain results comparable to SOTA
models. However, given the cost implications of
using GPT4, we have developed a strategy to fine-
tune open-source LLMs. With our approach of
finetuning open-source LLM, coupled with regu-
larization techniques and replacing the similarity
between sentence level embeddings with similar-
ity between word level embedding as criteria for
selecting relevant examples using the retriever, we
are able to achieve better performance on most
domains compared to previous SOTA models.

3 Methodology

3.1 Problem Definition
Given a list of predefined entity types for a do-
main, and a sentence, the Named Entity Recog-
nition (NER) task involves identifying sequences
of words in the sentence as entities and categoriz-
ing them into correct entity types. With Few-Shot
Cross Domain NER, we have the added restriction
that the number of labeled examples for the domain
in question (target domain) is small. However, we
have sufficient labeled examples from another do-
main (source domain) which we can leverage for
model building.

3.2 Prompting LLM for NER
NER has historically been viewed as a sequence
labeling task that assigns an entity type (partial
assignment in-case of multi-word entities) to each
word in a given sentence. With the advent of LLMs,
many studies have tried to reformulate NER as a
text generation task instead of a sequence labelling
task. The format of the generated text can vary
widely but can be broken into two categories at a
high level.
• The output is a dictionary with candidate enti-

ties (sequences of words in the sentence) as keys
and their corresponding entity types as values.

• The output is a dictionary with all the entity
types as keys and their corresponding entities
(sequences of words in the sentence) as values.

We saw greater success with the second approach
and decided to adopt it for our subsequent exper-
iments. Most approaches that leverage LLMs to
solve the NER task follow the general paradigm of
in-context learning that includes prompt construc-
tion, followed by feeding it to the LLM, which
then produces output in the format described in the
prompt. The prompts for our experiments have the
following format:
• Task Description: Explains the task to the

LLM which in our case looks like: “You are
a smart and intelligent Named Entity Recogni-
tion (NER) system. You will be provided with
the definition of the entities to extract, the sen-
tence from which to extract the entities and the
format in which you are to display the output...”

• Entity Definitions: Contains list of entity types
for a particular domain and their respective def-
initions.

• Input Output Examples: Top k examples of
input and output pairs from corresponding do-
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main data such as:
Input: Can i pick this up tomorrow
Output: {product:[], time:[tomorrow] etc.}

• User Query: Sentence on which NER is to be
performed.

3.3 Retrieval Augmented Generation (RAG)
With Retrieval Augmented Generation (RAG), in-
stead of having the same hardcoded domain ex-
amples appended for every query, examples are
selected dynamically based on their similarity with
the input query. To achieve this, embeddings for
domain examples are at first computed using a
pre-trained universal embedder and the examples
along with their embeddings are stored in a vector
database. During inference, when a query comes in,
its embedding is computed using the same embed-
der. Then similarity scores of the query embedding
with all the embeddings stored in the vector db are
computed and the top k most similar examples are
selected and appended to the prompt, which is then
sent to the LLM for response generation. The RAG
framework is largely made up of two components

• Retriever: It is responsible for generating query
embedding during inference using the embed-
der and also for extracting top k most similar
examples from vector DB using a similarity
function.

• Generator: The prompt, made up of the user
query and the top k examples obtained by the re-
triever are passed along to the generator compo-
nent (in our case an LLM) which is responsible
for generating a response.

The complete RAG architecture is shown in Figure
1. RAG with LLM yields good results for Few-
Shot Cross-Domain NER when using proprietary
LLMs like GPT4. However, most open source
LLMs struggle to produce output in the format
specified as part of prompt instruction. This be-
comes a challenge, because using GPT4 to perform
NER for applications at scale can be extremely
costly. Therefore, we need to finetune open source
LLMs so that they can follow prompt instructions.

Figure 1: Retrieval Augmented Generation with LLM

3.4 Finetuning open-source LLMs for
Few-Shot Cross-Domain NER

As per the Cross-Domain NER setting, we have
a source domain which has enough entity tagged
data. We finetune 7B Meta LLM on this source
domain data. The purpose of this finetuning is not
to teach the LLM about the source domain. Instead,
finetuning accomplishes the task of teaching LLM
to perform NER task and generate results in the for-
mat specified in the prompt. The prompt content is
the same as that in Section 3.2. We utilise the RAG
framework during finetuning also, by storing a por-
tion (around 500 examples) of the source domain
data in a vector database and finetuning with the
rest of the source domain examples. More details
on this can be found in Section 4.2. Cross entropy
loss, computed from the LLM output and ground
truth, is used to finetune the LLM parameters. We
employ LoRA (Hu et al., 2021) for this. The de-
tailed finetuning process can be found in Figure
2.

Once finetuned on source domain data, we do
not need to make any further changes to the model
weights to adapt to different target domains. To
evaluate model performance on any target domain,
we simply store the labelled examples of that do-
main in a vector DB, and prompt the finetuned
LLM in accordance with the RAG framework to
generate outputs.

Figure 2: Finetune 7B Meta LLM on source domain data

3.5 Training Regularization

While testing our model on target domain data, we
found it to suffer from the problem of overfitting.
As an example, for one of our target domains (Poli-
tics), our model tagged several politicians as “Per-
son” instead of the entity type “Politician”, despite
the prompt instruction explicitly stating that only
non-politicians were to be identified as “Person”.
This happens because the entity type “Person” was
also part of the source domain and during finetun-
ing, the model had memorized how to tag particular
entity vaues as “Person”. During evaluation, the
LLM chose to ignore the instruction and contin-
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Figure 3: Using word-level embedding instead of sentence-level embedding

ued to identify politicians as “Person” as learned
during finetuning. In order to alleviate this prob-
lem, we introduce various kinds of noise during
model finetuning. This prevents the model from
memorizing entities for the different entity types
and instead teaches the model to follow prompt in-
structions. We applied the following regularization
techniques:

• We duplicated a percentage of training examples
and had some entity types randomly removed
from both the input and output of those exam-
ples, which were then augmented to our training
data. This ensures that the model is penalized
when it predicts an entity type which is not part
of the prompt, thus forcing it to learn to respect
the prompt instruction.

• We randomly shuffled the order of entity types
in the prompt for some examples. This prevents
the model from memorizing the prompt and
helps it achieve robustness against changes in
the ordering of entity types in the prompt.

A comparison of the relative contribution of the reg-
ularization techniques described has been shown in
Section 8.2 of Appendix.

3.6 Using word-level embedding instead of
sentence-level embedding

NER is a word-level task that focuses more on local
evidence rather than a sentence-level task, which
is concerned with sentence-level semantics. Let
us consider the following query sentence: “I want
to buy a 13-inch macbook from store”. We have
two candidates sentences for adding as example
in prompt: “I want to buy a table from store” and
“Show me a 15-inch macbook”. If we consider
sentence-level embeddings to compute similarity,
candidate 1 is closer to the query sentence. How-
ever, for the NER task, candidate 2 would be a

much better example to have in the prompt as it
contains a very similar entity to the example sen-
tence. To resolve this, we retrieve examples based
on word-level representations rather than sentence-
level representations. Implementing this involves
the following steps:
• Obtain contextualized word embedding for ev-

ery entity tagged word across all sentences in
domain data. This is done by passing the sen-
tences through an encoder model (bge-base-en
(Xiao et al., 2023)). Tokens corresponding to
the same word are averaged to obtain embed-
ding for every word in the sentence.

• We store each word embedding, the word itself,
the corresponding sentence and sentence label
in our vector DB.

• During inference, we obtain embedding for ev-
ery word in input sentence in the same manner.

• For every word, we find the top k closest
matches from vector DB based on cosine sim-
ilarity of the embeddings and extract the asso-
ciated labelled examples. We end up with k X
N examples where N is the number of words in
the input sentence (after removing stop words),
along with the word-level similarity scores.

• Among these, we select k unique examples with
highest scores.

The process is shown in Figure 3. The impact of
using word embeddings instead of sentence embed-
dings for retrieval is shown in Appendix section
8.3.

4 Experimental Setup

4.1 Dataset

We have developed our model for the customer
care domain of an enterprise. However, given the
proprietary nature of the data, we have not shared
it here. To demonstrate the generalized nature of
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our model, we have also conducted experiments
using the open source CrossNER (Liu et al., 2021)
dataset. CrossNER contains separate datasets from
five diverse domains, namely politics, natural sci-
ence, music, AI, and literature. We adhere to the
official splits for training, validation and test sets,
the details of which can be found in Table 1. Mod-
els that report their results on the CrossNER dataset
typically use a subset of the CoNLL 2003 (Sang
and De Meulder, 2003) dataset as source domain,
also provided as part of the CrossNER dataset. We
follow the same guidelines and use the subset of
CoNLL 2003 as our source domain data.

Domain No. of train
examples

No. of dev
examples

No. of test
examples

Reuters 14987 3466 3684
Politics 200 541 651
Natural Science 200 450 543
Music 100 380 456
Literature 100 400 416
AI 100 350 431

Table 1: Dataset Statistics - Reuters from CoNLL 2003 is used
as source domain. The rest of the domains from CrossNER
dataset make up the target domains

4.2 Experiment Details

We use a 7B Meta LLM as the open source model
for our work. We have also experimented with
Mistral-7B (Jiang et al., 2023), 13B Meta LLM and
others, but based on the trade-off between model
performance and model response latency, we found
the 7B Meta LLM to be ideal for our use case.
Detailed comparison of the models can be found in
Appendix section 8.7.

As mentioned in Section 4.1, we use CoNNL
2003 dataset as our source domain and finetune our
model using it. We randomly sample 500 exam-
ples from the training set, generate embeddings for
these examples and store these embeddings along
with the labelled examples in a vector DB. The rest
of the training examples are used for finetuning
the LLM. The validation set is used for the selec-
tion of LLM hyperparameters. While evaluating
model performance on the target domains, the re-
spective training and validation sets, along with
their embeddings are stored in vector DB. Infer-
ence is performed on the test set and the data from
vector DB serves as potential examples to be used
in the prompt.

Since full-finetuning of LLMs is resource inten-
sive we use the Parameter Efficient Fine-Tuning
(PEFT) technique LoRA (4-bit) (Hu et al., 2021)

for finetuning our model. AdamW (Loshchilov and
Hutter, 2017) optimizer with a learning rate of 2e-4
is used during the process. For our RAG frame-
work, we had to choose from a plethora of options
for vector DBs, embeding models and similarity
metrics. We ended up using bge-base-en (Xiao
et al., 2023), Milvus DB (Wang et al., 2021) and
cosine similarity respectively, based on empirical
results. IVF Flat indexing method is used for in-
dexing data in the Milvus vector DB. We set the
value of k (number of in-prompt examples) to 5 for
our experiments based on validation dataset results.
We used V100 GPU for finetuning our model on
CoNLL 2003 data. The whole finetuning process
takes around 50 minutes.

5 Results

In table 2 we have compared the performance of our
model against previous SOTA Cross-Domain NER
models on the 5 domains of the CrossNER dataset.
Details of the previous SOTA models which we
have taken as baselines for our work can be found
in Section 8.1 of Appendix. IF-WRANER outper-
forms most of the models by a significant margin.
Only PromptNER with GPT 4 is close in perfor-
mance to our model. PromptNER with GPT3.5
falls well short of SOTA performance. Among the
non-LLM approaches, CP-NER performs the best.
We use micro F1-score for performance compari-
son, the most common metric for evaluating NER
models.(Ma and Hovy, 2016; Lample et al., 2016).

6 Model Deployment

With IF-WRANER, we have built a model that new
domains can use off the shelf, simply by adding
entity type definitions and a few labelled examples
from the respective domains. We use the tensorrt
framework on Triton Inference Server (Tillet et al.,
2019) for serving our model. Depending on the
traffic and latency requirements for each domain,
we create separate instances of our model and serve
them with Triton.

Using IF-WRANER we are able to achieve rea-
sonable latency and throughput numbers on A100
GPUs. Some domains however, have very low la-
tency requirements and as per our experiments, a
7B-parameter IF-WRANER cannot meet these la-
tency requirements. For such domains, we create
a new model with Tinyllama (Zhang et al., 2024)
as the base LLM. Tinyllama is a 1.1B model with
the same architecture and tokenizer as 7B Meta
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Model Politics Natural
Science

Music Literature AI Average

BiLSTM-CRF (Lample et al., 2016) 56.60 49.97 44.79 43.03 43.56 47.59
Coach (Liu et al., 2020b) 61.50 52.09 51.66 48.35 45.15 51.75
CROSS-DOMAIN LM (Jia et al., 2019) 68.44 64.31 63.56 59.59 53.70 61.92
FLAIR (Akbik et al., 2018) 69.54 64.71 65.60 61.35 52.48 62.73
BARTNER (Yan et al., 2021) 69.90 65.14 65.35 58.93 53.00 62.46
LIGHTNER (Liu et al., 2020b) 72.78 66.74 72.28 65.17 35.82 62.56
LST-NER (Zheng et al., 2022) 73.25 70.07 76.83 70.76 63.28 70.84
LANER (Hu et al., 2022) 74.06 71.83 78.78 71.11 65.79 72.31
CP-NER (Chen et al., 2023) 74.25 75.82 79.10 72.17 67.95 73.86
GPT-NER (Wang et al., 2023) 74.71 70.77 78.30 62.18 66.07 70.41
PromptNER (GPT3.5) (Ashok and Lipton, 2023) 71.74 64.83 77.78 64.15 59.35 67.57
PromptNER (GPT4) (Ashok and Lipton, 2023) 78.61 72.59 84.26 74.44 64.83 74.95
RAG + GPT4 using sentence embeddings 78.2 73.52 83.61 71.32 66.91 74.71
RAG + GPT4 using word embeddings 78.63 73.95 84.25 74.68 68.19 75.94
IF-WRANER (ours) 79.8 75.31 85.43 75.52 68.81 76.97

Table 2: Comparisons of previous SOTA models for Cross-Domain NER and IF-WRANER in terms of F1 scores(%) are
provided. The Average indicates the average F1 score across five domains in the CrossNER benchmark

Model Performance Latency (s) QPS Cost/month ($)
CrossNER Domain A Domain B

IF-WRANER (ours) 76.97 83.72 79.95 2X 1X 1X
Tiny-IF-WRANER (ours) 73.62 79.64 76.46 1X 1X 1X

RAG with GPT 4 (our implementation) 74.71 80.95 78.04 4X 1X 120X
PromptNER with GPT4(Ashok and Lipton, 2023) 74.95 81.15 78.12 4.2X 1X 120X

Table 3: Comparison of model performance, latency, throughput and cost for IF-WRANER, Tiny-IF-WRANER, RAG with
GPT4 and PromptNER. F1 score(%) is used as model performance metric. Latency, throughput and cost are expressed in
seconds(s), queries per second(QPS) and USD respectively. The cost for IF-WRANER and Tiny-IF-WRANER is the cost of
using A100 GPUs while the cost of PromptNER is the cost of calling GPT4 openai endpoint

Domain Data size in vec-
tor DB

Test Data Size Number of
entity types

Domain A 200 400 8
Domain B 230 500 15

Table 4: Characteristics of proprietary datasets

LLM, pretrained on 3 trillion tokens. We fine-
tune Tinyllama in exactly the same way as before.
This finetuned Tinyllama, Tiny-IF-WRANER, is
able to serve the domains with very low latency
requirement. As expected, due to its smaller model
size, Tiny-IF-WRANER suffers from a drop in
F1-score. In Table 3, we have compared our mod-
els (IF-WRANER and Tiny-IF-WRANER) with
GPT4 based models in terms of performance, la-
tency, throughput and cost. We see that our models
are able to serve the same throughput at much lower
latencies and cost. The domain with low latency
requirement is represented as domain A. We use
tiny-IF-WRANER to serve its users. Domain B,
without such a requirement, uses IF-WRANER.
Both domain A and domain B are customer care
domains of an e-commerce enterprise. Due to the

proprietary nature of the domains, we cannot make
their datasets available. However, we have shared
some characteristics of the datasets in Table 4.

7 Conclusion

In this work, we have introduced IF-WRANER,
a retrieval augmented instruction following LLM,
that outperforms SOTA models for Few-Shot Cross-
Domain NER. Unlike many of the models devel-
oped for Cross-Domain NER, we do not need
to finetune or make structural modifications to
our model to adapt to new domains. Also, IF-
WRANER manages to attain SOTA performance
using non-proprietary LLM, making it much more
cost effective compared to proprietary LLM based
Cross-Domain NER models. Our model is flexi-
ble and can be easily used by end users with no
technical expertise. All they have to do is provide
definitions for their domain’s entity types and a
few labelled examples. For serving domains with
very low latency requirements, we have proposed
tiny-IF-WRANER which uses Tinyllama instead
of 7B Meta LLM as its base LLM.
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8 Appendix

8.1 Baselines
To evaluate the effectiveness of the proposed
method, we compare it with several baselines, in-
cluding:
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• COACH (Liu et al., 2020b): Utilizes patterns
of slot entities and combines the features for
each slot entity in order to improve entity type
predictions.

• CROSS-DOMAIN LM (Jia et al., 2019): Uti-
lizes a parameter generation network to merge
crossdomain language modeling with NER.

• FLAIR (Akbik et al., 2018): Utilizes the inter-
nal states of a character-level language model to
generate contextual string embeddings, which
are integrated into the NER model.

• BARTNER (Yan et al., 2021):Uses the pre-
trained BART model to generate entity spans,
treating the NER task as a sequence generation
problem.

• LST-NER (Zheng et al., 2022): Models the rela-
tionship between labels as a probability distribu-
tion and builds label graphs in both the source
and target label spaces for cross-domain NER
tasks.

• LANER (Hu et al., 2022): Uses a new ap-
proach for cross-domain named entity recog-
nition by utilizing an autoregressive framework
to strengthen the connection between labels and
tokens.

• LIGHTNER (Chen et al., 2021): Utilizes a plug-
gable prompting method to improve NER per-
formance in low-resource settings.

• CP-NER (Chen et al., 2023): Utilizes collab-
orative prefix tuning to learn domain-specific
prefixes for flexible NER execution

• GPT-NER (Wang et al., 2023): Redefines NER
from a sequence labeling task to a generation
task that LLMs can perform easily.

• PromptNER (Ashok and Lipton, 2023): Uses
the Chain-of-Thought Prompting to perform
NER.

Recently GoLLIE (Sainz et al., 2023) and GLINER
(Zaratiana et al., 2023) have demonstrated SOTA
performance on CrossNER dataset for the zero shot
setting. However, they have not neither evaluated
their models on the few-shot setting for CrossNER
nor provided an easy way to do so. Therefore, we
have not included them as baselines for our work.

8.2 Ablation Study
We have performed an ablation study to compare
the contributions of the different regularization
techniques towards our model’s performance. As
shown in Table 5, regularization by augmenting ex-
amples with randomly removed entity types makes
the most significant contribution to our model’s

performance.

Model F1 score (%)

base finetuned model 73.65
base finetuned model + entity types removed 76.34
base finetuned model + entity types shuffled 74.41
base finetuned model + both 76.97

Table 5: Contribution of different regularization tech-
niques towards model performance improvement

8.3 Effect of replacing sentence-level
embedding with word-level embedding

We also studied the effect of using word-level em-
bedding instead of sentence-level embedding in the
retrieval of top k examples on both GPT 4 as well
as on our model. Results of this can be found in
Table 6.

Model F1 score (%)

IF-WRANER using sentence-level embed-
ding

75.72

IF-WRANER using word-level embedding 76.97
RAG with GPT 4 using sentence-level embed-
ding

74.71

RAG with GPT 4 using word-level embedding 75.94

Table 6: Effect of replacing sentence-level embedding
with word-level embedding on model performance

8.4 Effect of changing the number of
retrieved examples in LLM prompt

We also studied the effect of changing the number
of retrieved examples included in the prompt to
IF-WRANER. Results of this can be found in Ta-
ble 7. We did not create separate deployments for
testing the effect of varying number of retrieved ex-
amples. The latency numbers indicate the average
time taken to complete one request to IF-WRANER
on V100 GPU. Based on the trade-off between F1
score and latency we settled on 5 as the optimal
number of retrieved examples to add to our LLM
prompt.

8.5 Selecting the optimal vector DB and
indexing scheme

As mentioned in the paper, for the retrieval compo-
nent, we have used Milvus DB as the vector DB
for storing the word-level embeddings, IVF Flat as
the indexing scheme and cosine similarity search
for retrieving similar examples. We compared its
performance against other vector DBs/vector simi-
larity search libraries such as FAISS (Douze et al.,
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Number
of re-
trieved
examples

F1 score
on Cross-
NER(%)

F1 score
on Do-
main
A(%)

F1 score
on Do-
main
B(%)

Median
Latency
(s)

1 65.32 68.14 64.98 1.6
3 74.28 76.25 72.49 1.8
5 76.97 83.72 79.95 1.8
10 77.01 83.68 79.42 2.2
20 76.88 84.29 79.27 2.8
30 76.92 82.16 78.49 3.2

Table 7: Effect of changing the number of retrieved
examples included in LLM prompt

2024) with different indexing schemes. A more
detailed view of this can be found in Table 8.

With flat indexing a direct comparison is made
between embeddings whereas with IVF Flat index-
ing, embeddings of examples are clustered first and
then the query embedding is compared with cluster
embeddings. It is therefore faster. HSNW performs
additional optimizations and is therefore even faster
than IVF, but also shows a drop in F1 score. Per-
formance of FAISS and Milvus are roughly similar,
with Milvus showing slightly better numbers. Mil-
vus with IVF Flat indexing provides a good tradeoff
for our usecase and was therefore adopted.

Vector
DB

Index Similarity
Func-
tion

F1 score
on
Cross-
NER(%)

Search
latency
on 200
examples
(s)

Search la-
tency on
105 exam-
ples (s)

Milvus Flat cosine 77.01 0.03 0.3
Milvus IVF

Flat
cosine 76.97 0.024 0.1

FAISS FlatL2 L2 76.99 0.04 0.3
FAISS IVF Flat L2 76.95 0.026 0.1
FAISS HSNW L2 76.22 0.015 0.09

Table 8: Comparison of different vector DBs and in-
dexing schemes for use in the retrieval component of
IF-WRANER. Search latency corresponds to median
search latency.

8.6 Selecting the optimal embedder model
While deciding on the retriever component, we
also considered different embedder models. The
table below compares different open-source em-
bedder models, each using less than 2GB memory,
for our use case. Models like text-ada-embedding,
which only provide sentence-level embedding and
abstract away the token level embedding vectors
are excluded due to our focus being only on word-
level embeddings. Based on the experiments bge-
base-en seems to work well across all domains.

Embedder
Model

Memory
require-
ment
(GB)

CrossNER
F1
score(%)

Domain
A F1
score(%)

Domain
B F1
score(%)

bge-base-
en

1.63 76.97 83.72 79.95

gte-large-
en

1.62 76.88 83.75 78.86

uae-large-
v1

1.25 76.42 83.66 77.12

Table 9: Comparison of different embedder models for
the retrieval component of IF-WRANER

8.7 Selecting the optimal open-source LLM
We experimented with different open-source LLMs
such as 7B Meta LLM, 13B Meta LLM, Mistral-
7B and so on. Based on performance and latency
scores, we decided to use 7B Meta LLM for our
experiments. We did not experiment with LLMs
larger than 13B owing to latency and infra con-
straints. Details of this can be found in Table 10.

Backbone LLM F1 score
(%)

Latency on sin-
gle V100 GPU
(s)

7B Meta LLM (Touvron et al.,
2023)

76.97 1.8

13B Meta LLM (Touvron et al.,
2023)

77.42 2.6

Mistral-7B (Jiang et al., 2023) 77.14 1.9
Bloom-7b1 (Le Scao et al.,
2023)

74.42 1.9

MPT-7B (MPT) 76.12 1.8

Table 10: Comparison of different open-source LLMs

8.8 Prompt Guidelines
Based on our experimentation with different kinds
of prompts and analysis of the model responses, we
found that IF-WRANER demonstrates its best per-
formance when the following prompting guidelines
are followed:
• Entity definitions should be clear. Having

atleast one example in the definition itself helps.
• When there is ambiguity between two entity

types, such as “Organization” and “Political
Party” and one is a subgroup of the other, then
the subgroup entity type, in this case “Political
Party”, should appear first in the prompt. The
model displays this behavior despite the regu-
larization techniques applied to the model.
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