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Abstract

Abstractive summarization models often gen-
erate factually inconsistent content particularly
when the parametric knowledge of the model
conflicts with the knowledge in the input docu-
ment. In this paper, we analyze the robustness
of fine-tuning based summarization models to
the knowledge conflict, which we call factual
adaptiveness. We utilize pre-trained language
models to construct evaluation sets and find that
factual adaptiveness is not strongly correlated
with factual consistency on original datasets.
Furthermore, we introduce a controllable coun-
terfactual data augmentation method where the
degree of knowledge conflict within the aug-
mented data can be adjustable. Our experimen-
tal results on two pre-trained language models
(PEGASUS and BART) and two fine-tuning
datasets (XSum and CNN/DailyMail) demon-
strate that our method enhances factual adap-
tiveness while achieving factual consistency on
original datasets on par with the contrastive
learning baseline.

1 Introduction

Factual consistency is a crucial aspect, especially in
abstractive summarization, ensuring that the facts
presented in the generated summary align with
those in the input document (Maynez et al., 2020;
Kryscinski et al., 2020; Huang et al., 2021; Scialom
et al., 2021; Fabbri et al., 2022).

Recent summarization models using pre-training
and/or fine-tuning of the language model have
shown excellent performance in various aspects
such as factual consistency (Lewis et al., 2020; Raf-
fel et al., 2020; Zhang et al., 2020; Cao and Wang,
2021; Wan and Bansal, 2022; Roit et al., 2023).
There are also studies on large language models
(Brown et al., 2020; Ouyang et al., 2022; Chowd-
hery et al., 2022) for the summarization (Zhang
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et al., 2023; Adams et al., 2023) or the evaluation
of summaries (Luo et al., 2023; Gao et al., 2023).

Previous works have also reported that (large)
language models have parametric knowledge (Ji
et al., 2023; Bang et al., 2023). The parametric
knowledge of the language model is known to
result in hallucinated contents, particularly when
knowledge conflict occurs which refers to the mis-
match between the knowledge in the document
and the parametric knowledge of the model (Long-
pre et al., 2021; Neeman et al., 2022; Zhou et al.,
2023b). Because the hallucination problem de-
grades factual consistency of summarization mod-
els (Maynez et al., 2020; Nan et al., 2021), it is
important to study the robustness to knowledge
conflict of summarization models.

In abstractive summarization, most previous
works have measured the factual consistency using
the original document only, which is not sufficient
to evaluate the robustness to knowledge conflict
(Cao and Wang, 2021; Wan and Bansal, 2022; Wan
et al., 2023). There are studies on hallucination
problems caused by knowledge conflict in abstrac-
tive summarization (Ladhak et al., 2023; Cheang
et al., 2023). However, the aforementioned docu-
ment perturbation strategies do not control the de-
gree of knowledge conflict, which offers valuable
insight into the robustness of the summarization
models to the knowledge conflict.

In this paper, we define factual adaptiveness, the
robustness to the knowledge conflict, of fine-tuning
based abstractive summarization models. We focus
on entity-level knowledge conflict and factual adap-
tiveness and use counterfactual samples obtained
by replacing a single named entity (i.e., original en-
tity) with another named entity (i.e., counterfactual
entity).

Unlike previous works on knowledge conflict
in question answering, there are two additional
considerations in our work (Longpre et al., 2021;
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Neeman et al., 2022). First, we determine which
named entity to replace in the reference summary
by detecting parametric knowledge. Second, we
select the named entity to be replaced with to con-
trol knowledge conflict. To address those consid-
erations, we utilize the parametric knowledge of
the pre-trained language model (PLM) during the
knowledge conflict set construction.

We first analyze the factual adaptiveness of vari-
ous methods for improving factual consistency on
original datasets such as data filtering (Nan et al.,
2021), contrastive learning (Cao and Wang, 2021),
and advanced decoding (Wan et al., 2023). Our
results demonstrate that methods for factual consis-
tency on original datasets do not always effectively
mitigate knowledge conflict problems, which indi-
cates that factual consistency on original datasets
can be orthogonal to factual adaptiveness.

We next propose a controllable counterfactual
data augmentation technique. Specifically, the
method constructs counterfactual samples based
on a pre-defined degree of knowledge conflict. Ex-
perimental results show that our method improves
factual adaptiveness effectively and addresses the
entity-level hallucination problem caused by knowl-
edge conflict.

Our contributions can be summarized as follows:

• We introduce the factual adaptiveness of fine-
tuning based summarization models using a
parametric knowledge of a pre-trained lan-
guage model.

• We demonstrate that factual consistency on
original datasets tends to be orthogonal to fac-
tual adaptiveness. Specifically, data filtering
largely improves factual adaptiveness while
advanced decoding and contrastive learning
show minimal differences.

• We propose a controllable counterfactual data
augmentation method that enhances factual
adaptiveness while preserving factual consis-
tency on original datasets.

2 Factual Adaptiveness

In this section, we define and analyze factual adap-
tiveness of various fine-tuning based summariza-
tion models which are known to improve factual
consistency. We formulate factual adaptiveness in
Section 2.1, and explain the factual adaptiveness
evaluation set construction method in Section 2.2.

In the remaining text, the term counterfactual in-
dicates the presence of knowledge conflict caused
by the entity replacement. We also denote a coun-
terfactual sample as a pair of the counterfactual
document and summary, assuming they are factu-
ally consistent.

2.1 Formulation

Suppose we have a sample Xo = (Do, So) which
consists of document Do = {d1, d2, ..., dM} and
a reference summary So = {s1, s2, ..., sT }. We
denote a pre-trained language model as ψ and a
fine-tuned summarization model as ϕ.

To construct a counterfactual sample Xc =
(Dc, Sc) from Xo, we first select the original
named entity Eo which (i) exists in both Do and
So and (ii) contains the parametric knowledge of
ψ. We then replace Eo with the counterfactual
named entity Ec to synthesize Xc which consists
of the counterfactual document Dc and factually
consistent summary Sc.

We define factual adaptiveness metricsMCL and
MFC on two perspectives: conditional likelihood
and factual consistency, respectively. Specifically,
we input original and counterfactual documents al-
ternately into the summarization model, measuring
two distinct differences: i) the conditional likeli-
hood of original (counterfactual) named entities
within the reference summary and ii) the factual
consistency between the original (counterfactual)
document and the generated summary.

We define MCL as follows:

MCL := Pϕ(eo|Do, So,<t)− Pϕ(ec|Dc, Sc,<t),
(1)

where Sc,<t and So,<t denote the summary prefix
of first t− 1 tokens of Sc and So, respectively. ec
and eo denote the first tokens of Ec and Eo, respec-
tively, assuming that ec and eo are t-th tokens of
each summary. MCL indicates the factual adaptive-
ness of model ϕ on the perspective of the condi-
tional likelihood when the counterfactual document
and the summary prefix are given.

Because MCL does not consider the summary
generated by ϕ, we introduce complementary met-
ric MFC as follows:

MFC := f(Do, S
ϕ(Do))− f(Dc, S

ϕ(Dc)), (2)

where f denotes factual consistency scoring func-
tion such as QuestEval (Scialom et al., 2021), and
Sϕ(D) denotes the summary generated by ϕ given
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1. Original Entity Selection

PLM

(𝜓)

𝑫𝒐

… we are disappointed that

they have made themselves

unavailable for selection for

the Bangladesh tour.“…

… Alex Hales have opted

out of October's tour of ____

Summary Prefix (𝑺𝒐,<𝒕 )

𝑷𝝍(∙ |𝑫𝒐, 𝑺𝒐,<𝒕)
…

Queensland…

Burgenland…

2. Counterfactual Entity Selection

… “While we understand and respect Eoin

and Alex's decision, we are disappointed that

they have made themselves unavailable for

selection for the Bangladesh tour.“…

England one-day captain Eoin Morgan and

opening batsman Alex Hales have opted out

of October's tour of Bangladesh because of

security concerns.

… “While we understand and respect Eoin

and Alex's decision, we are disappointed that

they have made themselves unavailable for

selection for the Queensland tour.“…

England one-day captain Eoin Morgan and

opening batsman Alex Hales have opted out

of October's tour of Queensland because of

security concerns.

3. Entity Replacement

Original Document (𝑫𝒐) Original Summary (𝑺𝒐)

Counterfactual Document (𝑫𝒄 ) Counterfactual Summary (𝑺𝒄)

Figure 1: Overview of the counterfactual sample construction process. The example is sampled from the XSum
validation set.

the document D. The second term of MFC in-
volves inputting documents where a knowledge
conflict occurs, leading to the generation of factu-
ally inconsistent summaries from the model. As a
result, MFC approximates factual adaptiveness by
calculating the reduction in the factual consistency
of the summarization model due to knowledge con-
flicts.

In the remaining text, we refer to factual consis-
tency as the attribute between the original docu-
ment and the generated summary if further clarifica-
tion is not provided. Note that factual consistency
is different from MFC which measures the differ-
ence of factual consistency scores between original
and counterfactual samples.

2.2 Evaluation Set Construction

To satisfy our assumption: (i) Eo contains the para-
metric knowledge of the model and (ii) Dc occurs
knowledge conflict, it is critical to select appro-
priate Eo and Ec. We utilize PLM ψ during the
entity selection to accurately construct counterfac-
tual sample Xc.

2.2.1 Counterfactual Entity Candidate Pool
We restrict the candidate entities to those of the
same category and found in the training corpus
following previous works (Longpre et al., 2021;
Rajagopal et al., 2022). We utilize spaCy (Honni-
bal et al., 2020) to construct a candidate pool of
counterfactual entities from the named entities in
the fine-tuning set.

2.2.2 Original Entity Candidates
For each reference summary So, we extract the
named entity list L = {Eo,1, Eo,2, ..., Eo,K} (if
i < j, Eo,i appears before Eo,j in So) using spaCy.
In this work, we exclude numerical categories such
as QUANTITY, DATE, and TIME concerning that nu-

Algorithm 1 Entity Validation Scenario (S1)
Input: Document Do = {d1, d2, ..., dM}, sum-
mary So = {s1, s2, ..., sT }, pre-trained language
model ψ, null document D∅, threshold τ .
Output: Counterfactual samples Xc

1: Xc = {}
2: E = {}
3: Get L = {Eo,1, Eo,2, ..., Eo,K}, the list of

named entity which exists in both Do and So
4: for k ← 1 to K do
5: tk ← the first token position of Eo,k in So
6: Ec ← named entity sampled from one of

three groups ▷ Section 2.2.3
7: p← Pψ(stk |D∅, So,<tk)
8: if p > τ then ▷ Section 2.2.4
9: Append (Eo,k, Ec) to E

10: end if
11: end for
12: for each pair (Eo, Ec) in E do▷ Section 2.2.5
13: Dc ← REPLACE(Do, Eo, Ec)
14: Sc ← REPLACE(So, Eo, Ec)
15: Append (Dc, Sc) to Xc

16: end for
17: return Xc

merical entities can easily be paraphrased (e.g.
15:00 / 3:00 PM, 1970s / 70’s).

For each named entity Eo,k, we validate that the
entity is part of the parametric knowledge of ψ. We
hypothesize two validation scenarios which will be
described in Section 2.2.4.

2.2.3 Counterfactual Entity Candidates
We assume that the original named entity Eo,k ap-
pears in So at the position tk. We sort counterfac-
tual entity candidates by the conditional likelihood
of their first token given the document Do and the

917



prefix of the reference summary So,<tk .
We divide the counterfactual entity candidates

into three groups: Top (top 2%-25% entities by the
conditional likelihood), Middle (Mid) (25%-75%),
and Bottom (Bot) (75%-100%). Note that we ex-
clude the top 2% entities to ensure counterfactual
replacement. Intuitively, the degree of knowledge
conflict is expected to be larger in Bot compared
to Top. We select the group and sample counter-
factual entity candidate from the group before the
validation step.

2.2.4 Original and Counterfactual Entity
Validation

We set two scenarios for the entity validation to
satisfy the assumptions described in Section 2.2.

Scenario 1 (S1): Unconditional Likelihood
We hypothesize that the named entity Eo,k whose
unconditional likelihood Pψ(eo,k|D∅, So,<tk) sur-
passes the threshold τ is part of the parametric
knowledge of ψ. eo,k denotes the first token of
Eo,k (i.e., stk ), and D∅ denotes the null document
such as ".". Note that after Eo is validated, we do
not further examine Ec in Scenario 1. We refer to
Algorithm 1 for details.

Scenario 2 (S2): Conditional Likelihood Dif-
ference We hypothesize that Eo,k and Ec con-
tain parametric knowledge and knowledge conflict,
respectively, if the conditional likelihood differ-
ence Pψ(eo,k|Do, So,<tk)−Pψ(ec|Dc, Sc,<tk) sur-
passes the threshold τ . Note that the condition in
Scenario 2 is directly aligned to MCL in Equation
1 except for the model to be used. The algorithm
of Scenario 2 can be found in Appendix B.

2.2.5 Entity Replacement
If the sample Xo has the valid original (counterfac-
tual) entity Eo (Ec), we replace all Eo in Do and
So with Ec. After the entity-level replacement, we
further conduct the word-level replacement where
each word in Eo is replaced with the word in Ec
proportionally to its position.

For example, if Eo = "Daniel Radcliffe"
and Ec = "Rupert Grint", we further replace
"Daniel" with "Rupert" and "Radcliffe" with
"Grint".

3 Analysis on Models for Improving
Factual Consistency

In this section, we analyze summarization models
using the evaluation set as described in Section
2.2. Specifically, we measure MCL and MFC of

various models that are proposed to improve factual
consistency to observe the relation between factual
adaptiveness and factual consistency.

3.1 Setup
We measure ROUGE-L (Lin, 2004) and QuestE-
val score, which is known to be aligned with hu-
man judgments (Scialom et al., 2021), on the orig-
inal test set and MCL/MFC scores on the fac-
tual adaptiveness evaluation set. We use three
approaches for the baseline: data filtering (Filter-
ing, Nan et al., 2021), contrastive learning (CLIFF,
Cao and Wang, 2021), and advanced decoding
(Decoding, Wan et al., 2023) and two backbone
PLMs: PEGASUSLARGE (Zhang et al., 2020) and
BARTLARGE (Lewis et al., 2020) for the analysis.
We also evaluate models that are simply fine-tuned
with negative log-likelihood objectives (NLL) for
comparison. For the baseline re-implementation,
we use HuggingFace1 for PEGASUS based models
and fairseq2 for BART based models. Hyperparam-
eters for each baseline can be found in Appendix
E.

3.2 Evaluation Set
We use test sets of XSum (Narayan et al., 2018)
and CNN/DailyMail (CNNDM, Hermann et al.,
2015) to construct factual adaptiveness evaluation
sets. We search the threshold τ using validation
sets so that the extracted factual adaptiveness evalu-
ation set is about 10% of the original validation set
(We use Top group and Scenario 1). τ and dataset
statistics can be found in Appendix E.

To specify the evaluation set, information on
(i) the type of PLM, (ii) the dataset, (iii) the type
of counterfactual entity candidate group, and (iv)
the type of validation scenario is required. For
example, we denote XSum (PEGASUS, Top, S1)
as the evaluation set based on the XSum test set
using PEGASUS for the PLM, Top group for the
counterfactual entity candidate group, and scenario
1 for the entity validation.

3.3 Results
Scores of PEGASUS based models are shown in
Table 1. Results on BART based models can be
found in Appendix D, except for Decoding because
the original training code for BART is implemented
on fairseq, while the code for Decoding is based
on HuggingFace.

1https://github.com/huggingface/transformers
2https://github.com/facebookresearch/fairseq
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MCL(S1)(↓) MCL(S2)(↓) MFC(S1)(↓) MFC(S2)(↓)
Models R-L QEval Top Mid Bot Top Mid Bot Top Mid Bot Top Mid Bot

XSum (PEGASUS)
NLL 36.36 32.94 0.552 0.589 0.631 0.718 0.734 0.744 1.79 2.10 1.98 2.14 2.43 2.55

±0.07 ±0.05 ±.004 ±.002 ±.006 ±.004 ±.003 ±.004 ±0.08 ±0.08 ±0.09 ±0.10 ±0.02 ±0.11
Filtering 34.89 33.49 0.495 0.526 0.565 0.669 0.681 0.693 1.59 1.77 1.75 1.69 1.91 2.07

±0.09 ±0.24 ±.011 ±.015 ±.019 ±.010 ±.009 ±.013 ±0.00 ±0.12 ±0.12 ±0.17 ±0.08 ±0.15
Decoding 35.29 34.11 - - - - - - 1.76 1.90 2.01 2.09 2.40 2.46

±0.02 ±0.02 - - - - - - ±0.11 ±0.02 ±0.14 ±0.19 ±0.09 ±0.10
CLIFF 35.86 33.27 0.547 0.583 0.625 0.713 0.727 0.740 1.83 2.12 2.11 2.10 2.30 2.50

±0.04 ±0.02 ±.005 ±.004 ±.003 ±.006 ±.005 ±.005 ±0.09 ±0.16 ±0.04 ±0.04 ±0.16 ±0.16
CNN/DailyMail (PEGASUS)

NLL 37.08 51.44 0.243 0.277 0.304 0.444 0.451 0.449 0.49 0.46 0.45 0.53 0.43 0.44
±0.05 ±0.05 ±.003 ±.001 ±.001 ±.002 ±.001 ±.002 ±0.14 ±0.04 ±0.07 ±0.19 ±0.14 ±0.07

Filtering 36.69 51.86 0.188 0.215 0.243 0.384 0.390 0.396 0.31 0.19 0.29 0.37 0.46 0.34
±0.10 ±0.03 ±.002 ±.001 ±.002 ±.003 ±.001 ±0.002 ±0.07 ±0.09 ±0.11 ±0.01 ±0.05 ±0.06

Decoding 37.52 52.60 - - - - - - 0.54 0.41 0.48 0.53 0.31 0.49
±0.10 ±0.05 - - - - - - ±0.16 ±0.18 ±0.08 ±0.09 ±0.13 ±0.08

CLIFF 37.06 51.45 0.243 0.278 0.302 0.445 0.452 0.450 0.56 0.60 0.62 0.40 0.50 0.33
±0.04 ±0.03 ±.002 ±.003 ±.003 ±.001 ±.000 ±.002 ±0.15 ±0.11 ±0.19 ±0.02 ±0.10 ±0.12

Table 1: Mean and standard deviation of ROUGE-L (R-L) and QuestEval (QEval) on original test sets and
MCL/MFC scores on factual adaptiveness evaluation sets across 3 seeds.

Entity Validation Scenarios We first observe
which of the two entity validation scenarios more
effectively generates knowledge conflict. In most
cases, it is observed that factual adaptiveness is
much degraded for the evaluation sets constructed
based on Scenario 2, especially in XSum. The
results suggest that through Scenario 2, we can
accurately detect prior knowledge of PLM and ef-
fectively induce knowledge conflicts compared to
Scenario 1. Given the fact that the criterion used in
Scenario 2 is similar to Equation 2, and they only
differ in terms of the models used, we speculate
that fine-tuned models share the knowledge with
pre-trained models.

Counterfactual Entity Candidate Groups We
can observe that MCL scores tend to increase in
the order of Top, Mid, and Bot. Considering that
the group is divided based on the conditional likeli-
hood of PLM, the results indicate that our method
controls the degree of parametric knowledge and
knowledge conflict effectively.

In CNN/DailyMail, the tendency for MFC be-
tween the candidate groups is weak compared
to XSum even with the consistency in MCL.
We speculate that the low abstractiveness of
CNN/DailyMail (Dreyer et al., 2023) has improved
overall factual adaptiveness with respect to MCL

and MFC , resulting in the similarity of MFC be-
tween the candidate groups.

Factual Adaptiveness vs. Factual Consistency
While Filtering greatly enhances both factual con-
sistency and factual adaptiveness, Decoding and

CLIFF show minimal improvements in MCL and
MFC scores compared to NLL. The results im-
ply that methods for factual consistency improve-
ment do not necessarily increase robustness against
knowledge conflict, and factual consistency is not
strongly correlated with factual adaptiveness.

4 Controllable Counterfactual Data
Augmentation

4.1 Training Set Construction

We apply the same procedure used for building
a factual adaptiveness evaluation set to construct
the augmentation set. For each dataset, we use
the same threshold τ determined during the corre-
sponding evaluation set construction. We further
proceed to sample the obtained augmentation set
at a certain ratio ρ of the original training set.

4.2 Incorporation with Contrastive Learning

In recent research, contrastive learning has been
applied to enhance factual consistency (Cao and
Wang, 2021; Wan and Bansal, 2022). Our method
can be integrated with a contrastive learning-based
approach if it can map positive/negative summaries
to counterfactual documents.

In the context of contrastive learning, we apply
previous contrastive learning set construction meth-
ods to the counterfactual samples. For CLIFF, we
utilize the provided positive/negative summaries by
replacing original entities in the summaries with
counterfactual entities. For FactPEGASUS (Wan
and Bansal, 2022), we feed augmented datasets to
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XSum CNN/DailyMail
PEGASUS BART PEGASUS BART

R-L QEval MCL MFC R-L QEval MCL MFC R-L QEval MCL MFC R-L QEval MCL MFC

NLL 36.36 32.94 0.734 2.43 34.83 32.94 0.752 2.14 37.08 51.44 0.451 0.43 38.05 50.99 0.438 0.62
±0.07 ±0.05 ±.003 ±0.02 ±0.05 ±0.03 ±.004 ±0.02 ±0.05 ±0.05 ±.001 ±0.14 ±0.04 ±0.04 ±.006 ±0.10

CLIFF 35.86 33.27 0.727 2.30 33.89 33.32 0.742 2.19 37.06 51.45 0.452 0.50 37.97 51.07 0.435 0.52
±0.04 ±0.02 ±.005 ±0.16 ±0.14 ±0.07 ±.005 ±0.07 ±0.04 ±0.03 ±.000 ±0.10 ±0.13 ±0.06 ±.003 ±0.10

Ours 35.69 33.26 0.132 1.20 33.81 33.39 0.113 1.20 36.91 51.37 0.096 0.41 37.88 51.01 0.074 0.56
(CLIFF) ±0.03 ±0.06 ±.004 ±0.10 ±0.04 ±0.05 ±.005 ±0.10 ±0.00 ±0.04 ±.001 ±0.14 ±0.09 ±0.03 ±.001 ±0.21

Table 2: ROUGE-L (R-L) and QuestEval (QEval) on original test sets andMCL/MFC scores on factual adaptiveness
evaluation sets of Scenario 2 and Mid group with the mean and standard deviation across 3 seeds.

the provided contrastive learning pipelines3.
In the remaining text, the term ours refers to a

model that integrates controllable counterfactual
data augmentation with the CLIFF training method.
We also conduct experiments on FactPEGASUS
and experimental results on XSum can be found in
Appendix F.

5 Experiments

5.1 Setup
We use Scenario 2 and Mid group to construct
augmented contrastive learning training sets in ac-
cordance with the conclusions drawn in Section
3.3. To regulate the size of the training dataset, we
sample the augmentation set from counterfactual
samples, setting ρ to 0.1. We use the remaining set-
tings as those of CLIFF in Appendix E. Note that
we vary the sampling seed of the counterfactual
samples in the multiple seed experiment.

To obtain the positive/negative summaries of the
counterfactual document, we utilize the entities
Eo and Ec used when obtaining the counterfactual
document and apply the same entity replacement
process to positive and negative summaries of the
corresponding original document. If there is no
negative summary for the original document, we
obtain it by performing entity replacement on So
with other counterfactual entities. To gather a suffi-
cient number of negative summaries, multiple coun-
terfactual entity candidates are sampled during the
process in Section 2.2.3 before the validation.

5.2 Main Results
We compare the results of our model with those of
NLL and CLIFF in Table 2 because CLIFF and ours
sequentially apply additional techniques to NLL:
contrastive learning and controllable counterfactual
data augmentation, respectively.

From the perspective of conditional likelihood
(i.e.,MCL), we can observe that our method signifi-

3https://github.com/meetdavidwan/factpegasus

XSum CNNDM
(a) PEGASUS

0
10
20
30
40
50
60
70
80
90

100
Method
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Filtering
Decoding
CLIFF
Ours

XSum CNNDM
(b) BART

0
10
20
30
40
50
60
70
80
90

100
Method

NLL
Filtering
CLIFF
Ours

Figure 2: The ratio of summaries generated from the
counterfactual documents of XSum and CNN/DailyMail
(Mid, S2) which include the counterfactual entity but
do not include the original entity.

cantly improves factual adaptiveness. Compared to
the contrastive learning baseline, our method also
enhances factual consistency on the original test
set in the BART-XSum case.

Although our models consistently reduce the
MCL score, there is a case where our MFC score
is higher than that of CLIFF in BART fine-tuned
with CNN/DailyMail. One possible explanation
is that our method is more effective in terms of
factual adaptiveness on datasets with a high level
of abstractiveness such as XSum, while there is a
misalignment between MCL and MFC on datasets
with low abstractiveness (Dreyer et al., 2023). We
also provide the results of the ChatGPT preference
test in Appendix G.

6 Analysis

6.1 Entity Replacement

The proportion of summaries that contain the coun-
terfactual entity without the original entity given
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Aug. Aug. Evaluation Set
Group Ratio Top Mid Bot QEval

XSum

Top
5% 0.191 0.229 0.272 33.35
10% 0.147 0.188 0.236 33.37

Mid
5% 0.217 0.162 0.156 33.34
10% 0.163 0.113 0.113 33.39

Bot
5% 0.335 0.208 0.127 33.35
10% 0.285 0.159 0.081 33.37

CNNDM

Top
5% 0.142 0.153 0.152 51.04
10% 0.102 0.115 0.118 50.99

Mid
5% 0.162 0.108 0.078 51.01
10% 0.118 0.073 0.047 51.01

Bot
5% 0.205 0.124 0.060 51.08
10% 0.173 0.091 0.028 50.96

Table 3: Mean of QuestEval (QEval) scores on original
test sets and MCL scores on factual adaptiveness eval-
uation sets of our models based on BART varying the
augmentation group (Aug. Group) and augmentation
ratio (Aug. Ratio) across 3 seeds.

the counterfactual document is shown in Figure 2.
We can observe that our model exhibits a sig-

nificantly high rate of generating counterfactual
entities in both datasets. Filtering exhibits rela-
tively higher values among the baselines, which is
consistent with the results in Table 1. Compared
to our method, however, Filtering still generates
original entities at a high rate. The results also
indicate that our approach successfully addresses
entity-level hallucination problems in the BART-
CNNDM setting whereMFC is slightly higher than
that of CLIFF.

6.2 Counterfactual Entity Candidate Group

We vary the counterfactual entity candidate group
during the training set construction, as shown in
Table 3.

It is observed thatMCL scores are minimal when
the group type of training set is aligned with the
type of evaluation set. We guess that the models
tend to fit their factual adaptiveness to the distribu-
tion of training sets. It is also observed that models
fine-tuned with Mid group show low MCL scores
across three evaluation sets. Specifically, the score
difference between the three evaluation groups of
models fine-tuned with Bot group is the largest.
Based on those observations, we conclude that the
distribution of counterfactual samples is important
for entity-level generalization of factual adaptive-
ness.

6.3 Augmentation Ratio

We also vary the augmentation ratio ρ which refers
to the ratio of the size of the counterfactual samples
to the size of the original training set in Table 3. In

Dataset NLL Filtering Decoding CLIFF Ours

PEGASUS
XSum 79.60 78.08 77.39 78.51 78.26
CNNDM 11.44 9.67 13.61 11.23 11.21

BART
XSum 80.17 78.76 - 79.45 79.32
CNNDM 16.47 14.42 - 15.99 16.40

Table 4: Mean of MINT scores across 3 seeds.

all the cases, models of the augmentation ratio of
10% exhibit much lower MCL scores compared to
the augmentation ratio of 5%, which implies that
the degree of factual adaptiveness can be controlled
by modifying ρ. Interestingly, increasing ρ does
not always diminish the QEval scores while consis-
tently enhancing factual adaptiveness. The results
reemphasize a close-to-orthogonal relationship be-
tween factual consistency and factual adaptiveness.

6.4 Factual Adaptiveness vs. Abstractiveness

To observe the relationship between factual adap-
tiveness and abstractiveness, we measure the MINT
abstractiveness score (Dreyer et al., 2023) as shown
in Table 4. The abstractiveness of summaries gener-
ated by models fine-tuned with XSum demonstrates
significantly higher levels of abstractiveness when
compared to CNNDM, aligning with the findings
of previous studies (Dreyer et al., 2023).

In the baselines, the lowest overall abstractive-
ness is found in Filtering with the highest factual
adaptiveness. On the other hand, our approach
demonstrates a relatively minor trade-off between
factual adaptiveness and abstractiveness. The re-
sults suggest that our method substantially en-
hances factual adaptiveness while preserving the
abstractiveness of generated summaries.

6.5 Qualitative Study

Table 5 shows summarization results given the
counterfactual document where the entity Turkey
is replaced by Portballintrae. We use a model
weight of BARTLARGE provided by HuggingFace4

to generate the sample for Decoding. There are
clues to infer Turkey such as Kars and President
Recep Tayyip Erdogan which result in hallu-
cinated summaries of baselines. On the other
hand, our model generates an accurate summary
by adapting to the knowledge associated with
Portballintrae. We present another case study
in Appendix H.

4https://huggingface.co/facebook/
bart-large-xsum
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Document (Turkey→Portballintrae)
Ece Heper, 50, was arrested on 30 December in the north-eastern town of Kars, her lawyer Sertac Celikkaleli told The Canadian
Press. Canadian officials say they are offering consular assistance, but released no further information. ... Portballintrae’s
penal code states that anybody who insults the president can face up to four years in prison. . . . she was arrested for Facebook
posts critical of President Recep Tayyip Erdogan. . . .
Summary
NLL: A Canadian woman has been charged with insulting the president of Turkey, her lawyer says.
Filtering: A Canadian woman has been charged with insulting the president of Turkey, her lawyer says.
Decoding: A Canadian woman has been arrested in Turkey for allegedly insulting the president of the Portballintrae province,
her lawyer says.
CLIFF: A Canadian woman has been arrested in Turkey on suspicion of insulting the president, her lawyer says.
Ours: A Canadian woman has been arrested in Portballintrae on suspicion of insulting the president, her lawyer says.

Table 5: Summaries of the counterfactual document of XSum (BART, Mid, S2) evaluation set. Original and
counterfactual entities are colored red and blue, respectively.

7 Related Work

7.1 Factual Consistency of Summarization
Models

Studies on factual consistency of summarization
models have been consistently conducted (Cao
and Wang, 2021; Wan and Bansal, 2022; Ra-
jagopal et al., 2022; Wan et al., 2023; Roit et al.,
2023). They enhance factual consistency through
approaches from various directions such as post-
editing (Chen et al., 2021; Balachandran et al.,
2022), data augmentation (Rajagopal et al., 2022),
contrastive learning (Cao and Wang, 2021; Wan
and Bansal, 2022), and advanced decoding (King
et al., 2022; Wan et al., 2023).

Rajagopal et al. (2022) synthesize factually in-
consistent summaries and augment the correspond-
ing prompts to the document. In this paper, we fur-
ther modify input documents to trigger knowledge
conflict effectively, analyze strategies to consider
knowledge conflict, and demonstrate the robustness
to entity-level knowledge conflict.

There are also studies focusing on attributes
other than factual consistency in summarization
models (West et al., 2022; Wu et al., 2022; Cheang
et al., 2023). West et al. (2022) analyze whether
the model is grounded in the document by ablating
facts related to the summary within the document.
Wu et al. (2022) analyze the factual robustness, in-
dicating whether the model assigns a low likelihood
to an adversarial entity when given the document
and factual prompt.

7.2 Parametric Knowledge and Knowledge
Conflict

Recent studies in summarization have utilized
general-purpose pre-trained language models
(Lewis et al., 2020; Raffel et al., 2020; Brown

et al., 2020; Ouyang et al., 2022; Chowdhery et al.,
2022; Chung et al., 2022) or have pre-trained the
language model for summarization (Zhang et al.,
2020; Wan and Bansal, 2022).

Recent studies have focused on addressing
the hallucination problem in the language model
caused by knowledge conflict, especially in ques-
tion answering domain (Longpre et al., 2021; Nee-
man et al., 2022; Li et al., 2022; Zhou et al., 2023b).

Ladhak et al. (2023) and Cheang et al. (2023) an-
alyze the hallucination problem of summarization
models caused by knowledge conflict in a specific
domain: name-nationality knowledge and evolving
knowledge over time, respectively. On the other
hand, we analyze the robustness of summarization
models concerning entity-level knowledge conflicts
in arbitrary domains. Moreover, we exploit para-
metric knowledge from PLM to effectively measure
and improve factual adaptiveness.

8 Conclusion

In this study, we analyze the factual adaptiveness
of the fine-tuning based summarization models.
We propose two complementary metrics of fac-
tual adaptiveness and elucidate the relationship
between factual consistency and factual adaptive-
ness. We then propose a controllable counterfac-
tual data augmentation method and observe that
our method mitigates hallucination problems due
to knowledge conflict. Our experimental results
show that our method effectively alleviates entity-
level hallucination problems, especially when a
knowledge conflict occurs. We anticipate that our
work will contribute to improving the faithfulness
of summarization models that contain parametric
knowledge.
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Limitations

In this paper, we conduct entity replacement to syn-
thesize counterfactual samples to control knowl-
edge conflict. Because we utilize spaCy to cat-
egorize named entity types, the performance of
our method can vary depending on the accuracy of
the tool. We conduct research on PEGASUS and
BART, and further investigation is needed regard-
ing factual adaptiveness in large language models.
We focus on entity-level factual adaptiveness, and
we leave expanding the scope of knowledge con-
flict as future work. Future work can also consider
orthogonal approaches such as decoding strategy,
which can be integrated into our method.

Ethical Considerations

We aim to improve the faithfulness of summariza-
tion models in terms of hallucination caused by
knowledge conflict which is a major concern of
(large) language model based approaches. Our
evaluation method could be used to diagnose para-
metric knowledge and factual adaptiveness which
enhances the interpretability of the model.
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Algorithm 2 Entity Validation Scenario (S2)
Input: Document Do = {d1, d2, ..., dM}, refer-
ence summary So = {s1, s2, ..., sT }, pre-trained
language model ψ, threshold τ .
Output: Counterfactual samples Xc

1: Xc = {}
2: Get L = {Eo,1, Eo,2, ..., Eo,K}, the list of

named entity which exists in both Do and So
3: for k ← 1 to K do
4: tk ← the first token position of Eo,k in So
5: Ec ← named entity sampled from one of

three groups ▷ Section 2.2.3
6: Dc ← REPLACE(Do, Eo,k, Ec)
7: Sc ← REPLACE(So, Eo,k, Ec) ▷ Section

2.2.5
8: ec ← the first token of Ec
9: po ← Pψ(stk |Do, So,<tk)

10: pc ← Pψ(ec|Dc, Sc,<tk)
11: if po − pc > τ then ▷ Section 2.2.4
12: Append (Dc, Sc) to Xc

13: end if
14: end for
15: return Xc

A Transferability Test

To clarify that the evaluation set construction
method exploits parametric knowledge of PLM
rather than global features such as word frequency,
we additionally measure MCL and MFC on the
evaluation set constructed from other PLM. For
example, we evaluate BART fine-tuned on XSum
(i.e. BART (XSum)) with the evaluation set XSum
(PEGASUS, Mid, S2).

The results of the transferability test are shown
in Table 6. MCL and MFC scores of misaligned
cases in Bot group are lower than the aligned coun-
terparts, implying that we also utilize parametric
knowledge not only global attributes during the
counterfactual sample synthesis.

B Algorithm of Entity Validation
Scenario 2

The detailed content of entity validation scenario
2 is presented in Algorithm 2. The key difference
with Algorithm 1 is that Algorithm 2 selects origi-
nal and counterfactual entities, constructs counter-
factual samples, and then calculates the conditional
likelihood difference.

MCL(S2)(↓) MFC(S2)(↓)
Dataset Top Mid Bot Top Mid Bot

→ BART (XSum)
XSum (BART) 0.762 0.752 0.757 2.09 2.14 2.26
XSum (PEGASUS) 0.691 0.699 0.694 1.68 1.97 2.19

→ BART (CNNDM)
CNNDM (BART) 0.472 0.438 0.419 0.56 0.62 0.47
CNNDM (PEGASUS) 0.380 0.357 0.327 0.65 0.59 0.47

→ PEGASUS (XSum)
XSum (PEGASUS) 0.718 0.734 0.744 2.14 2.43 2.55
XSum (BART) 0.742 0.734 0.725 2.24 2.30 2.35

→ PEGASUS (CNNDM)
CNNDM (PEGASUS) 0.444 0.451 0.449 0.53 0.43 0.44
CNNDM (BART) 0.458 0.424 0.401 0.59 0.50 0.37

Table 6: Factual adaptiveness results (Scenario 2) when
the fine-tuned PLM is aligned/misaligned with the
model during the evaluation set construction.

MFC(S1)(↓) MFC(S2)(↓)
Dataset R-L QEval Top Mid Bot Top Mid Bot

ChatGPT
XSum 20.74 43.54 1.68 1.53 1.55 1.38 1.48 1.51
CNNDM 31.28 47.71 1.84 1.44 1.82 0.94 0.85 1.14

Ours (CLIFF, PEGASUS)
XSum 35.69 33.26 1.35 1.23 1.32 1.29 1.20 1.38
CNNDM 36.91 51.37 0.41 0.39 0.35 0.38 0.41 0.38

Table 7: ROUGE-L (R-L) and QuestEval (QEval) scores
on original test sets, and MFC scores of ChatGPT and
ours on factual adaptiveness evaluation sets using PE-
GASUS. For ours, each score is the average value for 3
seeds.

C Factual Adaptiveness of ChatGPT

Factual adaptiveness evaluation results of ChatGPT
are shown in Table 7. We use gpt-3.5-turbo-0301
for ChatGPT and utilize PEGASUS to construct
factual adaptiveness evaluation sets.

Because PLM which is used to construct factual
adaptiveness evaluation sets is not aligned, there is
no significant trend between the candidate groups
in MFC due to the use of different PLM (i.e., PE-
GASUS) in the construction of factual adaptiveness
evaluation sets. We can observe that factual adap-
tiveness improves as the model size increases, but
it is not completely resolved.

D Baseline Analysis on BART

Baseline analysis results on BART based models
are shown in Table 8.

We find that BART does not expose parametric
knowledge in entity validation scenario 1. Instead,
we observe that replacing the null document with
the masked summary where named entities are re-
placed with a special [MASK] token reveals the
parametric knowledge. However, we do not further
explore the optimal scenario for BART in this pa-
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MCL(S2)(↓) MFC(S2)(↓)
Models R-L QEval Top Mid Bot Top Mid Bot

XSum (BART)
NLL 34.83 32.94 0.762 0.752 0.757 2.09 2.14 2.26

±0.05 ±0.03 ±.004 ±.004 ±.002 ±0.14 ±0.02 ±0.14
Filtering 31.52 33.44 0.690 0.685 0.678 1.50 1.35 1.46

±0.12 ±0.15 ±.005 ±.008 ±.015 ±0.04 ±0.16 ±0.08
CLIFF 33.89 33.32 0.748 0.742 0.747 2.18 2.19 2.36

±0.00 ±0.07 ±.002 ±.005 ±.004 ±0.19 ±0.07 ±0.17
CNN/DailyMail (BART)

NLL 38.05 50.99 0.472 0.438 0.419 0.56 0.62 0.47
±0.04 ±0.04 ±.005 ±.006 ±.005 ±0.10 ±0.10 ±0.11

Filtering 37.53 51.16 0.412 0.374 0.356 0.57 0.49 0.34
±0.25 ±0.02 ±0.008 ±0.011 ±0.012 ±0.06 ±0.09 ±0.11

CLIFF 37.97 51.07 0.470 0.435 0.420 0.53 0.52 0.42
±0.13 ±0.06 ±.004 ±.003 ±.002 ±0.08 ±0.10 ±0.01

Table 8: ROUGE-L (R-L) and QuestEval (QEval) on original test sets and factual MCL/MFC scores of BART on
factual adaptiveness evaluation sets with the mean and standard deviation across 3 seeds.

PEGASUS BART
XSum CNN/DailyMail XSum CNN/DailyMail

Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2

Threshold τ 0.05 0.7 0.5 0.75 - 0.6 - 0.65
# Evaluation Set (Top) 1,040 1,003 1,082 1,098 - 1,060 - 1,145
# Evaluation Set (Mid) 1,041 1,163 1,079 1,411 - 1,339 - 1,659
# Evaluation Set (Bot) 1,042 1,326 1,077 1,914 - 1,613 - 2,342
# Train Set (Original) 204,045 287,227 204,045 287,227
# Train Set (Filtered) 74,241 159,519 74,241 159,519
# Test Set (Original) 11,334 11,490 11,334 11,490

Learning Rate 1e-04 5e-05 3e-05 3e-05
# Train Iter. (Filtered) 10k steps 110k steps 5 epochs 5 epochs
# Train Iter. (Other) 30k steps 210k steps 5 epochs 5 epochs

Table 9: Hyperparameters and data statistics.

per to provide general characteristics of fine-tuning
based summarization models rather than model-
specific analysis. In addition, the tendency of in-
creasing MCL scores in the order of Top, Mid, and
Bot groups is observed to be low in BART.

E Hyperparameters and Dataset
Statistics

Threshold τ for each evaluation set and dataset
statistics are shown in Table 9. Note that the size
of the evaluation set of three groups is similar in
Scenario 1 because we only use Eo during the vali-
dation.

Filtering We exclude samples where at least one
named entity in the summary does not appear in
the document, except named entities of numerical
categories.

CLIFF We choose SysLowCon setting used by

Cao and Wang (2021)5. We use the same objective
function and learning rates as those used in CLIFF
except for the learning rate during the fine-tuning of
PEGASUS with CNN/DailyMail; we use the initial
learning rate of 5e-05 following Zhang et al. (2020).
We set the coefficient of contrastive loss to 1.0 and
the batch size to 8 for both datasets. Regarding the
maximum number of negative samples, it is set to 5
for the XSum dataset and 4 for the CNN/DailyMail
dataset.

Advanced Decoding We apply the method pro-
posed by Wan et al. (2023) to NLL models and
follow Beam + Greedy Lookahead setup with a
beam width 36. For the XSum dataset, we set the
maximum output length to 60 and the look-ahead
length to 16. For the CNN/DailyMail dataset, we
set the maximum output length to 140 and the look-

5https://github.com/ShuyangCao/cliff_summ
6https://github.com/amazon-science/

faithful-summarization-generation
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R-L QEval MCL MFC

FactPEGASUS 27.06 34.02 0.597 1.59
±0.04 ±0.09 ±.003 ±0.09

Ours 26.79 34.12 0.149 1.16
(FactPEGASUS) ±0.06 ±0.05 ±.004 ±0.04

Table 10: ROUGE-L (R-L) and QuestEval (QEval) on
XSum test set and MCL/MFC scores of on the factual
adaptiveness evaluation set of Scenario 2 and Mid group
with the mean and standard deviation across 3 seeds.

ahead length to 32.
FactPEGASUS We set the weight of contrastive

loss to 5.0 and the maximum number of negative
samples to 5. We set the learning rate to 3e-05 and
the training step to 15k following Wan and Bansal
(2022). The batch size is set to 16, considering that
the number of fine-tuning iterations in the original
paper is half of that in CLIFF.

F Results on FactPEGASUS

We follow hyperparameters in Appendix E. Thresh-
old τ is set to 0.35 for Scenario 2.

As shown in Table 10, our method can be ef-
fectively applied to FactPEGASUS as well. Our
method also slightly improves factual consistency
on the original XSum dataset compared to the base-
line.

G ChatGPT Preference Test

Motivated by Zhou et al. (2023a), we conduct a
preference test using ChatGPT for the summaries
generated by CLIFF and ours. We use test sets of
XSum and CNNDM for the experiment. To remove
ordering bias, we randomly shuffle the order of
summaries of CLIFF and ours.

The results are shown in Figure 3. The term win
indicates that the summary generated by ours is
preferred over that of CLIFF. We observe a rela-
tively high proportion of ties in the CNNDM. We
speculate that the results are attributed to the low
abstractiveness of CNNDM, as mentioned in Sec-
tion 5.2. When compared to CLIFF, it is observed
that ours generally generates preferred summaries
for original documents.

H Additional Sample

Other summarization examples are shown in Table
11. Summaries of the baselines generate halluci-
nated entities instead of reflecting the counterfac-
tual knowledge Cherry Island. We speculate that

the hallucinations are induced by the relevant enti-
ties such as the UK and Northern Ireland.

I License

The repositories of fairseq, FactPEGASUS, and
XSum are under the MIT license. The repositories
of HuggingFace, CLIFF, and CNN/DailyMail are
under the Apache-2.0 license. The repository of
Decoding is under the CC-BY-NC-4.0, and MINT
is under MIT-0.
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Figure 3: ChatGPT preference test results on (a) XSum and (b) CNN/DailyMail test sets.

Document (London→Cherry Island)
Lagmar Barking, a joint venture between MAR Properties and the Lagan Developments (Holdings), owned the
Vicarage Field shopping centre in Barking. It has been bought by Benson Elliot, a UK-based private equity
property fund manager. The last accounts for Lagmar Barking showed it owed its lenders £70m. The loan
secured on the centre was bought by the US investment fund Cerberus as part of its purchase of the National
Asset Management Agency’s (Nama) Northern Ireland loan book in 2014. Peter Cornforth, director of retail at
Benson Elliot, said the deal was "an exciting purchase for Benson Elliot". He added that it provided the firm
with "a fantastic opportunity to contribute to the regeneration of a key east Cherry Island metropolitan centre".
Cerberus is continuing to rapidly work through the former Nama portfolio with a combination of asset sales,
refinancings and enforcements.
Summary
NLL: A Londonderry shopping centre which was at the centre of a multi-million pound debt has been sold.
Filtering: A Londonderry shopping centre which went into administration last year has been sold for £10m.
Decoding: The former owner of one of Northern Ireland’s largest shopping centres has been sold.
CLIFF: A shopping centre in Londonderry has been bought by a private equity firm.
Ours: A shopping centre in east Cherry Island has been bought by a private equity firm for an undisclosed sum.

Table 11: Summarization samples on counterfactual document based on XSum (BART, Mid, S2). Hallucinated
entities except for the original named entity Eo are highlighted.
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