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Abstract
Sentence representations are a critical compo-
nent in NLP applications such as retrieval, ques-
tion answering, and text classification. They
capture the meaning of a sentence, enabling
machines to understand and reason over human
language. In recent years, significant progress
has been made in developing methods for learn-
ing sentence representations, including unsu-
pervised, supervised, and transfer learning ap-
proaches. However there is no literature review
on sentence representations till now. In this
paper, we provide an overview of the different
methods for sentence representation learning,
focusing mostly on deep learning models. We
provide a systematic organization of the liter-
ature, highlighting the key contributions and
challenges in this area. Overall, our review
highlights the importance of this area in nat-
ural language processing, the progress made
in sentence representation learning, and the
challenges that remain. We conclude with di-
rections for future research, suggesting poten-
tial avenues for improving the quality and effi-
ciency of sentence representations.

1 Introduction

The sentence, together with the word, are the
two fundamental grammatical units of human lan-
guage. Representing sentences for machine learn-
ing, which involves transforming a sentence into
a vector or a fixed-length representation, is an im-
portant component of NLP. The quality of these
representations affects the performance of down-
stream NLP tasks like text classification and text
similarity (Conneau and Kiela, 2018).

Deep neural networks have played a major role
in obtaining sentence representations. While there
have been significant advancements in the devel-
opment of large language models (LLMs) such as
GPT-3 (Brown et al., 2020), BLOOM (Workshop,
2023), they learn through effective word represen-
tations and modelling of the language at the (next)

word level. Endowing models with the ability to
learn effective representations of higher linguistic
units beyond words – such as sentences – is useful.

For instance, sentence representations can help
in retrieving semantically similar documents prior
to generation. LangChain1 and various other frame-
works like DSPy (Khattab et al., 2023), have under-
scored the critical demand for proficient sentence
representations. The documents retrieved serve
as valuable resources for generating fact-based re-
sponses, using custom documents to address user
queries, and fulfilling other essential functions.

However, current language models exhibit draw-
backs in obtaining sentence representations out-of-
the-box. For instance, Ethayarajh (2019) showed
that out-of-the-box representations from BERT
(Devlin et al., 2019) are fraught with problems
such as anisotropy—representations occupying a
narrow cone, making every representation closer to
all others. Also, they are impractical for real-life
applications: finding the best match for a query
takes hours (Reimers and Gurevych, 2019).

To overcome the inadequacy of directly using
sentence representations from language models,
numerous methods have been developed. Several
works have proposed to post-process the represen-
tations from BERT to alleviate the anisotropy (Li
et al., 2020; Huang et al., 2021b) or repurpose repre-
sentations from different layers of the model (Kim
et al., 2021). But there has been a steadily growing
body of works that move away from such post-
processing and introduce new methods.

Perhaps due to the rapid advancements in the
field (Figure 1), there are no literature reviews dis-
cussing the diverse range of techniques for learning
sentence representations. The present paper offers
a review of these techniques, with a specific empha-
sis on deep learning methods. Our review caters to
two audiences: (a) Researchers from various fields
seeking to get insights into recent breakthroughs in

1https://github.com/hwchase17/langchain
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Figure 1: Illustration of some of the milestones in Sentence Representation Learning Research

sentence representations, and (b) researchers aim-
ing to advance the field of sentence representations.

1.1 Overview
We structure our literature review as follows:

• § 2 provides a brief history of methods to learn
sentence representations and the different com-
ponents of a modern framework.

• § 3 provides a review of supervised sentence
representations that use labeled data to learn sen-
tence representations.

• § 4 reviews methods that use unlabeled data to
learn sentence representations (also called un-
supervised sentence representation learning), a
major focus of recent methods.

• § 5 describes methods that draw inspiration from
other fields such as computer vision.

• § 6 provides a discussion of trends and analysis.
• § 7 discusses the challenges and suggests some

future directions for research.

2 Background

2.1 Sentence Representations
Before the advent of neural networks, bag-of-words
models were commonly used to represent sen-
tences, but they suffered from limitations such as
being unable to capture the relationships between
words or the overall structure of the sentence.

Numerous efforts have aimed to improve sen-
tence representations (Figure 1). Inspired by
Word2Vec (Mikolov et al., 2013; Pennington et al.,
2014), Kiros et al. (2015) trained neural networks
to predict the surrounding sentences of a given tar-
get sentence. Subsequently, Conneau and Kiela
(2018) employed various recurrent neural networks
(RNNs) to produce sentence embeddings, explor-
ing their linguistic attributes, including part-of-
speech tags, verb tense and named entity recogni-
tion. Notably, this study utilized natural language
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Figure 2: Overview of sentence representation methods.

inference (NLI) data for neural network training,
predating the emergence of extensive pretrained
models such as BERT (Devlin et al., 2019). BERT
and similar models have since served as a founda-
tion for enhancing sentence representations. Ex-
ploring whether Large Language Models will ignite
advancements in sentence representations or if pre-
trained language models like BERT remain pivotal
is a crucial inquiry within today’s context. (§ 6)

2.2 Components of Sentence Representations

Neural networks have become the de-facto standard
for learning sentence representations. The network
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takes two sentences as input and creates a vector
for each sentence. These vectors are then trained to
be similar for sentences that mean the same thing
and different for sentences with different meanings.
Learning sentence representations using neural net-
works involves the following generic components
(Figure 3):

1. Data: Data used for learning sentence represen-
tations consists of pairs of semantically similar
sentences, which can be either annotated by hu-
mans or generated through transformations to
create positive and negative sentence pairs. (cf.
§§ 4.1 and 4.3).

2. Model: A sentence representation extraction
model is a neural network backbone model un-
less specified otherwise. The backbone model
can take the form of an RNN or a pretrained
transformer model like BERT (Devlin et al.,
2019) or T5 (Raffel et al., 2020).

3. Transform: Neural network representations are
not well suited for use as sentence representa-
tions directly. While the [CLS] representations
from BERT can serve as such, Reimers and
Gurevych (2019) propose a pooling mechanism
to obtain sentence representations by aggregat-
ing the token representations. The transforma-
tion required depends on the model type.

4. Loss: Contrastive learning is often used for
sentence representations. The objective is to
bring semantically similar examples closer to-
gether while pushing dissimilar examples fur-
ther apart. Specifically, given a set of example
pairs D = {xi, xpi }, a model is used to obtain
representations for each pair, denoted hi and hpi .
The contrastive loss for an example is:

li = − log
esim(hi,h

p
i )

∑N
j=1 e

sim(hi,hj)

where N is the size of a mini-batch, sim(·, ·) is
the similarity function which plays a crucial role.
However, when selecting an appropriate loss
function, several factors need to be considered.
These factors include the choice of similarity
measures and the characteristics of the negative
examples.

The different components have disproportionate ef-
fects in learning sentence representations. While
Model has played an important role and has
brought the most advances in learning sentence
representations, Data cannot be disregarded. Most

Figure 3: The components of an architecture to learn
sentence representations. There are four main compo-
nents: 1) Data - Obtaining positive and negative exam-
ples either using supervised data or some transformation
2) Model - Generally a pretrained model that has been
trained on large quantities of gneeral text. 3) Trans-
form - Some transformation applied to the representa-
tions from the model to obtain sentence representations,
and 4) Loss - Losses that bring semantically similar
sentences closer together and others apart.

of the innovations have been concentrated in ob-
taining the right data for training.

In their influential paper, Reimers and Gurevych
(2019) utilized this versatile framework to generate
highly effective sentence embeddings, which has
subsequently served as a cornerstone for further
research. This framework, commonly referred to
as the bi-encoder or Siamese network approach,
involves encoding the query and candidate sepa-
rately. This does not encourage interactions be-
tweeen words. Encouraging word interactions can
be achieved through a cross encoder, where the
query and candidate are concatenated and encoded
by a single model. However, this approach is com-
putationally expensive and we have omitted it in
this paper. In contrast, the Siamese BERT net-
work pre-computes query and candidate vectors,
enabling fast retrieval.

Figure 2 illustrates the progression of work
aimed at improving sentence representations. Two
primary approaches stand out: supervised and un-
supervised methods. For a clearer understanding
of innovations, we categorize these methods based
on variations of common techniques. Each cat-
egory identifies contributions that target specific
components (Figure 3): The Better Positives cate-
gory focuses on refining augmentation techniques,
primarily addressing the Data component. Con-
versely, the Alternate Loss and Objectives cate-
gory explores improvements in the contrastive Loss
function. These dynamic interactions between cat-
egories are further depicted in Table 1.
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3 Supervised Sentence Representations

Natural language understanding involves intricate
reasoning. One way to learn better sentence rep-
resentations is by excelling at tasks that demand
reasoning. Large-scale supervised datasets for nat-
ural language understanding have emerged over
the years: SNLI (Bowman et al., 2015), MNLI
(Williams et al., 2018), ANLI (Nie et al., 2020). To
that end, neural network methods utilize supervised
datasets to learn sentence representations.

3.1 Natural Language Inference

Natural Language Inference (NLI) is the process
of determining the logical relationship between a
premise (an assumed true sentence) and a hypoth-
esis (a possibly true sentence). The objective of
NLI is to determine whether the hypothesis can be
logically inferred from the premise (entailment),
contradicts the premise (contradiction), or is neu-
tral with respect to it (Dagan et al., 2013). NLI
serves as a proxy for evaluating natural language
understanding. According to Conneau et al. (2017),
learning sentence representations using NLI data
can be effectively transferred to other NLP tasks,
demonstrating the generality of this approach.

Reimers and Gurevych (2019) and subsequent
works mainly rely on learning sentence represen-
tations using NLI data. There are two noteworthy
components to enable this. First, processing in-
puts individually without promoting interaction be-
tween words; second, using an encoder like BERT
as its backbone model. The first component is com-
putationally efficient but has been found to result
in poorer performance compared to methods that
promote interaction between words (Reimers and
Gurevych, 2019). This lack of interaction can limit
the network’s ability to capture the nuances of lan-
guage, and may result in less accurate sentence em-
beddings. In order to solve this, efforts such as the
work from Cheng (2021), incorporated word-level
interaction features into the sentence embedding
while maintaining the efficiency of Siamese-BERT
networks. Their approach makes use of ideas from
knowledge distillation (Hinton et al., 2015): using
the rich knowledge in pretrained cross-encoders to
improve the performance of Siamese-BERT.

Meanwhile, with the raise of generative mod-
els which have a myriad of capabilities has lead
researchers to explore whether they can serve as
better backbone models for sentence representa-
tions (Ni et al., 2022a) compared to encoder-only

models like BERT. They consider three methods to
obtain sentence representations from a pretrained
T5 model: the representation of the first token of
the encoder, the representation of the first generated
token of the decoder, or the mean of the represen-
tations from the encoder. They found that such
models trained on NLI are performant, showing the
utility of generative models for obtaining sentence
representations.

3.2 Generating Data

Acquiring supervised data to train sentence repre-
sentations is a difficult task. However, in recent
years, pre-trained models have emerged as a po-
tential solution for generating training data. Fur-
thermore, pre-trained models can serve as weak
labelers to create “silver data”.

Cross-encoders that are pretrained on NLI data
can be used to obtain silver data. In order to do this,
Thakur et al. (2021a) suggest Augmented-SBERT.
Their approach involves using different strategies
to mine sentence pairs, followed by labeling them
using a cross-encoder to create silver data. The sil-
ver data is then combined with the human-labelled
training dataset, and a Siamese-BERT network is
trained. However, this method requires mining ap-
propriate sentence pairs first.

Rather than relying solely on obtaining super-
vised data, researchers are exploring the use of gen-
erative language models to create large amounts of
synthetic training data for sentence encoders. This
approach has the potential to produce high-quality
training data at scale, addressing some of the chal-
lenges associated with supervised data acquisition.
For instance, Chen et al. (2022b) demonstrate the
use of a T5 model trained to generate entailment or
contradiction pairs for a given sentence. However,
this method still needs to provision a sentence to
generate the entailment/contradiction pairs.

DINO, introduced by Schick and Schütze (2021),
automates the generation of NLI data instructions
using GPT2-XL. This approach eliminates the need
for providing a sentence to generate entailment or
contradiction pairs. Models trained on the resulting
STS-Dino dataset outperform strong baselines on
multiple semantic textual similarity datasets.

4 Unsupervised Sentence Representations

Unlike supervised methods, unsupervised learn-
ing techniques do not rely on explicit positive and
negative examples but instead employ alternative
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NAME SUPERVISION SENTEVAL? BASE MODEL COMPONENT AVERAGE
Chen et al. (2022b) Supervised (semi) No t5 MODEL 85.19
Gao et al. (2021) Unsupervised Yes roberta-large DATA 83.76
Ni et al. (2022a) Supervised Yes t5 MODEL 83.34
Wang et al. (2022) Unsupervised No roberta-large DATA 80.84
Zhang et al. (2022d) Unsupervised Yes sbert-large LOSS 80.69
Wang and Lu (2022) Unsupervised No bert-base DATA 80.61
Liu et al. (2023) Unsupervised Yes roberta-large LOSS 80.47
Deng et al. (2023) Unsupervised Yes bert-large DATA LOSS 80.30
Wu et al. (2022b) Unsupervised Yes bert-large LOSS 80.18
Seonwoo et al. (2023) Unsupervised Yes bert-base LOSS 80.07
Wu et al. (2022a) Unsupervised Yes bert-large DATA 79.94
Kim et al. (2021) Unsupervised Yes roberta-large DATA 79.76
Chen et al. (2023) Unsupervised Yes bert-large DATA 79.69
Wu et al. (2022d) Unsupervised Yes roberta-large DATA 79.45
Zhou et al. (2022a) Unsupervised Yes roberta-large DATA 79.30
Wu et al. (2022c) Unsupervised No roberta-large LOSS 79.21
Jiang et al. (2022a) Unsupervised No roberta-base LOSS 79.15
Cao et al. (2022) Unsupervised Yes bert-large DATA 79.13
Zhang et al. (2022a) Unsupervised No roberta-large DATA 79.04
Zhang et al. (2022c) Unsupervised Yes bert-large DATA 78.80
Min et al. (2021) Unsupervised Yes bert-large - 78.79
Chuang et al. (2022) Unsupervised Yes bert-base LOSS 78.49
Jiang et al. (2022b) Unsupervised Yes bert-base LOSS 78.49
Chen et al. (2022a) Unsupervised Yes roberta-large LOSS 78.08
Wu et al. (2022a) Unsupervised Yes roberta-base DATA 77.91
Cheng (2021) Supervised No roberta-large - 77.47
Nishikawa et al. (2022) Unsupervised No bert-base DATA 77.00
Reimers and Gurevych (2019) Supervised Yes roberta-large TRANSFORM LOSS 76.68
Liu et al. (2021) Unsupervised No roberta-base DATA 76.40
Wu and Zhao (2022) Unsupervised No bert-base LOSS 76.16
Schick and Schütze (2021) Unsupervised No roberta-base DATA 75.20
Klein and Nabi (2022) Unsupervised Yes bert-base DATA 74.19
Huang et al. (2021b) Unsupervised No LaBSE TRANSFORM 71.71
Giorgi et al. (2021) Unsupervised Yes roberta-base DATA 69.99
Yang et al. (2021) Unsupervised No bert-base LOSS 67.22
Zhang et al. (2020) Unsupervised Yes bert-base LOSS 66.58
Li et al. (2020) Unsupervised No bert-base DATA 66.55

Table 1: Comparison of methods. SUPERVISION indicates whether the method is supervised or unsupervised,
SENTEVAL indicates whether the work benchmarks against SentEval (Conneau and Kiela, 2018), COMPONENT
indicates the component from Figure 3 that the work targets, and AVERAGE is the average score on STS.

techniques to mine them. Hence this has garnered
significant attention in recent years. Additionally,
they may also modify the learning objectives.

4.1 Better Positives

Contrastive learning techniques optimize sentence
representations by contrasting semantically simi-
lar examples against dissimilar ones (c.f § 2.2). A
simple way to obtain a semantically similar exam-
ple is to make minimal changes to it. In contrast
to images, where simple transformations such as
rotation, clipping, and color distortion can generate
semantically similar examples, deleting or replac-
ing a random word in a sentence can drastically
change its meaning (Schlegel et al., 2021). There-
fore, it is crucial to carefully select positive and

negative examples for contrastive learning in NLP.

4.1.1 Surface Level
To create a sentence that carries the same meaning
as another, one can modify the words or characters
in the text. Recent research (Wang et al., 2022;
Liu et al., 2021; Wu et al., 2022d) suggests certain
transformations that preserve the semantic mean-
ing. Wang et al. (2022) propose randomly flipping
the case of some tokens, while Liu et al. (2021)
mask spans of tokens to get positive instances,
and Wu et al. (2022d) suggest to repeat certain
words or subwords. Besides generating positive in-
stances, these transformations help in fixing certain
biases in representations generated by transform-
ers. For example, Jiang et al. (2022a) found that
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avoiding high-frequency tokens can result in better
sentence representations, and transformations that
mask them out while learning sentence representa-
tions can improve its quality.

However, altering the surface characteristics of
sentences can lead to models relying on shortcuts
rather than learning semantics (Du et al., 2021). To
address this issue, Wu et al. (2022a) propose the
use of multiple augmentation strategies rather than
a single transformation. They use shuffling, repeat-
ing, and dropping words as transformation strate-
gies to improve model robustness. Additionally,
they implement mechanisms to enhance learning
from multiple positive examples.

4.1.2 Model Level
Minor modifications to the words or the structure of
a sentence can still result in big changes in seman-
tics in language processing. However, researchers
have explored another method, where such small
modifications can be made in the representation
space by leveraging the distinctive characteristics
of the backbone model utilized in contrastive learn-
ing. These characteristics might be architectural
choices, or using representations from certain com-
ponents of the model.

One such approach uses Dropout – a regular-
ization technique used in deep learning to prevent
overfitting of a model. During training, some neu-
rons in the layer are randomly deactivated, resulting
in slightly different representations when the same
training instance is passed through the model mul-
tiple times. These different representations can be
used as positive examples for learning. Recent stud-
ies such as Gao et al. (2021) have demonstrated the
effectiveness of dropout as an augmentation strat-
egy. Several other works have also incorporated
this technique and improved upon it: promoting
decorrelation between different dimensions (Klein
and Nabi, 2022) and adding dropout in the trans-
formation arsenal (Wu et al., 2022a,d).

On the other hand, special components can be
trained to generate semantically similar representa-
tions. One example is the use of prefix modules (Li
and Liang, 2021), which are small, trainable mod-
ules added to a pretrained language model. Wang
and Lu (2022) attach two prefix modules to the
Siamese BERT network (c.f § 2) – one each for the
two branches – and train them on NLI data. This en-
ables the prefix modules to understand the nuances
of the difference between representations. They
show that representations from the two modules for

the same sentence can then be used as positives.

4.1.3 Representation Level
Examining the latent representation of sentences
generated by a model yields a valuable benefit. In
this scenario, one can discover positive examples
by exploring the representation space. These ap-
proaches offer the distinct advantage of obviating
the need for any data augmentation.

Although BERT’s [CLS] representation is com-
monly used as a sentence representation, it has been
shown to be ineffective (Reimers and Gurevych,
2019). In fact, Kim et al. (2021) demonstrated that
the various layers of BERT have differing levels
of performance on the STS dataset. To address
this issue, they propose reusing the intermediate
BERT representations as positive examples. In con-
trast, Zhang et al. (2022a) perform augmentation by
identifying the k-nearest neighbors of a sentence
representation.

4.1.4 Alternative Methods
Researchers have explored various other methods
for obtaining positive samples for unsupervised
sentence representations. One option is weak su-
pervision: using spans from the same document
(Giorgi et al., 2021), employing related entities
(Nishikawa et al., 2022), and utilizing tweets and
retweets-with-quotes (Di Giovanni and Brambilla,
2021). On the other hand, dialogue turns can be
used as semantically related pairs of text for learn-
ing sentence representations (Zhou et al., 2022b).

Other approaches use the capability of large
language models to perform tasks based on
instructions—a technique called “prompting”. Re-
searchers have used prompts to obtain better sen-
tence representations, as demonstrated in stud-
ies such as Jiang et al. (2022a), which employs
the “[X] means [MASK]” prompt to extract sen-
tence representations from the representation of the

“[MASK]” token in a sentence. Another study by
(Zeng et al., 2022) combines prompt-derived sen-
tence representations with contrastive learning to
improve the quality of the representations.

4.2 Alternative Loss and Objectives

In § 2 we discussed Contrastive loss, which is
widely used in machine learning. However, this
loss suffers from several limitations: for instance
it only considers binary relationships between in-
stances and lacks a mechanism to incorporate hard-
negatives (negatives that are difficult to distinguish
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from positive examples). To overcome these draw-
backs, researchers have explored various strategies:

Supplementary Losses: Used in addition to con-
trastive losses, these include: (1) hinge loss (Jiang
et al., 2022b), which enhances discrimination be-
tween positive and negative pairs; (2) losses for
reconstructing the original sentence from its repre-
sentation to better capture sentence semantics (Wu
et al., 2022b) ; (3) a loss to identify masked words
and improve sensitivity to meaningless semantic
transformations (Chuang et al., 2022); and (4) a
loss to minimize redundant information in transfor-
mations by minimizing entropy (Chen et al., 2022a)
(5) Ranking based losses to ensure that all nega-
tives are not treated equally – some negatives are
closer to the query compared to others (Seonwoo
et al., 2023; Liu et al., 2023)

Modified Contrastive Loss: Wu et al. (2022c)
proposed an additional term that incorporates ran-
dom noise from a Gaussian distribution as negative
instances. Also, Zhang et al. (2022d) introduced
two losses, angular loss and margin-based triplet
loss, to address the intricacies of similarity between
pairs of examples.

Different Loss: Moving away from contrastive
loss. Disadvantages of contrastive representations
include not considering the relevance of different
parts of the sentence in the entire representation,
and assuming that sentence representations lie in
the Euclidean space. Zhang et al. (2020) address
the first by maximizing the mutual information be-
tween a local context and the entire sentence. Min
et al. (2021) address the second by identifying an
alternative sub-manifold within the sentence rep-
resentation space. Other objectives to learn sen-
tence representations include disentangling the syn-
tax and semantics from the representation (Huang
et al., 2021a), generating important phrases from
sentences instead of using contrastive learning (Wu
and Zhao, 2022), or using sentence representation
as a strong inductive bias to perform Masked Lan-
guage Modeling (Yang et al., 2021).

4.3 Better Negative Sampling

The efficacy of contrastive learning hinges on the
quality of negative samples used during training.
While most methods prioritize selecting positive
samples that bear similarity to the query text, it is
equally crucial to include hard negatives that are
dissimilar to the query text and pose a challenge

for the model to classify. Failure to do so leads to a
gradual diminution of the loss gradients, impeding
the learning of useful representations (Zhang et al.,
2022c). Additionally, using an adequate number
of negative samples is also imperative for effective
learning (Cao et al., 2022).

Given the importance of incorporating hard neg-
atives, several innovative strategies have emerged.
Researchers have found that mixed-negatives—a
combination of representations of a positive and a
randomly chosen negative—serve as an excellent
hard negative representation (Zhang et al., 2022c).
Similarly, Zhou et al. (2022a) leveraged noise from
a uniform Gaussian distribution as negatives to fos-
ter uniformity in the learned representation space—
a metric to assess learned sentence representation.
Recently, In contrast to the approach taken by Kim
et al. (2021), (Chen et al., 2023) employ representa-
tions from various layers as negatives, recognizing
that similarities across these layers render them less
discriminative. This contemporary approach shows
enhanced performance on the STS benchmark and
subsequent tasks. However, it’s important to note
that perceptions of what constitutes ’positive’ or
‘negative’ in the literature are constantly evolving.

False negatives are instances where certain nega-
tives exhibit a higher similarity to the anchor sen-
tence compared to other negatives, yet maintain a
lower similarity than the positives. Properly iden-
tifying and integrating measures to address these
false negatives is crucial for enhancing sentence
representation learning. (Deng et al., 2023) tackle
this by clustering the remaining N-1 sentences in a
batch. Sentences within the same cluster are desig-
nated as false negatives. To manage this scenario
effectively, they employ a Bidirectional Margin
Loss. This approach ensures that false negatives
are not excessively distanced from the anchor sen-
tence, thereby improving the overall quality of the
sentence representation.

4.4 Post-Processing

Ethayarajh (2019) suggest that the out-of-the-box
representations from LLMs are not effective sen-
tence representations. Consequently, several efforts
have addressed this issue.

Almarwani et al. (2019) utilize the Discrete Co-
sine Transform, a widely used technique in signal
processing, to condense word vectors into fixed-
length vectors. This approach has demonstrated its
effectiveness in capturing both syntax and seman-
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tics. Similarly, Li et al. (2020) employ normaliz-
ing flows to convert BERT’s token representations
into a Gaussian distribution, while Huang et al.
(2021b) propose a simpler ‘whitening’ technique
that enhances out-of-the-box sentence representa-
tions from LLMs by transforming the mean and
covariance matrix of the sentence vectors. These
post processing techniques have only been tested
on BERT based models so far, and their generaliza-
tion to newer models has not been answered.

5 Other Approaches

Multimodal: Human experiences are complex
and involve multiple sensory modalities. Thus,
it is beneficial to incorporate multiple modalities
in learning sentence representations. Researchers
have explored different approaches to use images
for this purpose: using contrastive loss that uti-
lizes both images and text (Zhang et al., 2022b);
optimizing a loss each for visual and textual rep-
resentation (Jian et al., 2022); grounding text into
image (Bordes et al., 2019). Other modalities like
audio and video are yet to be incorporated. Given
that obtaining supervised data with just one modal-
ity is already hard, obtaining the same for multiple
modalities will be even more challenging.

Computer Vision Inspired: Momentum en-
coder, introduced by He et al. (2020), improves
training stability. It utilizes a queue of representa-
tions from previous batches as negatives for the cur-
rent batch, decoupling batch size from the learning
process. Several studies have integrated momen-
tum encoder into sentence representation learning,
leading to enhanced performance (Cao et al., 2022;
Wu et al., 2022a,d; Tan et al., 2022). This might
require additional memory in the GPU which is
challenging when training large NLP models.

Another popular technique, Bootstrap Your Own
Latent (BYOL) (Grill et al., 2020), is a self-
supervised learning method that dispenses with
negative samples. It trains a neural network to pre-
dict a set of ‘target’ representations from an input
data point, given an ‘online’ representation of the
same data point. BYOL employs a contrastive loss
function to encourage similarity between the on-
line and target representations. An advantage of
BYOL is the elimination of the need for negative
samples; instead, it uses augmented versions of the
same data point as positive samples. This method
has been effectively applied to natural language
processing by Zhang et al. (2021) It implicitly as-

sumes that obtaining an augmented sentence is easy
– which might not be the case, as we have seen in
the previous sections.

6 Trends & Analysis

Limited advantages of supervision: Table 1
summarizes all the results. Surprisingly, a simple
dropout-based data augmentation technique (Gao
et al., 2021) demonstrates superior performance
compared to most other methods, including those
using T5, which is trained on billions of tokens (Ni
et al., 2022a). Note that T5 is trained on a token
generation objective that might not be suitable for
obtaining better sentence representations. Besides
the model, using an appropriate unsupervised task
might be important for better representations.

Downplaying downstream task evaluation:
The neglect of evaluating sentence representations
in downstream tasks, as exemplified in Table 1, is
noticeable. With LLMs demonstrating remarkable
zero-shot performance across various tasks, the
utility of sentence representations for tasks beyond
semantic similarity and retrieval seems to dwindle.
Nevertheless, recent research shows how sentence
representations can enhance few-shot text classifi-
cation performance (Tunstall et al., 2022). Future
sentence representations should consider the util-
ity of representations in enhancing few-shot text
classification.

Data-centric innovations: Most innovations in
this field focus on improving the data aspect, in-
cluding obtaining better positives or negatives,
and generating data using large language models
(Schick and Schütze, 2021; Chen et al., 2022b).
While generative models like T5 can boost per-
formance, other LLMs like ChatGPT can bring
additional benefits because of their scale.

Keeping up with LLMs: We have identified sev-
eral noteworthy endeavors using massive language
models with billions of parameters for sentence rep-
resentations. SGPT (Muennighoff, 2022) has suc-
cessfully trained an open-source GPT decoder-only
model on the SNLI and MNLI datasets, surpassing
OpenAI’s 175B parameter model. Additionally,
GTR (Ni et al., 2022b) examined scaling laws, re-
vealing larger T5 models have better performance.
Nonetheless, recent developments such as GTE
(Li et al., 2023) and BGE (Xiao et al., 2023) high-
light that a collection of high-quality datasets for
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contrastive training can yield significantly better
results compared to just using bigger models.

7 Challenges

Practical Applications and the rise of Tools:
Sentence representations are commonly employed
for sentence retrieval in practical applications, as
evidenced by the increasing number of benchmarks
(Thakur et al., 2021b). However, their utility ex-
tends beyond retrieval, as demonstrated by recent
work (Schuster et al., 2022), which leverages sen-
tence representations for identifying documents
that share a similar stance on a topic and for isolat-
ing documents that diverge from the consensus.

The increasing use of sentence representations in
practical applications such as retrieval and provid-
ing an appropriate context to generative language
models to rely on has lead to the rise of tools known
as vector databases. These tools enable storing
vectors as indices and include algorithms for fast
retrieval of similar vectors. Popular options such as
Pinecone2 and Milvus3 also offer services for cloud
hosting and resilience. These vector databases
can be integrated with other frameworks such as
LangChain, that facilitate the development of LLM
applications.

Adapting to Different Domains: Research has
shown that sentence representations learned in one
domain may not accurately capture the semantic
meaning of sentences in another domain (Jiang
et al., 2022b; Thakur et al., 2021a). Some solu-
tions have been proposed in the literature, such
as generating queries using a pretrained T5 model
on a paragraph from the target domain, or using
a pretrained cross-encoder to label the query and
paragraph, or using a denoising objective (Wang
et al., 2021). Nonetheless, training models that
work well across domains remains challenging.

Cross-lingual Sentence Representations: Cre-
ating sentence representations that can be used
across languages, especially those with limited an-
notated data, poses a significant challenge (Zhang
et al., 2023). New solutions for cross-lingual
retrieval are being developed and deployed for
real-world use cases.4 Many scholarly works
(Nishikawa et al., 2022; Feng et al., 2022; Wieting
et al., 2020) have addressed cross-lingual sentence

2https://www.pinecone.io/
3https://milvus.io/
4https://txt.cohere.com/multilingual/

representation learning in recent times, but they
require aligned data between languages, which is
hard to obtain.

Universality of Sentence Representations: The
original purpose of sentence representations was
to serve as a versatile tool for various NLP tasks.
One prominent effort to evaluate the universality
of sentence representations was the SentEval task
(Conneau and Kiela, 2018), which tested the repre-
sentations’ performance on text classification, natu-
ral language inference, and semantic text similarity
tasks. However, many recent works on sentence
representation tend to emphasize their effectiveness
on semantic text similarity datasets (Table 1). This
shift raises questions about the universal nature
of these representations—are sentence representa-
tions useful only for retrieval, or do they indeed
have other applications? Such questions are put
back into spotlight by recent benchmarks such as
MTEB (Muennighoff et al., 2022).

8 Conclusions

This survey offers an overview of sentence rep-
resentations, presenting a taxonomy of methods.
While major innovations focused on obtaining bet-
ter quality data for contrastive learning, modern
advances in generative technologies can accelerate
the automatic generation of supervised data at low
cost. Although LLMs play a crucial role in inform-
ing the advancement of sentence representations,
further enhancements in sentence representation
learning are necessary to personalize current LLMs
to achieve tailored results. We highlighted that
better multilingual and multi-domain sentence rep-
resentations are needed, now that LLMs are being
deployed in different domains at a rapid pace. We
hope that this survey can accelerate advances in
sentence representation learning.

9 Limitations

While we have made an effort to encompass a com-
prehensive range of literature on sentence repre-
sentations, it is possible that certain papers may
have been inadvertently excluded from our liter-
ature review. Additionally, we acknowledge that
our approach assumes the majority of methods pri-
marily focus on sentences or a limited number of
tokens, typically within a few hundred. However,
it is important to note that representation learning
for documents or longer contexts—an active area
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of research—utilizes similar techniques. This sur-
vey does not cover those specific areas, which may
warrant further attention.
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