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Abstract

Product classification is a crucial task in inter-
national trade, as compliance regulations are
verified and taxes and duties are applied based
on product categories. Manual classification
of products is time-consuming and error-prone,
and the sheer volume of products imported and
exported renders the manual process infeasible.
Consequently, e-commerce platforms and en-
terprises involved in international trade have
turned to automatic product classification us-
ing machine learning. However, current ap-
proaches do not consider the real-world chal-
lenges associated with product classification,
such as very abbreviated and incomplete prod-
uct descriptions. In addition, recent advance-
ments in generative Large Language Models
(LLMs) and their reasoning capabilities are
mainly untapped in product classification and
e-commerce. In this research, we explore the
real-life challenges of industrial classification
and we propose data perturbations1 that allow
for realistic data simulation. Furthermore, we
employ LLM-based product classification to
improve the robustness of the prediction in pres-
ence of incomplete data. Our research shows
that LLMs with in-context learning outperform
the supervised approaches in the clean-data sce-
nario. Additionally, we illustrate that LLMs are
significantly more robust than the supervised
approaches when data attacks are present.

1 Introduction

Product classification plays an important role in
international trade and e-commerce. This is be-
cause import and export tariffs are assigned based
on the category of products. According to the latest
report from World Custom Organization (WCO,
2023), in Year 2022-2023 more than 1.3 billion
declarations are booked through customs world-
wide (World Customs Organization, 2023a). This

1We use ‘data perturbation’ and ‘data attack’ interchange-
ably.

massive workload, a result of trade globalization,
can impose a significant burden on human experts
such as customs personnel and the companies in-
volved in import, export, and e-commerce.

In addition, product classification can often be
a complicated task and require subject matter ex-
pertise, as there is a wide range of products traded
across various industries. As such, for human per-
sonnel to become competent in understanding the
nuances of different products and how to classify
them in compliance with WCO guidelines is a non-
trivial task and requires several months of training,
according to our subject matter expertise. More-
over, correct and detailed classification is critical,
as incorrect classification can lead to tax liabilities
owed to authorities. This can result in fines, penal-
ties, and in some cases, legal repercussions and
business discontinuation bans in the jurisdictions
affected by a tax breach.

Managing the increasing workload of product
classification in global trade is difficult. This chal-
lenge is further compounded by the continuous
globalization of e-commerce. Additionally, stay-
ing accurate and up-to-date as global trade classi-
fication guidelines, such as the Harmonized Sys-
tem (U.S. Department of Commerce, 2023), which
continuously change, further adds to the challenges
of manual product classification. Therefore, many
organizations active in industry have adopted auto-
mated methods of product classification using ma-
chine learning (Avigdor et al., 2023; Hasson et al.,
2021; Lee et al., 2021; Chen et al., 2021; Nguyen
and Khatwani, 2022). However, the issue with cur-
rent classification approaches is that they primarily
focus on the ‘clean’ version of data, often ignoring
the common data perturbations that happen in real-
world product classification during inference time.
In this context, ‘perturbations’ or ‘attacks’ refer to
issues in data that limit the classifier’s performance,
such as incomplete or abbreviated data. The ability
to robustly predict correct product classifications
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in scenarios where data might be far from perfect
is of paramount importance, especially in cases
where incorrect classification can lead to incorrect
taxation and trade liabilities in international trade
under the harmonized system (World Customs Or-
ganization, 2023b). Therefore, in this research, we
aim to understand which models perform better in
scenarios with potential data attacks. This not only
facilitates more informed model decision-making,
but also considers real-life data challenges. Conse-
quently, our contributions are as follows:

• We introduce a framework designed to simu-
late real-life data attacks on clean data. This is
particularly crucial for product classification
with compliance implications, where incorrect
classifications can lead to wrong taxation.

• Utilizing realistic data attacks, we propose an
LLM-based classification approach that out-
performs the prior supervised approaches, and
is more robust to real-life data attacks.

• Lastly, we offer a comprehensive evaluation of
human annotators and various models across
different attack scenarios and compare their
robustness. We draw conclusions from our
findings, which we believe are instrumental
in guiding design decisions for the practical
aspects of product classification.

2 Background

This section provides a review of the related work
and essential background that supports our re-
search.

2.1 Product Classification

Product classification based on product description
text has been a focal point in several industrial re-
search efforts (Kondadadi et al., 2022; Nguyen and
Khatwani, 2022; Hasson et al., 2021; Avigdor et al.,
2023). In real-world scenarios, product descrip-
tions often lack completeness and in many cases are
abbreviated and brief. This provides very limited
context for accurate product classification using
Natural Language Processing (NLP) approaches.
Kondadadi et al. (Kondadadi et al., 2022) presented
a Question Answering (QA) framework for Data
Quality Estimation (DQE) with the goal of improv-
ing product classification for tax code assignment.
This approach detects the quality of available data
by extracting attribute-value pairs. The authors

similarly observed that the input product descrip-
tion data is generally vague and noisy. Hasson et
al. (Hasson et al., 2021) discussed the classification
challenges in e-commerce systems. Notably, the
high diversity of products to classify and highly
granular hierarchy of these products result in hun-
dreds or thousands of possible categories, which
can present challenges for both manual and auto-
mated classification approaches. Considering that
automated product classification is a more cost-
efficient and scalable approach to adopt, the devel-
opment of robust product classification in presence
of data attacks still remains largely unexplored.

2.2 Input Perturbation

Perturbations in data, specifically in text data, have
been investigated in several prior studies (Beh-
jati et al., 2019; Zhang et al., 2020; Zou et al.,
2023). Generally, for LLMs, adversarial attacks
can involve malicious tokens added to the prompt
that causes the model to generate undesired out-
puts (Zou et al., 2023). Beyond malicious intents,
adversarial attacks can be beneficial and be lever-
aged as data augmentation to improve the robust-
ness of text classification approaches (Yoo and Qi,
2021; Wang et al., 2020, 2022) in scenarios where
the inference data can be noisy (Morris et al., 2020).
Our work focuses on product classification based
on the text description of products, which in real
life can be incomplete and far removed from the
clean training data. Therefore, in this research, we
focus on formulating data perturbations that aim to
simulate the real-world data incompleteness often
encountered in product descriptions.

3 Methodology

Although product classification is generally tested
on datasets free of inaccuracies, in real-world sce-
narios the data received from users is often very
short and abbreviated. As such we define an adver-
sarial attack framework to simulate realistic data
from clean data. For data perturbation method,
we follow the approach introduced in (Behjati
et al., 2019). Similar to the method explained
in GPT3Mix approach (Yoo et al., 2021), we use
GPT-4 (version: 0613) to create perturbations and
generate synthetic yet highly realistic datasets to re-
semble the real-life scenario of the data. We write
a prompt that includes the instructions to GPT-4 for
different variations of data perturbations. These in-
structions are then passed to GPT-4 along the origi-
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nal product description to perform perturbations. In
response, GPT-4 completion returns the perturbed
product description. Additional details on prompt
templates are provided in Figures 2 and 3 in Ap-
pendix A. As outlined in the prompts, we instruct
GPT-4 to perform controlled data perturbations so
that the initial meaning of the descriptions is still
mostly preserved and they remain classifiable by a
human annotator.

3.1 Data Perturbation Framework

To simulate real-world data scenarios, we intro-
duce realistic data perturbations and attacks. Our
perturbation model is defined as follows: con-
sider a classifier f , which maps an input x ∈ X
to its corresponding class c ∈ C, denoted as
f(x) = c. In this model, x is a sequence of to-
kens, x = (x1, x2, ..., xn). Data perturbation can
involve either removing or modifying tokens within
x, leading to a new sequence, x′ = (x′1, x

′
2, ..., x

′
n).

This perturbation may result in f(x′) = c′, where
c′ ̸= c, indicating a change in classification. To
mimic the real-life data, we apply two distinct per-
turbation methods that we will discuss in the fol-
lowing.

3.2 Amputation

In this approach, we perturb the product descrip-
tion by randomly removing some of its tokens. We
investigate this scenario because real data often
is missing critical attributes, which limits accu-
rate classification of products (Kondadadi et al.,
2022). Here, we do not introduce new tokens
(i.e., new attributes) nor change the order of the
existing tokens; instead we only omit some tokens
from the product descriptions. Formally speaking,
the input x = (x1, x2, ..., xn) is transformed into
xm = (xi1 , xi2 , . . . , xik) where 1 ≤ i1 < i2 <
. . . < ik ≤ n and ∀xi1:k ∈ x.

3.3 Abbreviation

In this approach, we attack product descriptions
by replacing a subset of words with their abbrevi-
ated forms. This scenario does not fully remove
any tokens but converts certain tokens into their
abbreviated versions. For example, the word ‘mo-
bile’ could be replaced by ‘mob.’ (refer to Ta-
ble 1). Formally, the input x = (x1, x2, ..., xn)
is transformed into xa = (x′1, x

′
2, . . . , x

′
n) where

S ⊆ {1, 2, . . . , n} and ∀i ∈ S : x′i = Abbr(xi),
and ∀i ∈ {1, 2, . . . , n} \ S : x′i = xi.

It should be noted that our framework does not
encompass a comprehensive list of data perturba-
tion that can happen in real-world scenarios, and
only models the common perturbations in our en-
terprise global trade use case. Other data perturba-
tions, such as typos, can also be quite prevalent in
real scenarios which can be investigated as per use
case.

3.4 Example - Data Perturbation
Table 1 provides examples of various attacks based
on our data perturbation framework. In a com-
bined attack, both abbreviation and amputation ap-
proaches are applied.

Attack Description

Clean Samsung ALC820 mobile phone case Cover
Brown

Abbreviated samsung alc820 mob. phone case cover
brwn

Amputated samsung alc820 mobile phone case
Combined samsung alc820 mob. phone case

Table 1: Examples of various data attacks applied to
clean data.

3.5 Robustness Metric
We define the robustness of classifier f as the
delta (∆r) of the performance metric (M ) on the
clean data (Dc) versus the performance of the
classifier on the perturbed data (Dp): ∆r(f) =
|M(Dc)−M(Dp)|

M(Dc)
. The lower the ∆r, the more ro-

bust the model is to the data perturbations.

3.6 Research Hypothesis
Our hypothesis posits that LLMs with in-context
learning not only can outperform supervised mod-
els in the product classification task, but also show
greater robustness to adversarial attacks such as
abbreviation and amputation. Furthermore, we as-
sert that informing an LLM about the potential data
attacks can improve the classification performance
by allowing the LLM to more effectively leverage
its reasoning capabilities.

4 Evaluation

In the following, we outline the details of our eval-
uation.

4.1 Datasets
We experiment on two publicly available datasets,
namely Icecat (ice) and WDC-222 (wdc), to demon-
strate our perturbation framework and evaluate the
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robustness of different classification models in the
presence of data attacks. Although we have ob-
served the aforementioned attack scenarios in our
proprietary data, we believe our perturbation frame-
work can be readily applied to any arbitrary dataset.
Therefore, we opt to conduct our evaluation on
public datasets to ensure higher visibility and re-
producibility. The datasets are as follows:

4.2 Icecat (ice)

This dataset features products in the “Computers
& Electronics” category, organized in a hierarchi-
cal structure. Each record includes a product de-
scription and a corresponding text label. For ex-
ample, as shown in Table 1, the product described
as “Samsung ALC820 mobile phone case Cover
Brown” falls under the hierarchy Computers &
Electronics → Telecom & Navigation → Mobile
Phone Cases, with the label being the leaf node
of this hierarchy, i.e., Mobile Phone Cases. The
dataset has 370 leaf nodes, with 489,902 entries
for training and 153,095 for testing. We utilized
the entire training set for training supervised mod-
els and identifying few-shot examples for LLMs.
However, to contain LLM inference costs, we con-
ducted stratified random sampling on test set to
comprise a smaller set of 5,000 examples, with at
least one data point from each class.

4.3 WDC-222 (wdc)

This dataset contains 222 leaf nodes in the same
hierarchy as Icecat. It includes 2,984 entries solely
for testing, thereby serving as the gold standard
for this classification task. This dataset is gener-
ally more difficult than Icecat for classification,
and prior approaches (wdc) achieve a lower perfor-
mance on this dataset than Icecat. We utilize the
entire size of this dataset to test both supervised
and large language models.

4.4 Models

We conduct our evaluation using both supervised
and LLM-based approaches.

4.5 Supervised Baseline

To compare the performance of generative models
against supervised models, we experiment with the
DeBERTaV3-base model (He et al., 2023) as our
baseline. This architecture achieves state-of-the-art
performance on several text classification bench-
marks. Specifically, we used the pretrained model
available from HuggingFace (Wolf et al., 2020),

and fine-tuned it on the full training set of the Ice-
cat dataset. By doing so, we replicate a scenario
where the model is trained on clean data and tested
on perturbed data, which is a common situation in
our real-world use case. For the supervised base-
line, experiments are repeated several times with
different seeds, and thus error ranges are provided.

4.6 Training Details

In the following, we review the training details for
supervised baseline models.

4.6.1 Flat Classification

To train both hierarchical and flat baselines, we
used the DeBERTaV3-base model (He et al., 2023).
We fine-tuned the pretrained model provided by the
authors of the model and available on the Hugging
Face (Microsoft). We used the default tokenizer
provided by Hugging Face for the DeBERTaV3-
base model and the following hyperparameters:
batch size of 32, learning rate of 2e-5, and weight
decay of 0.01. The rest of the parameters were
equal to default values for the Hugging Face
Trainer class. We trained the model for a maxi-
mum 100 epochs with early stopping enabled and
the patience parameter was set to 5 epochs. The
model was trained on 5 different random seeds,
and each converged before reaching the maximum
number of epochs.

4.6.2 Hierarchical Classification

For the hierarchical classification, we used the
same model, tokenizer, and hyperparameters as
for the flat classification. However, we trained two
separate models: one with the task to classify the
products to the second level of the hierarchy (first
level was shared among all products), and the sec-
ond model for final label prediction. The top-level
model was trained on the same data as the flat clas-
sification model. The second model was trained on
the same data, but the description was augmented
with the top-level category label (in textual form)
in the following format "original_description, cat-
egory_name". During inference, we used predic-
tions from the top-level model and appended them
to the description before passing it to the second
model for the final classification. The results were
averaged for the models trained on five different
seeds and rounded to three decimal digits. We also
reported the 95% interval which was calculated as
follows: ±1.96 · std√

5
.
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5 LLMs

We experiment with both open-source and propri-
etary LLMs, including Llama 2 Chat with 70B pa-
rameters (Touvron et al., 2023), GPT3.5, and GPT4
(model version: 0613) (OpenAI, 2023). Unlike the
supervised approach, we were not able to perform
multiple runs and report error ranges for LLMs due
to the excessive cost of inference. However, we set
the temperature values to 0 to minimize potential
variations in the LLM outputs across multiple runs.

5.1 Models Configurations

For classification configurations, we consider Flat,
Hierarchical, and Few-shot configurations. In the
flat configuration, the model is tasked with directly
predicting the leaf node label of the product, cor-
responding to 370 and 222 classes for the Icecat
and WDC datasets, respectively. In the hierarchi-
cal configuration, the model initially predicts the
second-level hierarchy of the product which is 17
classes for both Icecat and WDC-222 dataset (first-
level hierarchy, Computers & Electronics, is shared
among all products). This is followed by predicting
the final leaf label from the predicted second-level
hierarchy. For the few-shot configuration, we select
the top-5 semantically similar examples to the test
product from the training set, using the Sentence-
Transformer model (Reimers and Gurevych, 2019).
These examples are then included in the prompt as
in-context learning examples for the LLMs (Brown
et al., 2020).

5.2 Attack Configurations

We explore four different attack configurations as
discussed in our data perturbation framework in
Section 3. Clean: this configuration presents the
original data without any attacks, e.g., the orig-
inal product descriptions are used for classifica-
tion. This serves as a benchmark for the high-
est possible classification performance. Ampu-
tated: in this configuration, the product descrip-
tions are amputated by randomly removing a subset
of tokens. Abbreviated: this attack involves ab-
breviating a subset of product description tokens.
Combined: this configuration involves combining
both the amputation and abbreviation attacks, such
that the product description is first amputated and
then the resulting description is further abbrevi-
ated. Combined-Reason: this configuration uses
the combined attack on the product description,
with an additional note in the prompt to enable the

LLM to reason about possible data perturbations.
LLMs have demonstrated emerging capabilities in
common-sense reasoning (Wei et al., 2022). There-
fore, in this configuration, we include an extra note
in the prompt, “Be aware that some parts of the
product description might have been abbreviated or
amputated.”, to let the LLM reason on possible per-
turbation patterns in the product description, which
may lead to more accurate classification.

Similarity Abbreviated Amputated Combined

Icecat 0.918 0.909 0.848
WDC-222 0.896 0.907 0.843

Table 2: Similarity scores for the clean dataset versus
the attacked datasets.

5.3 Data Analysis

In this section, we present a statistical analysis of
the data attributes for the clean data as compared
to the post-attack scenarios. Table 2 shows the av-
erage semantic similarity scores for both the clean
dataset and its perturbed ones. We used ‘multi-
qa-mpnet-base-dot-v1’ model from SentenceTrans-
formers (Reimers and Gurevych, 2019) to calcu-
late these similarity scores. The results show that
as more attacks are introduced on the dataset, the
similarity scores decrease. However, even for the
‘Combined’ configuration, the dataset is still over
84% similar to the original dataset. In addition
to the similarity scores, we have plotted the distri-
bution of token sizes for product descriptions in
Figure 1 for both the Icecat (1a) and WDC-222
(1b) datasets. Kullback-Leibler (KL) divergence
values (Kullback and Leibler, 1951) are also pro-
vided for different data configurations. Across all
configurations, the KL values are less than or equal
to 0.2, and a value of ≤ 0.2 typically signifies a
small divergence between the distributions. This
analysis is crucial as we later evaluate how these
small divergences in distributions translates to a
greater scale of model performance unrobustness.
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Figure 1: Distribution of the clean data versus the distri-
bution of the data with different type of attacks.
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5.4 Human Annotation Analysis

The importance of the quality of perturbed data
prompted us to engage human annotators to assess
the quality and ensure its similarity to the intended
real data. During the design of the data perturbation
framework, we leveraged human expert knowledge
to ensure our perturbations aligned with the in-field
data. In addition, through human manual evalua-
tion, we confirmed that the perturbed data appears
realistic and plausible in real-life scenarios.

To further solidify the data quality analysis, we
picked 100 random sample data points from each
dataset (200 samples in total) that were perturbed
and asked our human annotators to expand the ab-
breviated words to ensure the majority of perturba-
tions are recoverable from a human perspective and
they did not semantically alter the meaning of prod-
uct descriptions. Through this, annotators were
able to identify and create the clean full form of
the abbreviated tokens in the product descriptions
80% and 85% of times for the Icecat and WDC-222
datasets, respectively.

To evaluate that the perturbation process did not
semantically alter the descriptions in a significant
way, we asked the annotators to label the descrip-
tions with clean descriptions and also combined at-
tack for both datasets (‘Clean’ and ‘Combined’ in
Table 3). Furthermore, to check if historical classi-
fications of clean descriptions semantically similar
to perturbed data would aid annotators, for each
combined attack description in the set of 100 ran-
domly selected product descriptions, we provided
five most semantically similar examples, using Sen-
tenceTransformer (Reimers and Gurevych, 2019)
(‘Combined+FS’ in Table 3). We then asked the
annotator to map the description that is attacked
with combined perturbation to its closest clean de-
scription. Then we calculate the accuracy of the
annotator mapped labels versus the true label of the
perturbed data points. The design for this experi-
ment is similar to adding few-shot similar examples
to the LLM prompt to allow the model to find se-
mantic similarities between the original clean data
and the perturbed data.

Accuracy (%) Clean Combined Combined+FS

Icecat 76 72 97
WDC-222 72 67 95

Table 3: Human annotator analysis of perturbed data.

Table 3 summarizes the human annotators’ clas-

sification accuracy results. We observe that for
both datasets, the combined attack has an impact
on the accuracy of classification compared to clean
descriptions. However, given that we observe high
accuracy for both datasets when a few shot seman-
tically similar examples are provided to the anno-
tator, this confirms that the amputation perturba-
tion makes the classification more difficult, but the
semantics of the products stay intact. This estab-
lishes that our perturbation framework works as
expected and a classification model that is robust
to input perturbations should be able to maintain
robust classification performance in the presence
of data attacks proposed through our work. In the
following, we continue with evaluation of machine-
learning-based approaches.

5.5 Metrics

We assess the classification performance using
both macro (ma) and weighted (we) Precision, Re-
call, and F1-Score values to compare different ap-
proaches. Additionally, for each model, we also cal-
culate its most robust (i.e., the smallest) ∆r score.

5.6 Robustness Analysis

Table 4 shows the performance and robustness of
various configurations that were experimented with.
It should be noted that we chose to exclude certain
configurations from execution in order to manage
the models inference API cost and also because we
were able to extract patterns from the configura-
tions that were executed. We summarize the key
observations from the results as follows. GPT-4
model with few-shot prompting delivers the best
classification results on both datasets among all
models and shows the highest level of robustness
to the introduced data attacks. As expected, the
‘Clean’ data approach yields the best results, with
performance marginally decreasing as data attacks
are introduced for ‘Amputated’ and ‘Abbreviated’
data configurations. Supervised model achieved
the second highest performance after GPT-4 for
the ‘Clean’ scenario. However, the performance
values for this model significantly drop as the at-
tacks are introduced. In general, LLMs show more
robustness to the introduced attacks in the product
description as they are able to better reason on the
details of the product description. In addition, few-
shot examples allow LLMs to further learn from
the context and improve their performance, com-
pared to our experimented supervised classification
models which cannot leverage this capability.
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Model Icecat (%) (ice) WDC-222 (%) (wdc)

Approach Attack ma-P ma-R ma-F1 we-P we-R we-F1 ma-P ma-R ma-F1 we-P we-R we-F1

DeBERTaV3 base
(Supervised)

Flat

Clean 88.5± 0.6 89.2± 0.4 88.3± 0.5 97.9± 0.1 98.1± 0.1 97.8± 0.1 38.9± 2.3 38.6± 1.7 35.1± 1.8 81.5± 0.8 70.7± 1.4 72.9± 1.5
Abbreviated 48.1± 1.3 48.0± 2.1 44.4± 1.7 81.4± 1.6 76.0± 3.1 75.8± 2.3 25.5± 1.3 21.8± 1.2 19.4± 0.8 69.2± 2.3 38.4± 3.8 43.6± 4.0
Amputated 67.6± 0.9 72.0± 0.5 67.0± 0.7 87.4± 0.2 85.6± 0.6 85.1± 0.6 35.0± 1.9 34.7± 1.4 31.2± 1.6 78.4± 1.4 63.0± 4.3 66.6± 3.8
Combined 46.0± 0.6 45.9± 1.5 41.7± 0.9 76.2± 0.6 66.7± 2.9 67.6± 2.0 26.0± 1.0 22.0± 1.4 19.7± 0.7 70.5± 0.6 39.9± 3.5 46.0± 3.3

Hierarchical

Clean 83.5± 10.4 84.8± 9.1 83.4± 10.0 97.1± 1.5 97.5± 1.0 97.2± 1.3 38.6± 1.4 37.9± 1.5 34.4± 1.3 81.8± 0.9 68.7± 0.9 71.8± 0.5
Abbreviated 46.0± 4.5 46.4± 3.1 42.4± 3.7 81.2± 1.1 73.2± 3.8 74.0± 2.5 26.1± 0.8 22.7± 1.1 20.1± 0.7 71.3± 0.9 39.9± 4.6 45.6± 5.7
Amputated 62.7± 6.8 66.8± 6.3 61.7± 6.3 86.7± 1.2 83.6± 0.6 83.6± 0.7 36.8± 1.3 35.6± 1.3 32.1± 1.1 79.2± 1.2 60.9± 2.3 65.2± 1.5
Combined 43.2± 4.7 43.3± 3.5 39.0± 3.8 76.0± 1.4 62.4± 3.7 64.8± 2.5 27.0± 0.7 23.2± 0.8 20.6± 0.5 71.3± 1.3 41.6± 1.9 47.7± 1.8

∆r (%) − 48.0 48.5 52.8 22.2 32.0 30.9 33.2 43.0 43.9 13.5 43.6 36.9

Llama-2
(70b-chat)

Flat

Clean 19.6 29.2 19.9 50.2 37.4 36.9 23.8 28.7 21.9 75.9 51.4 51.4
Abbreviated 11.7 16.8 11.7 78.0 39.4 41.0 22.5 27.4 20.5 72.5 44.5 42.8
Amputated 16.1 21.6 15.4 81.8 38.3 41.6 25.6 28.2 22.8 76.4 53.4 52.9
Combined 13.4 19.5 13.1 76.7 40.9 42.0 22.6 27.9 20.3 73.3 48.7 47.8

Combined-Reason 19.9 27.1 19.4 72.2 54.3 54.7 31.0 34.2 27.8 68.7 56.2 52.2

Hierarchical Clean 35.2 34.7 29.8 65.2 40.4 39.4 33.2 35.7 29.1 68.6 41.9 38.1
Combined 32.1 33.6 28.2 58.5 38.5 35.4 29.6 32.6 25.4 70.0 37.6 36.8

Few-shot

Clean 89.6 89.2 88.3 97.1 96.1 95.9 73.1 71.5 69.4 89.8 86.6 85.6
Abbreviated 76.5 79.0 75.7 85.8 84.5 80.6 61.3 67.0 59.2 83.8 65.6 61.6
Amputated 86.9 85.5 84.8 94.9 93.5 93.1 68.0 68.1 64.3 84.3 78.0 74.5
Combined 79.3 79.6 77.6 92.7 90.5 89.6 61.8 65.2 59.2 82.8 68.6 64.5

Combined-Reason 78.3 78.4 76.3 94.2 92.6 92.6 63.7 62.9 59.1 83.0 74.7 72.1

∆r (%) − 12.6 12.1 13.6 3.0 3.6 3.4 12.9 12.0 14.8 7.6 13.7 15.8

GPT3.5
(ver.: 0613)

Flat

Clean 63.9 63.9 61.0 90.4 83.9 84.4 57.1 55.0 53.3 92.2 86.5 87.9
Abbreviated 57.8 58.6 54.9 90.0 82.8 83.5 54.9 53.2 51.1 91.2 85.0 86.4
Amputated 64.1 63.8 61.1 89.9 84.3 84.7 55.5 55.0 52.5 90.5 85.1 86.1
Combined 57.1 58.2 54.4 88.6 81.6 82.4 54.9 53.5 50.8 88.2 82.8 83.2

Hierarchical Clean 63.8 59.0 57.3 88.1 66.0 66.1 58.0 53.6 51.4 81.7 65.3 66.2
Combined 58.1 54.2 52.1 85.8 62.8 63.3 56.5 52.5 50.0 85.7 78.5 79.0

Few-shot

Clean 87.6 88.3 87.0 97.7 96.7 97.0 77.0 76.9 75.1 94.1 92.3 92.5
Abbreviated 82.5 83.3 81.5 96.7 95.2 95.6 72.0 70.8 69.5 92.4 90.1 90.3
Amputated 85.5 85.9 84.6 96.3 95.2 95.4 76.5 75.7 74.1 92.7 90.7 90.8
Combined 81.1 82.7 80.1 95.1 93.6 93.9 72.8 72.1 70.0 90.6 88.1 87.9

Combined-Reason 81.3 82.4 80.2 95.4 93.9 94.2 72.9 72.4 70.4 89.8 87.3 87.0

∆r (%) − 7.2 6.7 7.8 2.4 2.9 2.9 5.3 5.9 6.3 4.6 5.4 5.9

GPT4
(ver.: 0613)

Flat

Clean 79.5 79.5 77.5 93.6 90.6 90.8 69.2 67.7 66.0 94.6 89.0 89.9
Combined 72.9 73.9 71.0 92.9 89.9 90.2 66.0 65.6 63.1 93.3 88.4 89.1

Combined-Reasoned 73.6 74.5 71.7 92.8 90.2 90.5 66.8 66.1 63.6 93.1 88.8 89.3

Hierarchical No-attach 66.3 62.1 60.8 88.8 69.7 69.8 59.4 57.4 54.7 85.3 80.3 80.1
Combined 64.1 59.0 57.8 81.1 71.9 69.9 68.1 62.2 61.6 87.8 68.5 68.4

Few-shot

Clean 93.5 93.0 92.8 99.0 98.5 98.6 80.0 77.1 76.9 95.9 94.0 94.4
Combined 85.7 86.2 84.9 96.9 96.0 96.2 78.0 76.2 75.3 93.8 91.9 92.1

Combined-Reason 86.2 86.3 85.2 96.9 96.0 96.2 78.7 76.9 75.9 93.9 92.1 92.2

∆r (%) − 7.8 7.2 8.2 2.1 2.5 2.4 1.6 0.3 1.3 2.1 2.0 2.3

Table 4: The table summarizes the results for Icecat and WDC-222 datasets and different models. We experimented
with supervised and large language models for different configurations and attack scenarios. The prefixes ma-
and we- denote macro and weighted metrics, respectively. P, R, and F1 denote Precision, Recall, and F1-Score
respectively. For each model, the ∆r values are calculated for best performing configuration with attacks, i.e.,
Flat/Combined for supervised and Few-shot/Combined-Reason for LLMs. For each metric, the best-performing
configuration with combined data attacks is shown in bold. Note: we-R is comparable to accuracy (developers).

Hierarchical classification generally performed
equally or worse than flat classification and inferior
to few-shot prompting. We rationalize that since
the errors from the first level of classification prop-
agate to the second level, this compounding effect
results in lower performance in hierarchical clas-
sification compared to flat configuration. In some
cases, we observed that hierarchical classification
improves macro scores, which indicates that this
method achieves a more balanced prediction across
different classes. For example, Llama-2 achieves
better results with hierarchical classification than
with the flat classification method. This is because
the hierarchical approach allows the model to focus
on a smaller set of classes at each hierarchy.

Comparing the results for two different datasets,
Icecat and WDC-222, we observe that LLM-based
approaches show a significant improvement for the
WDC-222 dataset but a less noticeable improve-
ment for Icecat. The reason is that the classification

of the Icecat dataset is simpler than that of WDC-
222, as the latter comes from heterogeneous data
sources (wdc). As such, the baseline supervised
values for the Icecat dataset are also higher than
those for the WDC-222 dataset. This also provides
grounds for our observation that SOTA LLMs can
generalize better than supervised approaches on
heterogeneous datasets, based on the noteacible
improvement observed in the WDC-222 dataset.

The Few-shot scenario further improves the per-
formance of the LLMs, and GPT-4 achieves a
new state-of-the-art result on classification task on
Icecat and WDC-222 datasets (wdc; Brinkmann
and Bizer, 2021). Additionally, the ‘Combined-
Reason’ scenario improves classification perfor-
mance in cases where a combined attack is present.
This added reasoning in the prompt allows to re-
cover some of the performance loss observed be-
tween clean data and combined-attack configura-
tions by further leveraging the reasoning capabil-
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ities of LLMs. Our findings suggest that while
LLMs are more robust in classification compared
to supervised approaches, i.e., have lower ∆rs, this
robustness can be further improved with inform-
ing the model of potential data issues, such as
missing characteristics and abbreviations. This
observation also underlines the need for more prac-
tical designs of ML approaches while considering
real-world challenges.

6 Discussion

6.1 Data Leakage
One concern that exists is that the LLMs’ train-
ing dataset, like GPT-4 as an example, might have
already included our experimented datasets. Al-
though this cannot be entirely ruled out, our ap-
proach is still valid for two key reasons. Firstly,
GPT-4 initially shows lower performance, but sig-
nificantly improves in our few-shot scenario, out-
performing the supervised models. This indicates
that the effectiveness of GPT-4 extends beyond
merely memorization. Secondly, the robustness of
LLMs, particularly in our data perturbation frame-
work with Combined-Reason, is evident. The per-
turbed dataset, as it is novel and not included in
prior training, shows GPT-4’s ability to understand
product semantics and effectively recover from data
perturbations.

6.2 Impact and Deployment
Our research has partially enabled AI-based prod-
uct categorization in our global trade service which
is crucial and sensitive for compliance and regula-
tory aspects for large corporations active in cross-
border trade. Our research is impactful as it has
enabled more efficient and accurate classification,
and thus reduces the regulatory and compliance
risk. The discovery phase of the project has been
completed with testing on millions of data records
and the second phase of the project which expands
to multiple users and more data is ongoing.

7 Conclusion

In this research, we presented a data perturbation
framework to simulate the real-world data deficien-
cies for ML-based product classification. We then
proceeded with a comprehensive evaluation of dif-
ferent supervised and LLM-based classification ap-
proaches in presence and absence of data attacks.
Our findings show that LLM-based approaches are
generally more robust against adversarial attacks

and more suitable for applications that require high
robustness in predictions and misclassification can
cause compliance repercussions. As future work,
we will further investigate the security robustness
of LLMs in data-critical applications and explore
leveraging LLMs for providing classification ratio-
nales in addition to label predictions.

8 Limitations

Our analysis has limitations, particularly as we
observed that the results from Llama-2, are not
completely stable, and small variations within the
prompt can lead to noticeable changes in classifi-
cation performance. We believe these limitations
are largely addressed in SOTA models, like GPT-
4. Additionally, our data perturbation framework
models a limited set of data attacks that are relevant
to our industrial use case, however, other use cases
might face different data challenges, which should
be dealt with per use case.

9 Ethical and Practical Considerations

This study has been carried out by following the
privacy requirements of our organization. The re-
search has been reviewed by research directors and
legal counsel to ensure adherence to privacy of our
users data and information. Furthermore, the au-
thors of this work have been committed to adhering
to the highest standards of ethical responsibility
throughout the research. In product environments
where automated product classification models are
deployed, the predictions are presented to the end
user as suggestions, and it is then the end user’s
sole responsibility to accept, reject, or manually
adjust these predictions as necessary. This work
presents a general perspective on the product clas-
sification task and does not incorporate additional
sources of information that could be leveraged for
specific use cases, such as the Harmonized Sys-
tem classification, which utilizes tariff schedules,
rulings, and keywords.
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A Prompts

Figure 2 shows the prompt for simulating data at-
tacks with the help of GPT-4, as explained in the
data perturbation framework, while Figure 3 dis-
plays the prompt for the classification of products.
The first prompt aims to is to accurately automate
the data perturbation framework, and the second
prompt allows to classify the products, using an
LLM. As the data is manipulated by an LLM, we
investigate the correctness of the approach in com-
parison to the intended outcomes through human
analysis in Section 5.3.
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(Abbreviation) You got a new job as a product classifier for products belonging to the Icecat catalog.
You are asked to modify a description of a product that belongs to the "{industry_input}" category
(according to the hierarchy in Icecat) and modify words with their abbreviations (as could happen in
shipment details).
It is vital to not modify the description in a way that could change the classification of the product.
Please do not abbreviate more than 20% of the words or I would not understand the description.
The order of the words must not change.
Original description: {description_input}
New description:

(Amputation) You got a new job as a product classifier for products belonging to the Icecat catalog.
You are asked to truncate a description of a product that belongs to the "{industry_input}" category
(according to the hierarchy in Icecat) and to make it much shorter, like it would appear in a shipment
detail description.
Omit all the information that is not strictly necessary to identify the product, i.e. technical characteristics.
The order of the words must not change.
Work following the order below:
1. if the description is shorter than 5 words, do not change it
2. if the description is longer than 5 words, select the 5 most important words
3. put the selected words in the relative order in which they appeared in the original description
Original description: {description_input}
New description:

Figure 2: This figure shows the prompts used for GPT-4 to perform abbreviation and amputation data attacks.

Classify the following product to one class form the list below.01
02

List of classes:
Warranty & Support Extensions
Notebooks
PCs/Workstations
...

03
04
05
06
07
08

(Few-shot) Some examples with their classes are provided:
{5-shot similar examples}

09
10
11

Product: {test product}12
(Combined-Reason) Be aware that some parts of the product description might have been abbreviated
or amputated.

Output only the class name and no additional text. Example: ‘Tablets’

13
14
15
16
17

(Llamma only) Product class from the list above is:18

Figure 3: This prompt displays the template for LLM classification. Lines 09-10 are used solely for Few-shot
prompting. Lines 13-14 are added only in the Combined-Reason attack scenario, while Line 18 is added for the
Llamma-2 model, as we observed that it requires further prompt engineering to model the task as a completion
prompt for outputting a product class.
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