
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2835–2845

March 17-22, 2024 c©2024 Association for Computational Linguistics

Generative Dense Retrieval: Memory Can Be a Burden

Peiwen Yuan1∗, Xinglin Wang1∗, Shaoxiong Feng2, Boyuan Pan2, Yiwei Li1
Heda Wang2, Xupeng Miao3, Kan Li1†

1School of Computer Science and Technology, Beijing Institute of Technology
2Xiaohongshu Inc 3Carnegie Mellon University

{peiwenyuan,wangxinglin,liyiwei,likan}@bit.edu.cn {xupeng}@cmu.edu
{shaoxiongfeng2023,whd.thu}@gmail.com {panboyuan}@xiaohongshu.com

Abstract

Generative Retrieval (GR), autoregressively de-
coding relevant document identifiers given a
query, has been shown to perform well under
the setting of small-scale corpora. By mem-
orizing the document corpus with model pa-
rameters, GR implicitly achieves deep inter-
action between query and document. How-
ever, such a memorizing mechanism faces three
drawbacks: (1) Poor memory accuracy for fine-
grained features of documents; (2) Memory
confusion gets worse as the corpus size in-
creases; (3) Huge memory update costs for new
documents. To alleviate these problems, we
propose the Generative Dense Retrieval (GDR)
paradigm. Specifically, GDR first uses the lim-
ited memory volume to achieve inter-cluster
matching from query to relevant document
clusters. Memorizing-free matching mecha-
nism from Dense Retrieval (DR) is then in-
troduced to conduct fine-grained intra-cluster
matching from clusters to relevant documents.
The coarse-to-fine process maximizes the ad-
vantages of GR’s deep interaction and DR’s
scalability. Besides, we design a cluster iden-
tifier constructing strategy to facilitate corpus
memory and a cluster-adaptive negative sam-
pling strategy to enhance the intra-cluster map-
ping ability. Empirical results show that GDR
obtains an average of 3.0 R@100 improvement
on NQ dataset under multiple settings and has
better scalability1.

1 Introduction

Text retrieval (Karpukhin et al., 2020; Zhao et al.,
2022) is an essential stage for search engines
(Brickley et al., 2019), question-answering sys-
tems (Liu et al., 2020) and dialog systems (Chen
et al., 2017). Traditional retrieval methods include
sparse retrieval (SR) and dense retrieval (DR). SR

*Equal contribution.
†Corresponding author.
1Our code have been released on https://github.com/

ypw0102/GDR.

(Robertson and Zaragoza, 2009; Robertson and
Walker, 1997) relies on the assumption that queries
and relevant documents have a high degree of word
overlap. However, such methods suffer from the
zero-recall phenomenon when there is a lexical
mismatch between queries and documents. DR
(Ren et al., 2021; Zhang et al., 2022a) alleviates
this issue by training dual-encoders for semantic
matching instead of lexical matching, which brings
a high hit rate. Nevertheless, most queries are se-
mantically related to multiple documents that may
not be close to each other in semantic space. Thus
it is challenging to use a single query representation
to recall all the relevant documents with matching
mechanism (Zhang et al., 2022b).

Recently, generative retrieval (GR) (Zhou et al.,
2022; Bevilacqua et al., 2022), which utilizes a lan-
guage model to memorize document features and
autoregressively decodes the identifiers of relevant
documents given a query, is considered a promis-
ing paradigm. The model is served as a memory
bank for candidate documents, and the memorizing
process implicitly implements the deep interaction
between queries and documents by attention mech-
anism, which has been proven to be effective in
the small-scale corpus settings (Wang et al., 2022;
Sun et al., 2023). Also, beam search, a diversity-
promoting decoding strategy, is beneficial for the
model to find relevant documents from multiple
directions and thus can recall more relevant docu-
ments than DR (Tay et al., 2022).

However, after empirically comparing the per-
formance of typical GR model NCI (Wang et al.,
2022) and DR model AR2 (Zhang et al., 2022a),
we found that the memorizing mechanism brings
three problems: (1) Poor memory accuracy for
fine-grained features of documents. We calculated
the error rate of each position when decoding doc-
ument identifiers (see Table 1). Compared with
AR2, NCI performs well on the former part of the
decoding process while poorly on the latter part.

2835

https://github.com/ypw0102/GDR
https://github.com/ypw0102/GDR

Model Error Rate of the ith Position
1st 2nd 3rd 4th 5th 6th

NCI 1.09 1.75 1.86 5.77 14.91 12.66
AR2 1.19 1.77 2.11 5.44 8.03 3.05

Table 1: Error rate (%) on the ith position when de-
coding document identifiers. See Appendix A.1 for the
detailed calculation method.

We argue that NCI aims to map queries to relevant
document identifiers instead of real document con-
tent, which results in its lack of accurate memory
for fine-grained document features. (2) Memory
confusion gets worse as the corpus size increases.
As shown in Table 2, we scaled both training and
candidate corpus sizes from 334K to 1M and found
that NCI decreased by 11.0 on R@100 while AR2
only decreased by 2.8. NCI trained on 1M training
corpus is further tested on 334K candidate corpus.
The results indicate that the burden of memorizing
more documents causes 5.7 R@100 drop. (3) Huge
memory update costs for new documents. When
new documents come, the document cluster tree
needs to be updated, and the model needs to be
re-trained to re-memorize all the documents. Other-
wise, the outdated mapping relationship, i.e., query
to document identifiers and document identifiers to
documents, will significantly degrade the retrieval
performance (see Table 6).

Based on the above analysis, a natural idea is
to employ memorizing-free matching mechanism
from DR to alleviate the burden faced by the mem-
orizing mechanism. However, it is challenging to
realize complementary advantages of both mecha-
nisms while ensuring retrieval efficiency. To this
end, we propose a coarse-to-fine retrieval paradigm
Generative Dense Retrieval (GDR). Concretely,
memorizing mechanism and matching mechanism
are successively applied to achieve coarse-grained
inter-cluster (query → document clusters) and fine-
grained intra-cluster (document clusters → doc-
uments) matching. A shared query encoder is
used to generate query representations that apply
both mechanisms, thereby improving retrieval effi-
ciency. We also explore the strategy of constructing
a memory-friendly document cluster tree, including
distinguishable document clusters and controllable
cluster amounts, so as to further alleviate mem-
ory burden. Moreover, a cluster-adaptive negative
sampling strategy is proposed to enhance the intra-
cluster matching ability of GDR.

Overall, the coarse-to-fine process maintains the

Settings NCI AR2
R@1/100 R@1/100

334K-334K 14.7 - / 65.5 - 21.2 - / 69.0 -
1M-1M 11.1↓3.6 / 54.5↓11.0 20.3↓0.9 / 66.2↓2.8
1M-334K 12.3↓2.4 / 59.8↓5.7 21.2 - / 69.0 -

Table 2: Performance of NCI and AR2 on NQ validation
set with different settings. For setting x− y, x denotes
the training corpus size and y denotes the candidate
corpus size during the inference phase. AR2 is only
trained on the training set, thus is independent of x.

advantages of the memorizing mechanism while
alleviating its drawbacks by introducing matching
mechanism. Unlike GR, the limited memory vol-
ume of GDR is only responsible for memorizing
the coarse-grained features of corpora. The fine-
grained features of documents are extracted into
dense representations, which promotes accurate
intra-cluster mapping. When new documents come,
GDR achieves scalability by adding documents to
relevant clusters and extracting their dense repre-
sentations by a document encoder, without recon-
structing document identifiers and retraining the
model.

Our contributions are summarized as follows:

• We revisit generative retrieval (GR) with a de-
tailed empirical study, and discuss three key
drawbacks that limit GR performance.

• We propose generative dense retrieval (GDR), a
coarse-to-fine retrieval paradigm, that exploits
the limited memory volume more appropriately,
enhances fine-grained feature memory, and im-
proves model scalability.

• Comprehensive experiments demonstrate that
GDR obtains higher recall scores than advanced
SR, DR and GR methods. And the scalability
of GDR is also significantly improved.

2 Related Work

Given queries, text retrieval task aims to find rele-
vant documents from a large corpus. In this section,
we introduce typical paradigms DR and GR that
are most related to our work.

2.1 Dense Retrieval

DR (Karpukhin et al., 2020; Xiong et al., 2021;
Ren et al., 2021; Zhang et al., 2022b,a; Zhao et al.,
2022) is the most widely studied retrieval paradigm
in recent years. A dual-encoder architecture (query-
encoder and document-encoder) is commonly used
to extract the dense semantic representations of

2836

queries and documents. The similarities between
them are computed through simple operations (e.g.,
inner product) in Euclidean space and ranked to re-
call the relevant documents. By extracting features
and constructing indexes for matching, DR does
not have to memorize the corpus and attains good
scalability. However, the upper bound of DR is
constrained due to the limited interaction between
queries and candidate documents (Li et al., 2022).
GDR inherits the matching mechanism from DR
in the fine-grained mapping stage, and introduces
deep interaction through memorizing mechanism
in the coarse-grained mapping stage, thus achiev-
ing better recall performance.

2.2 Generative Retrieval

Recently, a new retrieval paradigm named GR,
which adopts autoregressive model to generate rel-
evant document identifiers, has drawn increasing
attention. Cao et al. (2021) proposes to retrieve
documents by generating titles. Tay et al. (2022)
utilizes BERT (Devlin et al., 2019) combined with
the K-means algorithm to generate identifiers with
hierarchical information. Bevilacqua et al. (2022)
leverages n-grams to serve as identifiers. Wang
et al. (2022) enhances the model’s memory of can-
didate documents through query generation. Mehta
et al. (2022) proposes retraining model with gen-
erated queries of old documents when new docu-
ments are added to reduce forgetting. Sun et al.
(2023) suggests training the model to learn to as-
sign document identifiers. However, all of these
methods require models to memorize the whole
corpus and inevitably face the problems we have
discussed above, for which we propose GDR.

3 Methodology

Our task is to retrieve a candidate document set Dc

from a large corpus Dl (|Dl| >> |Dc|) for a given
query q, with the objective of including as many
documents d from Dq as possible, where Dq is the
set of documents relevant to q. In this section, we
introduce the proposed Generative Dense Retrieval
(GDR) paradigm (see Figure 1). To realize com-
plementary advantages of memorizing mechanism
and matching mechanism, we need to consider the
following issues:

3.1 Order of Applying Two Mechanisms

Based on Table 1 and Table 2, we found that the
coarse-grained semantic mapping between query

and documents attained lower error rates when ap-
plying memorizing mechanism (NCI), while fea-
ture extraction and matching mechanism (AR2)
was better suited for handling fine-grained features
of numerous documents. Thus, we consider uti-
lizing the advantage of memorizing mechanism in
deep interaction between query and corpus memory
bank to recall relevant document clusters. After-
wards, we leverage the superiorities of memorizing-
free matching mechanism in fine-grained represen-
tation extracting and better scalability characteris-
tics to further retrieve the most relevant documents
from the recalled clusters.

Inter-cluster Matching The classic Encoder-
Decoder architecture is used to achieve the inter-
cluster mapping finter : q → CID1:k, where CID
denotes document cluster identifiers. Given query
q1:|q|, GDR first leverages Query Encoder EQ to
encode it into query embeddings e

1:|q|
q ∈ Rd and

takes the embedding of <CLS> token as query rep-
resentation rq. Based on this, the probability of
generating CIDi can be written as follows:

p(CIDi|eq, rq, θ) =
|CIDi|∏

j=1

p(CIDi
j |eq, rq,CIDi

<j , θ) (1)

where θ is the parameters of Cluster Decoder
DC . We denote this probability as inter-cluster
mapping score Sinter(q,CID

i), which character-
izes the matching between q and Dl under coarse-
grained features. For a training pair (q, d+), we use
CrossEntropy loss to train GDR to achieve inter-
cluster matching correctly:

LInter = −log p(CID(d+)|EQ(q), θDC) . (2)

Following NCI, we use the encoder of T5-base
(Brown et al., 2020) to initialize EQ and randomly
initialized PAWA decoder (see Wang et al. (2022)
for details) as DC .

Intra-cluster Matching To further achieve the
intra-cluster mapping fintra : CID1:k → d1:k,
GDR applies the matching mechnism of calculating
representation similarity for retrieval. Specifically,
GDR leverages the Document Encoder ED trained
in section 3.2 to extract the fine-grained features
of candidate documents d1:|Dl| into semantic repre-
sentations r1:|Dl|

d ∈ Rd in prior. Then we pick out
the di belonging to the recalled clusters CID1:k in
the previous stage and calculate the intra-cluster
mapping score between them and q as follows:

Sintra(q, d
i) = Sigmoid(sim(rq, r

i
d)). (3)

2837

d1 d2 d3q

rq rd1 rd2 rd3

NLL

Loss

q

rqeq eq
1 2

d1 d2 d3

Constrained
beam search

PCluster1 PCluster2

CE
Loss

rd1 rd2 rd3

NLL

Loss

Matching
Dense Retrieval

Coarse-to-Fine
Generative Dense Retrieval

Query
Encoder

Query
Encoder

Document
Encoder

Document
Encoder

Cluster
Decoder

q

rq

Constrained
beam search

Pd1 Pd2 Pd3

CE
Loss

eq eq
1 2

Memorizing
Generative Retrieval

Query
Encoder

Document
Decoder

Figure 1: Illustration of Dense Retrieval, Generative Retrieval and Generative Dense Retrieval.

where sim(·) denotes the inner product function.
The Sigmoid function is used to map Sintra into
[0,1] to align with Sinter. NLL loss is used to train
GDR for intra-cluster mapping ability:

LIntra = −log esim(q,d+)

esim(q,d+) +
∑n

i esim(q,d−i)
(4)

where d+ and d− refer to documents relevant and
irrelevant to q respectively. On this basis, the over-
all mapping score of di is defined as:

Soverall(q, d
i) = Sinter(q,CID(di)) + β ∗ Sintra(q, d

i)
(5)

where β is a hyperparameter which we set as 1 by
default. In the end, we take the Top-k documents
according to Soverall as the final retrieval set Dc.

3.2 Construction of Memory-friendly CIDs

Considering the limited memory volume of the
model, we are supposed to construct memory-
friendly CIDs to ease the mapping fintra.

Ideally, we would like the CIDs corresponding
to documents relevant to the same query to have
similar prefixes. Such property can provide a map-
ping relationship between the query and CIDs with
lower entropy, so as to alleviate the memorizing
burden. What’s more, the total number of docu-
ment clusters should be determined by the memory
volume (model size) rather than the size of Dl to
avoid exceeding the memorizing volume. Based

on these considerations, our strategy for generating
CIDs is shown in Algorithm 1.

Algorithm 1 Generating document cluster identi-
fiers (CIDs).
Require: Corpus d1:|Dl|, Document Encoder ED ,

Inter-cluster number k, Intra-cluster number c
Ensure: Document cluster identifiers CID1:|Dl|

1: Encode d1:|Dl| with ED to obtain document representa-
tions X1:|Dl|

2: function GENERATECIDS(X1:N)
3: C1:k ← Kmeans(X1:N)
4: L← ∅
5: for i← 1, k do
6: Lcurrent ← [i] ∗ |Ci|
7: if |Ci| ≥ c then
8: Lrest ← GENERATECIDS(Ci)
9: else

10: Lrest ← [0] ∗ |Ci|
11: end if
12: Lcluster ←Concat(Lcurrent, Lrest)
13: L← L.Append(Lcluster)
14: end for
15: ReorderToOriginal(L,X1:N , C1:k)
16: Return L
17: end function
18: CID1:|Dl| ← GENERATECIDS(X1:|Dl|)

To meet the first property, we finetuned ERNIE-
2.0-base (Sun et al., 2020) model following Zhang
et al. (2022a) on the training set 2 and then used the
finetuned document encoder as ED in Algorithm
1. Compared to previous studies (Tay et al., 2022;

2All experiments in this work were conducted on the Natu-
ral Questions dataset (Kwiatkowski et al., 2019)

2838

Wang et al., 2022) using BERT (Devlin et al., 2019)
as ED, our strategy can fully leverage the knowl-
edge in the training set. To analyse the qualities of
CIDs generated with different ED, we calculated
the average prefix overlap Opre of CIDs between
the relevant documents for each query in the vali-
dation set Sval as follows:

Opre =
1

|Sval|
∑

q∈Sval

1

|Dq|2
|Dq|∑

i=1

|Dq|∑

j=1

opre(CID
i
q,CID

j
q)

opre(s1, s2) = |LCP (s1, s2)|/|s1|
(6)

where CIDi
q is the cluster identifier of the ith rele-

vant document of q and LCP (s1, s2) is the longest
common prefix of string s1 and s2. The results
show that the Opre corresponding to the CIDs gen-
erated by our strategy (0.636) is significantly higher
than the previous study (0.516), indicating that our
CIDs is more distinguishable and can better meet
the first property . To meet the second property,
we consider adaptively changing c in Algorithm 1
to ensure the total number of clusters |CID| not to
change with Dl as follows:

c = |Dl| / Exp(|CID|) (7)

where Exp(|CID|) is the expected value of |CID|
which we set as 5000 in our experiment for sim-
plicity. Under different sizes of Dl, the |CID| we
obtained through this strategy is basically in the
same order of magnitude (Appendix A.2), which
meets the second properties.

3.3 Cluster-adaptive Negative Sampling
An important issue in calculating LIntra is how
to select d− with effective training signals. Vari-
ous negative sampling methods (e.g., static bm25-
based sampling (Karpukhin et al., 2020), dynamic
index-based sampling (Xiong et al., 2021)) have
been proposed to pick up hard negatives. However,
GDR needs to retrieve relevant documents within
the candidate clusters instead of the entire corpus,
which requires negative samples to offer more intra-
cluster discriminative signals. To this end, we pro-
pose cluster-adaptive negative sampling strategy.
For a training pair (q, d+), we treat d ∈ CID(d+)
as intra-cluster negatives Na and in-batch negatives
(Henderson et al., 2017) as inter-cluster negatives
Nr, and rewrite Eq. (4) as follows:

LIntra = −log esim(q,d+)

γ ∗∑d∈Na
esim(q,d) +

∑
d∈Nr

esim(q,d)

(8)

where γ is a hyperparameter we set as 2 to enhance
intra-cluster discriminative training signals.

3.4 Training and Inference
Training Phase Given a corpus Dl and a train-
ing set Strain = {(qi, di)|i ∈ (1, ..., n)}, we
use DocT5Query 3 to generate 5 pseudo queries
through and randomly select 5 groups of 40 consec-
utive terms from the document as additional queries
for each document. Compared with Wang et al.
(2022) that augment each document with totally
26 queries, fewer augmented queries are required
as GDR only needs to memorize coarse-grained
semantics, thus saves training expenses. The aug-
mented training set Saug together with Strain are
used to train GDR using the total loss:

LGDR = LInter + LIntra (9)

To accelerate the training process, we use ED to
calculate the representations of Dl in advance and
freeze the parameters of ED during training phase.

Inference Phase During inference, we first gen-
erate k relevant CIDs through beam search, and
then retrieve the top-m documents with highest
Sintra in each relevant cluster (m is the minimum
value between the number of documents in the clus-
ter and k). Finally, we reorder all these documents
according to Soverall to obtain the most relevant
top-k documents. Following Tay et al. (2022), we
pre-build a prefix tree to ensure only the valid CIDs
can be generated. We conduct Approximate Near-
est Neighbor Search (Li et al., 2020) in each cluster
to accelerate the intra-cluster matching process.

4 Experiments

We empirically demonstrate the performance of
GDR and effectiveness of various proposed strate-
gies on text retrieval task in this section.4 In the
following, we will discuss the detailed experimen-
tal setups in 4.1, present empirical results in 4.2,
verify the effectiveness of proposed modules in 4.3,
and conduct specific analysis in 4.4, respectively.

4.1 Experimental settings
Datasets We choose classic text retrieval dataset
Natural Questions 5 (NQ) (Kwiatkowski et al.,
2019) for experiment, which consists of 58K

3https://github.com/castorini/docTTTTTquery
4we will release our code as soon as the paper is accepted
5We use the cleaned version of NQ downloaded from

https://huggingface.co/Tevatron

2839

https://github.com/castorini/docTTTTTquery
https://huggingface.co/Tevatron

(query, relevant passages) training pairs and 6K
validation pairs along with 21M candidate passage
corpus. Each query corresponds to an average of
7.5 relevant passages, which puts higher demands
on the recall performance of the model. We gather
all the relevant passages of queries included in NQ
training and validation set, resulting in a 334K can-
didate passage corpus setting (NQ334K). We fur-
ther build NQ1M, NQ2M, and NQ4M settings to
evaluate the performance of GDR on larger cor-
pus by adding the remaining passages from the full
21M corpus to NQ334K. For GDR, CIDs are gen-
erated separately for each dataset so as to prevent
leakage of semantic information from larger can-
didate document corpus into smaller ones. GDR
of different settings are trained on the training set
together with corresponding augmented set, and
evaluated on the validation set 6.

Evaluation metrics We use widely accepted met-
rics for text retrieval, including R@k (also denoted
as Recall@k) and Acc@k, where k ∈ {20, 100}.
Specifically, R@k calculates the proportion of rele-
vant documents included in top-k retrieved candi-
dates (#retrq,k) among all the candidate relevant
documents (#relq) (Eq. (10)), while Acc@k mea-
sures how often the correct document is hit by top-k
retrieved candidates (Eq. (11)).

R@k =
1

|Sval|
∑

q∈Sval

#retrq,k
#relq

(10)

Acc@k =
1

|Sval|
∑

q∈Sval

I (# retrq,k > 0) (11)

Baselines We choose the following methods for
detailed comparisons. BM25 (Anserini implemen-
tation (Yang et al., 2017)) is served as a strong SR
baseline. As for DR, we select a strong baseline
DPR 7 (Karpukhin et al., 2020) and state-of-the-art
(SOTA) method AR2 8 (Zhang et al., 2022a). As
for GR, we select the SOTA method NCI 9 (Wang
et al., 2022). To ensure the reliability of the ex-
perimental results, we reproduce all the baseline
methods based on their official implementations.

Experimental details We implement GDR with
python 3.8.12, PyTorch 1.10.0 and HuggingFace
transformers 3.4.0. The learning rates are set as

6The lack of relevant documents makes the test set incon-
venient to partition different settings

7https://github.com/facebookresearch/DPR
8https://github.com/microsoft/AR2
9https://github.com/solidsea98/

Neural-Corpus-Indexer-NCI

20

15

10

5

0
 1M 2M 334K 1M 2M 4M

SR (BM25)Descent Rate
of R@100 (%)

DR (AR2)
GR (NCI)

GDR

3.18 2.74
3.944.06

2.27
3.25

16.79

18.17

15.25

5.53

2.66 2.32

Scaling Direction

Figure 2: R@100 descent rate of different types of meth-
ods when scaling to larger corpus.

2× 10−4 for the Query Encoder and 1× 10−4 for
the Cluster Decoder with a batch size 256 per GPU.
For inference, we apply the constraint beam search
algorithm, and set the length penalty and the beam
size as 0.8 and 100, respectively. All experiments
are based on a cluster of NVIDIA A100 GPUs with
40GB memory. Each job takes 8 GPUs, resulting
in a total batch size of 2048 (256 × 8). We train
the GDR models for 60 epochs and pick the final
checkpoint for evaluation.

4.2 Main Results

Horizontal Comparison As shown in the Table
3, the performance of each method on R@k met-
rics is as follows: GDR (GDR-ours) > SR (BM25)
> DR (AR2) > GR (NCI), while the ranking on
Acc@k metrics is as follows: DR (AR2) > GDR
(GDR-ours) > SR (BM25) > GR (NCI). Based on
the characteristics of sparse lexical matching, SR
can recall the majority of relevant documents (2nd
R@k) when the query is accurate while may not
even hit one target when there is a lexical mis-
match (3rd Acc@k). On the contrary, DR can hit
at least one relevant document in most situations
by semantic representation matching (1st Acc@k).
However, the semantic differences in relevant doc-
uments make it difficult to recall them all simulta-
neously (3rd R@k). GR (NCI) ranks last due to
the difficulty in memorizing large-scale corpus we
have discussed.

By conducting a coarse-to-fine retrieval process,
GDR maximizes the advantages of memorizing
mechanism in deep interaction and matching mech-
anism in fine-grained features discrimination, thus
ranks 1st on R@k with an average of 3.0 improve-
ment and 2nd on Acc@k.

Scaling to Larger Corpus Memorizing mecha-
nism has been proven to bring advanced retrieval

2840

https://github.com/facebookresearch/DPR
https://github.com/microsoft/AR2
https://github.com/solidsea98/Neural-Corpus-Indexer-NCI
https://github.com/solidsea98/Neural-Corpus-Indexer-NCI

Paradigm Method
NQ334K NQ1M NQ2M NQ4M

Acc@20/100 R@20/100 Acc@20/100 R@20/100 Acc@20/100 R@20/100 Acc@20/100 R@20/100
SR BM25 86.1 / 92.4 56.0 / 75.4 84.0 / 91.0 51.3 / 73.0 82.4 / 89.9 47.5 / 71.0 79.6 / 88.4 42.3 / 68.2

DR
DPR 93.9 / 97.3 49.8 / 60.2 91.5 / 96.3 46.7 / 56.6 90.4 / 95.5 45.2 / 54.9 88.4 / 94.6 42.9 / 52.8
AR2 96.3 / 98.6 57.4 / 69.0 94.9 / 98.0 54.7 / 66.2 94.3 / 97.7 53.2 / 64.7 93.4 / 97.2 51.2 / 62.6

GR
NCI-bert 80.0 / 88.7 49.4 / 65.5 72.0 / 82.6 38.7 / 54.5 63.9 / 76.4 30.2 / 44.6 55.4 / 70.0 25.2 / 37.8
NCI-ours 88.0 / 94.1 60.0 / 75.6 80.3 / 89.6 50.6 / 66.2 78.2 / 88.6 46.4 / 63.5 77.3 / 87.8 45.2 / 61.0

GDR
GDR-bert 87.5 / 91.2 59.3 / 71.2 84.8 / 88.8 54.8 / 66.0 83.3 / 88.0 51.9 / 64.8 82.1 / 87.7 49.7 / 63.8
GDR-ours 91.1 / 95.3 64.6 / 79.6 88.2 / 93.6 60.1 / 75.2 87.4 / 92.8 57.7 / 73.2 87.0 / 92.2 55.2 / 71.5

Table 3: Experimental results on NQ document retrieval. The settings "-bert" and "-ours" denote using BERT and
our finetuned ED in section 3.2 to generate document embeddings for the generation of identifiers respectively. Bold
numbers represent best performance. We run four random seeds and report the averaged result for each method.

performance under small corpus settings (Wang
et al., 2022). However, when the corpus size that
needs to be memorized exceeds the memory vol-
ume, it can instead become a burden. As shown
in Figure 2, when the candidate corpus scaling to
larger size, the descent rate of R@100 for both SR
and DR keeps below 4.06%, while it astonishingly
retains exceeding 15.25% for GR on all three scal-
ing directions. As a comparison, GDR ensures the
maximum utilization of memorizing mechanism by
focusing memory content on fixed volume coarse-
grained features of corpus to achieve inter-cluster
matching. This strategy results in GDR achieving
an average of 3.50% descent rate of R@100, which
is almost the same as SR (3.29%) and DR (3.19%).

4.3 Ablation studies on Model training

To further understand how different paradigm op-
tions affect model performance, we conduct abla-
tion experiments and discuss our findings below.

Cluster Identifiers We first analyse the influence
of identifiers constructed with documents represen-
tations generated by different models. Specifically,
the results are shown in Table 3, where "-bert"
and "-ours" denotes using BERT and our finetuned
model as ED in Algorithm 1 respectively. Basi-
cally, both NCI and GDR trained with "-ours" per-
form significantly better than those trained with
"-bert" across all the settings. The results empiri-
cally demonstrate that fully leveraging the knowl-
edge in the training set to generate identifiers that
characterizing a mapping from query to relevant
documents with lower entropy can significantly
release the memorizing burden thus leading to bet-
ter retrieval performances. Considering that NCI
has a heavier memory burden compared to GDR,
this strategy has benefited NCI more (10.1 > 8.4
R@100 improvements on NQ334K).

Strategy Acc@20 Acc@100 R@20 R@100

Random 87.1 91.4 60.8 76.0
BM25 90.2 94.6 63.1 78.5
Cluster-adaptive 91.1 95.3 64.6 79.6

Table 4: Comparison of the performance of GDR trained
with different negative sample strategies on NQ334K
dataset.

β Acc@20 Acc@100 R@20 R@100
0 70.5 83.9 39.2 59.4
0.5 89.1 93.7 61.9 77.2
1 91.1 95.3 64.6 79.6
2 90.9 95.0 64.4 79.5
1e5 90.4 94.8 63.1 77.9

Table 5: Results of GDR with different β on NQ334K
dataset.

Negative Sampling Strategy To verify the ef-
fectiveness of the proposed cluster-adaptive nega-
tive sample strategy, We evaluate the performance
of GDR trained with different negative sampling
strategies and summarize the results in Table 4. We
notice that GDR trained with the cluster-adaptive
strategy outperforms that with widely used BM25
strategy by 1.1 on R@100. This indicates that
our proposed cluster-adaptive negative sampling
strategy can indeed provide more intra-cluster dis-
criminative training signals to strengthen the fine-
grained matching ability.

4.4 Analysis

Combination of Mapping Scores We study
the influence of different combination weights of
Sinter and Sintra in Eq. (5) and choose the value
of β from {0,0.5,1,2,1e5}. As the beta gradually
increases (Table 5), the retrieval performance of
GDR will experience a process of first increasing
and then decreasing. Therefore, we take the best

2841

Dl Sval NCI GDR
Acc@100 R@100 Acc@100 R@100

Set A Set A 90.7 - 71.2 - 94.9 - 77.7 -
All Set A 80.7↓10.0 52.9↓18.3 93.4↓1.0 75.8↓1.9
All Set B 56.5↓34.2 27.7↓43.5 86.6↓8.3 66.2↓11.5

Table 6: Comparison of scalability performance be-
tween NCI and GDR. Specifically, We divide the origi-
nal NQ334K dataset into two parts: Set A (constructing
identifiers and training on it) and Set B (served as new
added dataset).

performing (β=1) as the default setting. When
GDR only relies on Sinter for retrieval (β = 0), the
ranking of documents within the same cluster will
be the same, which will result in a significant per-
formance degradation compared with the default
setting. On the contrary, when GDR only relies on
Sintra for retrieval (we set β = 1e5 to approximate
this situation), the lack of matching information
of coarse-grained semantic features will result in
a decrease of 1.7 R@100. The above experimental
results fully demonstrate the significance of Sinter

and Sintra and the necessity of combining them.

Scalability of Model A common scenario in re-
trieval tasks is adding new documents to candi-
date corpus. To simulate this scenario, we split
the NQ334K dataset into Set A and Set B, both of
which contain half of the original training and vali-
dation set together with corresponding relevant doc-
uments. For both NCI and GDR, we first train and
evaluate the model on Set A. After adding Set B to
Set A, we further evaluate the model on validation
subset of Set A and Set B respectively. As shown
in Table 6, though NCI has already memorized the
documents corresponding to Set A validation set,
the situations where one document identifier corre-
sponds to multiple documents caused by the new
added documents led to a 18.3 R@100 drop. On the
contrary, GDR only degraded 1.9 on R@100 thanks
to the introduction of Sintra. When evaluating on
Set B, NCI further significantly degraded 25.2 on
R@100 as the model did not have a memory of doc-
uments corresponding to Set B validation set. As a
comparison, GDR can quickly extract dense repre-
sentations through ED and assign cluster identifiers
by searching for the nearest cluster representation
in the semantic space for the added documents, so
as to obtain inter-cluster and intra-cluster features.
Although GDR also does not have a memory of
added documents, its R@100 performance (66.2)
still significantly surpassed NCI (27.7) on Set B.

Method
Latency Throughput Index Refresh

(ms) (queries/s) (mins)
BM25 56 22.8 2
AR2 35 589.0 5
NCI 232 6.3 -
GDR 195 7.2 7

Table 7: Efficiency analysis on NQ334K dataset with
recall quantity as 100. NCI can not refresh indexes
without retraining.

Efficiency Analysis We use an NVIDIA A100-
40G GPU to analyze the efficiency of AR2, NCI,
and GDR. We use the Anserini implementation of
BM25 and evaluate it on an Intel Xeon CPU. As
shown in Table 7, BM25 and AR2 achieve fast re-
trieval by indexing the corpus in advance. Typical
GR method NCI has lower efficiency due to the
autoregressive generation of document identifiers
with beam search. As a compromise, GDR uses
autoregressive generation in inter-cluster matching
and pre-indexes for retrieval in intra-cluster match-
ing, thus achieves an efficiency that falls between
DR and GR. We leave the research on improving
the efficiency of GR and GDR for future work.

5 Conclusions

In this paper, we empirically demonstrate that the
memorizing mechanism of Generative Retrieval
(GR) brings deep interaction characteristics but
also causes serious problems. To this end, we
propose the Generative Dense Retrieval (GDR)
paradigm, which subdivides the text retrieval task
into inter-cluster and intra-cluster matching and
achieves them by autoregressively generating clus-
ter identifiers and calculating dense representation
similarities respectively. GDR focuses the limited
memory volume on the deep interaction between
query and document cluster and conducts multi-
directions decoding, thus maintaining the supe-
riority of memorizing mechanism. Memorizing-
free matching mechanism is further introduced to
achieve intra-cluster mapping by fully leveraging
fine-grained features of documents. Such a coarse-
to-fine process can also bring better scalability, i.e.,
stable corpus expansion and low-cost document
updates. We further propose a cluster identifier
constructing strategy to release the memory burden
and a cluster-adaptive negative sampling strategy
to provide discriminative signals. Comprehensive
experiments on the NQ dataset demonstrate the
state-of-the-art R@k performance and better scala-

2842

bility of GDR.

Limitations

Despite the achievement of state-of-the-art R@k
performance and better scalability, the current im-
plementation of GDR still suffers from the follow-
ing limitations. Firstly, the inference speed of GDR
needs to be further improved to be employed in
real-time retrieval services. Secondly, GDR’s per-
formance on Acc@k falls short compared to the
state-of-the-art method (AR2 (Zhang et al., 2022a)).
We suppose that this is because part of the Query
Encoder’s capacity is utilized to handle the inter-
cluster matching task, thus affects the accuracy of
GDR in intra-cluster mapping. Thirdly, due to the
high training cost (70 hours on 8 NVIDIA A100
GPUs for NQ4M), the generalization of GDR on
larger scale corpus has not been tested.

Ethics Statement

All of the datasets used in this study were publicly
available, and no annotators were employed for
data collection. We confirm that the datasets we
used did not contain any harmful content and was
consistent with their intended use (research). We
have cited the datasets and relevant works used in
this study.

Acknowledgments

This work is supported by Beijing Natural Science
Foundation (No. 4222037, L181010).

References
Michele Bevilacqua, Giuseppe Ottaviano, Patrick S. H.

Lewis, Scott Yih, Sebastian Riedel, and Fabio Petroni.
2022. Autoregressive search engines: Generating
substrings as document identifiers. In NeurIPS.

Dan Brickley, Matthew Burgess, and Natasha F. Noy.
2019. Google dataset search: Building a search en-
gine for datasets in an open web ecosystem. In The
World Wide Web Conference, WWW 2019, San Fran-
cisco, CA, USA, May 13-17, 2019, pages 1365–1375.
ACM.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,

Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A survey on dialogue systems: Re-
cent advances and new frontiers. SIGKDD Explor.,
19(2):25–35.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Matthew L. Henderson, Rami Al-Rfou, Brian Strope,
Yun-Hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv
Kumar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. CoRR, abs/1705.00652.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6769–6781. Associa-
tion for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452–
466.

Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li,
Wenjie Zhang, and Xuemin Lin. 2020. Approximate
nearest neighbor search on high dimensional data
- experiments, analyses, and improvement. IEEE
Trans. Knowl. Data Eng., 32(8):1475–1488.

Zehan Li, Nan Yang, Liang Wang, and Furu Wei.
2022. Learning diverse document representations
with deep query interactions for dense retrieval.
CoRR, abs/2208.04232.

2843

http://papers.nips.cc/paper_files/paper/2022/hash/cd88d62a2063fdaf7ce6f9068fb15dcd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/cd88d62a2063fdaf7ce6f9068fb15dcd-Abstract-Conference.html
https://doi.org/10.1145/3308558.3313685
https://doi.org/10.1145/3308558.3313685
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/10.1145/3166054.3166058
https://doi.org/10.1145/3166054.3166058
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1109/TKDE.2019.2909204
https://doi.org/10.1109/TKDE.2019.2909204
https://doi.org/10.1109/TKDE.2019.2909204
https://doi.org/10.48550/arXiv.2208.04232
https://doi.org/10.48550/arXiv.2208.04232

Dayiheng Liu, Yeyun Gong, Jie Fu, Yu Yan, Jiusheng
Chen, Daxin Jiang, Jiancheng Lv, and Nan Duan.
2020. Rikinet: Reading wikipedia pages for natural
question answering. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020,
pages 6762–6771. Association for Computational
Linguistics.

Sanket Vaibhav Mehta, Jai Prakash Gupta, Yi Tay,
Mostafa Dehghani, Vinh Q. Tran, Jinfeng Rao, Marc
Najork, Emma Strubell, and Donald Metzler. 2022.
DSI++: updating transformer memory with new doc-
uments. CoRR, abs/2212.09744.

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao,
Qiaoqiao She, Hua Wu, Haifeng Wang, and Ji-Rong
Wen. 2021. Rocketqav2: A joint training method for
dense passage retrieval and passage re-ranking. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Repub-
lic, 7-11 November, 2021, pages 2825–2835. Associ-
ation for Computational Linguistics.

Stephen E. Robertson and Steve Walker. 1997. On rel-
evance weights with little relevance information. In
SIGIR ’97: Proceedings of the 20th Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, July 27-31,
1997, Philadelphia, PA, USA, pages 16–24. ACM.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang
Wang, Haichao Zhu, Pengjie Ren, Zhumin Chen,
Dawei Yin, Maarten de Rijke, and Zhaochun Ren.
2023. Learning to tokenize for generative retrieval.
CoRR, abs/2304.04171.

Yu Sun, Shuohuan Wang, Yu-Kun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. ERNIE 2.0:
A continual pre-training framework for language un-
derstanding. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 8968–8975. AAAI Press.

Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara
Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao,
Jai Prakash Gupta, Tal Schuster, William W. Cohen,
and Donald Metzler. 2022. Transformer memory as
a differentiable search index. In NeurIPS.

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming
Miao, Shibin Wu, Qi Chen, Yuqing Xia, Chengmin
Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Sun,
Weiwei Deng, Qi Zhang, and Mao Yang. 2022. A
neural corpus indexer for document retrieval. In
NeurIPS.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini:
Enabling the use of lucene for information retrieval
research. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, Shinjuku, Tokyo,
Japan, August 7-11, 2017, pages 1253–1256. ACM.

Hang Zhang, Yeyun Gong, Yelong Shen, Jiancheng Lv,
Nan Duan, and Weizhu Chen. 2022a. Adversarial
retriever-ranker for dense text retrieval. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Shunyu Zhang, Yaobo Liang, Ming Gong, Daxin Jiang,
and Nan Duan. 2022b. Multi-view document repre-
sentation learning for open-domain dense retrieval.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 5990–6000. Association for Com-
putational Linguistics.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong
Wen. 2022. Dense text retrieval based on pretrained
language models: A survey. CoRR, abs/2211.14876.

Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu, Peitian
Zhang, and Ji-Rong Wen. 2022. Ultron: An ulti-
mate retriever on corpus with a model-based indexer.
CoRR, abs/2208.09257.

2844

https://doi.org/10.18653/v1/2020.acl-main.604
https://doi.org/10.18653/v1/2020.acl-main.604
https://doi.org/10.48550/arXiv.2212.09744
https://doi.org/10.48550/arXiv.2212.09744
https://doi.org/10.18653/v1/2021.emnlp-main.224
https://doi.org/10.18653/v1/2021.emnlp-main.224
https://doi.org/10.1145/258525.258529
https://doi.org/10.1145/258525.258529
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.48550/arXiv.2304.04171
https://ojs.aaai.org/index.php/AAAI/article/view/6428
https://ojs.aaai.org/index.php/AAAI/article/view/6428
https://ojs.aaai.org/index.php/AAAI/article/view/6428
http://papers.nips.cc/paper_files/paper/2022/hash/892840a6123b5ec99ebaab8be1530fba-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/892840a6123b5ec99ebaab8be1530fba-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/a46156bd3579c3b268108ea6aca71d13-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/a46156bd3579c3b268108ea6aca71d13-Abstract-Conference.html
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/3077136.3080721
https://openreview.net/forum?id=MR7XubKUFB
https://openreview.net/forum?id=MR7XubKUFB
https://doi.org/10.18653/v1/2022.acl-long.414
https://doi.org/10.18653/v1/2022.acl-long.414
https://doi.org/10.48550/arXiv.2211.14876
https://doi.org/10.48550/arXiv.2211.14876
https://doi.org/10.48550/arXiv.2208.09257
https://doi.org/10.48550/arXiv.2208.09257

Dataset Cluster Counts
NQ334K 34337
NQ1M 33003
NQ2M 29000
NQ4M 28362

Table 8: Total number of CIDs included in datasets with
different scale of candidate document corpus.

A Appendix

A.1 Calculation method of error rate

Considering that the AR2 (Zhang et al., 2022a) it-
self does not make predictions on identifiers, we
select identifier corresponding to the predicted doc-
ument as AR2’s identifier prediction. We calculate
the error rate of model’s prediction on the ith po-
sition as follows: For each predicting document
identifiers, we calculate the probability that, given
its prefix up to the i-1th position belonging to a pre-
fix of a relevant document identifier, the addition
of the model’s prediction for the ith position no
longer belongs to any prefix of a relevant document
identifier.

A.2 Magnitude of CIDs

We collect the total count of CIDs for datasets with
different scales of candidate documents obtained
through our proposed strategy introduced in section
3.2. As shown in Table 8, the results demonstrate
that the proposed strategy can effectively control
the total number of clusters, thus guarantee the
memorizing volume of GDR. The reason why the
magnitude of cluster counts in Table 8 (approxi-
mately 30000) is larger than the Exp(|CID|) we
set as 5000 is that, The constructed cluster tree is
unbalanced, resulting in more clusters than the ex-
pected value. Our preliminary studies show that,
setting Exp(|CID|) in Algorithm 1 as 5000 can
lead to a favorable budget between efficiency and
performance.

A.3 Experiments on TriviaQA

We further verified the generalization of GDR on
a subset of TriviaQA. We constructed the Trivi-
aQA549K dataset following the procedure to con-
struct NQ334K and compared GDR with other
methods on it as shown in Table 9. The experi-
mental results verified the good generalization of
GDR.

Method Acc@20/100 R@20/100
BM25 95.7/98.6 70.5/93.2
AR2 97.9/99.3 71.8/92.8
NCI 90.4/95.7 71.6/92.3
GDR 96.8/98.9 74.6/95.0

Table 9: Experimental results on TriviaQA549K.

2845

