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Abstract
Spurred by the demand for transparency and interpretability in Artificial Intelligence (AI), the field of eXplainable AI (XAI)
has experienced significant growth, marked by both theoretical reflections and technical advancements. While various XAI
techniques, especially feature attribution methods, have been extensively explored across diverse tasks, their adaptation
for the speech modality is comparatively lagging behind. We argue that a key challenge in feature attribution for speech
processing lies in identifying informative acoustic features. In this paper, we discuss the key challenges in selecting the
features for speech explanations. Also, in light of existing research, we highlight current gaps and propose future avenues to
enhance the depth and informativeness of explanations for speech.
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1. Introduction
Models are only as interpretable as their
features. [1]

Spoken language—as perhaps our most natural form
of interaction—is the foundational element of many tech-
nologies we interact with in our daily lives [2], from vir-
tual assistants to voice dictation [3, 4, 5]. More recently,
the emergence of highly capable speech foundation mod-
els [6, 7, 8, 9] has also facilitated and expanded the adop-
tion of speech technologies on an unprecedented multi-
lingual scale. In light of this proliferation, a need arises
to prioritize transparency and interpretability, qualities
already demanded in the growing landscape of Machine
Learning (ML).

As a response, the field of eXplainable AI (XAI) has
risen prominently, with the aim of facilitating under-
standing of the rationale behind model decisions and fos-
tering users’ trust [10, 11, 12, 13]. XAI is also reinforced
by the establishment of norms and legal frameworks, as
seen in the European Union’s General Data Protection
Regulation, which enshrines the ‘right to explanation’,
and the AI Act, which emphasizes transparency as a piv-
otal component of ML applications [14].

XAI encompasses various tasks and methods, such
as identifying relevant model components for specific
predictions, understanding the information processed
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by these components, and determining which input el-
ements guide the model’s predictions [15]. The latter
task is the focus of feature attribution methods, which
provide intuitive explanations by visualizing which input
elements (e.g., pixels in an image or words in a sentence)
have influenced the model’s predictions. These meth-
ods assign a score to each input feature, quantifying its
importance or contribution to the output: higher scores
indicate greater importance of the corresponding input
features for generating the output [16, 17, 18, 19]. They
can help identify potential causes for errors and unex-
pected behaviors, as well as analyze the model’s response
to specific input properties. Overall, these explainability
methods serve to present the reason why models make
specific predictions by establishing a connection between
input and output as a form of intuitive explanation for
humans, thereby enhancing interpretability.1

Over time, ongoing efforts have aimed to refine fea-
ture attribution techniques and provide more effective
explanations [22, 23]. However, it is essential to recog-
nize that the effectiveness of feature attribution explana-
tions relies not only on the techniques themselves but
also on the informativeness of the input features used
as explanatory variables. If an explanation highlights
unintelligible or poorly informative features, it does little
to enhance the understanding of the model’s behavior

1Despite numerous efforts to differentiate the closely related con-
cepts of explainability and interpretability, no consensus exists in
the literature on their definitions [20]. In this paper, we adopt a
perspective similar to that of Saeed and Omlin [21], where explain-
ability refers to the process of extracting insights from a model’s
workings through specific techniques, while interpretability refers
to the understanding process of those insights, crucial to make
them actionable.
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[1]. This can undermine key principles in XAI, such as
accuracy—the property of correctly reflecting the factors
that led the model to a specific decision including all
relevant information—and meaningfulness—the property
of offering explanations that are comprehensible to the
user [24].2

In fields involving images or texts, feature representa-
tions are typically constrained to pixels and words, re-
spectively. However, for speech, multiple input represen-
tations can be adopted, each emphasizing different acous-
tic aspects. Indeed, a sequence of speech elements does
not only convey the meaning of what is said (like words
in a text) but also bears a wealth of additional information
useful for both human understanding and automatic pro-
cessing (e.g. intonation, loudness, speaking rate). Con-
sequently, when employing feature attribution methods,
the resulting explanations can vary significantly in shape
and focus on more or less informative characteristics de-
pending on the type of speech representation used. To
date, research on feature attribution for speech is no-
tably limited to few applications—including classification
[27, 28] and generative tasks [29, 30, 31, 32]—which offer
a somewhat fragmented picture in the choice of speech
representations, thus providing limited insights on the
relation between the features considered and the expla-
nations based upon them.

In light of the above, this paper reflects on the im-
pact of the chosen acoustic features in explaining the
rationale behind speech models, aiming to gain a deeper
understanding of the trade-offs associated with acoustic
features. By first offering a gentle introduction to the
rich and multidimensional nature of speech and its digital
representation, we identify current gaps and potential
avenues for effectively incorporating this multidimen-
sionality into XAI for speech models. Our discussion will
focus on two critical factors: i) the amount of information
these features provide about the model’s behavior, which
influences the richness of the explanations, and ii) the
level of detail of such information, which determines the
granularity of the explanations. We will also explore how
these aspects impact both the accuracy and meaningful-
ness of the explanations, ultimately shaping their overall
interpretability.

2. The Correlates of Speech
To gain deeper insight into the complexities of defining
informative features in speech, we explore key charac-
teristics of speech and their implications for modeling.

Speech is a multifaceted phenomenon. It is grounded
on the materiality of sound to convey linguistic content
(i.e. what is said), which is modulated depending on

2The properties of accuracy and meaningfulness can be associated
with those of faithfulness and plausibility, respectively [25, 26].

several paralinguistic cues (i.e. how is said) entailing
extensive variation—also for single individual speakers
[33]. As such, it comprises several dimensions, which are
hard to pin down individually, but collectively amount
to what we intuitively and simply perceive as spoken
language.

From a linguistic perspective, the spoken communica-
tion system consists of the combination of phonemes,3

which are regarded as the smallest meaningful units
of sounds [34, 35]. Physically, it involves the contin-
uous flow of sounds shaped by the movements of our
phonatory organs, transmitted as sound waves [36]. Per-
ceptually, we process speech through three primary di-
mensions [37]: i) time, or the sequential occurrence of
sounds;4 ii) intensity, corresponding to the energy level
of the wave due to the strength of molecular vibration,
which we perceived as loudness; iii) frequency, regard-
ing the rate of vibrations produced by the vocal cords—
interpreted as pitch—and whose modulation is responsi-
ble for shaping the type of speech sound.

These three elements, known as acoustic correlates [38],
are specific to both speakers and phonemes. For example,
speakers possess unique characteristics, including pitch
and speaking rate [33], and also exhibit high variability
stemming from various sociodemographic factors such
as gender, age, and dialect [39]. In these cases, the speech
content needs to be disentangled from the variability in
its delivery. Conversely, language sounds exhibit variabil-
ity in duration—e.g., /i/ in ship and sheep—and are distin-
guished by specific frequency ranges [36]. The frequency
dimension also plays a vital role in shaping suprasegmen-
tal aspects of speech—broader phenomena that span mul-
tiple segments—such as intonation, obtained by varying
pitch [40]. Pitch, for instance, has a distinctive function
in tonal languages, where it is used to distinguish lexi-
cal or grammatical meaning [41]. But even in non-tonal
languages, these prosodic elements are indispensable to
delivering different meanings and intents, as the reader
can perceive by reading out loud two contrastive sen-
tences such as: “You got the joke right” and “You got the
joke, right?”, where pauses and prosody play pivotal roles.

All these factors add to the multidimensionality of
speech, which feature engineering strives to encapsulate
and that cannot be overlooked in the explanatory process.

3. Speech Representations
While various representations are used to encode speech
in a digital format, three main types are commonly given

3Throughout the paper, we use the abstract category of phoneme to
denote individual speech sounds. However, when discussing their
actual realizations, it is more accurate to refer to them as phones
[34].

4E.g. the order of sounds between /pAt/ (pot) or /tAp/ (top) differ-
entiates two words.



as input to state-of-the-art speech models (for a review,
see [42, 43]). Namely, waveforms, spectrograms, and
mel-frequency cepstral coefficients (MFCCs), which are
shown in Figure 1.

The waveform serves as the most fundamental repre-
sentation of a signal, comprising sequences of samples
(e.g., 16, 000 per second), each indicating the amplitude
of the signal at a specific point in time—essentially, the
fluctuations in air pressure over time. This type of repre-
sentation is leveraged by models like Wav2vec [6].

The spectrogram results from feature engineering
operations that decompose the speech signal into its
frequencies, presenting a 2D visualization of frequency
distributions over time. These representations are com-
monly depicted as heatmaps, where color intensity cor-
responds to the energy of a specific frequency at a given
moment. The time unit in spectrograms is represented
by a fixed-length window of a few milliseconds (e.g., 25),
commonly referred to as a frame, whithin which a given
number of waveform samples are encompassed. Notably,
the articulation of sounds produces time-frequency pat-
terns which are visible as darker regions [36]. Prominent
examples of state-of-the-art models leveraging spectro-
grams are Whisper [9] and SeamlessM4T [44].

The MFCCs offer another 2D representation where
each coefficient captures important details about how
the frequency content of the signal changes over time.
Like spectrograms, MFCCs offer information about both
frequency and time, but in a more compact form. MFCCs
are commonly used in the implementation of ASR mod-
els within popular toolkits like Kaldi5 [45] and Mozilla
DeepSpeech6.

Overall, though different in nature, these three types
of representations are all effectively exploited by current
speech models.7 For human understanding, however,
they actually vary in terms of informativeness with re-
spect to the acoustic correlates discussed in §2. Indeed,
although both intensity and frequency are somewhat
discernible in waveforms, qualitative distinctions of pat-
terns specific to pitch or phoneme frequencies are rarely
feasible [36]. Comparatively, spectrograms and MFCCs
are richer and more descriptive, because they capture
the multiple dimensions of time, frequency, and intensity
with finer detail. Still, spectrograms are more conducive
to phonetic analyses, given the established knowledge
in analyzing frequency patterns over time within this
representation [36] In contrast, MFCCs are rarely used
for phonetic analysis [46].

Overall, while weighting the informativeness and se-
lection of speech representations requires a certain exper-

5See https://kaldi-asr.org/doc/feat.html.
6See https://deepspeech.readthedocs.io/en/master/DeepSpeech.
html.

7We are not aware of any recent study attributing higher systems
performance depending on the used representation.

Figure 1: Schematic illustration of the primary speech rep-
resentations used by state-of-the-art speech models for the
utterance “This is a waveform”. The features were computed
using Librosa 0.10.1 [47].

tise in speech processing, being aware of the trade-offs
they intrinsically entail is crucial for carefully conducting
XAI examination in speech. Indeed, it is precisely upon
such input features—and their trade-offs—that explana-
tions are built.

4. Richness of Explanations
Considering the foregoing, there is a causal relationship
wherein explanatory possibilities in speech XAI are in-
herently limited by the richness of the audio features
used, specifically the dimensions they encapsulate. This
limitation directly correlates with the richness of the
resulting explanations. Also, owing to the compatibil-
ity of current models with various representation types,
the explanations generated are inevitably confined by
the specific input features provided to the model. To ex-
emplify, if models process audio as waverfoms—which
poorly represent the frequency dimension for human
understanding—explanations accounting for such a cor-
relate will be out of reach. In fact, previous works by
Wu et al. [31] and Wu et al. [32], based on waveforms
solely focus on the temporal dimension to explain ASR.

https://kaldi-asr.org/doc/feat.html
https://deepspeech.readthedocs.io/en/master/DeepSpeech.html
https://deepspeech.readthedocs.io/en/master/DeepSpeech.html


In these cases, to avoid limiting the understanding of the
models’ behavior to one single dimension it would be
advisable to explore alternative techniques that offer
deeper insights into how models process other acous-
tic correlates. For instance, Pastor et al. [28] integrated
counterfactual explanations to specifically investigate
whether selected paralinguistic features such as pitch,
speaking rate, and background noise were influent for
the model’s prediction. Additionally, various techniques
exist to analyze how models extract relevant patterns
from waveforms through convolutions [48, 49, 50].

When the selected input features represent multiple
dimensions, as in the case of spectrograms or MFCCs, the
decision to only account for one of these dimensions be-
comes arbitrary. For example, two models tested by Wu
et al. [31], namely, DeepSpeech [51] and Sphinx [52], are
fed with spectrograms and MFCCs, respectively. How-
ever, explanations based on raw waveforms are provided
for these models. This inconsistency between the fea-
tures used in explanations and those used by the models
inevitably offers only a partial overview of the models’
behavior and limits the exploration of important acoustic
aspects. This, in turn, can impact the accuracy of the ex-
planations, which ideally should encompass all relevant
information.

To prioritize explanation accuracy and conduct anal-
yses considering the crucial role of acoustic correlates
such as frequency, it is advisable to take into account all
dimensions embedded in the speech representation.
This approach is exemplified by the works of Markert
et al. [30], who provide explanations that account for
the most influential elements in MFCCs, as well as Trinh
and Mandel [29] and Becker et al. [27], who base the
explanations on spectrograms. In the work by Mark-
ert et al. [30], however, it is challenging to connect the
results with specific acoustic parameters due to the com-
plexity of analyzing MFCCs (see §3), which significantly
undermines the meaningfulness of the explanations. In
contrast, explanations using spectrograms offer valuable
insights into how machines process speech, producing
both accurate and meaningful results. For instance, Trinh
and Mandel [29] demonstrated that neural ASR models
focus on high-energy time-frequency regions for tran-
scription, while Becker et al. [27] found that lower fre-
quency ranges, typically associated with pitch, exhibit
higher attribution scores in speaker gender classification
tasks [27], showing some alignment with human speech
processing. However, interpreting these insights requires
specialized expertise, which can reduce the meaningful-
ness of explanations for non-experts. This highlights
that, even in speech, the balance between accuracy and
meaningfulness can vary depending on the context [24].

5. Granularity of Explanations
Another critical factor concerning the informativeness
of input features is the level of granularity at which
the features are considered during the explanatory pro-
cess. This decision affects the level of detail in the result-
ing explanations and, consequently, accuracy—as more
detailed explanations may more accurately reflect the
model’s behavior—and their meaningfulness—as detailed
and comprehensive explanations can be more difficult to
interpret [12, 24].

In the time domain, for example, input features are
highly fine-grained. As discussed in §2, spectrograms
typically contain frames spanning tens of milliseconds,
capturing detailed frequency content within each frame,
whereas waveforms are composed of samples taken at
much shorter time intervals—for instance, as mentioned
in §2, there can be 16, 000 samples in just one second.
This level of detail poses great challenges for (human)
comprehension, particularly for a broader audience, since
mapping groups of frames/samples in an explanation to
recognizable speech units is highly time-consuming and
requires specialized expertise.

Accordingly, to address the issue and make explana-
tions for speech more broadly accessible, previous works
have leveraged textual transcripts within the explanation
process. More specifically, Wu et al. [32] and Pastor et al.
[28] resort to the alignment of audio to text, either for
individual phonemes or words, respectively, and apply ex-
plainability techniques to such units. While this approach
helps decipher the contribution of input features based
on more intuitive linguistic units, it diverges from how
current models process speech features in small frames
and samples [43]. This divergence risks overlooking the
model’s behavior and compromises the accuracy and ef-
fectiveness of the explanations. For instance, whether
ASR systems rely on shorter or longer time intervals than
individual words remains unclear [29]. Therefore, ana-
lyzing this aspect requires a more granular approach at
the time level.

In light of the above, explanations should be ob-
tained with low-level units to avoid biasing explana-
tions towards human understanding. The use of audio-
transcript alignment to aid analysis of explanations can
be very useful but should occur downstream of the expla-
nation process, not upstream. In this way, we can maxi-
mize the use of all available units to generate detailed and
accurate explanations, and then aggregate scores from
individual frames or samples to create more compact
representations at the level of phonemes or words, ensur-
ing flexibility in the meaningfulness of the explanations
according to specific needs. This bottom-up approach
mirrors practices in the text domain, providing adapt-
ability in defining attribution units that can range from
subwords to words or phrases [53, 54].



6. Conclusion
This paper has examined the role of acoustic features and
their selection for explaining speech models. More specif-
ically, we considered a specific subfield of XAI, namely,
feature attribution, which connects input features to out-
puts as a form of explanation. Previous research has not
explicitly addressed how to incorporate features into the
explanation process within the speech domain, where
input is encoded in more varied ways compared to other
fields, such as text. This has led to diverse approaches,
each with different implications for what can and can-
not be explained about model behavior, and with the
risk of not fully or accurately representing the model’s
functioning.

By discussing the key characteristics of speech and
the properties of the most adopted acoustic features, we
argue that explanations should ideally encompass all
available dimensions, particularly time and frequency, as
both are essential for a comprehensive understanding of
the models’ rationale. We have also discussed challenges
associated with aligning explanations at high granularity
with human understanding, emphasizing solutions that
provide flexibility in the analysis, allowing for adjust-
ments between more or less detail as needed.

Building on these insights, our ongoing research fo-
cuses on developing feature attribution techniques that
operate on spectrograms at the finest possible unit level,
integrating both time and frequency dimensions. Our aim
is to generate explanations that are accurate and mean-
ingful for experts, as well as adaptable for non-expert
users. More broadly, we hope that our reflections will
be beneficial and thought-provoking for researchers cur-
rently working in, or entering, the field of XAI for speech
models, thereby contributing to a deeper understanding
of the rationale behind these models.

7. Limitations
While exploring the relationship between the informa-
tiveness of speech features and explanations, we have
deliberately not delved into the needs of specific stake-
holders for XAI applications. Indeed, different stakehold-
ers present varying needs [55, 56], and to consider them
is a research avenue of paramount importance for the
growth of XAI. As a nascent area of investigations, how-
ever, XAI for speech is still relatively in its infancy, we
thus prioritized more fundamental methodological and
design decisions which prioritize a comprehensive and
detailed understanding at a low level of model’s rationale.
Accordingly, our reflections might be more appealing for
a range of users who engage with speech models and pos-
sess expertise in machine learning and/or speech analysis,
ranging from developers to speech therapists assisted by

speech models [56].
The balance of richness and granularity—which

also relates to the interplay between accuracy and
meaningfulness—is also relevant to common users who
interact with speech technologies. However, investigat-
ing how explanations can be effectively communicated
to and understood by these users in the context of daily
speech technology use exceeds the scope of this paper
and warrants further exploration.
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