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Abstract

The surge of state-of-the-art transformer-based
models has undoubtedly pushed the limits of
NLP model performance, excelling in a vari-
ety of tasks. We cast the spotlight on the un-
derexplored task of Natural Language Infer-
ence (NLI), since models trained on popular
well-suited datasets are susceptible to adver-
sarial attacks, allowing subtle input interven-
tions to mislead the model. In this work, we
validate the usage of natural language expla-
nation as a model-agnostic defence strategy
through extensive experimentation: only by
fine-tuning a classifier on the explanation rather
than premise-hypothesis inputs, robustness un-
der various adversarial attacks is achieved
in comparison to explanation-free baselines.
Moreover, since there is no standard strategy
for testing the semantic validity of the gener-
ated explanations, we research the correlation
of widely used language generation metrics
with human perception, in order for them to
serve as a proxy towards robust NLI models.
Our approach is resource-efficient and repro-
ducible without significant computational limi-
tations.1

1 Introduction

Natural Language Inference (NLI) is a fundamental
NLP task, aiming to define whether a hypothesis
is entailed by, contradicts or remains neutral with
respect to a given premise (Bowman et al., 2015).
Despite primarily being a classification task, the
subtle intricacies related to the semantic relation-
ship of premise-hypothesis inputs with respect to
the final label pose inherent challenges even for
humans (Gururangan et al., 2018; Kalouli et al.,
2021), causing annotation difficulties and thus data
scarcity. Within the rapidly evolving NLP land-
scape, there are still several unsolved challenges,
especially concerning the usage of Large Language

1The source code is publicly available in:
https://github.com/alexkoulakos/explain-then-predict.

Models (LLMs) for NLI, which are yet unable
to fully capture the semantic sophistications of
the task (Gubelmann et al., 2023; Kavumba et al.,
2023).

At the same time, explainability remains a
point of reference for state-of-the-art (SoTA) NLP
(Danilevsky et al., 2021; Liao and Vaughan, 2023);
however, it holds an even more crucial position
for NLI, as stated in the seminal work of Camburu
et al. (2018), where authors hint that generating
an intermediate explanation before predicting the
final label is adequate for robustness enhancement.
This is a fundamental claim, as NLI models are
widely susceptible to adversarial attacks (Alzantot
et al., 2018; Zhang et al., 2019b; Jin et al., 2020).
Yet, to the best of our knowledge, there is no prior
work attempting to solely harness explanations for
adversarial defence, in order to answer whether this
claim holds or not. The additional power of inter-
mediate explanations is that they shed some light
on the black-box nature of NLI models, providing
information regarding the semantic relationship
between the premise and the hypothesis. Under
this breakdown of the NLI process, the weight is
shifted towards producing a semantically valuable
and correct explanation, which is highly associated
with the final label, as we will demonstrate later
in this paper. Therefore, without exploiting any
other mechanism rather than the intermediate ex-
planations, we are able to open the black-box while
simultaneously rendering it more robust.

Overall, in this work, we propose a very simple,
yet effective approach to tackle adversarial brittle-
ness of NLI: we leverage the ExplainThenPredict
framework proposed in Camburu et al. (2018) to
acquire explanations derived from given premise-
hypothesis input pairs, based on which we predict
the final label. To further promote the simplicity of
our method, we only exploit smaller language mod-
els for explanation generation, as well as for clas-
sification in the entailment/neutral/contradiction
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classes, proving that despite not being the most
powerful learners, they are adequate in proving
the robustness-enhancing power of explanations.
Specifically, our contributions are:

• We experimentally prove that generating ex-
planations leads to more robust NLI classifi-
cation under various adversarial attacks.

• In order to facilitate (approximate) explana-
tion evaluation, we provide an association be-
tween metrics for linguistic quality of expla-
nations and model robustness, as verified by
humans.

2 Related work

Natural Language Inference (NLI) is a core
NLP task tied to language understanding, although
it remains comparatively underexplored. The
breakthrough introduced with the SNLI (Stanford
Natural Language Inference) dataset (Bowman
et al., 2015) inspired several approaches over the
years, ranging from LSTM-based (Chen et al.,
2017) to transformer-based ones (Devlin et al.,
2019; Zhang et al., 2019c; Sun et al., 2020; Radford
and Narasimhan, 2018; He et al., 2023). Incorporat-
ing explanations in the e-SNLI variant (Camburu
et al., 2018) introduced a favourable research line
focused on interpretable NLI (Chen et al., 2021;
Stacey et al., 2021, 2022; Yu et al., 2022; Yang
et al., 2023a; Abzianidze, 2023; Yang et al., 2023b),
with faithfulness of explanations (Kumar and Taluk-
dar, 2020; Zhao and Vydiswaran, 2020; Lyu et al.,
2022; Sia et al., 2023) serving as a core research
endeavour, tied to present NLI limitations.

Adversarial Robustness is a major concern in
NLP (Goyal et al., 2023; Goel et al., 2021) calling
for successful detection and creation of defence
strategies (Shen et al., 2023; Sabir et al., 2023;
Yang and Li, 2023). Crafting adversarial attacks
(Jin et al., 2020; Li et al., 2020; Liu et al., 2022;
Asl et al., 2024) reveals weak spots of models in
cases they return unreasonably deviating outputs
with respect to the semantic minimality of input
perturbations. In general, the quest for robustness
may require some sacrifice in accuracy (Tsipras
et al., 2018; Zhang et al., 2019a), at least under
certain scenarios that cannot be satisfied by theo-
retical guarantees (Yang et al., 2020; Pang et al.,
2022; Chowdhury and Urner, 2022; Chen et al.,
2024), such as in black-box settings where ade-
quate engineering regarding training details and

hyperparameters is not feasible. This trade-off has
not been extensively studied in NLP or at least in
various black-box cases, therefore it is unknown if
it holds when studying them in conjunction.

Despite the suggested incorporation of explana-
tions for robust NLI (Camburu et al., 2018), this
topic has not received much attention yet, with only
a few notable exceptions (Alzantot et al., 2018;
Nakamura et al., 2023), while the utilized explana-
tions benefit other robustness-related research ques-
tions, such as the robustness of in-context learning
in LLMs (He et al., 2023). We highly acknowledge
this research gap, promoting the exploitation of ex-
planations as a model-agnostic strategy to enhance
NLI robustness under adversarial attacks.

3 On the use of intermediate explanations

In the core of our approach lies the ExplainThen-
Predict framework (Camburu et al., 2018) that in-
stead of predicting the final entailment (E)/neutral
(N)/contradiction (C) label using the input premise
and hypothesis, it generates an intermediate expla-
nation in natural language, which serves as an input
to a classifier to decide the final label.

As a first step, a Seq2Seq model receives the
premise P and the hypothesis H and outputs a
free-form explanation e, which aims to justify
the semantic relationship between them under an
entailment/neutral/contradiction format. For ex-
ample, given P: "A Land Rover is being driven
across a river" and H: "A vehicle is crossing a
river", the Seq2Seq stage generates an explanation
e: "Land Rover is a vehicle". In the second step,
an Expl2Label classifier defines the output label
L ∈ {E,N,C}, leveraging the "hints" provided in
the explanation. In the aforementioned example,
given e: "Land Rover is a vehicle", the Expl2Label
classifier outputs Entailment as the final label.

Notably, Seq2Seq and Expl2Label are fine-tuned
independently and are only joined during inference,
acting as a black-box model overall.

3.1 Experimental setup

Our experimentation is applied on the e-SNLI
dataset (Camburu et al., 2018). We focus on test-
ing affordable models due to the computational
burden imposed by fine-tuning the Seq2Seq and
Expl2Label models on the derived explanations,
aiming to provide a lightweight solution that is
reproducible regardless of hardware limitations.
More specifically, for the Seq2Seq stage we utilize
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BERT2GPT ALBERT2GPT DISTILBERT2GPT ROBERTA2GPT

fine-tuning time (↓) 12 hrs & 20 mins 12 hrs & 16 mins 9 hrs & 35 mins 12 hrs & 29 mins

meteor (↑) 0.5332 0.5591 0.5393 0.5509
bert-score (↑) 0.8707 0.8742 0.8701 0.8744

rouge (↑) 0.5885 0.6005 0.5859 0.6011
bleu (↑) 0.3859 0.3911 0.3719 0.3992

% correct explanations (↑) 76.14% 73.33% 72.53% 77.17%

Table 1: Seq2Seq scores during inference using the various encoders and GPT2 decoder. The optimal values and
fine-tuning time needed among all 4 Seq2Seq models are denoted with bold font.

encoder-decoder structures, with GPT-22 (Radford
et al., 2019) serving as the decoder, while BERT3

(Devlin et al., 2019), ALBERT4 (Lan et al., 2020),
DistilBERT5 (Sanh et al., 2019) and RoBERTa6

(Liu et al., 2019) are placed as encoders, one at a
time. Regarding the Expl2Label stage, we exploit
a single, yet effective BERT model with a clas-
sification head which achieves high classification
accuracy in NLI labels.

For explanation evaluation, we utilize text gener-
ation metrics, including METEOR (Banerjee and
Lavie, 2005), ROUGE (Lin, 2004), BLEU (Pap-
ineni et al., 2002) and BERTScore (Zhang et al.,
2020) using the 3 provided ground-truth e-SNLI
explanations as references. Nevertheless, these met-
rics do not directly reflect the explanation quality
in terms of semantic faithfulness. For this reason,
we manually evaluate7 the semantic faithfulness
of explanations and measure the correlation of text
generation metrics with our annotations, finally rec-
ommending the most suitable metric as a proxy for
human-interpretable explanation quality (App. A).
The final NLI label is evaluated based on accuracy.

All experiments are conducted using a single
NVIDIA Volta V100 GPU. The batch size is set
to 32, the encoder max length is selected to be
128 tokens for any encoder, while the decoder max
length is 64 tokens for the GPT-2 decoder. Fine-
tuning is performed for 5 epochs, while greedy
decoding is the default text generation strategy.

2https://huggingface.co/openai-community/gpt2 [GPT2-
small (124M)]

3https://huggingface.co/google-bert/bert-base-uncased
[bert-base-uncased (110M)]

4https://huggingface.co/albert/albert-base-v2 [albert-base-
v2 (12M)]

5https://huggingface.co/distilbert/distilbert-base-uncased
[distilbert-base-uncased (66M)]

6https://huggingface.co/FacebookAI/roberta-base [roberta-
base (125M)]

7Conducted by the authors on 100 samples to ensure the
validity of results, due to the inherent difficulty of associating
semantic relatedness of explanation with input P & H.

We regard two NLI classification baselines: first,
the explanation-free setup of directly predicting
the output label by feeding P-H pairs in a BERT-
based classifier. Second, we compare with training
BERT with ground-truth explanations from the e-
SNLI dataset using the same hyperparameters and
hardware mentioned above.

3.2 Explanation generation results

As a first step, we evaluate the quality of the
Seq2Seq stage using the available combinations
of encoders with the GPT2 decoder, namely
BERT2GPT, ALBERT2GPT, DISTILBERT2GPT
and ROBERTA2GPT. We report the aforemen-
tioned text generation metrics, as well as the expla-
nation accuracy, which is defined as the percent-
age of explanations that semantically represent the
ground-truth label according to our manual annota-
tion. Related results are presented in Table 1. We
also report time needed for fine-tuning.

Overall, we can easily observe that
ROBERTA2GPT scores higher in terms of
most text generation metrics, as well as the number
of semantically correct explanations. The time
needed for fine-tuning is ∼12 hours in most
cases, with DISTILBERT2GPT serving as a more
efficient alternative due to its distillation process,
with slightly lower text generation quality and
∼5% sacrifice in explanation accuracy.

3.3 NLI classification results

Given the explanations produced in the previous
step as inputs, the Expl2Label module decides upon
the final E/N/C label. Regarding baselines, we first
fine-tune an explanation-free BERT model using
input P-H pairs. Consequently, we fine-tune BERT
on the ground-truth e-SNLI explanations. Related
baseline results are reported in Table 2.

Focusing on the 2nd row, BERT fine-tuned on
ground-truth explanations achieves an accuracy
score of 97.47%; this significantly high accuracy
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Baseline Fine-tuning time Accuracy

Explanation-free BERT ∼ 6 hrs 90.13%
Ground-truth BERT e 5 hrs & 42 mins 97.47%

Table 2: Fine-tuning time and accuracy of baselines.

denotes the strong association between the expla-
nation and the final label, even without any infor-
mation regarding the corresponding P and H. Even
though this claim further supports the ExpainThen-
Predict decomposition, there are some shortcom-
ings related to the format of the explanation, so that
sometimes the same explanation justifies diverging
ground-truth labels stemming from different hy-
potheses, as demonstrated in Table 3.

P-H pair L e

P: A woman is in the park
H: A person is in the park E A woman is a person

P: A woman is in the park
H: There is no person in the
park

C A woman is a person

Table 3: The same explanation can justify a different
label depending on the input P and H. For the contradic-
tion pair, one could also explain that "There can be no
person in the park if a woman is in the park" which is
more indicative of contradiction (Camburu et al., 2018).

By accepting such imperfections, and recogniz-
ing that formulating an informative and correct
explanation is a separate research problem, we pro-
ceed by fine-tuning the same BERT architecture
using the ground truth explanations e from the e-
SNLI dataset, while for inference, we use the ex-
planations derived from the previously described
Seq2Seq variants. In Table 4, we report accuracy
scores (overall & per label) for each Seq2Seq ex-
planation followed by the fine-tuned BERT.

BERT
2GPT

ALBERT
2GPT

DISTILBERT
2GPT

ROBERTA
2GPT

acc 86.72% 85.45% 85.15% 87.97%
acc (E) 89.13% 86.76% 87.29% 90.17%
acc (C) 90.42% 88.35% 85.82% 91.69%
acc (N) 80.4% 81.14% 82.20% 82.01%

Table 4: ExplainThenPredict inference results using
BERT as the Expl2Label classifier. Best results among
all 4 ExplainThenPredict variants are denoted in bold.

It becomes evident that the generated explana-
tions result in a decrease of overall accuracy scores
(1st row of Table 4) in comparison to the baselines
(Table 2). However, in the next section we will

highlight the real value of such a sacrifice.

4 Adversarial Attacks

We stress the robustness of the ExplainThenPredict
pipeline by performing targeted adversarial attacks
either on P or H independently. The outline of our
proposed approach is illustrated in Figure 1.

We focus on applying minimal interventions that
influence the semantics of the inputs, resulting in
adversarial P→P* or H→H* transitions. Such in-
terventions consequently lead to e→e* transitions,
which finally affect the outcome of the BERT clas-
sifier, resulting in a L→L* transition of the final
predicted label. Given the semantic minimality of
the intervention, a L→L* change denotes a possi-
ble excessive attachment on the words of P or H
rather than their meaning, indicating a vulnerable
behaviour in terms of classification robustness.

The intervention needs to be targeted, since al-
tering the predicted NLI label is significant to view
an attack as "successful": a negligible semantic
intervention erroneously leads to a change of the
NLI prediction; in the ExplainThenPredict case this
change happens because the attack on P/H affected
the intermediate explanation e (if no change had
occurred on the e, no outcome change could be
possible). Therefore, we materialize the desired
attacks using attack recipes from BERT-Attack
(Li et al., 2020) and TextFooler (Jin et al., 2020),
which serve as SoTA word-level editors, provid-
ing the requested determinism that guarantees the
minimality of edits, while preserving the meaning
and syntax of the attacked sentence. By attacking
the explanation-free baseline, as well as the Ex-
plainThenPredict variants we are able to measure
the attack success rate, i.e. the ratio of attempted
attacks that successfully produce adversarial ex-
amples in each case. Therefore, the higher the at-
tack success rate, the more vulnerable the model is
against such interventions. Moreover, we calculate
the after-attack accuracy, corresponding to the per-
centage of inputs that were unsuccessfully attacked
and correctly classified, with higher values denot-
ing more robust models. The attack success rate
and after-attack accuracy accuracy metrics hold an
inverse relationships, with more robust models pre-
senting lower attack success rate and higher after-
attack accuracy. For the sake of completeness,
we further report the average number of queries,
which denotes the attack efficiency, corresponding
to the number of attacks that the attacker needs to
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Figure 1: Outline of our approach: we enforce an adversarial perturbation on either P or H of ExplainThenPredict.

perform in order to change the outcome. Higher
values indicate that the attacker needs to place more
effort in order to achieve the alternative outcome,
implying comparatively advanced resistance from
the side of the attacked model. This experimenta-
tion aims to conclude under which circumstances
the ExplainThenPredict framework leads to more
robust NLI classification and how we can obtain
some guarantees regarding advanced robustness.

4.1 Experimental setup

Regarding TextFooler, we attempt balancing di-
versity of interventions and maintaining similar-
ity with the original input. To this end, we fo-
cus on the diversity-related hyperparameter N that
refers to the number of candidates needed to substi-
tute a vulnerable word; N is controlled using the
max_candidates hyperparameter in TextFooler doc-
umentation, which is set to 50 according to Jin et al.
(2020). In the meanwhile, the similarity hyperpa-
rameter δ that dictates the degree of semantic close-
ness between the intervened text and the original
one sets the minimum threshold for an intervention
to form a valid adversarial in terms of semantic
minimality. We set the corresponding TextFooler
documentation hyperparameter max_candidates to
0.7 (recommended from Jin et al. (2020)) and 0.75,
examining balancing the diversity-similarity trade-
off in the first case, while also exploring favouring
similarity over diversity in the second case.

As for BERT-Attack, the hyperparameter K de-
fines the number of candidates needed to substitute
a vulnerable word, equivalent to TextFooler’s N
hyperparameter, with higher K values imposing
more diverging synonym substitutions, thus expect-
ing to increase the attack success rate. To explore
the influence of this variability, we experiment with

recommended values of K ∈ {6, 8}.
We remain within the black-box setting, since

the attacks are enforced on the input P/H, while we
probe its influence on the L→L* change.

4.2 Results

We report results regarding TextFooler attacks on P
or H at a time in Table 5. It is easily noticeable that
our original claim holds: under TextFooler attacks,
the attack success rate of ExplainThenPredict is
lower in comparison to the explanation-free base-
line, implying advanced robustness when explana-
tions are incorporate within the pipeline. Moreover,
Figure 2 reports the % decrease on attack success
rate for all ExplainThenPredict variants.

Similarly, results for the BERT-Attack recipe are
presented in Table 6 and Figure 3, verifying the
patterns of increased robustness when generated
explanations are utilized, as in the TextFooler case.

Regarding TextFooler attacks, ROBERTA2GPT
consistently arises as the most robust Seq2Seq
module for explanation generation, scoring higher
in after-attack accuracy and average number of
queries needed, while presenting lower scores
in attack success rate. By also comparing the
ROBERTA2GPT results with the metrics related
to the other Seq2Seq models, we can conclude
that the choice of Seq2Seq model matters, since
an insufficient explanation generator may lead to
decreased ExplainThenPredict robustness even in
comparison with the explanation-free baseline.

The robustness guarantees are strongly associ-
ated with the quality of the explanations them-
selves: the linguistic quality of explanations, as
well as the human perception of correctness (Table
1) are consistently correlated with ExplainThen-
Predict model robustness, with RoBERTa arising
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N
=

50
,δ

=
0.

7
Baseline BERT2GPT ALBERT2GPT ROBERTA2GPT DISTILBERT2GPT

Original accuracy (↑) 90.13% 86.72% 85.45% 87.97% 85.15%

TextFooler (target sentence: P)

After-attack accuracy (↑) 24.93% 27.76% 24.2% 28.74% 24.08%
Attack success rate (↓) 72.16% 67.99% 71.69% 67.33% 71.1%
Avg num queries (↑) 43.74 44.1 41.75 44.57 42.16

TextFooler (target sentence: H)

After-attack accuracy (↑) 10.33% 13.86% 12.68% 16.31% 11.83%
Attack success rate (↓) 88.46% 84.01% 85.16% 81.46% 86.11%
Avg num queries (↑) 24.3 24.6 25.05 25.92 24.16

TextFooler (target sentence: P)

N
=

50
,δ

=
0.

75

After-attack accuracy (↑) 33.22% 35.2% 30.92% 36.18% 31.1%
Attack success rate (↓) 62.9% 59.41% 61.5% 58.88% 61.2%
Avg num queries (↑) 37.02 36.68 35.11 37.14 35.49

TextFooler (target sentence: H)

After-attack accuracy (↑) 15.89% 18.6% 18.19% 21.85% 16.73%
Attack success rate (↓) 82.26% 78.55% 78.71% 75.16% 80.35%
Avg num queries (↑) 20.64 20.64 21.08 21.67 20.27

Table 5: Attack results synopsis for attacking P or H using TextFooler. Bold values denote best results (row-wise).

Figure 2: Visualization of the % attack success rate decrease achieved by the ExplainThenPredict model variations
under TextFooler attack setting.

Figure 3: Visualization of the % attack success rate decrease achieved by the ExplainThenPredict model variations
under BERT-attack attack setting.
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K
=

6
Baseline BERT2GPT ALBERT2GPT ROBERTA2GPT DISTILBERT2GPT

Original accuracy (↑) 90.13% 86.72% 85.45% 87.97% 85.15%

BERT-Attack (target sentence: P)

After-attack accuracy (↑) 19.26% 25.18% 21.92% 25.4% 23.37%
Attack success rate (↓) 78.5% 70.96% 74.35% 71.13% 72.55%
Avg num queries (↑) 26.96 29.77 28.52 29.93 29.19

BERT-Attack (target sentence: H)

After-attack accuracy (↑) 9.16% 15.23% 13.48% 16.11% 13.16%
Attack success rate (↓) 89.77% 82.44% 84.23% 81.68% 84.54%
Avg num queries (↑) 15.28 16.24 16.3 16.59 16.03

BERT-Attack (target sentence: P)

K
=

8

After-attack accuracy (↑) 14.79% 22.54% 19.02% 22.22% 20.02%
Attack success rate (↓) 83.48% 74.01% 77.74% 74.74% 76.49%
Avg num queries (↑) 31.27 35.9 33.84 35.68 34.88

BERT-Attack (target sentence: H)

After-attack accuracy (↑) 4.87% 11.68% 10.19% 12.53% 9.61%
Attack success rate (↓) 94.57% 86.54% 88.08% 85.76% 88.71%
Avg num queries (↑) 17.37 18.93 19.03 19.46 18.69

Table 6: Attack results synopsis for attacking P or H using BERT-Attack. Bold values denote best results (row-wise).

as the most potent encoder8, as all other com-
ponents of ExplainThenPredict remain invariant.
Thus, since the choice of Seq2Seq module matters,
we safely conclude that optimizing explanation
quality results in advanced ExplainThenPredict
robustness. As a byproduct of this observation,
we can state that leveraging ExplainThenPredict
to advance NLI robustness is not sufficient on its
own, and the weight needs to be shifted towards
producing more faithful and linguistically correct
explanations.

Some interesting patterns occur from the analy-
sis of BERT-Attack results in Table 6: in this case,
all reported metrics associated with employing Ex-
plainThenPredict are better in comparison to the
explanation-free baseline. This behavior denotes
that even lower-quality intermediate explanations
are sufficient for boosting NLI robustness, and the
evaluation of explanation quality and faithfulness
is not necessary for guaranteeing robustness.

The attacks are consistently more effective when
targeting H rather than P regardless the attacker uti-
lized each time, or its hyperparameters. We delve
into qualitative examples to understand this pattern.

4.3 Qualitative Analysis
We present some examples regarding how an attack
from TextFooler (Table 9 in App. B) and BERT-

8An interesting future work would be to experiment with
baseline classifier architectures other than BERT (e.g. AL-
BERT, DistilBERT, RoBERTa) and examine if we get similar
results.

Attack (Table 10 in App. B) influences the input P
and H at a time, altering the intermediate e and the
final label L.

In most cases, the form the explanation receives
based on the input P and H significantly defines
the final label: the entailment explanation format
of "X is Y" or tautological statements such as "if
X is Y, then X is Y" are highly associated with
E label. On the other hand, explanation formats
such as "X is not Y" conclude towards C label.
Finally, statements like "X is not necessarily Y" or
similar lead to N label. Notably, the explanation
simplifies the NLI classification task by connecting
the semantic meaning between P and H, acting
as an intermediate reasoning step that enhances
clarity in a concise manner. To this end, we can
easily observe how input modifications influence
this format of the explanations, which ultimately
drives the selection of the label L*. Even synonym
substitutions on behalf of the attacker easily derail
the semantic connection between P and H, which
is reflected on the generated explanation e*.

Regarding the advanced sensitivity observed on
model robustness when H is attacked (Tables 5, 6),
we assume that this is due to the shorter length of
H; therefore, intervened semantics of H cannot be
matched with their counterparts present in P. On
the other hand, if P is attacked, there is a possibility
that intervened semantics are not part of H at all,
therefore the initial reasoning path remains valid.

In most cases, the generated explanations pro-
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Premise P Hypothesis H Label L Explanation e

Explain
ThenPredict A young family enjoys feeling

ocean waves lap at their feet
A family is at the beach E A young family is a family. Ocean

waves are at the beach.

Premise P Hypothesis H Label L Explanation e

Expl-free A young family enjoys feeling
ocean waves lap at their feet

A family is at the beach E N/A

Premise P* Hypothesis H Label L* Explanation e

A young familia enjoys feeling
ocean waves lap at their feet

A family is at the beach N N/A

Premise P Hypothesis H Label L Explanation e

Explain
ThenPredict A couple walks hand in hand

down a street
A couple is walking to-
gether

E If they are walking hand in hand,
they are walking together.

Premise P Hypothesis H Label L Explanation e

Expl-free A couple walks hand in hand
down a street

A couple is walking to-
gether

E N/A

Premise P* Hypothesis H Label L* Explanation e

A pair walks hand in hand down
a street

A couple is walking to-
gether

N N/A

Table 7: Example instances where the explanation-based models manage to resist the attack compared to the
explanations-free baseline. Red color denotes the words attacked.

vide meaningful information regarding the P-H
semantic relationship, even though they may some-
times be redundant. Nevertheless, in an ideal, fully
robust setting, the explanation format, which be-
trays the final label, should not be altered after
semantically minimum interventions. Despite the
reported instabilities of Tables 9, 10 in App. B,
many instances correctly retain their label after at-
tack in comparison to the explanation-free baseline
which remains way more brittle. This is clearly
illustrated in Table 7, where we can see that even
with identical premise and hypothesis pairs, the
explanation-free baseline model is deceived, while
the prediction of the explanation-based model re-
mains unaffected, due to the accurate and high-
quality generated explanation.

5 Conclusion

In this work, we delve into the underexplored field
of NLI robustness. We experimentally prove that
the robustness of NLI models against adversarial
attacks can be boosted by solely generating interme-
diate explanations. Furthermore, we demonstrate
that linguistic quality and human perception of
faithfulness are strongly correlated with advanced
robustness of the final model, drawing the attention
to explanation evaluation as the natural next step in
advancing trustworthy and interpretable NLI.

Broader Impacts and Ethics

This work aims to advance the trustworthiness of
NLI predictions providing interpretability and ro-
bustness by merely generating intermediate expla-
nations before the final classification. We view
our work as a starting point towards more capa-
ble, interpretable, efficient and reliable NLI mod-
els. The quality of the explanations is a crucial
factor towards this goal, with possible concerns re-
volving around the degree of trust we should pose
on possibly unfaithful explanations, even though
quantitative results support their beneficial usage.

Limitations

Our work serves as a primary investigation of the
unexplored explanation-based NLI robustness un-
der adversarial attack, proving there are many re-
lated research questions to be addressed. We be-
lieve that the most prominent limitation is to ensure
faithfulness of explanations with respect to input
premise and hypothesis, as well as the output label.
To this end, searching, generating and evaluating
faithful explanations (Gat et al., 2023; Sia et al.,
2023) is the key to advance the performance and
robustness of NLI models. A parallel concern lies
on the annotation difficulty of NLI associations
on its own (Kalouli et al., 2021), which somehow
limits data abundance and therefore models and
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evaluation methods, a fact that we verify through
our manual annotation process for NLI explana-
tions. As a secondary thought, experimentation us-
ing state-of-the-art LLMs may benefit the quality of
explanations -at least from the linguistic viewpoint-
even though there are no guarantees regarding their
faithfulness; nevertheless, advancements in LLM
reasoning (Qiao et al., 2023; Giadikiaroglou et al.,
2024) may offer faithful explanations as a natural
byproduct. On the other hand, exploiting LLMs
requires high-end computational resources or paid
schemes, thus significantly reducing accessibility.

Acknowledgments

The research work was supported by the Hellenic
Foundation for Research and Innovation (HFRI)
under the 3rd Call for HFRI PhD Fellowships (Fel-
lowship Number 5537).

References
Lasha Abzianidze. 2023. Formal proofs as structured

explanations: Proposing several tasks on explainable
natural language inference. ArXiv, abs/2311.08637.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890–2896, Brussels, Belgium. Association
for Computational Linguistics.

Javad Rafiei Asl, Mohammad H. Rafiei, Manar Alohaly,
and Daniel Takabi. 2024. A semantic, syntactic, and
context-aware natural language adversarial example
generator. IEEE Transactions on Dependable and
Secure Computing.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu-
ral language inference with natural language explana-

tions. In Advances in Neural Information Processing
Systems, volume 31.

Erh-Chung Chen, Pin-Yu Chen, I-Hsin Chung, and Che-
Rung Lee. 2024. Data-driven lipschitz continuity:
A cost-effective approach to improve adversarial ro-
bustness.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1657–1668, Vancouver, Canada. Association
for Computational Linguistics.

Qianglong Chen, Feng Ji, Xiangji Zeng, Feng-Lin Li,
Ji Zhang, Haiqing Chen, and Yin Zhang. 2021. Kace:
Generating knowledge aware contrastive explana-
tions for natural language inference. In Annual Meet-
ing of the Association for Computational Linguistics.

Sadia Chowdhury and Ruth Urner. 2022. Robustness
should not be at odds with accuracy. In Symposium
on Foundations of Responsible Computing.

Marina Danilevsky, Shipi Dhanorkar, Yunyao Li, Lucian
Popa, Kun Qian, and Anbang Xu. 2021. Explainabil-
ity for natural language processing. Proceedings of
the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yair Ori Gat, Nitay Calderon, Amir Feder, Alexan-
der Chapanin, Amit Sharma, and Roi Reichart.
2023. Faithful explanations of black-box nlp mod-
els using llm-generated counterfactuals. ArXiv,
abs/2310.00603.

Panagiotis Giadikiaroglou, Maria Lymperaiou, Giorgos
Filandrianos, and Giorgos Stamou. 2024. Puzzle
solving using reasoning of large language models: A
survey. Preprint, arXiv:2402.11291.

Karan Goel, Nazneen Fatema Rajani, Jesse Vig, Zachary
Taschdjian, Mohit Bansal, and Christopher Ré. 2021.
Robustness gym: Unifying the NLP evaluation land-
scape. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies: Demonstrations, pages 42–55, Online. As-
sociation for Computational Linguistics.

Shreya Goyal, Sumanth Doddapaneni, Mitesh M.
Khapra, and Balaraman Ravindran. 2023. A survey
of adversarial defenses and robustness in nlp. ACM
Comput. Surv., 55(14s).

113

https://api.semanticscholar.org/CorpusID:265212949
https://api.semanticscholar.org/CorpusID:265212949
https://api.semanticscholar.org/CorpusID:265212949
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
https://api.semanticscholar.org/CorpusID:267360025
https://api.semanticscholar.org/CorpusID:267360025
https://api.semanticscholar.org/CorpusID:267360025
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://api.semanticscholar.org/CorpusID:270845693
https://api.semanticscholar.org/CorpusID:270845693
https://api.semanticscholar.org/CorpusID:270845693
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/P17-1152
https://api.semanticscholar.org/CorpusID:236459880
https://api.semanticscholar.org/CorpusID:236459880
https://api.semanticscholar.org/CorpusID:236459880
https://api.semanticscholar.org/CorpusID:250562847
https://api.semanticscholar.org/CorpusID:250562847
https://api.semanticscholar.org/CorpusID:236980204
https://api.semanticscholar.org/CorpusID:236980204
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://api.semanticscholar.org/CorpusID:263334113
https://api.semanticscholar.org/CorpusID:263334113
https://arxiv.org/abs/2402.11291
https://arxiv.org/abs/2402.11291
https://arxiv.org/abs/2402.11291
https://doi.org/10.18653/v1/2021.naacl-demos.6
https://doi.org/10.18653/v1/2021.naacl-demos.6
https://doi.org/10.1145/3593042
https://doi.org/10.1145/3593042


Reto Gubelmann, Ioannis Katis, Christina Niklaus, and
Siegfried Handschuh. 2023. Capturing the varieties
of natural language inference: A systematic survey
of existing datasets and two novel benchmarks. J. of
Logic, Lang. and Inf., 33(1):21–48.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107–112,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Xuanli He, Yuxiang Wu, Oana-Maria Camburu,
Pasquale Minervini, and Pontus Stenetorp. 2023. Us-
ing natural language explanations to improve robust-
ness of in-context learning for natural language infer-
ence. ArXiv, abs/2311.07556.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(05):8018–8025.

Aikaterini-Lida Kalouli, Livy Real, Annebeth Buis,
Martha Palmer, and Valeria C V de Paiva. 2021. An-
notation difficulties in natural language inference.
Anais do XIII Simpósio Brasileiro de Tecnologia da
Informação e da Linguagem Humana (STIL 2021).

Pride Kavumba, Ana Brassard, Benjamin Heinzerling,
and Kentaro Inui. 2023. Prompting for explanations
improves adversarial NLI. is this true? Yes it is true
because it weakens superficial cues. In Findings
of the Association for Computational Linguistics:
EACL 2023, pages 2165–2180, Dubrovnik, Croatia.
Association for Computational Linguistics.

Sawan Kumar and Partha Pratim Talukdar. 2020. Nile
: Natural language inference with faithful natural
language explanations. In Annual Meeting of the
Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: Adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193–6202, Online. Association for Computational
Linguistics.

Qingzi Vera Liao and Jennifer Wortman Vaughan. 2023.
Ai transparency in the age of llms: A human-centered
research roadmap. ArXiv, abs/2306.01941.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Huijun Liu, Jie Yu, Shasha Li, Jun Ma, and Bin Ji.
2022. A context-aware approach for textual adversar-
ial attack through probability difference guided beam
search. ArXiv, abs/2208.08029.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Qing Lyu, Marianna Apidianaki, and Chris Callison-
Burch. 2022. Towards faithful model explanation in
nlp: A survey. Computational Linguistics, 50:657–
723.

Mutsumi Nakamura, Santosh Mashetty, Mihir Parmar,
Neeraj Varshney, and Chitta Baral. 2023. Logicat-
tack: Adversarial attacks for evaluating logical con-
sistency of natural language inference. In Conference
on Empirical Methods in Natural Language Process-
ing.

Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, and
Shuicheng Yan. 2022. Robustness and accuracy
could be reconcilable by (proper) definition. Preprint,
arXiv:2202.10103.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,
and Huajun Chen. 2023. Reasoning with language
model prompting: A survey. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5368–5393, Toronto, Canada. Association for Com-
putational Linguistics.

A. Radford, Jeffrey Wu, R. Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language models
are unsupervised multitask learners.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Bushra Sabir, Muhammad Ali Babar, and Sharif
Abuadbba. 2023. Interpretability and transparency-
driven detection and transformation of textual adver-
sarial examples (it-dt). ArXiv, abs/2307.01225.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

114

https://doi.org/10.1007/s10849-023-09410-4
https://doi.org/10.1007/s10849-023-09410-4
https://doi.org/10.1007/s10849-023-09410-4
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://api.semanticscholar.org/CorpusID:265150621
https://api.semanticscholar.org/CorpusID:265150621
https://api.semanticscholar.org/CorpusID:265150621
https://api.semanticscholar.org/CorpusID:265150621
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://api.semanticscholar.org/CorpusID:244925765
https://api.semanticscholar.org/CorpusID:244925765
https://doi.org/10.18653/v1/2023.findings-eacl.162
https://doi.org/10.18653/v1/2023.findings-eacl.162
https://doi.org/10.18653/v1/2023.findings-eacl.162
https://api.semanticscholar.org/CorpusID:218869840
https://api.semanticscholar.org/CorpusID:218869840
https://api.semanticscholar.org/CorpusID:218869840
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1909.11942
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://api.semanticscholar.org/CorpusID:259075521
https://api.semanticscholar.org/CorpusID:259075521
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://api.semanticscholar.org/CorpusID:251623203
https://api.semanticscholar.org/CorpusID:251623203
https://api.semanticscholar.org/CorpusID:251623203
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://api.semanticscholar.org/CorpusID:252519203
https://api.semanticscholar.org/CorpusID:252519203
https://api.semanticscholar.org/CorpusID:266176209
https://api.semanticscholar.org/CorpusID:266176209
https://api.semanticscholar.org/CorpusID:266176209
https://arxiv.org/abs/2202.10103
https://arxiv.org/abs/2202.10103
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:259342638
https://api.semanticscholar.org/CorpusID:259342638
https://api.semanticscholar.org/CorpusID:259342638
https://api.semanticscholar.org/CorpusID:203626972
https://api.semanticscholar.org/CorpusID:203626972


Lingfeng Shen, Ze Zhang, Haiyun Jiang, and Ying Chen.
2023. Textshield: Beyond successfully detecting
adversarial sentences in text classification. ArXiv,
abs/2302.02023.

Suzanna Sia, Anton Belyy, Amjad Almahairi, Ma-
dian Khabsa, Luke Zettlemoyer, and Lambert Math-
ias. 2023. Logical satisfiability of counterfactuals
for faithful explanations in nli. In Proceedings
of the Thirty-Seventh AAAI Conference on Artifi-
cial Intelligence and Thirty-Fifth Conference on In-
novative Applications of Artificial Intelligence and
Thirteenth Symposium on Educational Advances in
Artificial Intelligence, AAAI’23/IAAI’23/EAAI’23.
AAAI Press.

Joe Stacey, Yonatan Belinkov, and Marek Rei. 2021.
Natural language inference with a human touch: Us-
ing human explanations to guide model attention.
ArXiv, abs/2104.08142.

Joe Stacey, Pasquale Minervini, Haim Dubossarsky, and
Marek Rei. 2022. Logical reasoning with span-level
predictions for interpretable and robust nli models.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

Zijun Sun, Chun Fan, Qinghong Han, Xiaofei Sun,
Yuxian Meng, Fei Wu, and Jiwei Li. 2020. Self-
explaining structures improve nlp models. Preprint,
arXiv:2012.01786.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. 2018. Ro-
bustness may be at odds with accuracy. arXiv: Ma-
chine Learning.

Heng Yang and Ke Li. 2023. The best defense is attack:
Repairing semantics in textual adversarial examples.

Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang,
Ruslan Salakhutdinov, and Kamalika Chaudhuri.
2020. A closer look at accuracy vs. robustness. In
Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS ’20,
Red Hook, NY, USA. Curran Associates Inc.

Zongbao Yang, Shoubin Dong, and Jinlong Hu. 2023a.
Explainable natural language inference via identi-
fying important rationales. IEEE Transactions on
Artificial Intelligence, 4:438–449.

Zongbao Yang, Yinxin Xu, Jinlong Hu, and Shoubin
Dong. 2023b. Generating knowledge aware expla-
nation for natural language inference. Inf. Process.
Manag., 60:103245.

Jialin Yu, Alexandra Ioana Cristea, Anoushka Harit,
Zhongtian Sun, Olanrewaju Tahir Aduragba, Lei Shi,
and N. A. Moubayed. 2022. Interaction: A gener-
ative xai framework for natural language inference
explanations. 2022 International Joint Conference
on Neural Networks (IJCNN), pages 1–8.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing,
Laurent El Ghaoui, and Michael Jordan. 2019a. The-
oretically principled trade-off between robustness
and accuracy. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
7472–7482. PMLR.

Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li.
2019b. Generating fluent adversarial examples for
natural languages. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5564–5569, Florence, Italy. Asso-
ciation for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with bert.

Zhuosheng Zhang, Yuwei Wu, Zhao Hai, Z. Li, Shuail-
iang Zhang, Xi Zhou, and Xiang Zhou. 2019c.
Semantics-aware bert for language understanding.
In AAAI Conference on Artificial Intelligence.

Xinyan Zhao and V. G. Vinod Vydiswaran. 2020. Lirex:
Augmenting language inference with relevant expla-
nation. ArXiv, abs/2012.09157.

A Human annotation of explanations

Our manual annotation regards 100 samples from
the e-SNLI dataset, containing the premise P, the
hypothesis H, the explanation e and the ground-
truth label L. We collect results from all combina-
tions regarding the encoder of the Seq2Seq stage,
and we evaluate whether the explanation is seman-
tically correct in terms of the input P and H, as
well as the ground-truth label. Some examples of
the manual annotation are demonstrated in Table 8.

B Qualitative results

Tables 9 and 10 present some qualitative examples
from the ExplainThenPredict scenario that illus-
trate how an attack stemming from the TextFooler
and BERT-Attack recipes influences the input com-
ponents P and H at a time, thus altering the in-
termediate prediction e as well as the final label
L.

115

https://api.semanticscholar.org/CorpusID:256615829
https://api.semanticscholar.org/CorpusID:256615829
https://doi.org/10.1609/aaai.v37i8.26174
https://doi.org/10.1609/aaai.v37i8.26174
https://api.semanticscholar.org/CorpusID:233289944
https://api.semanticscholar.org/CorpusID:233289944
https://api.semanticscholar.org/CorpusID:253018990
https://api.semanticscholar.org/CorpusID:253018990
https://arxiv.org/abs/2012.01786
https://arxiv.org/abs/2012.01786
https://api.semanticscholar.org/CorpusID:52962648
https://api.semanticscholar.org/CorpusID:52962648
https://api.semanticscholar.org/CorpusID:258558000
https://api.semanticscholar.org/CorpusID:258558000
https://api.semanticscholar.org/CorpusID:249142874
https://api.semanticscholar.org/CorpusID:249142874
https://api.semanticscholar.org/CorpusID:255044666
https://api.semanticscholar.org/CorpusID:255044666
https://api.semanticscholar.org/CorpusID:252070833
https://api.semanticscholar.org/CorpusID:252070833
https://api.semanticscholar.org/CorpusID:252070833
https://proceedings.mlr.press/v97/zhang19p.html
https://proceedings.mlr.press/v97/zhang19p.html
https://proceedings.mlr.press/v97/zhang19p.html
https://doi.org/10.18653/v1/P19-1559
https://doi.org/10.18653/v1/P19-1559
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://api.semanticscholar.org/CorpusID:202539891
https://api.semanticscholar.org/CorpusID:229211016
https://api.semanticscholar.org/CorpusID:229211016
https://api.semanticscholar.org/CorpusID:229211016


Premise P Hypothesis H Gold label Generated explanation Does the explanation
fully justify the label?

A blond headed child in yel-
low boots and yellow jacket
vest playing in the gravel
with his pail, shovel and
trucks

A blonde child is playing E A child playing is the
same as a child playing

No

A blond headed child in yel-
low boots and yellow jacket
vest playing in the gravel
with his pail, shovel and
trucks

A blonde child is playing E A blond headed child is
a type of blond child and
playing in the gravel is a
type of playing

Yes

An elderly woman wearing
a skirt is picking out vegeta-
bles at a local market

A young girl is blowing
bubbles

C An elderly woman is not
a young girl

No

An elderly woman wearing
a skirt is picking out vegeta-
bles at a local market

A young girl is blowing
bubbles

C An elderly woman is not
a young girl. Picking
out vegetables is not the
same as blowing bubbles

Yes

Table 8: Manual annotation examples from our sampled collection. In case of entailment, we consider an explanation
accurate, if it includes all the reasons why the hypothesis is entailed by the premise. In case of contradiction, an
explanation is accurate, if it includes all the reasons why the hypothesis contradicts the premise.

TextFooler (target sentence: P), δ=0.75

Premise P Hypothesis H Explanation e Label L

Original This church choir sings to the
masses as they sing joyous songs
from the book at a church

A choir singing at a
baseball game

The church cannot be at a baseball
game and at a church at the same
time

C

Premise P* Hypothesis H Explanation e* Label L*

Attacked This clergy choir sings to the
masses as they sing celebratory
songs from the book at a clerical

A choir singing at a
baseball game

The choir singing is not necessarily
at a baseball game

N

Premise P Hypothesis H Explanation e Label L

Original An old man with a package poses
in front of an advertisement

A man poses in front of
an ad

An advertisement is an ad E

Premise P* Hypothesis H Explanation e* Label L*

Attacked An old fella with a package poses
in front of an ad

A man poses in front of
an ad

An old fella is not a man C

TextFooler (target sentence: H), δ=0.75

Premise P Hypothesis H Explanation e Label L

Original A woman with a green headscarf,
blue shirt and a very big grin

The woman is young Not all women are young N

Premise P Hypothesis H* Explanation e* Label L*

Attacked A woman with a green headscarf,
blue shirt and a very big grin

The woman is youthful A woman with a green headscarf
and a very big grin is youthful

E

Premise P Hypothesis H Explanation e Label L

Original An old man with a package poses
in front of an advertisement

A man walks by an ad Poses and walks are not the same C

Premise P Hypothesis H* Explanation e* Label L*

Attacked An old man with a package poses
in front of an advertisement

A man strolls by an ad Strolls is another way to say poses.
An ad is an advertisement

E

Table 9: Qualitative results for attacking P/H using TextFooler. Red color indicates changes induced by TextFooler.
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BERT-Attack (target sentence: P), K=8

Premise P Hypothesis H Explanation e Label L

Original A young family enjoys feeling
ocean waves lap at their feet

A family is at the beach A family enjoys the ocean waves at
the beach

E

Premise P* Hypothesis H Explanation e* Label L*

Attacked A young family enjoys feeling
the waves lap at their feet

A family is at the beach A family enjoying the waves at their
feet is not necessarily at the beach

N

Premise P Hypothesis H Explanation e Label L

Original Two children are laying on a rug
with some wooden bricks laid out
in a square between them

Two children are on a
rug

If children are laying on a rug, then
they are on a rug

E

Premise P* Hypothesis H Explanation e* Label L*

Attacked Two children are laying on a mat
with some wooden bricks laid out
in a square between them

Two children are on a
rug

The children are either laying on a
mat or on a rug

C

BERT-Attack (target sentence: H), K=8

Premise P Hypothesis H Explanation e Label L

Original An old man with a package poses
in front of an advertisement

A man walks by an ad Poses and walks are not the same C

Premise P Hypothesis H* Explanation e* Label L*

Attacked An old man with a package poses
in front of an advertisement

A man steps by an ad Poses in front of an advertisement
is the same as steps by an ad

E

Premise P Hypothesis H Explanation e Label L

Original One tan girl with a wool hat is
running and leaning over an ob-
ject, while another person in a
wool hat is sitting on the ground

A man watches his
daughter leap

The two people are not necessarily
a man and the girl is not necessarily
his daughter

N

Premise P Hypothesis H* Explanation e* Label L*

Attacked One tan girl with a wool hat is
running and leaning over an ob-
ject, while another person in a
wool hat is sitting on the ground

A man sees his daughter
leap

The two people are either a man and
a woman, or a man and his daughter

C

Table 10: Qualitative results for attacking P/H using BERT-Attack. Red color denotes words attacked by BERT-
Attack.
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