A Cost-Efficient Modular Sieve for Extracting Product Information
from Company Websites

Anna Hiitty’* Dragan Milchevski'* Kersten Doring®* Marko Putnikovic'* Mohsen Mesgar'*

Filip Novovic! Maximilian Braun? Karina Borimann

3 and Igor Stranjanac *

'Bosch Center for Artificial Intelligence, Renningen, Germany
2Bosch Global Services, Feuerbach, Germany
3Bosch Digital, Feuerbach, Germany
4Bosch Digital, Belgrade, Serbia
firstname.lastname@bosch.com

Abstract

Extracting product information is crucial for
informed business decisions and strategic plan-
ning across multiple industries. However, re-
cent methods relying only on large language
models (LLMs) are resource-intensive and com-
putationally prohibitive due to differences in
website structures and numerous non-product
pages. To address these challenges, we pro-
pose a novel modular method that leverages
low-cost classification models to filter out com-
pany web pages, significantly reducing compu-
tational costs. Our approach consists of three
modules: web page crawling, product page
classification using efficient machine learning
models, and product information extraction us-
ing LLMs on classified product pages. We eval-
uate our method on a new dataset comprising
approximately 7,000 product and non-product
web pages, achieving a 6-point improvement
in Fl-score, a 95% reduction in computational
time, and an 87.5% reduction in cost compared
to end-to-end LLMs. Our research demon-
strates the effectiveness of our proposed low-
cost classification module to identify web pages
containing product information, making prod-
uct information extraction more effective and
cost-efficient.

1 Introduction

Information (e.g., names and descriptions) about
products that a company offers is essential for nu-
merous applications such as product search (Wei
et al., 2013; Brinkmann et al., 2023b), product
recommendation (Malik et al., 2022), and prod-
uct knowledge graph construction (Zalmout et al.,
2021; Deng et al., 2023). Developing a method for
obtaining product information is challenging due to
(1) the exponential growth of companies and their
web pages, which may or may not contain prod-
uct information; and (2) an unknown structure of

* indicates equal contribution of the first five authors. All
authors are listed in alphabetical order by first name.

Crawling
+ Using sitemap
+ Recursive crawling

Extraction
+ LLM based

[s50n

— —

https:/

Classification

* URL path segment based
* URL based

+ HTML based

Figure 1: A general depiction of our method, including
its three modules: web page crawling, product page
classification, and product information extraction.

company product pages across different company
websites. Therefore, it is imperative to develop an
automated and cost-efficient method to deal with
the ever-increasing number of web pages and also
handle non-unified structure of product pages.

Previous work has primarily focused on process-
ing product information from e-commerce web
shop data (Zou et al., 2024; Gong and Eldardiry,
2024; Ding et al., 2022; Roy et al., 2021; Yan et al.,
2021). However, in combination with different
page structures across companies, such methods
would fall short if dealing with all web pages on a
company website, where these pages may or may
not be product pages. Moreover, including non-
product pages into the input of a product informa-
tion extraction system increases computational
costs due to the huge number of web pages to pro-
cess. Another challenge is that these pages might
be misleading because they could have a structure
similar to product pages and diminish the quality
of product information. To the best of our knowl-
edge, there is no full method that collects company
web pages from diverse company websites and ex-
tracts product information from such pages while
balancing computational costs and the quality of
the obtained product information.

1444

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1444-1456
November 12-16, 2024 ©2024 Association for Computational Linguistics

In this paper, we propose a novel full pipeline
for extracting product information from all web
pages on a company website. In contrast to previ-
ous work, our method handles pages that may or
may not contain information about products. In
particular, we extract the product name and prod-
uct description presented on a company website.
Our method consists of three major modules (see
Figure 1): (1) crawling, (2) classification, and (3)
extraction. In the crawling module, we scrape the
company website to collect web pages. For the
classification module, we introduce three models
to distinguish between product and non-product
web pages. Finally, for the extraction module, we
instruct a pre-trained LLM to find product names
and descriptions on product web pages. LLMs have
demonstrated effectiveness in extracting informa-
tion from unknown structured inputs (Hui et al.,
2024; Wang et al., 2023).

To evaluate the quality and computational cost of
our method, we curated a new dataset comprising
product and non-product web pages from diverse
companies. The product pages are annotated by a
product scouting expert. To ensure the robustness
of our method, we split the dataset at the company
level to include only unseen companies in the test
set. Our experimental results show that our method
outperforms off-the-shelf LLMs in terms of com-
putational cost efficiency while achieving better
quality then its peers. To measure the quality, we
use precision, recall, and F1 score to assess whether
a method identifies correct product pages. We also
use ROUGE (a recall oriented lexical metric) and
BERTScore (an advanced semantic similarity met-
ric) to evaluate the correctness of the extracted
product names and descriptions.

Our main contributions are: (i) Task: While ex-
tracting product information from product pages is
known, finding products from heterogeneous web
pages across company websites has not been stud-
ied. (ii) Sieve method: We introduce a modular
method to identify product pages from a company
website and then use them to extract product infor-
mation. Worth noting that, our novelty in method
is the entire pipeline that reduces input space for
extraction. (iii) Empirical evaluation: We collect
and annotate a new dataset that contains a represen-
tative cross-section of company websites’ product
and non-product pages. Our experiments demon-
strate that our method is effective and cost-efficient
compared to an off-the-shelf LLM.

2 Related work

Product information extraction involves extracting
attribute/value pairs (specifications) from product
information such as name and description. Extrac-
tion can be performed using a closed-world assump-
tion with a predefined set of attributes, or an open-
world assumption where attributes are unknown
(Zheng et al., 2018). The open-world assumption
is more suitable for extracting product information
from unstructured data obtained through crawling.

Product information extraction approaches can
be categorized into four major groups: (1) rule-
based methods, (2) sequence tagging and named-
entity recognition (NER), (3) extractive question
answering, and (4) generative approaches. Rule-
based methods often use token-matching tech-
niques, such as regular expressions, to extract at-
tribute/value pairs (Gopalakrishnan et al., 2012).
These methods lack scalability, as a new rule is
required for each new attribute (Wang et al., 2020).
The sequence labeling approach often involves con-
structing a model for each attribute (Yan et al.,
2021, Zheng et al., 2018), which also does not
scale and generalize well. To address this, question
answering approaches consider each attribute as a
question - the task is to identify the attribute value
as the answer (Ding et al., 2022). For instance,
Wang et al., 2020 use a single BERT model to en-
code both the context (product information) and
question, which makes the approach scalable and
generizable. A drawback is that this approach is
not suitable for extracting implicit product informa-
tion, i.e. one that is not explicitly mentioned in the
product text (Blume et al., 2023). This problem is
resolved by recent API-based large language mod-
els (LLMs), such as GPT-3.5, used to generate at-
tribute/value pairs based on the product information
provided on the product web page (Gong and El-
dardiry, 2024; Blume et al., 2023; Zou et al., 2024;
Brinkmann et al., 2023a). We employ a generative
approach as the latest state-of-the-art in product
information extraction (Gong and Eldardiry, 2024)
and focus on generating product name and descrip-
tion from the data available on a product page.

3 Method

We develop a novel method to extract products
and their descriptions from company web pages.
Figure 2 depicts details of our method.

1445

3.1 Crawling

The crawling module consists of two main com-
ponents: URL collection and HTML scraping. To
ensure compliance, we respect the robots.txt for
each company domain. For the URL collection
step, we design two approaches.

Sitemap-based crawler. Our first approach is
based on sitemaps available on company websites.
A sitemap is a hierarchical structure of web pages
on a company website used to navigate the web-
site accurately. By traversing a sitemap, we col-
lect URLSs in a computationally efficient manner.
However, this approach may not be effective if
companies do not provide a sitemap, or if sitemaps
are outdated (not including all web pages from the
latest website versions).

Recursive crawler. We start with all hyperlinks
mentioned on the main page of a company website.
We retain those links that belong to the company’s
domain and discard others. We apply this recur-
sion to each of these links for 5 times. To crawl
HTML pages from a set of URLs collected from
a company website, we first exclude URLs that
contain any word from a clearance list. This list is
defined by a product scouting expert, and relies on
path segments (e.g., blog, downloads, and archive).
Using this technique, we ensure that we do not
crawl HTML pages that are clearly non-product
pages. This module outputs a set of URLs and their
corresponding HTML codes.

3.2 Classification

One of the main goals of the proposed method is to
be computationally cost and time efficient. Since
extracting product information from all crawled
web pages is resource and cost inefficient, we intro-
duce a classification module to first identify product
web pages. As shown in Figure 2, we introduce
a sequential classification module based on three
types of information: (1) URL path segments, (2)
URLs, and (3) HTMLs. The main motivation is
that classifying a web page using each informa-
tion type is less computationally expensive than the
subsequent one.

URL path segment classifier. Given a URL, we
extract its path segments by splitting it using ““/”
character. Then, if any of the URL’s segments
appear in our predefined whitelist, this page is la-
beled as a product page and given to the extrac-
tion module. This whitelist is curated by product

scouting experts and contains tokens that may in-
dicate a product page. If no URL segments match
the whitelist, the web page is classified as a non-
product page and passed to the URL classifier.

URL classifier. To prevent the classifier from be-
coming biased to company domains, we eliminate
the domain segments from the URL. We filter out
signs, numbers, and stemmed lower-cased words
if their length is shorter than three characters. We
then apply TF-IDF to these pre-processed URLs
before passing them to the classification model. As
with the URL path segment classification, we give
the corresponding HTML to the extraction module
if the model determines that a URL refers to a prod-
uct page. Otherwise, the web page is given to the
HTML classifier.

HTML classifier. In contrast to previous
classification steps, this classifier deals with the
HTML code of a web page. For pre-processing,
we remove the content within tags such as script,
style, and link because such content addresses the
presentation style of an HTML page and is not
relevant for classification. As the final step of the
classification module, if a web page is identified
as a product page, it is passed to the extraction
module. Otherwise, it is a non-product page and
discarded.

Note that the order of the classifiers is chosen for
runtime efficiency: when the first product classifier
predicts a product page, the subsequent classifiers
are skipped, and thus, the more runtime-efficient
models are applied first.

3.3 Extraction

Product name and description are the most essen-
tial information required to represent a product.
Therefore, this module extracts these two pieces of
information from a product page.

Although computationally expensive, LLMs
have proven effective for information extraction
(Brinkmann et al., 2023b; Xu et al., 2024)1. Since
we already narrowed down web pages to only prod-
uct pages, we can reduce the cost by applying these
more expensive models to fewer web pages. To

! Although rule-based information extraction was predomi-
nantly used in industrial settings (Chiticariu et al., 2013), the
emergence of LLMs has led to significant improvements in
many aspects of ML-based components. One notable improve-
ment is the increased flexibility in adapting a model. Given the
challenge posed by the highly diverse input texts in our task,
LLM:s are the most suitable choice for the extraction module.

1446

Crawling

Crawl URL

Classification

List of
company
domains

no = Classify URLs Classify pages

recursively

| using sitemap Check URL p URL Path
: ¢ Pae N o | segment no —-+ Segment
: age de against Classifier
: & clearance list
i, crawl URL 7

i

L

Extract product

information

Clean HTML

Figure 2: Component-level view: A breakdown of our method’s modular design.

do so, we use the HTML code of a product page
as context and then prompt pre-trained LLMs to
extract the product name and description from the
context.

We define a context limit for LLM prompts. This
limit is calculated as the prompt length in terms of
number of tokens minus a fixed number of tokens
for the output. To fit HTML to this context limit,
we shrink HTML codes by applying the following
HTML cleaning techniques. The cleaning dynami-
cally adjusts the HTML size to accommodate the
context limit. In particular, we remove JavaScript
codes, CSS styles, comments, hyperlinks, unknown
tags, et sim., to only retain crucial content of a prod-
uct page. If the HTML code still remains longer
than the context length, we transform it to Mark-
down, which is known to be a lighter markup lan-
guage. The process stops as soon as the context
limit is met. If the HTML code and Markdown are
still too long, we apply a hard cutoff.

4 Datasets

We collect and annotate two sets of web pages as-
sociated with different company websites. Table 1
provides major statistics about the datasets. We
use one set for training and the other one for test
purposes. In this way, we ensure that company
websites used during evaluation have not been used
for training our models.

4.1 Training Set

We crawl websites of 83 companies using our
sitemap-based crawler (see Section 3), resulting
in 301,785 web pages. We randomly select 30,077
web pages and instruct one product scouting expert
to label each page with either O or 1, where 1 indi-
cates a product page. The expert annotates a page
as a product page if it presents any type of infor-
mation about a product. We obtain 4,513 product
pages and 25,564 non-product pages. Since anno-

Property Train Test Controlled Test

Companies 83 75 75

Crawled pages 301,785 45,622 45,622

Product pages

Pages 4,513 456 309
(Min, Max) / company (1, 1031) (1, 62) (1,52)
Avg. / company 79.2 17.5 12.9

Avg. HTML size 57,790 45,895 51,858

Non-Product pages

Pages 25,564 6,619 6,766
(Min, Max) / company (1, 5621) (1, 2387) (1, 2387)
Avg / company 323.6 108.5 110.9

Avg. HTML size 78,266 38,666 38,551

Table 1: Dataset statistics.

tating all product pages with the product name and
description requires a lot of time from the expert,
we let the expert annotate only 558 product pages.
To be even more time-efficient, we use GPT-3.5
to suggest product names and descriptions to the
expert. Then, the expert corrects the mistakes that
GPT-3.5 made with their annotations.

4.2 Test Set

We collect and annotate a set of web pages crawled
from a new set of companies. In particular, we
use both sitemap-based and recursive crawlers to
scrape additional 75 company websites, resulting
in 45,622 web pages. This set contains compa-
nies distinct from those present in the training set.
We randomly select 7,075 web pages to annotate.
From these web pages, we define two variant test
examples.

Test. This set includes all selected web pages
annotated by the same expert who annotated the
training samples. We conduct the same annotation
procedure used for the training set. As a result, each
web page in this test set is accompanied by product
page label, product name, and product description

1447

annotations.

Controlled Test. While the test set has high cov-
erage of web pages, it may be biased in favor of
LLMs since the expert annotates the output of GPT-
3.5. To study the effect of GPT-3.5, we select
all product pages identified by the expert and re-
annotate them with product page labels, product
names, and descriptions from scratch. As shown
in Table 1, the number of product pages in the con-
trolled test is less than that of the test (309 vs 456).
The reason behind this difference is that the ex-
pert annotates a web page as a product page if it
contains any type of information about company
products (e.g., web pages related to product cata-
logue and about us). On the other hand, we label
a web page as a product page only if it includes
detailed information about one product, which is
more aligned with our research in this work.

5 Experiments

We evaluate the performance and cost efficiency
of our method (see Section 3) by empirically ad-
dressing the following questions: (Q1) For the en-
tire task, our method deals with both product and
non-product pages together. How do the effects of
classifying web pages and processing only product
pages impact the quality and computational cost
of product information extraction? (Q2) How ef-
fective is the sequential classification module in
classifying web pages? (Q3) To what extent can a
zero-shot LLM extract product information from a
given product page?

5.1 Experimental Settings

In the pre-processing step, we utilize the Python
modules boilerpy > and Ixml 3 to remove uninfor-
mative HTML content, such as the page formatting
information.* The URL classifier is a logistic re-
gression model, trained using scikit-learn. For the
HTML classifier, we fine-tune MarkupLLM (Li et al.,
2022) to identify product page HTML strings. Ad-
ditional information about the experimental setup
of the classifiers can be found in Appendix C.

For the extraction experiments, we use Llama-
3-8B-Instruct with zero temperature deployed on
NVIDIA Al100-SXM4-80GB MIGs. We utilize
vLLM (Kwon et al., 2023), which leverages the

Zhttps://github.com/jmriebold/BoilerPy3/

3https://1xml.de/

“Note that page formatting can indirectly convey some
information about the content, e.g. prominence.

PagedAttention mechanism, resulting in up to
24x higher throughput compared to HuggingFace
Transformers without requiring any model archi-
tecture modifications. For comparison, we also
use GPT-3.5-Turbo-1160 on Azure with 240k to-
kens per minute (TPM) limits and zero tempera-
ture. It is worth noting that we use our crawling
method as a baseline to collect data for evaluating
the other pipeline components. Developing more
advanced crawling methods and their evaluation
are not within the scope of this paper and left for
future work. We leave more implementation de-
tails, such as the prompts we use to interact with
these models, in Appendix A.

5.2 Results

We report the experimental results supporting our
answers to the above questions.

Identifying product pages and extracting prod-
uct information from them can significantly im-
prove quality and reduce computational costs
of the overall task. To evaluate our method on
the entire task, it is essential to handle both product
and non-product pages together. Table 2 reports
the performance of our method (i.e., Cls. + Ext.)
compared to using only Ext. for all web pages.
Given a web page, we request the Ext. method
(i.e., LLaMA) in one prompt to return three out-
puts: (1) a binary product page label, (2) product
name, (3) and product description. If this method
finds no product name or description, it returns
“Not Found” accordingly. We observe that using
our classification module to identify product pages
and then feeding only these web pages to the Ext.
model improves the performance remarkably. This
is because the Ext. model may incorrectly identify
non-product pages as product pages and then ex-
tract incorrect information from these pages as a
product name and description. Although extensive
prompt engineering may improve the performance
of the Ext. model, it is a computationally expensive
process. One significant advantage of our method
is that the Cls. module substantially reduces the
computational cost of the extraction component
while its cost compared to the whole method is
next-to-zero. Table 3 compares our method with
two LLM baselines in terms of total execution time
and expenses. For this experiment, we use 11,660
web pages as input, among which 583 samples
are product pages. We measured the total process-
ing time and total expense with 10, 50, 100, and

1448

https://github.com/jmriebold/BoilerPy3/
https://lxml.de/

Test Controlled Test Test Controlled Test
Model BertScore ROUGE | BertScore ROUGE Cls P R F1 P R F1
Product Name Path Seg. 91.16 36.18 51.81 | 71.27 41.75 52.65
Ext. 88.97 28.33 89.10 27.98 URL 6242 6228 6235 | 4835 7120 57.59
Cls. + Ext. 95.33 93.90 95.39 94.54 HTML 61.61 57.02 5923 | 49.53 67.64 57.18
Product Description All 55.85 82.68 66.67 \ 4296 93.85 58.94
Ext. 85.97 26.26 86.13 25.94
Cls. + Ext. 92.72 9245 93.27 93.26 Table 4: Classification module evaluation in terms of

Table 2: Task evaluation. Cls. is our classification
module and Ext. is our extraction module using LLaMA.
BertScore is weighted average Fl-score. ROUGE is
ROUGE-1.

~Time (Min) = Expense (EUR)
GPT-3.5 133 35
Cls. + GPT-3.5 7 3
LLaMA 101 16
Cls. + LLaMA 5 2

Table 3: Total execution time and expenses of the exam-
ined methods.

500 parallel threads. We discuss the results of 100
threads here and report the rest in Appendix B. Af-
ter classifying web pages using our classification
module and feeding only product pages to the Ext.
module (powered by GPT-3.5 or LLaMA), the total
time and expense significantly diminish. We fur-
ther observe that 15% of requests to GPT-3.5 were
rejected with an error message 429, indicating that
we reach the TPM limit, suggesting to retry after
2 seconds. This highlights a significant limitation:
using GPT-3.5 on Azure would not be scalable for
processing large volumes of HTML pages with the
given default subscription.

The classification module achieves a higher re-
call and F1 score compared to each individual
classifier. We compare the performance of our
classification module to each of its components
to gain insight into its overall effectiveness. Ta-
ble 4 shows the results. We use the classifier with
URL path segment features as the baseline as it is
a straightforward method to filter out non-product
pages. The expert definition of these terms resulted
in a high precision value and consequently low re-
call. The “URL” in Table 4 is a Logistic Regression
model trained on TF-IDF feature representations
of URLs. It shows the best recall and F1 scores
among the three classifiers. However, the pages
that this classifier identifies as non-product should
be rechecked with HTML classifier to ensure we
do not miss any product pages. “All” represents

precision (P), recall (R) and F1-meaure (F1). All is the
classification module used in our method.

the performance of our classification module where
three components are sequentially connected (Fig-
ure 2). Our module outperforms the classification
components, demonstrating its effectiveness for use
in our entire method.

Prompting off-the-shelf LLMs is sufficient to ex-
tract product information. To study the impact
of LLaMA as an off-the-shelf model for extracting
product information in our method, we compare its
performance with a fine-tuned BERT model as a
baseline. As Table 5 shows, LLaMA, without any
fine-tuning and in a zero-shot setting, outperforms
the fine-tuned BERT extraction model, evaluated
only on product pages. The extraction results show
a slight improvement for the controlled set com-
pared to the test set. This effect is also evident
in the task evaluation (Table 2). The finding sug-
gests that expert annotations are not biased towards
the GPT-3.5 suggestions, since the models perform
equally well on a manually annotated dataset.

For the BERT Ext. we fine-tune DistilBERT
(Sanh et al., 2019). To harness the full content of
web page, we extract text snippets from HTML
of the page along with their corresponding nearest
tags. With this, we can simplify the extraction task
by formulating it as classification, where a model
should predict labels “product name”, “product de-
scription”, and “other” for each text snippet. We
label text snippets from all product pages in the
training set, excluding 558 pages that are already
annotated with product name and descriptions. In
particular, we identify explicit information about
the text content within HTML tags (e.g. class=
“product_name”). Since this approach is more ef-
fective for product names than for descriptions due
to the text length, we also identify descriptions as
text that contains the identified product name and
is longer than 100 characters. Due to the higher
frequency of “others” labels compared to the other
two labels, we randomly sample a maximum of five

1449

Test Controlled Test
Model BertScore ROUGE | BertScore ROUGE
Product Name
BERT Ext. 89.61 52.55 87.25 47.99
LLaMA Ext. 91.98 62.07 92.77 71.58
Product Description
BERT Ext. 83.15 25.71 82.93 24.53
LLaMA Ext. 87.62 37.63 88.05 39.79

Table 5: Extraction module performance using only the
product pages. BertScore is average F1-score. ROUGE
is ROUGE-1.

cases per product page. We fine-tune DistilBERT
on 1,368 product names, 388 product descriptions,
and 1,326 others examples. We select the best per-
forming model on 558 annotated web pages from
training set. We report the performance of this best
model on our test sets. During the prediction step,
we retrieve the text snippets with the highest scores
for product name and description, and then remove
the HTML tags.

Overall, the results in Table 4 and Table 5 show
the validity of the methods used in our classification
and extraction modules.

In another small-scale validation experiment,
we want to explore the performance of more stan-
dard linguistic tools, i.e., named entity recognizers
(NER, Keraghel et al., 2024). The task of NER is
closely related to our task of extracting the product
name. However, a crucial difference is that we do
not operate on the plain text but on the HTML, and
that we aim for the main product name. Thus, work
like GPT-NER (Wang et al., 2023), that bridges the
gap between LL.Ms and classic sequence labeling,
is close to our work, although we have HTML tags
as indirect string markers. For those reasons, the
experiment can only be applied to product names,
not to descriptions, and with some further modi-
fications. Two named entity recognizers provide
the entity type PRODUCT by default: Stanza NER
(Stanford NLP) (Qi et al., 2020) which is trained
on the OntoNotes corpus >, and SpaCy NER 6. In
both cases, the entity type PRODUCT is only avail-
able for English. Thus, the test dataset is restricted
to English pages in a preprocessing step. Further,
HTML tags are removed and the plain text is taken
as input to the models. A difference to the previ-
ous extraction modules is that the tools extract all

Shttps://stanfordnlp.github.io/stanza/ner_
models.html

6https://spacy.io/usage/linguistic—features/
#named-entities

Test
Model BertScore ROUGE
Product Name
Spacy NER 72.00 04.44
Stanza NER 75.89 13.51

Table 6: Extraction performance for product names on
English product pages using NER. BertScore is average
F1-score. ROUGE is ROUGE-1.

product names, rather than the main one. In the
evaluation, all predicted product names are taken
into consideration. The results are given in Table 6.
The results show decent performance for BertScore,
but very low ROUGE scores.

6 Conclusions

We introduced a full pipeline to efficiently extract
product information from web pages on a company
website. This approach is in contrast to previous
work where any type of web pages (product vs non-
product pages) is fed into extraction models, which
is inefficient and costly.

Our method consists of three modules: web page
crawling, product page classification, and product
information extraction. By introducing a classifica-
tion module that effectively filters out non-product
pages, we achieve cost-efficiency and reduce com-
putational overhead. The classification module im-
proves the qualitative performance of extraction as
well. The reason behind this is that the classifier
is more effective in filtering out non-product pages
compared to the examined pre-trained LLM.

While being effective, our approach still has two
limitations. The method is not optimized for ex-
tracting several products per page. Also, there are
no processes to recognize and merge products that
are mentioned several times on different pages. The
former needs additional prompting whereas the lat-
ter can be addressed by duplicate detection meth-
ods.

In future, building on the promising initial
results, we plan to extend our method to extract
technical details from product pages, as LLMs
have often been capable of generating such
information as structured output. In addition,
regular retraining of classifiers and performance
monitoring is needed to keep the high quality of
the overall method.

1450

https://stanfordnlp.github.io/stanza/ner_models.html
https://stanfordnlp.github.io/stanza/ner_models.html
https://spacy.io/usage/linguistic-features/#named-entities
https://spacy.io/usage/linguistic-features/#named-entities

Ethics statement

We acknowledge the importance of responsible
data collection and adhere to the high standards of
ethics in our data acquisition process. Specifically,
when obtaining product information from company
websites, we ensure that our web crawling meth-
ods are transparent, respectful, and compliant with
relevant laws and regulations. We adhere to the
terms outlined in each website’s robots.txt file and
implement rate limiting to prevent any undue bur-
den on website servers. Furthermore, during this
process, we take measures to respect the intellec-
tual property rights of content owners and do not
collect or store any personal information, such as
contact details. Our commitment to responsible
data collection is guided by the principles of fair-
ness, transparency, and respect for privacy.

Acknowledgements

We would like to thank Manuel Fischer, Erik Mack-
eprang, Marc Eichenauer, Alexander Brandt, Lars
Siemon, Petar Radosavljevic, and Dennis Motzke
for their invaluable contributions to our work. Their
expert guidance, insightful feedback, platform sup-
port, and unwavering support have been instrumen-
tal in shaping the quality and direction of our work.

We also want to note that the first five authors
have made equal and major contributions to this
work, with the remaining authors providing signifi-
cant contributions as well.

References

Ansel Blume, Nasser Zalmout, Heng Ji, and Xian Li.
2023. Generative models for product attribute ex-
traction. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing:
Industry Track, pages 575-585, Singapore. Associa-
tion for Computational Linguistics.

Alexander Brinkmann, Roee Shraga, and Christian
Bizer. 2023a. Product attribute value extraction using
large language models. ArXiv, abs/2310.12537.

Alexander Brinkmann, Roee Shraga, Reng Chiz Der,
and Christian Bizer. 2023b. Product information
extraction using chatgpt. ArXiv, abs/2306.14921.

Laura Chiticariu, Yunyao Li, and Frederick R. Reiss.
2013. Rule-based information extraction is dead!
long live rule-based information extraction systems!
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
827-832, Seattle, Washington, USA. Association for
Computational Linguistics.

Shumin Deng, Chengming Wang, Zhoubo Li, Ningyu
Zhang, Zelin Dai, Hehong Chen, Feiyu Xiong, Ming

Yan, Qiang Chen, Mosha Chen, Jiaoyan Chen, Jeff Z.
Pan, Bryan Hooi, and Huajun Chen. 2023. Con-
struction and applications of billion-scale pre-trained
multimodal business knowledge graph. Preprint,
arXiv:2209.15214.

Yifan Ding, Yan Liang, Nasser Zalmout, Xian Li, Chris-
tan Grant, and Tim Weninger. 2022. Ask-and-verify:
Span candidate generation and verification for at-
tribute value extraction. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing: Industry Track, pages 110-110,
Abu Dhabi, UAE. Association for Computational
Linguistics.

Jiaying Gong and Hoda Eldardiry. 2024. Multi-label
zero-shot product attribute-value extraction. Preprint,
arXiv:2402.08802.

Vishrawas Gopalakrishnan, Suresh Parthasarathy Iyen-
gar, Amit Madaan, Rajeev Rastogi, and Srinivasan
Sengamedu. 2012. Matching product titles using
web-based enrichment. In Proceedings of the 21st
ACM International Conference on Information and
Knowledge Management, CIKM 12, page 605-614,
New York, NY, USA. Association for Computing
Machinery.

Yulong Hui, Yao Lu, and Huanchen Zhang. 2024. Uda:
A benchmark suite for retrieval augmented gener-
ation in real-world document analysis. Preprint,
arXiv:2406.15187.

Imed Keraghel, Stanislas Morbieu, and Mohamed Nadif.
2024. A survey on recent advances in named entity
recognition. arXiv preprint arXiv:2401.10825.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Junlong Li, Yiheng Xu, Lei Cui, and Furu Wei. 2022.
MarkupLM: Pre-training of text and markup lan-
guage for visually rich document understanding. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 6078—6087, Dublin, Ireland. As-
sociation for Computational Linguistics.

Yu-Chen Lin, Si-An Chen, Jie-Jyun Liu, and Chih-Jen
Lin. 2023. Linear classifier: An often-forgotten base-
line for text classification. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
1876—-1888, Toronto, Canada. Association for Com-
putational Linguistics.

Varun Malik, Ruchi Mittal, and Shubhranshu Vikram
Singh. 2022. Epr-ml: E-commerce product recom-
mendation using nlp and machine learning algorithm.
2022 5th International Conference on Contempo-
rary Computing and Informatics (IC31), pages 1778-
1783.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python

1451

https://doi.org/10.18653/v1/2023.emnlp-industry.55
https://doi.org/10.18653/v1/2023.emnlp-industry.55
https://api.semanticscholar.org/CorpusID:264305709
https://api.semanticscholar.org/CorpusID:264305709
https://api.semanticscholar.org/CorpusID:259262489
https://api.semanticscholar.org/CorpusID:259262489
https://aclanthology.org/D13-1079
https://aclanthology.org/D13-1079
https://arxiv.org/abs/2209.15214
https://arxiv.org/abs/2209.15214
https://arxiv.org/abs/2209.15214
https://doi.org/10.18653/v1/2022.emnlp-industry.9
https://doi.org/10.18653/v1/2022.emnlp-industry.9
https://doi.org/10.18653/v1/2022.emnlp-industry.9
https://arxiv.org/abs/2402.08802
https://arxiv.org/abs/2402.08802
https://doi.org/10.1145/2396761.2396839
https://doi.org/10.1145/2396761.2396839
https://arxiv.org/abs/2406.15187
https://arxiv.org/abs/2406.15187
https://arxiv.org/abs/2406.15187
https://doi.org/10.18653/v1/2022.acl-long.420
https://doi.org/10.18653/v1/2022.acl-long.420
https://doi.org/10.18653/v1/2023.acl-short.160
https://doi.org/10.18653/v1/2023.acl-short.160
https://api.semanticscholar.org/CorpusID:257667859
https://api.semanticscholar.org/CorpusID:257667859

natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Kalyani Roy, Pawan Goyal, and Manish Pandey. 2021.
Attribute value generation from product title using
language models. In Proceedings of the 4th Work-
shop on e-Commerce and NLP, pages 13—17, Online.
Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sang-
hai, D. Sivakumar, Bin Shu, Zac Yu, and Jon Elsas.
2020. Learning to extract attribute value from prod-
uct via question answering: A multi-task approach.
In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, KDD 20, page 47-55, New York, NY, USA.
Association for Computing Machinery.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,
Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang.
2023. Gpt-ner: Named entity recognition via large
language models. Preprint, arXiv:2304.10428.

Bifan Wei, Jun Liu, Qinghua Zheng, Wei Zhang, Xi-
aoyu Fu, and Boqin Feng. 2013. A survey of faceted
search. J. Web Eng., 12:41-64.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, Yang
Wang, and Enhong Chen. 2024. Large language mod-
els for generative information extraction: A survey.
Preprint, arXiv:2312.17617.

Jun Yan, Nasser Zalmout, Yan Liang, Christan Grant,
Xiang Ren, and Xin Luna Dong. 2021. AdaTag:
Multi-attribute value extraction from product profiles
with adaptive decoding. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 46944705, Online. Association
for Computational Linguistics.

Nasser Zalmout, Chenwei Zhang, Xian Li, Yan Liang,
and Xin Dong. 2021. All you need to know to build
a product knowledge graph. Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery
& Data Mining.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna
Dong, and Feifei Li. 2018. Opentag: Open attribute
value extraction from product profiles. In Proceed-
ings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining,
KDD ’18, page 1049-1058, New York, NY, USA.
Association for Computing Machinery.

Henry Zou, Gavin Yu, Ziwei Fan, Dan Bu, Han Liu,
Peng Dai, Dongmei Jia, and Cornelia Caragea. 2024.
EIVEN: Efficient implicit attribute value extraction
using multimodal LLM. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human

1452

Language Technologies (Volume 6: Industry Track),
pages 453463, Mexico City, Mexico. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/2021.ecnlp-1.2
https://doi.org/10.18653/v1/2021.ecnlp-1.2
https://doi.org/10.1145/3394486.3403047
https://doi.org/10.1145/3394486.3403047
https://arxiv.org/abs/2304.10428
https://arxiv.org/abs/2304.10428
https://api.semanticscholar.org/CorpusID:11379879
https://api.semanticscholar.org/CorpusID:11379879
https://arxiv.org/abs/2312.17617
https://arxiv.org/abs/2312.17617
https://doi.org/10.18653/v1/2021.acl-long.362
https://doi.org/10.18653/v1/2021.acl-long.362
https://doi.org/10.18653/v1/2021.acl-long.362
https://api.semanticscholar.org/CorpusID:236980171
https://api.semanticscholar.org/CorpusID:236980171
https://doi.org/10.1145/3219819.3219839
https://doi.org/10.1145/3219819.3219839
https://doi.org/10.18653/v1/2024.naacl-industry.40
https://doi.org/10.18653/v1/2024.naacl-industry.40

Appendices

A Additional details of the LLM
extraction setup

For the LLM-based product information extraction,
we use the following prompt template for both GPT-
3.5-Turbo-1160 and Llama-3-8B-Instruct:

You are an Al Assistant for market research called Product Extractor. Your primary
responsibility is to parse unstructured text such as HTML or Markdown and extract
structured information from it. Ensure that the output of your responses is consistently
formatted in JSON and free of invalid escape characters.

Provide a confidence score on a scale of 0.0 to 1.0, where 0.0 indicates uncertainty, 0.5
suggests moderate certainty, and 1.0 denotes full certainty.

If any information is missing, use the phrase "not found" and provide a certainty score on a
scale of 0.0 to 1.0.

{format_instructions }

Input
{input}

Answer only in the requested format.

And these are the format_instructions:

The output should be formatted as a JSON instance that conforms to the JSON schema
below.
As an example, for the schema
{
"properties": {
"foo": {
"title": "Foo",
"description": "a list of strings", "type": "array",
"items": {
"type": "string"
}
}
}

"required": ["foo"]

the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema.
The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.

Here is the output schema:

{
"properties": {
"product_name": {
"title": "Product Name",
"description”: "name of the product",
"type": "string"
1
"product_description": {
"Product Description",
ion": "full product description”,

1
"product_name_confidence": {
"title": "Product Name Confidence",
"description”: "product name confidence", "example": "0.8",
"type": "number"
|8
"product_description_confidence":{
"title": "Product Description Confidence",
"description": "product description confidence", "example": "0.9",
"type": "number"
}
1
"required": ["product_name", "product_description", "product_name_confidence", "
product_description_confidence"]

B LLM scaling experiments

As part of our scaling experiments, we aimed to
assess the extraction processing time of deployed
Llama-3-8B-Instruct models on our infrastructure.
We conducted experiments with /, 2, and 3 in-
stances of Llama-3-8B-Instruct deployed on 1, 2, or

3 NVIDIA A100-SXM4-80GB MIGs. For model
serving, we utilized vLLM (Kwon et al., 2023),
which leverages the PagedAttention algorithm re-
sulting in up to 24x higher throughput compared to
HuggingFace Transformers, without requiring any
model architecture modifications. For this exper-
iment, we use 583 web pages as input containing
product information. We measured the total pro-
cessing time, processing time per file, and average
processing time per file with 10, 50, 100, and 500
parallel threads, as illustrated in Figure 3 a).

We bench-marked the execution times of GPT-
3.5-Turbo-1160 on Azure and compared them to
those of Llama-3-8B-Instruct. The results are pre-
sented in 3 b) and 3 c), with the latter showing
the number of failed requests for GPT-3.5-Turbo
versus Llama-3-8B-Instruct. Notably, when call-
ing GPT-3.5-Turbo, we encountered an error code
429, indicating that we had exceeded the token rate
limit of our current OpenAl SO pricing tier which is
240K TPM. The error message suggested retrying
after 2 seconds which highlights a significant limi-
tation: using GPT-3.5-Turbo on Azure would not
be scalable for processing large volumes of HTML
pages, as we would repeatedly hit the TPM limit.

C Additional details of the classification
setup

Having a look at the results of the URL classifier
in Table 7, the final dataset for training contains
10,935 samples and it takes ~0.2 seconds to train
the model with scikit-learn on a standard local ma-
chine. In the context of the URL classifier, the
train dataset is even extended with an additional
set of 308 product pages from a previous scouting
project of other experts, increasing the number of
product pages to a total of 4,821 samples. The F1
score reached a value of 97.9%, with a precision
of 100% and a recall of 95.8%. The high values in
comparison to the test set results can be attributed
to our experimental approach. After conducting
fine-tuning experiments, we adopted an iterative se-
lection process, by adding false positives and false
negatives from the hold-out split, which were iden-
tified after training on a majority of product pages
and a subset of non-product pages. No additional
fine-tuning experiments were performed, but the
default parameter set was chosen. The procedure of
selecting false positives and false negatives was re-
peated several times, always training from scratch
and including all data from the training dataset. In

1453

Average time per file and threads

0,90

1,00
0,80

077
0,69
0,70
0,62
0,60 057 057
051 050
.5 .
040
030
0,20
0,10
0,00
10 50

100 500
Number of threads

o
®
=3

Total time in seconds
Total time in seconds
o
Y
S

0,00

mLLM Instances1 mLLM Instances 2 ®mLLM Instances 3

(@)

Average processing time per file

10 50

mGPT-3.5-Turbo mLl

Number of errors

300
250
200
150
100
gl
0
10 50

100 500
Number of threads

Total time in seconds

100
Number of threads

t worst WLl b-11 t best mGPT-3.5-Turbo mLlama-3-8b-Instruct

(b) (c)

Figure 3: (a) Average extraction time per HTML file and number of running threads using LLama-3-8b-Instruct. (b)
Comparison of average extraction times between GPT-3.5-Turbo-1160 and LLama-3-8B-Instruct.

(c) Number of failed requests of GPT-3.5-Turbo-1160 and LLama-3-8B-Instruct.

terms of model interpretability, the first 30 term
coefficients of the final logistic regression model
can be seen in Figure 4.

Regarding the HTML classifier, it is not trivial
to evaluate the similarity of HTML files in order
to come up with an empirically well representative
and diverse training dataset. A naive approach is to
train and evaluate the model in a cross-validation
setup and investigate the outcome in terms of out-
liers. Therefore, the MarkupLM was initially eval-
uated applying 5-fold cross-validation with a rela-
tively balanced subset of the training set. Further-
more, additional experiments for hyperparameter
tuning resulted in 1,000 training iterations with a
batch size of 18 and a dropout rate of 0.5. The
optimizers Adam, SGD, and AdamW showed a
similar performance, so AdamW was chosen with
a learning rate of 1 x 107° and a weight decay
of 1 x 10~*. Other parameter selections have not
resulted in convergence. Later on, this setup was
extended with more non-product pages, constantly
added to each split. A total number of 134 experi-
ments has been logged with MLflow although not
all of these experiments resulted in successful runs.

The final setup includes ~83% of the product
pages for training and the rest for the hold-out split.
Considering the non-product pages and the imbal-
anced classes in general, just ~17% of them were
added to the training part and ~10% to the hold-
out split. The remaining test set, solely consisting
of non-product pages, was used for monitoring the
negative F1 score while optimizing towards the dev

set, thus not influencing the learning process. It is
worth noting that the constantly added prediction
time of the comparably large test set significantly
increases the runtime of the training process, which
is ~26.5h on a g4dn.4xlarge (GPU) instance from
AWS.

Due to its higher recall in comparison to the
other folds, the model of the 3¢ split was chosen to
be deployed for using it as part of the pipeline clas-
sification module. Its F1 score reached a value of
91.1% with 86.2% precision and a recall of 96.6%
over the complete training cycle, as shown in in
Table 7. The development split is imbalanced, com-
prising 754 positive and 2,693 negative samples.
Consequently, we would expect a higher precision
than 86.2% on a balanced hold-out set. This expec-
tation is supported by the model’s performance on
the test dataset, with larger sample size of 18,451.
Here, the negative recall is 96.8%, closely mirror-
ing the 95.7% negative recall observed in the dev
split. The implementation of early stopping after
50 iterations, i.e. continued training of the current
model solely if the F1 score on the hold-out split
increased or switching back to a previous model,
has led to the final model selection at iteration 700
of 1,000.

Given the curated tokens of product scouting ex-
perts, the URL path segment classifier can be taken
as the baseline for the overall experimental setup
of the classification components in Table 7. The
URL classifier outperforms this whitelist-based ap-
proach. While the HTML classifier outperforms

1454

webinar
news
product
document
stepon
omopag
technologien
career
whitepap
blog

contact
frend
technolog
enproduct
E beitrag
& nachrichten
newsroom
partenair
kontakt

partner

faq

press

sustain
uutishuon
prodotti

job

producto
messtechnik
loesungen
bonfiglioli

m

|
[#%)

|
3

|
-
[=)
e
%]

coef

Figure 4: First 30 term coefficients of logistic regression model.

| PSall | URLtest PStest | HTMLdev PSdev Basedev | HTML test PStest Base test

pages - 10,935 - 8,047 - 8,047 8,047 - 8,047
Acc. 0.8299 | 0.9999 0.8744 0.9585 0.8123 0.9799 0.9682 0.8618 0.9818
F1 pos. | 0.5309 | 0.9787 0.0049 0.9105 0.6023 0.9579 - - -
Ppos. | 0.4528 1.0 0.0025 0,8615 0,5606 0.9339 0.0 0.0 0.0
Ropos. | 0.6414 | 0.9583 0.2500 0.9655 0.6507 0.9832 - - -
Flneg. | 0,8961 0,9999 0,9329 0,9729 0,8771 0.9868 0,9838 0,9258 0.9908
Pneg. | 09316 | 09999 0,9989 0,9900 0,8977 0.9948 1.0 1.0 1.0
Rneg. | 0,8631 1.0 0,8751 0,9565 0,8574 0.9789 0,9682 0,8618 0.9818

Table 7: Evaluation metrics for the different classifiers and the given amount of pages used for training (HTML test
set solely consists of non-product pages). Abbreviations: PS - URL path segment classifier, URL - URL classifier,
HTML - HTML classifier, Base - LightGBM HTML classifier, Acc. - accuracy, F1 - F1 score, P - precision, R -
recall, pos. - positives, neg. - negatives.

Model \ Accuracy F1 Score Precision Recall AUC
Light Gradient Boosting Machine 0.9778 0.9758 0.9738 09779 0.9970
Extreme Gradient Boosting 0.9771 0.9750 0.9723 0.9779 0.9965
Extra Trees Classifier 0.9739 0.9715 0.9691 0.9740 0.9955
Random Forest Classifier 0.9721 0.9696 0.9668 0.9724 0.9961
Gradient Boosting Classifier 0.9693 0.9663 0.9700 0.9627 0.9943
Decision Tree Classifier 0.9616 0.9583 0.9533 0.9635 0.9618
Ada Boost Classifier 0.9570 0.9529 0.9558 0.9503 0.9901
K Neighbors Classifier 0.9542 0.9498 0.9517 0.9480 0.9840
Ridge Classifier 0.9375 0.9321 0.9248 0.9398 0.0
SVM - Linear Classifier 0.9370 0.9317 0.9230 0.9410 0.0

Table 8: 10-fold cross-validation results of the 10 best performing baseline models for HTML classification.

1455

Lorem ipsum dolor sit amet

Lorem ipsum

Lorem ipsum dolor sit amet

(a) Company 1 product page

(b) Company 2 product page

(c) Company 3 product page

Figure 5: Product pages from different companies

the URL path segment classifier as well, the more
appropriate baseline here is to compare the deep
learning approach with a collection of models deal-
ing with TF-IDF input (Lin et al., 2023). This
approach is similar to the one chosen for URL clas-
sification, but due to the size and diversity of the
given HTML pages, it needs to be limited to the
top 10K features of all training documents. Fur-
thermore, it makes use of the same cleaning func-
tionality as applied within the MarkupLM setup
and it excludes English stop words. With an ac-
curacy of ~98% on the dev and the test hold-out
split, the LightGBM classifier shows better results
than the deep learning model in Table 7. In addi-
tion, Table 8 lists the training evaluation metrics
of the LightGBM classifier and comparably good
models. However, when applying the LightGBM
model to page content of unknown companies, the
performance drops drastically in comparison to the
MarkupLLM results in Table 4. In case of the test
set, the F1 score reaches a value of ~24%, with
a precision of 40.0% and a recall of 17.1%. In
comparison, the precision decreases to 32.8% on
the controlled test set, while the recall increases
to 20.7%, resulting in an F1 score of 25.4%. This
drop of performance is reasonable for the given
amount of data and the limited feature space, be-
cause the complexity of an arbitrary company web
page of type product or non-product cannot easily
be generalized by a TF-IDF-based approach.

D Product pages

Our method is designed to handle product pages
from various companies, each with their unique
HTML structure and format. In contrast, product
catalog pages (e.g., Amazon or Shopify) are not the
focus of this work, as they typically have a standard-
ized structure and can be easily parsed using tools
like Beautiful Soup and regular expressions. Fig-
ure 5 illustrates the diversity of HTML pages from
three different companies, with the original text
replaced by dummy Lorem ipsum code for demon-

stration purposes. To view the actual product pages,
click on the link below each image. This highlights
the complexity of the pages we encounter, many
of which resemble ordinary blog posts or about us
pages. Furthermore, it underscores the importance
of having a product page classifier component prior
to the extraction component to ensure accurate pro-
cessing.

1456

https://tinyurl.com/2xcyahv8
https://tinyurl.com/cb5nj2ja
https://tinyurl.com/yc5tpu3c

