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Introduction

Welcome to the 3rd Workshop on Advances in Language and Vision Research. Co-located with ACL
2024, the workshop is scheduled for August 16, 2024. To facilitate the participation of the global NLP
and CV community, we continue running the workshop in a hybrid format.

Language and vision research has attracted great attention from both natural language processing (NLP)
and computer vision (CV) researchers. Gradually, this area is shifting from passive perception, templated
language, and synthetic imagery/environments to active perception, natural language, and photo-realistic
simulation or real-world deployment. The workshop covers (but is not limited to) the following topics:

• Self-supervised vision and language pre-training;

• New tasks and datasets that provide real-world solutions in language and vision;

• Text-to-image/video generation and text-guided image/video editing;

• External knowledge integration in visual and language understanding;

• Visually-grounded natural language understanding and generation;

• Language-grounded visual recognition and reasoning;

• Language-grounded embodied agents, e.g., vision-and-language navigation;

• Visually-grounded multilingual study, e.g., multimodal machine translation;

• Shortcomings of the existing large vision & language models on downstream tasks and solutions;

• Ethics and bias in large vision & language models;

• Multidisciplinary study that may involve linguistics, cognitive science, robotics, etc.;

• Explainability and interpretability in large vision & language models.

Our agenda features keynote speeches, hybrid talk sessions both for long and short papers, and poster
sessions. This year we received 35 submissions, and after a thorough peer-review process, 31 papers
were accepted. Among the accepted papers, 18 are archive papers and 13 are non-archive papers.

We would like to deeply thank all the authors, committee members, keynote speakers, and participants
for helping us grow this research community both in quantity and quality.

Workshop Chairs

Jing Gu, UC Santa Cruz
Tsu-Jui Fu, UC Santa Barbara
Drew Hudson, Google DeepMind
Asli Celikyilmaz, Fundamentals AI Research @ Meta
William Wang, UC Santa Barbara
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WISMIR3
A Multi-Modal Dataset to Challenge Text-Image Retrieval Approaches

Florian Schneider and Chris Biemann
Language Technology Group, Department of Informatics

Universität Hamburg, Germany
{florian.schneider-1, biemann}@uni-hamburg.de

Abstract

This paper presents WISMIR3, a multi-modal
dataset comprising roughly 300K text-image
pairs from Wikipedia. With a sophisticated au-
tomatic ETL pipeline, we scraped, filtered, and
transformed the data so that WISMIR3 intrin-
sically differs from other popular text-image
datasets like COCO and Flickr30k. We prove
this difference by comparing various linguis-
tic statistics between the three datasets com-
puted using the pipeline. The primary purpose
of WISMIR3 is to use it as a benchmark to
challenge state-of-the-art text-image retrieval
approaches, which already reach around 90%
Recall@5 scores on the mentioned popular
datasets. Therefore, we ran several text-image
retrieval experiments on our dataset using cur-
rent models, which show that the models, in
fact, perform significantly worse compared to
evaluation results on COCO and Flickr30k. In
addition, for each text-image pair, we release
features computed by Faster-R-CNN and CLIP
models. With this, we want to ease and moti-
vate the use of the dataset for other researchers.

1 Introduction

Current multi-modal text-image retrieval ap-
proaches already reach over 90% Recall@5 on
popular evaluation sets (Wang et al., 2023). The
reason for this is definitely due to the advances in
visio-linguistic approaches implemented by state-
of-the-art models like UNITER (Chen et al., 2020),
TERAN (Messina et al., 2021), CLIP (Radford
et al., 2021), or BEiT3 (Wang et al., 2023). How-
ever, we argue that this is not solely due to the
model’s architecture but also because of the sim-
plicity of the widely used training data and its simi-
larity to the evaluation data. Although more recent
datasets exist, the most popular datasets used to
train and evaluate state-of-the-art text-image re-
trieval methods are still COCO (Lin et al., 2014)
and Flickr30k (Young et al., 2014). Both datasets
comprise short and simple captions created by

crowdsourcing workers for Flickr images show-
ing everyday scenes. Schneider et al. (2021)
showed that recent multi-modal transformer-based
approaches trained on these popular datasets can-
not generalize well on out-of-domain data with
more complexity and variety. In the mentioned
work, two preliminary datasets were introduced.
However, during detailed data analysis, we found
multiple issues in these preliminary datasets, which
we address in this work.

The main contribution of this work is the release
of WISMIR3 (WIkiCaps Subset for Multi-Modal
Text-Image Retrieval v3)1, a clean multi-modal
dataset, thought of as a benchmark to challenge
state-of-the-art text-image retrieval models. WIS-
MIR3 contains more than 300K text-image pairs
from Wikipedia, scraped, filtered, transformed, and
statistically analyzed by a sophisticated automatic
ETL pipeline tool. Further, we provide a detailed
overview, discuss and release linguistic statistics of
the comprised data, and compare it to COCO and
Flickr30K. Additionally, we release pre-computed
image features from a popular pre-trained Faster-
R-CNN (Ren et al., 2016) model and image and
text embeddings from pre-trained CLIP models
employing ViT (Dosovitskiy et al., 2021) as the
image encoder. With this, we aim to ease the use
of the dataset to train, finetune, or evaluate models
on the WISMIR3 dataset. By evaluating different
state-of-the-art text-image retrieval approaches on
WISMIR3 and comparing the results with their per-
formance on COCO and Flickr30k, we show that
these models indeed perform much worse on our
dataset.

2 Related Work

State-of-the-art approaches for multi-modal text-
image retrieval are typically trained on text-image

1https://github.com/floschne/wismir3
https://huggingface.co/datasets/floschne/wismir3
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pairs. Despite their age, the most popular datasets
to train and evaluate models on this task are still
COCO (Lin et al., 2014) and Flickr30k (Young
et al., 2014). COCO is a well-known dataset for
various Computer Vision tasks like object detec-
tion, object segmentation, image captioning, key-
point detection, human pose estimation, and text-
image retrieval. Besides labels and annotations, the
dataset contains about 123K carefully selected im-
ages from Flickr with five descriptive captions each.
Flickr30k contains about 30K icon photographs of
everyday activities, events, and scenes from Flickr,
where also five different captions describe each
image. Both COCO and Flickr30k are datasets
designed by researchers and handcrafted by crowd-
sourcing workers to describe the images with short,
simple, and descriptive captions.

Less popular but larger datasets like SBU Cap-
tions (Ordonez et al., 2011), Conceptual Cap-
tions (Sharma et al., 2018), or Visual Genome (Kr-
ishna et al., 2017) are primarily designed for tasks
like image-captioning, visual question answering,
or visual entailment. However, since they com-
prise text-image pairs, the datasets are often part
of the training data for text-image retrieval ap-
proaches. Visual Genome contains about 108K im-
ages collected from an intersection of MS COCO
and YFCC-100M (Thomee et al., 2016) with cap-
tions created by crowdsourcing workers. SBU Cap-
tion contains about 1M photos and their captions
from Flickr. Conceptual Captions contains approxi-
mately 3.3M text-image pairs scraped from billions
of websites and automatically transformed and fil-
tered by a sophisticated pipeline.

Further, WIT (Srinivasan et al., 2021) and
LAION-5B (Schuhmann et al., 2022) are huge
text-image datasets suitable for pre-training vison-
language foundation models like CLIP (Radford
et al., 2021), ALIGN (Jia et al., 2021), or BLIP2 (Li
et al., 2023). The WIT dataset contains about
37.5M text-image pairs, comprising 11.5M unique
images with captions from Wikipedia across 108
different languages. The LAION-5B dataset
contains about 5B non-curated text-image pairs
scraped from Common Crawl dumps.

Another text-image dataset is WikiCaps (Scha-
moni et al., 2018), containing about 3.8M text-
image pairs from Wikipedia. Captions are taken
from the associated Wikimedia image descriptions,
mainly in English. This dataset is the basis of
WISMIR3 and is of particular interest in this work
because the data is from random Wikipedia articles.

Figure 1: A schematic overview of the pipeline used to
collect the WISMIR3 dataset.

Therefore, the captions and images cover a wide
range of different topics and concepts.

3 Data Collection Pipeline

A schematic overview of the pipeline used to col-
lect the WISMIR3 dataset, presented by this work,
is shown in Figure 1. In the following, more details
about the single steps are described.

The input to the pipeline is a CSV file released
by the WikiCaps authors, containing 3.8M Wikime-
dia image file IDs and the corresponding English
captions. Since this file format is unhandy to com-
pute statistics or apply transformations, it is con-
verted into a pandas DataFrame, used throughout
the whole pipeline.

In the first stage, extensive corpus statistics are
collected for each caption using a spaCy pipeline
with the “en_core_web_lg” model. These statistics
include, for example, the number of tokens and
sentences, POS tags of each token, counts of the
Universal Dependency tags (Nivre et al., 2020),
the language of each sentence, named entities, and
ratios between the number of all tokens and nouns
or named entities.

The DataFrame is then filtered based on these
statistics, as described in the following. Samples
are dropped if

• the caption consists of less than 10 or more
than 300 tokens

• the caption consists of less than 1 or more than
7 sentences

• the number of tokens in a sentence in the cap-
tion is less than 5

2

https://www.flickr.com
https://commoncrawl.org/
https://pandas.pydata.org/
https://spaCy.io


• the ratio between all tokens and tokens that
are part of named entities does not exceed 0.8

Further samples were removed if the language of
every sentence in the caption was not English.

Moreover, since the purpose of this dataset is
to challenge text-image retrieval approaches, it is
essential that most of the words in an image de-
scription are also represented in the image. Hence,
we created a blocklist of non-depictable words like
“URL”, “Sarcasm”, “Confusion” and filtered out
every sample that contains one or more of these
terms.

In the next pipeline stage, the duplicate filter-
ing stage, we remove duplicate captions so that
one caption describes at most five different images.
This decision was inspired by COCO or Flickr30k,
where it is the other way round, i.e., five different
captions describe one image.

With the mentioned filtering stages, we reduced
the 3.8M WikiCaps samples by about 92% to
304317 samples. After downloading the images,
we removed 3431 that were too small or had er-
roneous data format. We applied the following
transformations to every image in the final pipeline
stage.

• converting to RGB if it was grayscale before
• resizing while keeping the aspect ratio with

bicubic interpolation so that the maximum
width and maximum height do not exceed 640
pixels

• compressing to a max of 72 DPI
• converting to and persisting as PNG

The final output of the pipeline is the WISMIR3
dataset, comprising 300886 text-image pairs. A
detailed overview is described in the following sec-
tions.

4 Dataset Structure and Statistics

4.1 Structure
The textual data of the WISMIR3 is released in two
pandas DataFrames2, one for the training set and
one for the test or evaluation set. In addition to the
”raw” format, we also release the dataset on Hug-
gingFace3. The training and test split comprises
295886 and 5000 randomly chosen text-image
pairs, respectively. Besides the caption and the
corresponding image filename, both DataFrames

2https://github.com/floschne/wismir3
3https://huggingface.co/floschne/wismir3

contain various linguistic statistics of the caption,
as described in Table 1. To compute these statistics,
we used spaCy4 with the “en_core_web_lg” model.

Column Name Description
wikicaps_id The row index in the original WikiCaps CSV file
wikimedia_file_id The Wikimedia File ID of the original image
caption The caption of the image
tokens The list of tokens in the caption
num_tok The number of tokens in the caption
sentence_spans A list of tuples containing the start and end index of the sen-

tences w.r.t. the list of tokens
num_sents The number of sentences in the caption
min_sent_len The minimum length of the sentences in the caption
max_sent_len The maximum length of the sentences in the caption
num_ne The number of named entities in the caption
ne_types A list of the named entity types in the caption
ne_texts A list of the named entity surface forms in the caption
num_nouns The number of tokens tagged as NOUN
num_propns The number of tokens tagged as PROPN
num_conj The number of tokens tagged as CONJ
num_verb The number of tokens tagged as VERB
num_sym The number of tokens tagged as SYM
num_num The number of tokens tagged as NUM
num_adp The number of tokens tagged as ADP
num_adj The number of tokens tagged as ADJ
ratio_ne_tok The ratio of tokens that belong to named entities versus all

tokens of the caption
ratio_noun_tok The ratio of tokens tagged as NOUN versus all tokens of the

caption
ratio_propn_tok The ratio of tokens tagged as PROPN versus all tokens of the

caption
ratio_all_noun_tok The ratio of tokens tagged as NOUN or PROPN versus all

tokens of the caption
image_id The filename of the image corresponding to this sample
clip_embs_id The ID of the CLIP image and text embeddings of this sample

in the CLIP embeddings tensor
frcnn_embs_id The filename of the Faster-R-CNN image embedding of this

sample

Table 1: The extensive list of the columns and their
descriptions contained in WISMIR3.

The images related to the samples are released as
single PNG files. Further, we released 36 bounding
boxes for regions of interest with corresponding
feature vectors extracted by a pretrained Faster-R-
CNN (Ren et al., 2016; Yu et al., 2020) model for
each image as single NumPy archive files. Ad-
ditionally, we computed and published the cap-
tion and image embedding for each sample com-
puted with two pretrained CLIP (Radford et al.,
2021) models employing 16x16 and 32x32 patch
ViT (Dosovitskiy et al., 2021), respectively.

Three random samples of WISMIR3, i.e., the im-
ages with their corresponding captions, are shown
in Figure 2.

4.2 Statistics

In this section, we present a statistical overview of
WISMIR3 in Table 2 and, based on this, discuss
the contrasts between the dataset and COCO or
Flickr30k.

An appreciable difference between WISMIR3,
COCO, and Flickr30k becomes apparent when
comparing these statistics between the respective
datasets. For example, in COCO and Flickr30k, the
respective average number of tokens per caption is

4https://spacy.io
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(a) (b) (c)

Figure 2: Randomly chosen images and their captions
included in WISMIR3. (a) Fanta Klassik, 75th anniversay edition of the

Fanta soft drink, 2015. Front view of the bottle. (b) Image of the Sultanina Rosea variety of

grapes (scientific name: "Vitis"), with this specimen originating in Niles, Fremont, Alameda

County, California, United States. Source: U.S. Department of Agriculture Pomological

Watercolor Collection. Rare and Special Collections, National Agricultural Library, Beltsville,

MD 20705. (c) "The painting is a design for a poster." image: Three figures dominate

the image. A Red Cross nurse stands in the centre. A wounded soldier with a crutch and

bandaged head leans on her right arm. On her left a small child in a red dress clings to her

skirts; the nurse has her hand resting reassuringly on the child’s shoulder. There is the ruin

of a building in the background.

min max avg
Number of tokens 12 294 59.8
Number of sentences 1 6 2.71
Ratio of NOUN or
PROPN tokens

0.0 0.92 0.44

Ratio of named entity to-
kens

0.0 0.79 0.31

Cosine similarity of cap-
tion and image embed-
dings

0.04 0.53 0.32

Table 2: Various aggregated per-caption statistics in
WISMIR3. The cosine similarity was computed using a
CLIP model with a ViT using 16x16 patches.

11.34 and 13.49, which is close to the minimum
number of tokens and about 4 to 5 times smaller
than the average number of tokens per caption in
WISMIR3.

Further, by looking at the average ratio of named
entity tokens of COCO and Flickr30k, which are
0.02 and 0.03, respectively, it becomes clear that
there are almost no named entities in the two
datasets. However, in WISMIR3, this ratio lies
at 0.44 on average. We argue that in real-world
image-retrieval systems, users search for images
of specific entities, e.g., with textual queries like
“The Eifel Tower at night.” instead of general im-
ages with queries like “A large iron tower at night”.
Hence, the training and evaluation data for models
powering these real-world systems should contain
named entities.

Another difference between WISMIR3 and
COCO or Flickr30k is the number of nouns per
caption. In COCO and Flickr30k, the average ratio
of noun tokens compared to all tokens of a caption
is 0.33 and 0.31, respectively, while, in WISMIR3,
it is 0.44.

Furthermore, we computed Flesch-Kincaid (Farr
et al., 1951) (FK) and Dale-Chall (Chall and Dale,
1995) (DC) readability scores for the captions in
the three datasets, which are similar for COCO and
Flickr30k but much higher for WISMIR3 (c.f. Fig-
ure 3). This suggests a much higher textual com-

Figure 3: Comparison of Flesch-Kincaid (FK) and Dale-
Chall (DC) readability scores of COCO (C), Flickr30k
(F), and WISMIR3 (W) captions containing 106±0.1%
characters.

plexity of WISMIR3 compared to the two other
datasets. That is, COCO and Flickr30k should be
easily understood by an average 4th to 6th-grade
US student, while WISMIR3 captions are recom-
mended for college students.

We further computed the text-image cosine sim-
ilarity for each sample in WISMIR3 using a pre-
trained CLIP model. With the average similarity
of 0.32 being above the minimum threshold of the
LAION-400M dataset, we consider the text-image
alignment in WISMIR3 as acceptable.

5 Image Retrieval Experiments

This section presents text-image retrieval evalua-
tion results of various recent models on the WIS-
MIR3 dataset and compares them to the models’
performances on COCO and Flickr30k. As listed
in Table 3, evaluation scores of all listed models on
the WISMIR3 (W3) evaluation set are significantly
worse compared to the models’ performances on
COCO (C) and Flickr30k (F30K).

Further observed is that COCO and Flickr30k
data did not contribute anything meaningful dur-
ing TERAN training processes when evaluating the

4



Text-Image Retrieval (t2i)
Model Data R@1 R@5 R@10
CLIPViT−B−16 W3 47.9 72.42 80.32
TERANW3 W3 15.3 39.6 53.1
UNITERbase W3 8.76 21.84 29.54
TERANCOCO W3 1.1 3.7 5.6
TERANF30K W3 0.9 2.7 4.4
CLIPViT−B−16 COCO 58.4 81.5 88.1
UNITERbase COCO 50.33 78.52 87.16
TERANCOCO COCO 42.6 72.5 82.9
CLIPViT−B−16 F30K 68.7 90.6 95.2
UNITERbase F30K 72.52 92.36 96.08
TERANF30K F30K 59.4 84.8 90.5

Table 3: Recall@K evaluation results of different mod-
els and evaluation sets on text-image retrieval on the
WISMIR3 test set. ”W3” stands for WISMIR3. In
the model column, the subscript datasets indicate the
training data of the TERAN model. For evaluation on
COCO, we used the 5k evaluation set. Further, we used
CLIP or UNITER in a zero-shot setting without fine-
tuning on WISMIR3.

models on WISMIR3. However, one noticeable
finding is that the CLIP model5 performs excep-
tionally well on WISMIR3 compared to UNITER
and even the TERAN model trained on the WIS-
MIR3 training set. Also, UNITER performs much
better than TERAN on WISMIR3. Since CLIP
was trained on a very large-scale dataset contain-
ing more than 400M text-image pairs scraped from
random websites, its training data is probably rela-
tively similar to the data contained in WISMIR3 or
even comprises the data. Moreover, UNITER was
trained on much larger datasets of roughly 5.6M
samples compared to WISMIR3.

These findings show that current text-image re-
trieval approaches perform significantly worse on
WISMIR3 than COCO and Flickr30k.

6 Conclusion

This paper presents WISMIR3, a clean multi-modal
dataset containing roughly 300K text-image pairs.
The dataset comprises images with corresponding
captions from Wikipedia using WikiCaps as the
source dataset. By implementing a sophisticated
automatic ETL pipeline tool, we scraped, filtered,
and transformed the data so that WISMIR3 differs
from popular datasets like COCO and Flickr30k.
We prove this difference by comparing linguistic
statistics between the three datasets also computed
using the tool. The purpose of WISMIR3 is to use
it as a hard benchmark to challenge state-of-the-
art text-image retrieval approaches, which already

5https://huggingface.co/openai/clip-vit-base-patch16

reach 90% Recall@5 scores on the mentioned pop-
ular datasets. With the experiments in this paper,
we show that the text-image retrieval performance
of the current models on WISMIR3 is much lower
than on COCO or Flickr30k, as anticipated.

7 License

The dataset is licensed under the Creative Com-
mons Attribution-ShareAlike 4.0 International (CC
BY-SA 4.0) 6. This allows copying and redistribut-
ing the data in any medium or format when appro-
priate credit is given and a link to the license is
given. Further, it is allowed to mix, transform, or
extend the dataset for any purpose. However, every
change has to be indicated.
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Abstract

Modular vision-language models (Vision-
LLMs) align pretrained image encoders with
(frozen) large language models (LLMs) and
post-hoc condition LLMs to ‘understand’ the
image input. With the abundance of readily
available high-quality English image-text data
as well as strong monolingual English LLMs,
the research focus has been on English-only
Vision-LLMs. Multilingual vision-language
models are still predominantly obtained via
expensive end-to-end pretraining, resulting in
comparatively smaller models, trained on lim-
ited multilingual image data supplemented with
text-only multilingual corpora. We present
mBLIP, the first Vision-LLM leveraging mul-
tilingual LLMs, which we obtain in a compu-
tationally efficient manner on consumer-level
hardware. To this end, we re-align an image
encoder previously tuned to an English LLM
to a new, multilingual LLM using only a few
million multilingual training examples derived
from a mix of vision-and-language tasks, which
we obtain by machine-translating high-quality
English data to 95 languages. On the IGLUE
benchmark and XM3600, mBLIP yields re-
sults competitive with state-of-the-art mod-
els and it greatly outperforms strong English-
only Vision-LLMs like Llava 1.5. We release
our model, code, and train data at https:
//github.com/gregor-ge/mBLIP.

1 Introduction

The success of model and data scaling in NLP
from BERT (Devlin et al., 2019) to more recent
Large Language Models (LLMs) (Brown et al.,
2020; Zhang et al., 2022; Touvron et al., 2023, in-
ter alia) has prompted similar endeavors in vision-
language pretraining from ‘small’ BERT-size mod-
els (Chen et al., 2020; Li et al., 2020, 2021, 2022)
trained on a few million image-text pairs to billion-
parameter models trained with billions of examples

∗Work done during an internship at WüNLP

(Wang et al., 2021; Yu et al., 2022; Wang et al.,
2022; Chen et al., 2022, 2023). The prohibitive
cost of such end-to-end (pre)training, however, has
resulted in increased interest in efficient modular
methods that leverage existing large language mod-
els (LLMs). These align the output of a pretrained
image encoder to the LLM’s input representation
space (Tsimpoukelli et al., 2021; Alayrac et al.,
2022; Li et al., 2023a), resulting in a Vision-LLM.

Pretraining vision-language models from scratch
requires a massive amount of high-quality image-
text data, which is only available in English. Be-
cause of this, multilingual pretraining of vision-
language models (Ni et al., 2021; Zhou et al., 2021;
Zeng et al., 2023; Shan et al., 2022; Li et al., 2023c)
commonly supplements limited-size multilingual
image-text data with multilingual text-only data
(the amount of which often surpasses that of image-
text data) to achieve strong results, despite initial-
ization with weights of multilingual text encoders
such as XLM-R (Conneau et al., 2020).

In this work, we recognize modular Vision-LLM
methods as a potential solution to this problem, ob-
serving that: (1) once an image encoder is aligned
to one LLM, it requires significantly less data to
re-align it to another LLM (Zhang et al., 2023; Zhu
et al., 2023) and (2) since image encoding is, in
principle, language-agnostic, it may be possible to
successfully re-align the image encoder to a strong
multilingual LLM, even if it was initially aligned
only with English image-text data. Based on these
observations, we present mBLIP, the first massively
multilingual modular Vision-LLM, which we ob-
tain by (re-)aligning an image encoder to a mul-
tilingual LLM. Putting together a range of recent
advances in multimodal representation learning,
we efficiently bootstrap a massively multilingual
Vision-LLM using only ∼2.5 million images (and
without any additional multilingual text-only data),
training only 124 million parameters on consumer-
grade hardware. We achieve this efficiency by: 1)
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bootstrapping our model from a) an “English” im-
age encoder (Li et al., 2023a), previously aligned
to a monolingual English LLM and b) a strong
instruction-tuned multilingual LLM (Xue et al.,
2021; Scao et al., 2022; Muennighoff et al., 2022);
2) leveraging recent advances in massively mul-
tilingual machine translation (Costa-jussà et al.,
2022), which we use to translate high-quality En-
glish data—both classic captions as well as task
instructions (Dai et al., 2023)—to 95 languages;
and finally 3) coupling parameter-efficient training
methods (Hu et al., 2022) together with quantiza-
tion (Dettmers et al., 2022, 2023) to enable training
on consumer-grade hardware.

We extensively evaluate mBLIP on different
multilingual vision-language tasks to confirm the
efficacy of our approach: for multilingual im-
age captioning, mBLIP (with mT0-XL) surpasses
(zero-shot) PaLI-X (a model with 55B param-
eters, trained with billions of examples) (Chen
et al., 2023) on the XM3600 (Thapliyal et al.,
2022). On the visual reasoning and QA tasks of
the IGLUE benchmark (Bugliarello et al., 2022),
mBLIP matches or surpasses the performance of
state-of-the-art models, despite training far fewer
parameters on far less pretraining data. We consis-
tently outperform state-of-the-art English Vision-
LLMs outside of English, highlighting the multilin-
gual prowess of our model.

2 Related Work

2.1 LLMs and Images

The success of scaling up training data and model
parameters has resulted in large vision-language
models with billions of parameters (Wang et al.,
2021; Yu et al., 2022; Wang et al., 2022). However,
with the number of parameters in single-digit bil-
lions, these are still an order of magnitude smaller
than text-only models (Brown et al., 2020); the
compute necessary to pretrain comparably large
vision-language models, however, is available only
to select few (Chen et al., 2022, 2023).

Instead, much of the vision-language research
turned to approaches that can leverage the power of
existing LLMs by training an image encoder to map
an image into a sequence of tokens in the LLM em-
bedding space (Tsimpoukelli et al., 2021; Alayrac
et al., 2022; Li et al., 2023a), while the LLM is kept
as-is or is only partially tuned (Alayrac et al., 2022).
Most recently, the release of strong publicly avail-
able LLMs such as Llama (Touvron et al., 2023)

and the success of conversational instruction tun-
ing (Ouyang et al., 2022; Taori et al., 2023; Chiang
et al., 2023; Xu et al., 2023), has led to a body of
work (Zhu et al., 2023; Liu et al., 2023b; Ye et al.,
2023; Dai et al., 2023; Gao et al., 2023; Liu et al.,
2023a; Bai et al., 2023) that tries to replicate the
vision-language skills of GPT-4 (OpenAI, 2023).
The vast majority of research focused on English,
where both an abundance of high-quality image-
text data and strong LLMs exist. To the best of our
knowledge, we are the first to extend a massively
multilingual LLM with “vision capabilities”.

2.2 Multilingual Vision-Language Models

While the majority of research on vision-language
models targets English only, a number of multi-
lingual models have been proposed too. M3P (Ni
et al., 2021), the first transformer-based (Vaswani
et al., 2017) multilingual vision-language model,
adopts the architecture and pretraining objectives
of English counterparts (Chen et al., 2020; Li et al.,
2020). but trains on (i) the code-switched image-
text data in which words in English image cap-
tions are replaced with translations from various
languages as well as (ii) additional text-only mul-
tilingual corpora. UC2 (Zhou et al., 2021) uses a
similar architecture and a mix of training objectives
but instead of code-switching, it machine translates
the 3M captions of CC3M (Sharma et al., 2018) to 5
languages (German, French, Czech, Japanese, and
Chinese). Li et al. (2023c) and CCLM (Zeng et al.,
2023), which adopt the ALBEF architecture (Li
et al., 2021) that incorporates additional contrastive
learning objectives, use the same translated CC3M
data but they additionally supplement 19M parallel
sentences (pairing English with all of the languages
spanned by their respective downstream evaluation
tasks). ERNIE-UniX2 (Shan et al., 2022), with an
encoder-decoder architecture, adopts the same pre-
training objectives but scales up the data to more
translated captions and more text-only data (both
aligned and monolingual). Finally, PaLI (Chen
et al., 2022) (17B parameters) and PaLI-X (Chen
et al., 2023) (55B parameters) represent two huge
encoder-decoder models trained using a mixture
of vision-and-language tasks, with billions of web-
crawled multilingual captions, machine translated
data, automatically extracted data (e.g., OCR and
object detection), and generated visual QA (VQA)
examples. With the exception of the PaLI models
and ERNIE-UniX2 – both of which are not publicly
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available – all other multilingual vision-language
models represent encoder-only architectures, which
cannot perform image captioning out of the box.

3 mBLIP

We first briefly describe the modular BLIP-2 archi-
tecture (Li et al., 2023a) which we adopt in this
work, followed by the description of training tasks
and data, which we translate to 95 languages.

3.1 Architecture

We follow the modular BLIP-2 architecture (Li
et al., 2023a) depicted in Figure 1: A Query-
Former (Q-Former) is an encoder-only transformer
(Vaswani et al., 2017) with 32 learned query tokens
as input: it contextualizes the query tokens – via
the cross-attention mechanism – with the represen-
tations of the image patches encoded by a large
(frozen) Vision Transformer (ViT) (Dosovitskiy
et al., 2020). The visual tokens that are the output
of the Q-Former are then projected into the LLM
embedding space with a single linear projection
matrix WP ∈ Rhv×hl , with hv and hl as hidden
dimensions (i.e., embedding dimensionality) of the
Q-Former and LLM, respectively.

During training, only the the Q-Former (includ-
ing the 32 query tokens) and the linear projection
WP are updated; all ViT and LLM parameters are
kept frozen. Although the Q-Former and projec-
tion have initially been aligned to a monolingual
English LLM, they only produce visual tokens: we
believe that as such they are not overly tailored to
English and can therefore be effectively re-aligned
to a different, multilingual LLM.

Because the LLM is frozen in the BLIP-2 train-
ing, its parameters cannot adapt to task-specific
idiosyncrasies, e.g., in fine-tuning for VQA or for
instruction-following (Dai et al., 2023). Instead,
task-specific fine-tuning of BLIP-2 requires that
the text input is not just fed into the LLM but also
into the Q-Former in order to enable encoding of
task-specific visual information from the input. The
Q-Former, however, is based on the English BERT
(Devlin et al., 2019), preventing the application
of this same approach in the multilingual setting
(i.e., we cannot feed the text in other languages
into the Q-Former nor efficiently make it massively
multilingual, i.e., without a large multilingual pre-
training effort). Because of this, we opt for a dif-
ferent approach: instead of feeding the text of the
image-text instance (e.g., in VQA) to the Q-Former,

we partially update the LLM with the parameter-
efficient LoRA (Hu et al., 2022), which trains low-
rank reparametrization of the LLM matrices.

3.2 Training Tasks and Data

We create a small but high-quality mix of tasks for
our re-alignment training. We start from existing
high-quality English data and machine-translate
it to 95 languages in order to obtain multilingual
training data for re-alignment of the Q-Former to
the multilingual LLM.1 We hypothesized that the
re-alignment to a new LLM can be done with sig-
nificantly less data than what is needed to train
the original Q-Former (Zhu et al., 2023; Zhang
et al., 2023). Accordingly, we create a small,
high-quality English datasets and make it multi-
lingual via MT rather than training with large-
scale but very noisy multilingual image-caption
datasets like LAION5B (Schuhmann et al., 2022).
In addition, in line with findings from language-
only instruction-tuning (Sanh et al., 2022; Muen-
nighoff et al., 2022; Chung et al., 2022) and vision-
language training (Dai et al., 2023; Liu et al.,
2023b,a; Bai et al., 2023), we expect the training
on a mixture of vision-and-language tasks (as op-
posed to training only for image captioning), with
different task instructions, to result in better gen-
eralization abilities of the model and improve its
(zero-shot) downstream performance and usability.
Task Mix: We select below the tasks and datasets
used to create our training mix for re-alignment
(naturally, we ensure that the data does not overlap
with our downstream evaluation data; see §4.1).
For every task, we create a set of instruction tem-
plates with which we generate the training exam-
ples (we provide the templates in §D.1 in the Ap-
pendix, along with additional details about the train-
ing data). In total, across all tasks, we use 5.1M
examples encompassing 2.7M unique images.
1. Image Captioning: We use MSCOCO (Lin
et al., 2014) along with 2.3 million examples sam-
pled from the synthetic CapFilt dataset (Li et al.,
2022) with the noun phrase method by Liu et al.
(2023b) to ensure concept diversity. Additionally,
we use LLaVA-Instruct-Detail (Liu et al., 2023b),
which contains longer and more detailed captions.
2. Visual Question Answering and Generation:
For VQA and the inverse task of question genera-
tion (given the answer, the model is supposed to

1Training with only English data, even without LoRA,
results in the LLM producing only English output.
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Image
Encoder

...

Q-Former

Projection

LLM (multilingual)

LoRA

Learned Queries

Welcher Hund ist das?

Un câine cu gura deschisă

Ein Bluthund

Caption in Romanian:Initialized from English BLIP-2

...
...

Figure 1: The mBLIP architecture: A Q-Former encodes the image in learned query tokens which are projected to
the LLM space. We initialize the Q-Former from a BLIP-2 model and re-align it to the multilingual LLM with a
multilingual task mix. The image encoder and LLM (aside from LoRA weights) are frozen during training.

produce the question), we use VQAv2 (Goyal et al.,
2017). Additionally, we split the conversations
from LLaVA-Instruct-Conversation into separate
VQA pairs. We use A-OKVQA (Schwenk et al.,
2022), a knowledge-intensive VQA dataset with
rationales behind the answers, to create data for
two additional task variants: 1) given the question,
generate the answer and the rationale behind it, 2)
given the question and the answer, generate the ra-
tionale. Finally, we use ImageNet (Deng et al.,
2009) with the multilingual labels from Babel-
ImageNet (Geigle et al., 2023) framed as an open-
ended QA task (with questions like “What is in the
image?” and no predefined answer choices).
3. Matching: Inspired by image-text matching
(Lu et al., 2019), where an encoder has to classify
if caption and image match, we propose a yes/no
matching task so that the model learns what is and
what is not in the image to reduce hallucinations
when interrogating for image content (Li et al.,
2023b). For this, we use the Web CapFilt captions
for “standard” caption matching with hard nega-
tives. We also use the ImageNet examples with
multilingual class labels, where the model has to
predict if a given class is in the image or not.
Machine Translation: We translate the above En-
glish data with NLLB (Costa-jussà et al., 2022)
(nllb-200-distilled-1.3B), a recent massively mul-
tilingual MT model that exhibits strong perfor-
mance also for low(er)-resource languages. To
extend the utility of mBLIP to languages beyond
what is covered by existing multilingual evalua-
tion benchmarks, we translate the English data to
all languages from the mC4 corpora (Xue et al.,
2021),2 excluding only a handful of languages not

2tensorflow.org/datasets/catalog/c4#c4multilingual

supported by NLLB.3 Our final training dataset
thus covers 96 languages (English and 95 transla-
tion languages). Translating all English training
instances to every target language would result in a
96 times larger dataset (w.r.t. the original English
data) and, consequently, prohibitively expensive
re-alignment training. We thus translate English
instances to target languages in proportion to the
languages’ representation in mC4 (e.g., we trans-
late 6% of English instances to German, because
German represents 6% of the mC4 corpus). We do
not translate the short answers in A-OKVQA nor
most VQAv2 examples4 because translating them
without context is overly error-prone.
Output Language: Essential for multilingual mod-
els is control over the output language and mini-
mizing language hallucinations (,i.e., output in an
unwanted language) (Xue et al., 2021; Vu et al.,
2022; Pfeiffer et al., 2023; Li and Murray, 2023).
We achieve this by combining English prompts that
explicitly specify the target language (e.g., “An-
swer in French.”) and translating the instructions
for image captioning and LLaVA (Liu et al., 2023b)
to the target languages (other templates contain
placeholders that make translation difficult).

4 Experiments

4.1 Evaluation Tasks and Setup

We evaluate our model on a range of languages
on (1) classification-style VQA and image under-
standing tasks, where the model generates a short
answer in response to a question or premise and
(2) image captioning tasks, where the model de-

3Excluded are (ISO-1/3 codes): fy, haw, hmn, la, and co.
4See §D.1 for details. In short, we limit to the top-1500

answers and use consistency with back-translations to filter
incorrect translation. We also still use English half the time.
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scribes an image. For VQA and image captioning,
we ensured that no evaluation instances were used
in re-alignment training. In contrast to VQA and
image captioning, the model was not exposed to im-
age understanding during re-alignment: these tasks
thus test the model’s cross-task generalization abil-
ities. To generate outputs, we use beam search
with the beam width of 5 and a length penalty of
−1 for classification-style tasks to encourage short
answers. We provide the exact instruction-tuning
templates for each task/dataset in §D.2.
Image Captioning: XM3600 (Thapliyal et al.,
2022) is a captioning dataset covering 36 languages,
3600 images, and ∼2 captions per image and lan-
guage. xFlickrCo (Bugliarello et al., 2022) com-
bines the 1000 Flickr30k (Plummer et al., 2015)
test images with 1000 images from the MSCOCO
(Lin et al., 2014) test split5 and provides one new
caption for each image in 8 languages. For the
English xFlickrCo results, we use the standard
Flickr30k test split (i.e., without MSCOCO images
and with 5 reference captions per image). We use
CIDEr (Vedantam et al., 2015) as the evaluation
metric6 For Chinese, Japanese, and Thai, which do
not use white space for tokenization, we use the
default spaCy 3.5.3 segmenter for the respective
languages; our results on those languages are thus
not directly comparable to previous work – which,
unfortunately, does not disclose the used tokenizer
(Thapliyal et al., 2022; Chen et al., 2022, 2023).
VQA: we leverage xGQA (Pfeiffer et al., 2022)
and MaXM (Changpinyo et al., 2022), two VQA
datasets with 8 and 7 languages, respectively.
While answers in xGQA are in English (as only
the original GQA (Hudson and Manning, 2019)
questions were translated), answers in MaXM are
in the language of the question. We evaluate our
model in zero-shot inference (i.e., without any ad-
ditional fine-tuning other than the VQA training
included in the re-alignment mix) on both datasets.
For xGQA, we additionally fine-tune the model
on the training portion of the English GQA and
perform cross-lingual zero-shot transfer.7 We use
exact match accuracy with open generation, that is,
we do not constrain the generation to a fixed set of

5These captions were created from scratch and not by trans-
lating existing MSCOCO captions so this does not constitute
leakage from the MSCOCO data of the training mix.

6Implementation: pycocoeval
7Note that by zero-shot cross-lingual transfer here we refer

to the fact that the model has been fine-tuned only on the
English GQA data; in re-alignment training, however, it has
been exposed to VQA from other datasets.

labels like, e.g., Zeng et al. (2023). For MaXM, an
exact match to any one of the answer candidates is
correct, as proposed by Changpinyo et al. (2022).
Image Understanding: XVNLI (Bugliarello et al.,
2022; Xie et al., 2019) is a visual entailment task
that covers 5 languages: given an image and a
statement, the model has to decide if the image
entails, contradicts or is neutral to the statement.
MaRVL (Liu et al., 2021) is based on NLVR2 (Suhr
et al., 2019) with new images and concepts span-
ning different cultures in 6 languages: given two
images, the model has to decide if a statement is
true or false. We separately encode the two im-
ages with the Q-Former and then concatenate their
visual tokens together as input for the LLM. Like
for xGQA, we evaluate the models on XVNLI and
MaRVL with (1) zero-shot inference (i.e., no fine-
tuning for XVNLI and MaRVL) and (2) supervised
cross-lingual transfer: we fine-tune the re-aligned
model on the English training portions (of XVNLI
and NLVR2, respectively) and evaluate its perfor-
mance on the test portions of target languages. We
report the results in terms of exact match accuracy.

4.2 Implementation Details
Architecture: We initialize the mBLIP’s ViT (EVA
CLIP ViT-g/14 (Fang et al., 2022)) and Q-Former
with the BLIP-2 Flan-T5-XL checkpoint. For the
multilingual LLM, we experiment with mT0-XL
and BLOOMZ-7B (Muennighoff et al., 2022), the
instruction-tuned versions of mT5-XL (Xue et al.,
2021) and BLOOM-7B (Scao et al., 2022). We use
8/4-bit quantization (Dettmers et al., 2022, 2023).
Warmup: Similar to Zhang et al. (2023); Liu et al.
(2023b), we first train only the linear projection be-
tween the Q-Former and LLM. with 1M captions.
Re-Alignment Training: We train on the re-
alignment task mixture for 80k steps (2 epochs),
which takes 4 days (mT0) and 6 days (BLOOMZ)
with 4 consumer-grade NVIDIA RTX 3090 cards.
Fine-tuning: We train 3 runs—reporting their
average—and select the optimal checkpoint based
only on the English validation data for true zero-
shot cross-lingual transfer (Schmidt et al., 2022).

Full hyperparameters are listed in Appendix A.

4.3 Results
Baselines. We compare with various multilin-
gual baselines: PaLI (Chen et al., 2022), PaLI-
X (Chen et al., 2023), Thapliyal et al. (2022),
LMCap (Ramos et al., 2023), UC2 (Zhou et al.,
2021), Li et al. (2023c), CCLM (Zeng et al.,
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XM3600
Model Train P. Total P. en 35-avg

Thapliyal et al. (2022) † 0.8B 0.8B 57.60 28.90
PaLI-3B † 3B 3B 92.80 47.00
PaLI-17B † 17B 17B 98.10 53.60
PaLI-X † 55B 55B 94.20 53.10

PaLI-X 0-shot 55B 55B 48.80 22.70
LMCap (Ramos et al., 2023) 0 3B 45.20 17.60

InstructBLIP Flan-T5-XL 107M 4.1B 85.22 1.10
Llava 1.5 7B 7B 7.3B 55.87 9.78

mBLIP mT0-XL 124M 4.9B 80.17 26.77
mBLIP BLOOMZ-7B 124M 8.3B 76.40 21.87

(a) mBLIP outperforms all models except those fine-tuned
on MSCOCO translated to all 36 languages (†). Different
tokenizers for zh, ja, th make results not perfectly comparable.

xFlickrCo
Model Train P. Total P. en 7-avg

InstructBLIP Flan-T5-XL 107M 4.1B 84.71 1.46
Llava 1.5 7B 7B 7.3B 64.47 22.23

mBLIP mT0-XL 124M 4.9B 77.00 44.39
mBLIP BLOOMZ-7B 124M 8.3B 76.75 42.11

(b) No multilingual baseline on xFlickrCo exists at the time
of writing but mBLIP is competitive with English models.

Table 1: Captioning results (CIDEr) on XM3600 and
xFlickrCo for English and other languages.

2023), Ernie-UniX2 (Shan et al., 2022), Chang-
pinyo et al. (2022); and also evaluate two strong En-
glish Vision-LLMs (InstructBLIP (Dai et al., 2023)
and Llava 1.5 (Liu et al., 2023a) (LLM is Vicuna
1.5 (Touvron et al., 2023; Chiang et al., 2023))).

Image Captioning. Table 1 summarizes our im-
age captioning results. On XM3600 (Table 1a),
mBLIP mT0 outperforms the (training-free) cap-
tioning pipeline LMCap (Ramos et al., 2023) as
well as PaLI-X (in zero-shot inference): these re-
sults are very encouraging, considering that PaLI-X
trains orders of magnitude more parameters (55B
vs. 124M for mBLIP), on billions of multilingual
vision-and-language examples. mBLIP, however,
substantially trails the performance of the PaLI
models fine-tuned on MSCOCO with full trans-
lations to all 35 languages (yielding 3× more
training examples than we do from our entire re-
alignment task mix). While mBLIP is also trained
on MSCOCO with translated captions, PaLI mod-
els consume orders of magnitude more data in
most languages, especially the low-resource ones.
With proportionally less mBLIP training for lower-
resource languages (according to the language-
specific corpus portions in mC4), this yields espe-
cially large gains for PaLI models for low-resource
languages; mBLIP is more competitive for high-
resource languages like Spanish or German.

The English models show strong English results

(as expected) but fail for other languages as they ei-
ther do not generate captions in the target language
or, for high-resource languages like German where
captioning works, still underperform mBLIP.

We additionally evaluate on xFlickrCo (Ta-
ble 1b). While we are the first to use it for mul-
tilingual captioning (in Bugliarello et al. (2022),
it is used for image-text retrieval), on the English
Flickr30k captions, mBLIP achieves performance
that is comparable to that of the English LLMs
while outclassing them for other languages.

Finally, between the two mBLIP models, the
mT0 variant beats the BLOOMZ variant. We be-
lieve this is due to the fact that mT5 (the base LLM
from which mT0 was derived) was trained on al-
most 3 times more text (1 trillion tokens vs. 366
billion) and in nearly twice as many languages as
BLOOM (the LLM of BLOOMZ). On a handful
of languages like Indonesian or Hindi, however,
BLOOMZ outperforms mT0, suggesting that the
choice of the mBLIP variant is language-specific.

VQA and Image Understanding. Table 2 sum-
marizes the results on VQA and image understand-
ing tasks. On xGQA, mBLIP (zero-shot) outper-
forms the UC2 model that has been fine-tuned
on the GQA data (Zhou et al., 2021; Bugliarello
et al., 2022) for all target languages. When fine-
tuned, our mBLIP variants are only outperformed
by CCLM (large) (Zeng et al., 2023); CCLM (large)
trains nearly nine-times more parameters and lever-
ages more multilingual pretraining data8. Crucially,
however, CCLM resorts to constrained generation
w.r.t. the available answers, which is an easier yet
computationally much more demanding evaluation
protocol than our open generation. mBLIP exhibits
relatively poor zero-shot XVNLI performance, as
it fails to predict the neutral class. After fine-tuning
for XVNLI, however, mBLIP mT0 yields multilin-
gual performance (over 4 languages) comparable to
that of CCLM (large). The MaRVL zero-shot per-
formance of mBLIP variants is surprisingly good,
considering that they were never trained for any
task involving multiple images as input; Zero-shot
performance of mBLIP mT0 on MaRVL is compa-
rable to that of multiple fine-tuned baselines. When
also fine-tuned, mBLIP achieves state-of-the-art
MaRVL results, on par with CCLM (large).

8CCLM is also initialized with the English X2-VLM (Zeng
et al., 2022a) which is trained on >1B images; the BLIP-2
weights, from which we start the mBLIP training, in contrast,
were trained using only 129M images.
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XVNLI MaRVL xGQA MaXM
Model Train P. Total P. en 4-avg en 5-avg en 7-avg en 6-avg

Fine-tuned on train split

UC2 (Bugliarello et al., 2022) 270M 270M 76.38 62.05 70.56 57.28 55.19 29.35 — —
Li et al. (2023c) 330M 330M — 69.50 — 62.10 — 42.10 — —
CCLM (4M) † 520M 520M — 73.32 83.22 67.17 — 46.24 — —
CCLM base 420M 420M — 74.78 — 68.49 — 48.12 — —
CCLM large 970M 970M — 78.95 — 74.83 — 56.25 — —
Ernie-UniX2 910M 910M 87.73 77.42 — — 56.68 45.25 — —

mBLIP mT0-XL 124M 4.9B 82.41 76.41 85.20 75.13 56.54 47.71 — —
mBLIP BLOOMZ-7B 124M 8.3B 75.45 66.96 86.69 73.94 57.89 44.91 — —

Zero-shot

Changpinyo et al. (2022) ‡ 1.5B 1.5B — — — — 41.50 39.44 36.60 42.42
PaLI-17B ‡ 17B 17B — — — — 54.20 50.77 56.40 57.27

InstructBLIP Flan-T5-XL 107M 4.1B 62.09 48.65 — — 48.23 18.63 55.03 1.4
Llava 1.5 7B * 7B 7.3B 56.43 49.33 — — *57.37 *27.53 52.01 16.22

mBLIP mT0-XL 124M 4.9B 60.61 57.65 67.26 66.66 42.55 39.20 47.99 41.04
mBLIP BLOOMZ-7B 124M 8.3B 58.26 55.46 62.26 58.61 43.35 37.73 55.70 27.91

Table 2: VQA and image understanding results for English and averaged over all other languages: The metric
is (exact match) accuracy with open generation for mBLIP & PaLI and constrained generation to a set of labels
for CCLM on xGQA. Bold indicates the best score in each column. †: From (Zeng et al., 2022b) v1 (arXiv). ‡:
Fine-tuned on VQAv2 translated to all MaXM & xGQA languages. *: GQA included in training data.

On MAXM, mBLIP mT0 (zero-shot) performs
comparably to the 1.5B parameter baseline model
of Changpinyo et al. (2022) but falls short of the
performance of the huge PaLI-17B model. mBLIP
BLOOMZ exhibits strong English performance,
but surprisingly poor results for other languages.
We should emphasize here that training on the
translated VQAv2 answers is crucial: without it,
the LLM consistently generate answers in English.
Even though only ∼25% of examples in VQAv2
have non-English answers, this is already suffi-
cient to eliminate language hallucination, where
the model only answers in English regardless of
the instruction language9.

The English Vision-LLMs, like in captioning,
show strong results for English but fall behind
in other languages. This is particular evident in
MAXM, which has non-English answers (unlike
xGQA and XVNLI) that the models fail to consis-
tently generate. For high-resource languages like
German, mBLIP still outperforms them, highlight-
ing its strong multilingual capabilities.

Looking at results for individual languages
on the three IGLUE tasks in Figure 2, we see
that mBLIP with mT0 greatly improves cross-
lingual transfer over prior work, especially for
lower-resource languages: while CCLM and Ernie-

9Training with only English VQAv2 answers during re-
alignment results in an mBLIP mT0 instances that achieves
only 15.5% accuracy for 6-avg, due to the LLM predominantly
generating English answers.

UniX2 exhibit a gap of 20-25% on xGQA between
the best and worst language (German and Ben-
gali), the same gap is only 5% for our fine-tuned
mBLIP. Similarly, on MaRVL, CCLM has a gap
of 11% between Indonesian and Tamil, while the
largest gap for mBLIP amounts to 2%. The same
holds for XVNLI, but to a lesser degree: the largest
gap between languages for mBLIP (mT0) is 4%,
compared to 8% for CCLM/Ernie-UniX2. The
BLOOMZ-based variant, however, exhibits much
weaker transfer ability and has in fact larger gaps
than prior work; this highlights the importance of
deriving mBLIP from a strong multilingual LLM.

5 Ablation

We ablate the various components and design deci-
sions for mBLIP, namely: 1) using our instruction
mix compared to the ‘classic’ setting used for BLIP-
2 with only image-caption data (using the 2M Web
CapFilt examples as training data) and compared
to the instruction mix translated following the mT5
language distribution, 2) using LoRA on (all) LLM
matrices to better align the LLM to the visual input,
and 3) using the warm-start where the projection
between Q-Former and LLM is trained briefly in
a preliminary stage before the full re-alignment
training. We use the zero-shot results on xGQA,
XVNLI, and XM3600 for evaluation. Results are
shown in Table 3. In §C.1, we provide an additional
ablation that investigates the effect of adding the
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Figure 2: Cross-lingual transfer of models fine-tuned on English. The smaller gap of mBLIP mT0 between high-
and low-resource languages suggests better transfer capabilities. (CCLM 4M from (Zeng et al., 2022b) v1 on arXiv.)

matching tasks to re-alignment mix, demonstrating
their effectiveness in reducing hallucinations. In
§C.2, we consider the effect of our design choices
on fine-tuned models (on xGQA).

Design & Training: For zero-shot xGQA and
XVNLI, our complete mBLIP configuration yields
the best performance. Not using LoRA (i.e., pre-
venting any updates to the LLM) as well as training
only on image captioning (compared to the full in-
struction task mix) both lead to substantially worse
performance. Moreover, training (with LoRA) only
for image captioning results in a model that does
not follow instructions but merely generates cap-
tions, making it (zero-shot) useless for other tasks,
barring task-specific fine-tuning. For image cap-
tioning, both the warm-start and LoRA fine-tuning
boost the performance. Unsurprisingly, the re-
alignment on captioning alone yields similar or
slightly better captioning performance compared
to re-alignment based on the full task mix (i.e.,
other tasks in the mix do not contribute to caption-
ing ability of mBLIP). While the task mix brings
additional quality captions from MSCOCO and
LLaVA (in addition to the Web CapFilt examples),
the model also has to learn the other tasks; Im-
portantly, the ablation shows that including other
tasks to re-alignment training does not harm the
captioning abilities of the model.

Language Distribution: Our translation, propor-
tional to the mC4 language distribution, results in
44% examples in English and, e.g., only 0.003%
Lao examples. To test how the language distribu-
tion affects performance, we adopt another distri-
bution: that of the mT5’s pretraining corpus (re-
duces English to 8% and pushes Lao to 0.3%). As
expected, this reduces the performance for higher-
resource languages, and improves it for low(er)-

Task LoRA Warm- xGQA XVNLI XM3600
Mix start en avg en avg en avg

✗ ✗ ✓ 26.92 9.43 34.17 35.26 86.78 22.01
✗ all ✓ 1.51 0.00 33.04 25.72 85.53 24.69
✓ ✗ ✓ 37.33 33.77 52.02 54.26 84.14 21.35
✓ q,v ✓ 39.83 36.50 57.91 55.22 81.45 23.46
✓ all ✗ 40.89 37.88 57.74 54.50 80.68 24.38

mT5 all ✓ 40.91 37.67 58.00 54.96 80.13 25.85
✓ all ✓ 41.98 38.46 58.87 56.28 81.51 25.02

Table 3: Ablations for mBLIP (mT0) w.r.t.: (i) instruc-
tion mix (✓) vs. only captions (✗) (i.e., the 2M Web
CapFilt examples) vs. instruction mix using the mT5
distribution (mT5), (ii) LoRA (no LoRA ✗, standard
LoRA on query&value matrices, LoRA on all matri-
ces), and (iii) using the warm-start where the projection
between Q-Former and LLM is trained alone first. All
model variants are trained (i.e., re-aligned) for 30k steps.

resource languages. However, the changes in per-
formance are relatively small. This would suggest
that it is the language distribution of the (much
larger) multilingual pretraining of the LLM that de-
termines the downstream performance for individ-
ual languages rather than the language distribution
of our (much smaller) re-alignment training.

6 Conclusion

In this work, we presented mBLIP, the first mod-
ular and massively multilingual vision-language
model based on multilingual LLMs. Using a small
task mix from quality English datasets, made mas-
sively multilingual by means of MT, we re-align an
English BLIP-2 model to an instruction-tuned mul-
tilingual LLM. Our approach is highly efficient in
compute and data requirements and – using recent
engineering advances such as 8-bit quantization –
can be trained in a few days on consumer-grade
hardware (e.g., NVIDIA RTX 3090 cards). We
extensively evaluate mBLIP on multilingual vision-
language tasks covering image captioning, visual
QA, and image understanding to confirm the effi-
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cacy of our approach. Results render mBLIP com-
parable or better than state-of-the-art multilingual
vision-language models and strong English Vision-
LLMs, despite the fact that we train only a fraction
of their number of parameters and on far less data.
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A Training and Evaluation Details

Training: We use AdamW (Loshchilov and Hut-
ter, 2019) with weight decay 0.1, learning rate 2e-
4 for LoRA and 1e-5 for other parameters; 1000
warm-up steps before a cosine decay; batch size
128 (accomplished via gradient accumulation and
checkpointing); we limit the max. target sequence
length to 128. For LoRA, which we apply to all
LLM matrices and not just the query and value ma-
trices of self-attention heads, we set r = 8, α = 16
and use dropout with the 0.05 rate.
Warmup: We use 1M captions to train for 8k steps
with a learning rate of 5e-3 (and otherwise the same
hyperparameters).
Fine-tuning: We train 3 runs (seeds)—reporting
their average—for 5/10/20 epochs and batch size
256/128/128 for xGQA/XVNLI/MaRVL, respec-
tively. Other hyperparameters are identical as in
re-alignment training. We merge the LoRA weights
obtained in instruction-based re-alignment training
into the LLM before we execute LoRA fine-tuning
for downstream tasks.

Implementation: We use the HuggingFace
Transformers (Wolf et al., 2020) and PEFT10 li-
braries for model implementation and LoRA, re-
spectively.

B Qualitative Analysis

In addition to the quantitative evaluation on multi-
lingual datasets of previous sections, we perform a
qualitative analysis to better understand the model’s
visual and multilingual capabilities. As shown in
Figure 3, our model can understand instructions
in a wide range of languages and describe diverse
images, perform simple reasoning, and correctly
ground images to world knowledge in those lan-
guages. We also see some limitations. The capabil-
ities decrease notably for lower-resource languages.
The Urdu example is only a short sentence despite
asking for a detailed description. Similarly, the
Azerbaijani caption is completely incorrect (and

10https://github.com/huggingface/peft

POPE CHAIR
random popular adversarial short long
acc yes acc yes acc yes Ci Cs Ci Cs

without matching 71.00 74% 70.40 75% 63.70 81% 3.10 4.50 14.90 54.70
with matching 87.30 48% 83.30 52% 76.10 59% 2.40 3.50 14.10 50.50

Table 4: Effect of decision tasks on object hallucination
evaluated with POPE (Li et al., 2023b) and CHAIR
(Rohrbach et al., 2018) metrics. POPE results improve
because the yes-bias is reduced but CHAIR metrics for
both short and long captions barely decrease (lower is
better).

non-sensical), while the model produces a mean-
ingful caption for that same image in many other
languages. The Romanian example shows the limi-
tations of the model’s world knowledge as the fa-
mous portrait of Vlad III is not recognized (neither
when asked in Romanian nor in English with vari-
ous prompts). Finally, the Croatian example shows
the difficulty with controlling the output language
that we also saw in the quantitative evaluation: de-
spite being asked in Croatian, the model answers
in (related but still distinct) Slovenian.

C Further Ablation Results

C.1 Matching Tasks and Object
Hallucinations

We introduce the matching tasks with the aim of
reducing object hallucinations. We evaluate the ef-
fectiveness of the measure using two hallucination
metrics for English: POPE (Li et al., 2023b) uses
interrogative questions (“Is there X in the image?”)
with random, popular, and adversarial negative ob-
jects (using MSCOCO images and object annota-
tions), reporting accuracy and the portion of ‘yes’
answers due to a yes-bias in most models. CHAIR
(Rohrbach et al., 2018) generates captions from
MSCOCO images (we use 1k images from the val-
idation split) and then counts hallucinated objects
using MSCOCO object annotations. They report
the ratio of hallucinated object instances Ci, that is
of all occurring objects, how many are hallucinated,
and the ratio of sentences with hallucinations Cs.
We generate both short (Prompt: Caption in En-
glish:) and long captions (Prompt: Describe the
image in English with as much detail as possible.).
We train two models for 30k steps with and with-
out the matching tasks and report results in Table
4. The matching tasks greatly improve results for
POPE as they reduce the yes-bias but CHAIR met-
rics decrease only slightly. This seems to indicate
that while matching tasks help for the interrogative
POPE questions, they do not noticeably decrease
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Spanish
Input: ¿Cómo se llama este edificio y dónde 
lo encuentro? 
(What is the name of this building and where 
do I find it?) 
Output: El edificio se llama Sagradia[sic], y 
se encuentra en la ciudad de Barcelona, 
España. 
(The building is called Sagradia, and it is 
located in the city of Barcelona, Spain.)

German
Input: Was ist am Pferd ungewöhnlich? 
(What is unusual about the horse?)
Output: Ein ungewöhnliches Merkmal am Pferd 
ist, dass es mit einem Kostüm gekleidet ist. 
(An unusual feature of the horse is that it is 
dressed in a costume)

Arabic
Input: ؟لكايهلا هذه ىمست اذام  
(What are these structures called?)
Output: اجيج مره ىمست لكايهلا هذه . 
(These structures are called the Giza pyramids)

Farsi
Input: ؟تسا هدش هتفرگ اجک زا ریوصت
(Where is the image taken?) 
Output: تسا هدش هتفرگ یخیرات هقطنم کی زا ریوصت .  
(The image is taken from a historical area.)

Romanian
Input: Cine este prezentat în acest portret? 
(Who is shown in this portrait?)
Output: Acest portret prezintă o imagine a 
unui bărbat cu păr lung, care poartă o 
haină roşie. 
(This portrait shows an image of a man 
with long hair wearing a red coat)

 Vlad III not recognized

Croatian
Input: Opišite sliku što detaljnije. 
(Describe the picture in as much detail as possible.)
Output: Na sliki je čudovit vodni park, ki se razteza preko 
velike reke. Reka je polna vodnih slapov, ki se razlikujejo 
po barvi in velikosti. V okolici se nahajajo številne rastline, 
vključno z drevesi, ki ustvarjajo čudovit ozemlje. 
(The picture shows a beautiful water park stretching 
across a large river. The river is full of water falls that 
vary in color and size. There are many plants in the area, 
including trees, which create a beautiful area.)

 Answer in Slovenian

Azerbaijani
Input:  Şəkil üçün başlıq yazın.  
(Write a caption for the image)
Output: Satranc şəkilləri ilə bir şəhərin 
görüntüsü 
(Image of a city with chess pictures)

Wrong (but only in Azerbaijani)

Urdu
Input: ۔ںیھکل تحاضو یلیصفت   
(Write a detailed description.)
Output: ںوڑاہپ وج ےہ لیھج تروصبوخ کیا ہی 

۔ےہ عقاو ےرانک ےک  
(It is a beautiful lake situated on the edge 
of mountains.) 

 Not detailed

Figure 3: Multilingual examples (with translations from Google Translate in parentheses). While the first row shows
that the model can handle captioning and QA in diverse languages, the second row shows some failure cases. We
use beam search (5 beams) with a repetition penalty of 1.5.

Task LoRA Warm- xGQA (finetune)
Mix start en avg

✗ ✗ ✓ 56.68 46.50
✗ all ✓ 56.55 44.78
✓ ✗ ✓ 55.72 45.36
✓ all ✓ 56.47 46.84

Table 5: Ablations for mBLIP (mT0) w.r.t.: (i) instruc-
tion mix (✓) vs. only captions (✗) (i.e., the 2M Web
CapFilt examples) vs. instruction mix using the mT5
distribution (mT5), (ii) LoRA (no LoRA ✗, standard
LoRA on query&value matrices, LoRA on all matri-
ces), and (iii) using the warm-start where the projection
between Q-Former and LLM is trained alone first. All
model variants are trained (i.e., re-aligned) for 30k steps.

hallucinations when generating captions.

C.2 Fine-tuning

Looking at supervised xGQA fine-tuning, we
observe that all variants exhibit similar perfor-
mance, regardless of the instruction-tuning (i.e.,
re-alignment) design. The variants re-aligned only
via captioning (first two rows of Table 3) yield even
slightly better results than the variants for which
VQA was included in the re-alignment training.
Contradicting the findings of Dai et al. (2023), our
results suggest that more ‘complex’ instruction-

based re-alignment involving a multitude of tasks
brings limited gains (if any) for downstream task
with large fine-tuning data.

D Training and Evaluation Data and
Template Details

D.1 Training
We present our instruction mix in more detail with
Table 6 listing the datasets with additional infor-
mation, and Table 7 listing the templates used to
generate the examples.

D.2 Evaluation
We present the templates used for the different eval-
uation datasets in Table 8. Templates for XVNLI
and MaRVL are selected using English valida-
tion zero-shot performance. XVNLI templates are
based on Muennighoff et al. (2022).

We use the same templates for training and in-
ference.
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Dataset Tasks #Images #Examples Details

Web CapFilt (Li et al., 2022) Image captioning 2.27m 2.27m Subset of the CC3M+CC12M+SBU
Web CapFilt dataset11. Like Liu et al.
(2023b), we use spaCy to extract noun
phrases and then sample from every
phrase with at least 10 occurrences at
most 30 captions for a subset covering
diverse concepts.

Caption Matching 600k 600k Subset of our image captioning data. We
use the CLIP ViT-L/14 by Gadre et al.
(2023) to encode images and text to find
similar examples for hard negatives. We
match every image randomly with the
correct caption (50% of the time) or with
equal probability a random caption or
the 3/10/30/100/300 most similar cap-
tion for a mix of very hard to random
negatives.

MSCOCO (Lin et al., 2014) Image Captioning 83k† 414k Karpathy training split of MSCOCO
(Karpathy and Fei-Fei, 2017) with 5 cap-
tions per image.

VQAv2 (Goyal et al., 2017) VQA, VQG 83k† 2×443k Question-answer pairs with ∼5 ques-
tions per image. For VQA and VQG,
each example is translated to a different
language to increase language diversity.
We use Google Translate to translate the
most common 1500 answers to the 95
languages. We then back-translate them
to English and keep only the translations
where the back-translation is the orig-
inal answer; this is to ensure that the
answer is (likely) translated correctly.
We randomly use either the translated
or English answer when generating ex-
amples. 83k of the 443k examples have
non-English answers.

A-OKVQA (Schwenk et al., 2022) Rational generation,
VQA with rational

11k† 2×33k Knowledge-intense VQA questions with
additional answer rationals. We generate
examples for all three given rationales.
We only use the subset of the training
split overlapping with the MSCOCO
training split. A-OKVQA examples are
not translated to any language.

LLaVA (Liu et al., 2023b) detail Image captioning 23k† 23k Subset of LLaVA instructions with de-
tailed multi-sentence image captions.

LLaVA (Liu et al., 2023b) conversations VQA 56k† 219k Subset of LLaVA instructions with
multi-turn dialog; we split the dialogs
into independent pairs and keep all pairs
with an answer length of max. 3 sen-
tences.

ImageNet (Deng et al., 2009) and Babel-
ImageNet (Geigle et al., 2023)

VQA 300k 300k Image classification framed as open-
ended VQA tasks (i.e., no answer
options are given). Babel-ImageNet
provides partial translations of the
ImageNet classes to the 95 lan-
guages. We select one image for every
class+language combination (that is, we
do not use the full training set).

Matching 300k 300k The model has to decide if a given Im-
ageNet class is correctly in the image.
We use the correct label or a random la-
bel with equal probability. This uses the
same images as the VQA examples but
shuffles the image-language pairs.

Total 2.65m 5.1m

Table 6: Detailed information about the datasets used for training. †: Dataset uses MSCOCO images.
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Task Templates

Image Captioning Caption the image in $LANGUAGE.
Short $LANGUAGE image caption:
Image caption (in $LANGUAGE):
Briefly describe the image in $LANGUAGE.
Write a short $LANGUAGE image description.
Summarize the image in $LANGUAGE.
Caption the image.†
Short image caption:†
Briefly describe the image.†
Write a short image description.†
Summarize the image.†

Caption Matching Does "$CAPTION" accurately describe the image? | Yes, it does. | No, it does not.
Question | Yes Answer | No Answer Does the caption "$CAPTION" fit the picture? | Yes, it does. | No, it does not.

Does "$CAPTION" correctly summarize the image? | Yes, it does. | No, it does not.
Is "$CAPTION" a good image description? | Yes, it is. | No, it is not.
Is "$CAPTION" a correct caption for the picture? | Yes, it is. | No, it is not.
Is the caption "$CAPTION" a good match for the image? | Yes, it is. | No, it is not.
Decide if the following caption accurately describes the image: $CAPTION. Answer: | Yes, it does. | No, it does not.
Is this caption a good match for the picture? $CAPTION. Answer: | Yes, it is. | No, it is not.
Decide if this caption is a correct summary of the image: $CAPTION. | Yes, it is. | No, it is not.
Would "$CAPTION" be a good image summary? | Yes, it would. | No, it would not.
Would the caption "$CAPTION" fit the picture? | Yes, it would. | No, it would not.
Could you use "$CAPTION" as a caption for the image? | Yes, you could. | No, you could not.

VQA $QUESTION. Short English answer:
Question: $QUESTION. Brief answer (in $LANGUAGE):
Give a short answer in $LANGUAGE to the following question. $QUESTION
Answer the provided question in $LANGUAGE with three words or less. $QUESTION
What is the $LANGUAGE answer to this question? $QUESTION
Briefly answer in $LANGUAGE. $QUESTION

VQG Given the image, generate a question in $LANGUAGE whose answer is: $ANSWER. Question:
Based on the image, create a question (in $LANGUAGE) for which the answer is "$ANSWER".
From the image provided, come up with a $LANGUAGE question that leads to the reply: $ANSWER. Question:
What is a $LANGUAGE question for the image with the answer "$ANSWER"?
Given the image, what would be a $LANGUAGE question that has as answer "$ANSWER"?

VQA with rational (instruction templates) Reason the answer to the following question. $QUESTION
Use reasoning to come to an answer for this question. $QUESTION
Think step-by-step to answer this question. $QUESTION
Answer the following question and explain your answer. $QUESTION
$QUESTION What is the answer and why?

VQA with rational (label templates) $ANSWER. So the answer is $RATIONAL
$ANSWER so $RATIONAL
$RATIONAL. This means the answer is $ANSWER
The answer is $ANSWER because $RATIONAL.
$ANSWER because $RATIONAL.

Rational Generation Question: $QUESTION Answer: $ANSWER. Explanation:
Question: $QUESTION: Answer: $ANSWER. The reason is because
The answer to the question "$QUESTION" is "$ANSWER". Why?
Why is the answer to the question "$QUESTION" "$ANSWER"?
Explain why the answer to the question "$QUESTION" is "$ANSWER"

ImageNet Classification What is the main focus of the image? Short $LANGUAGE answer:
What is in the image? Answer briefly in $LANGUAGE.
This is an image of what? Answer briefly in $LANGUAGE.
What is the central object in the image? Give a short $LANGUAGE answer.
The focus of the image is on what? Short $LANGUAGE answer:
Question: This is an image of what? Answer briefly in $LANGUAGE.
What is at the center of this picture? Short $LANGUAGE answer:
Give a short answer in $LANGUAGE to the following question. What is the main thing shown in the image?
Complete the sentence in $LANGUAGE. This is a photo of a
Name the main thing of this photo in $LANGUAGE:
In less than 3 words in $LANGUAGE, what can be seen in this image?

ImageNet Matching Does this image show a $LABEL? | Yes, it does. | No, it does not.
Question | Yes Answer | No Answer Is there a $LABEL? | Yes, there is. | No, there is not.

Are there any $LABEL in the picture? | Yes, there are. | No, there are not.
Does the image contain a $LABEL? | Yes, it does. | No, it does not.
Yes or no, there is a $LABEL in the photo. | Yes | No
Yes or no, there is a $LABEL visible in the image. | Yes | No
Does this picture have a $LABEL in it? | Yes, it does. | No, it does not.
Can you see a $LABEL in the image? | Yes, you can. | No, you can not.

Table 7: Templates used for the training examples. For each example, we randomly select one template. LLaVA
examples are used as is since they are already in instruction form. †: Template is translated to the 95 languages.

Dataset Template

xFlickrCo, XM3600 Caption in $LANGUAGE:
xGQA, MaXM Question: $QUESTION Short answer in $LANGUAGE:
XVNLI Is it guaranteed true that "$HYPOTHESIS"? Yes, no, or maybe? Answer in English:
MaRVL Based on the two images, is it correct to say "$STATEMENT"? Yes or no? Answer in English:

Table 8: Templates used for evaluation. XVNLI labels ‘entailment’, ‘contradiction’, and ‘neutral’ are remapped to
‘yes’, ‘no’, ‘maybe’, respectively; MaRVL labels ‘true’ & ‘false’ are remapped to ‘yes’, ‘no’, respectively.
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E Image Attribution

Image attribution for Figure 3 in order of appear-
ance from top-left to bottom-right:

• Sagrada Familia: https://de.
wikipedia.org/wiki/Datei:
Sagrada_Familia_8-12-21_
(1).jpg. Canaan, CC BY-SA 4.0
https://creativecommons.org/
licenses/by-sa/4.0, via Wikimedia
Commons

• Giza: https://commons.wikimedia.
org/wiki/File:All_Gizah_
Pyramids.jpg. Ricardo Liberato, CC BY-
SA 2.0 https://creativecommons.
org/licenses/by-sa/2.0, via Wiki-
media Commons

• Oktoberfest Kutsche: https:
//de.wikipedia.org/wiki/Datei:
Oktoberfest-Kutscher.jpg.
Hullbr3ach, CC BY-SA 2.5 https:
//creativecommons.org/
licenses/by-sa/2.5, via Wikime-
dia Commons

• Gate of All Nations, Persepolis:
https://commons.wikimedia.org/
wiki/File:Gate_of_All_Nations,
_Persepolis.jpg. Alborzagros, CC BY-
SA 3.0 https://creativecommons.
org/licenses/by-sa/3.0, via Wiki-
media Commons

• Lake saif ul malook: https:
//en.wikipedia.org/wiki/File:
Lake-saif-ul-malook_Pakistan.
jpg. Ayesha.great, CC BY-SA 4.0
https://creativecommons.org/
licenses/by-sa/4.0, via Wikimedia
Commons

• Vlad III: https://en.wikipedia.
org/wiki/File:Vlad_Tepes_002.
jpg. Portrait of Vlad III the Impaler

• Satellite: https://en.wikipedia.
org/wiki/File:Jaz_Murian_
satellite.jpg. NASA, Public do-
main, via Wikimedia Commons

• Krk waterfalls: https://commons.
wikimedia.org/wiki/File:

Krk_waterfalls.jpg. Version13
at English Wikipedia, Public domain, via
Wikimedia Commons

F Full Results
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bn de id ko pt ru zh

mBLIP mT0-XL (zero-shot) 38.51 40.53 38.34 38.31 40.15 39.59 38.99
mBLIP mT0-XL (finetuned) 45.21 50.32 46.80 46.28 49.12 48.94 47.28
mBLIP BLOOMZ-7B (zero-shot) 38.96 37.04 39.99 29.06 41.78 37.55 39.72
mBLIP BLOOMZ-7B (finetuned) 46.90 42.86 48.01 31.56 51.99 43.44 49.64

Table 9: Results in all languages for xGQA. Finetuned results are averaged over 3 seeds.

ar es fr ru

mBLIP mT0-XL (zero-shot) 56.26 57.57 58.52 58.26
mBLIP mT0-XL (finetuned) 73.80 77.62 76.87 77.33
mBLIP BLOOMZ-7B (zero-shot) 56.26 56.17 57.74 51.65
mBLIP BLOOMZ-7B (finetuned) 68.90 68.81 71.57 58.55

Table 10: Results in all languages for XVNLI. Finetuned results are averaged over 3 seeds.

id sw ta tr zh

mBLIP mT0-XL (zero-shot) 64.89 64.80 69.65 68.05 65.91
mBLIP mT0-XL (finetuned) 75.09 74.61 75.93 74.32 75.72
mBLIP BLOOMZ-7B (zero-shot) 59.13 56.23 60.31 57.71 59.68
mBLIP BLOOMZ-7B (finetuned) 80.08 69.71 77.38 61.38 81.16

Table 11: Results in all languages for MaRVL. Finetuned results are averaged over 3 seeds.

fr hi iw ro th zh

mBLIP mT0-XL (zero-shot) 40.61 48.30 35.56 41.74 53.97 26.06
mBLIP BLOOMZ-7B (zero-shot) 22.87 52.38 18.41 31.83 17.22 24.76

Table 12: Results in all languages for MaXM.

de es id ja ru tr zh

mBLIP mT0-XL (zero-shot) 58.23 64.86 47.44 33.27 41.77 35.18 29.98
mBLIP BLOOMZ-7B (zero-shot) 50.50 64.89 54.42 29.10 38.36 25.08 32.42

Table 13: Results in all languages for xFlickrCo.

ar bn cs da de el es fa fi fil fr he

mBLIP mT0-XL (zero-shot) 21.13 11.30 31.84 44.19 32.48 23.36 62.61 0.00 16.78 17.71 57.64 18.69
mBLIP BLOOMZ-7B (zero-shot) 27.78 16.12 21.77 25.25 30.04 14.12 60.03 13.84 4.69 1.99 60.42 7.16

hi hr hu id it ja ko mi nl no pl pt

16.07 5.18 21.54 38.53 45.19 33.23 10.39 4.09 55.72 46.15 31.22 53.13
24.91 2.13 10.99 45.29 42.40 25.43 2.54 0.02 45.54 25.01 20.65 47.79

quz ro ru sv sw te th tr uk vi zh

1.08 21.71 27.25 48.38 11.76 11.20 41.93 22.64 0.00 39.24 13.48
0.02 17.62 22.83 31.77 8.45 8.65 8.16 14.21 8.97 54.29 14.65

Table 14: Results in all languages for XM3600.
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Abstract

Long-tailed multi-label visual recognition
(LTML) task is a highly challenging task due
to the label co-occurrence and imbalanced data
distribution. In this work, we propose a uni-
fied framework for LTML, namely prompt tun-
ing with class-specific embedding loss (LMPT),
capturing the semantic feature interactions be-
tween categories by combining text and im-
age modality data and improving the perfor-
mance synchronously on both head and tail
classes. Specifically, LMPT introduces the
embedding loss function with class-aware soft
margin and re-weighting to learn class-specific
contexts with the benefit of textual descrip-
tions (captions), which could help establish
semantic relationships between classes, espe-
cially between the head and tail classes. Fur-
thermore, taking into account the class imbal-
ance, the distribution-balanced loss is adopted
as the classification loss function to further
improve the performance on the tail classes
without compromising head classes. Extensive
experiments are conducted on VOC-LT and
COCO-LT datasets, which demonstrates that
our method significantly surpasses the previous
state-of-the-art methods and zero-shot CLIP in
LTML. Our codes are fully public at https:
//github.com/richard-peng-xia/LMPT.

1 Introduction

Long-tailed multi-label visual recognition
(LTML) (Wu et al., 2020; Guo and Wang, 2021)
is a common and practical task owing to the highly
imbalanced data distribution (Zhang et al., 2021b)
and diverse objects of real-world images (Wang
et al., 2017; Ju et al., 2023). Compared with long-
tailed recognition and multi-label recognition tasks,
LTML is more complex and challenging, because it
requires capturing multiple categories and the label
co-occurrence in individual images (Chen et al.,
2019a), which needs to compensate for the nega-
tive impacts caused by the long-tailed distribution
(i.e., low performance on the tail classes).

(a)

dog

person
horse

(b)

dog

person

horse

(c)

dog

person

horse

(d)
Figure 1: The class distribution is long-tailed and the
VLM compares image embeddings⋆ to text embed-
dings•■▲ of the class, which means the closer the dis-
tance between the embeddings of different modalities,
the higher the probability that the category of the text
embeddings matches the image. (a) Person and horse in
the image belong to the head classes and the tail classes
respectively. (b) Zero-Shot CLIP. (c) Exsiting Prompt
Tuning w/o CSE loss. (d) LMPT (Ours) w/ CSE loss.

Several approaches have been proposed to ad-
dress the LTML problem from different perspec-
tives, such as re-sampling (Buda et al., 2018; Dong
et al., 2017; Guo and Wang, 2021), re-weighting
(Cao et al., 2019; Wu et al., 2020) and model-
ing more powerful structures (Chen et al., 2019a;
Wang et al., 2016, 2017). Despite their great con-
tributions, these works neglect to take into account
two crucial aspects. First of all, the importance of
semantic feature interaction between classes to cap-
ture label co-occurrence. However, these methods
are limited to balancing the distribution of cate-
gories from the perspective of samples, without
considering the feature correlation between differ-
ent classes. Second, synchronous improvements in
head-to-tail category performance, while some of
these works improve the performance of tail classes
at the expense of the head classes.

Recently, graphic models have been introduced
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to model the semantic label correlation in a few
works (Chen et al., 2019a; Wang et al., 2016),
whereas these works are complex and are model-
ing label dependencies mainly based on the image
modality without additional semantic information
from other modal data. Vision-language models
(VLMs) (Radford et al., 2021; Jia et al., 2021; Tian
et al., 2022; Huang et al., 2022; Xia et al., 2024a)
demonstrate the huge potential of text modality
on semantic context feature for downstream vi-
sual tasks, especially for the prompt tuning meth-
ods (Schick and Schütze, 2021; Shin et al., 2020;
Yao et al., 2021; Xia et al., 2023), which provide an
efficient way to transfer pre-trained VLMs to down-
stream tasks by learning the task-specific prompts
rather than finetuning the entire model. Nonethe-
less, the existing prompt tuning methods (Zhou
et al., 2022b,a; Sun et al., 2022) for visual recog-
nition simply minimize prediction errors using the
classification loss (e.g., cross-entropy loss) with
respect to the learnable prompts, which may lead
to learning general embeddings or inaccurate class-
related embeddings. For instance, when presented
with an image (Fig.1a) that contains both a head
class [person] and a tail class [horse], the zero-shot
method (Fig.1b) relies solely on the rich knowledge
of the pre-trained VLMs to assess the similarity
between the image and the word embeddings of
the class names, while the existing prompt tun-
ing method (Fig.1c) further learns more general-
ized prompt tokens to improve model performance.
However, these methods do not consider the inter-
class relationships, particularly between head and
tail classes, which is a critical factor for LTML.
This underscores the need for approaches that incor-
porate such relationships to improve performance
in such scenarios.

Therefore, to address these issues, we present the
class-specific embedding loss for prompt tuning on
long-tailed multi-label visual recognition, called
LMPT. The abundance of image-caption data fa-
cilitates prompt learning that encompasses more
nuanced and specific textual descriptions, as well
as the semantic inter-dependencies between cat-
egories (Fig.1d) that share information, such as
similar features or common descriptions. This
attribute is particularly critical in the identifica-
tion of both head and tail classes. More specifi-
cally, we propose the class-specific embedding loss
to enhance the inclusivity of class-related embed-
dings within prompts. By gradually approaching

the embeddings of the corresponding caption, our
proposed approach enables prompt tokens to ef-
fectively judge the association between different
classes with the aid of textual modality. Aiming
for class imbalance and consistency improvements
between head classes and tail classes, we integrate
class-aware soft margin and re-weighting into the
class-specific embedding loss, which serves to as-
sign larger margins and more weights to tail classes.
Notably, for images containing both head and tail
classes, our approach outperforms visual models
and current prompt tuning methods. Moreover,
we adopt the distribution-balanced loss (Wu et al.,
2020) as the classification loss. To sum up, the
main contributions of this work include:

• We propose the LMPT framework to adapt pre-
trained VLMs to tackle long-tailed multi-label vi-
sual recognition, where captions are easily acces-
sible from public image-caption datasets or gen-
erated by powerful image-caption models (Wang
et al., 2022).

• We present a novel class-specific embedding loss
with class-aware soft margin and re-weighting
to learn more fine-grained and class-related em-
beddings that build semantic relationships across
head and tail classes with shared semantic infor-
mation. Such design can benefit performance in
tail classes and hard-to-recognize classes with
the help of text modality.

• We verify the effectiveness of the proposed
method by achieving new state-of-the-art (SOTA)
results on two datasets, which outperform previ-
ous SOTA (Guo and Wang, 2021) by 9/6% and
zero-shot CLIP by 6/2% on VOC-LT / COCO-
LT.

2 Related Work

2.1 Long-Tailed Visual Recognition
Real-world training data usually exhibits long-
tailed distribution (Zhang et al., 2021b), which
presents a challenge for traditional methods due
to the imbalanced class distribution. To address
this problem, several approaches (Cui et al., 2022;
Menon et al., 2020; Ouyang et al., 2016; Samuel
and Chechik, 2021; Xia et al., 2024b) have been
proposed from different aspects. One common
method is to directly re-sample the training data
to balance the class distribution (Drummond et al.,
2003; Buda et al., 2018; Dong et al., 2017), by ad-
justing the sampling rate of head classes and tail
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Figure 2: Overview of the architecture of our proposed method. The color blocks are defined as shown in Fig. 1.

classes, yet it might lead to the overfitting of tail
classes. A better solution is to design re-weighted
loss functions (Khan et al., 2017; Huang et al.,
2016; Cao et al., 2019) that assign more weight to
tail classes or ignore negative gradients (Tan et al.,
2020) for tail classes. In addition, researchers also
propose to use techniques such as transfer learn-
ing (Liu et al., 2019; Zhu and Yang, 2020) and
self-supervised learning (Kang et al., 2020; Zhang
et al., 2021a) to alleviate the class imbalance prob-
lem. Recently, some studies (Ma et al., 2021; Tian
et al., 2022) also explore the possibility of text
modality by refining visual-language representa-
tions on the long-tailed recognition tasks.

2.2 Multi-Label Visual Recognition

For multi-label visual recognition, some early
methods include treating it as multiple binary im-
age classifications (Tsoumakas and Katakis, 2007;
Zhang and Zhou, 2013) or finding k-nearest neigh-
bors (Zhang and Zhou, 2007). To locate regions
of interest, some researchers (Wang et al., 2016,
2017) proposed to introduce recurrent neural net-
works (e.g., RNN, LSTM) to learn a joint image-
label embedding. In addition, Chen et al. (Chen
et al., 2019a) proposed to model the label corre-
lations by constructing a graph based on the la-
bel co-occurrence and Ye et al. (Ye et al., 2020)
updated static graph to dynamic graph convolu-
tional network (GCN) for robust representation.
Wu et al. (Wu et al., 2020) proposed a distribution-
balanced loss and Guo et al. (Guo and Wang, 2021)
adopted collaborative training on the uniform and
re-balanced samplings to alleviate the class imbal-
anced problem. There is also a popular trend to
align between visual and textual features (Xu et al.,

2022; Liu et al., 2021; Huang et al., 2022; Ridnik
et al., 2023) for multi-label recognition.

2.3 Prompt Tuning for Vision-Language
Models

Prompt tuning (Schick and Schütze, 2021; Shin
et al., 2020; Yao et al., 2021) is a parameter-
efficient technique used to utilize the representation
ability of pre-trained vision-language models to
achieve better performance instead of fine-tuning
the whole model on downstream tasks. Mean-
while, large-scale vision-language models (e.g.,
CLIP (Radford et al., 2021), ALIGN (Jia et al.,
2021)) have demonstrated impressive power to
learn visual and textual features. CoOp (Zhou
et al., 2022b) learns soft prompts via minimizing
the classification loss and CoCoOp (Zhou et al.,
2022a) further formulates the prompts in an image-
conditional way to improve its generalization to
unseen classes. DualCoOp (Sun et al., 2022) firstly
adapts CLIP to multi-label image recognition by
learning pairs of positive and negative prompts for
each class, then TaI-DPT (Guo et al., 2023) extracts
both coarse-grained and fine-grained embedding
by treating texts as images in prompt tuning. Dif-
ferent from the above work, LMPT focuses on ex-
ploring the transfer ability to address long-tailed
multi-label visual recognition.

3 Methodology

In this section, we present our proposed prompt-
ing tuning method, i.e., LMPT, for adapting pre-
trained vision-language models for long-tailed
multi-label visual recognition.
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3.1 Preliminaries

Consider D as the dataset we use, N as the num-
ber of the dataset, C as the number of classes,
and L as the fixed length of contexts for op-
timization. Then (xk, yk, tk) ∈ Dtrain, k ∈
{1, ..., N}, where xk is an input single image, yk =[
yk1 , ..., y

k
C

]
∈ {0, 1}C is the multi-label ground-

truth and tk =
[
tk1, ..., t

k
L

]
is the corresponding

text embedding of text description (caption). But
during the test phase, only (xk, yk) ∈ Dtest. Let
ni =

∑N
k=1 y

k
i denote the number of training ex-

amples that contain class i. Please note that labels
for computing the class-specific embedding loss
need to be processed into ỹk =

[
ỹk1 , ..., ỹ

k
C

]
=[

2 ∗ yk1 − 1, ..., 2 ∗ ykC − 1
]
∈ {−1, 1}C , where

{−1, 1} indicates negative and positive.

3.2 Approach Overview

In order to make effective use of the linguistic
modality in the long-tailed multi-label visual recog-
nition task, we propose a novel framework (i.e.,
LMPT), as depicted in Fig. 2. Text encoder from
the pre-trained CLIP is used to encode the prompts
and text descriptions (captions) of images. Only
the parameters in the prompts are optimized, while
the text encoder and image encoder are both kept
frozen. We introduce two sorts of trainable prompts
to obtain class embedding, which are jointly op-
timized by the classification loss Lcls and class-
specific embedding loss Lcse. Details of the afore-
mentioned loss functions will be introduced in the
later sections.

3.3 Prompt Tuning

Formally, the vision-language model consists of
an image encoder f(·) and a text encoder g(·).
Following (Zhou et al., 2022a), a prompt is defined
as:

oi|M1 = [V]1 [V]2 ... [V]m ... [V]M [CLASS] , (1)

where i ∈ {1, ..., C}, m ∈ {1, ...,M}, the
[CLASS] token is replaced by the specific class
name (e.g., “cat,” “dog”, “car”), each [V]m is a
learnable word embedding with the same dimen-
sion as normal word embeddings in the vocabulary
(i.e., 512 for CLIP), and M is a hyper-parameter
specifying the number of context tokens. The pre-
diction probability (classification output) z is then

class 2class 1

𝜇1

class 3

Figure 3: The class margins (dotted lines) are enforced
for generated samples by updating the decision bound-
ary with respect to class margins.

computed as:

p(y = i | x) = exp (cos (g (oi) ,f (x)) /τ)
∑C

j=1 exp (cos (g (oj) ,f (x)) /τ)
,

(2)
where τ is a temperature parameter learned by
CLIP and cos(·, ·) represents cosine similarity.

3.4 Class-Specific Embedding Loss

We introduce the class-specific embedding
(CSE) loss to optimize the trainable fine-grained
instance prompts by learning from text embeddings
of captions. It tries to minimize the cosine distance
of matching patches and to increase the cosine dis-
tance of non-matching patches above the margin.
Embedding loss is then computed as

ℓebd =

{
∆k

i , if ỹki = 1,

max
(
0, µ−∆k

i

)
, if ỹki = −1,

∆k
i = 1− cos

(
tki , oi|Mm

)
,

(3)

where µ is the margin factor. Intuitively the embed-
ding loss penalizes positive (i.e., prompts of match-
ing classes) pairs that have large distances and neg-
ative (i.e., prompts of non-matching classes) pairs
that have small distance (less than µ).

LDAM (Cao et al., 2019) has inspired the devel-
opment of a decision boundary that is both robust
and generalizable, capable of accurately classifying
features that vary within a certain range. However,
when applied to long-tailed datasets characterized
by a significant class imbalance, models tend to
exhibit greater sensitivity to more frequent classes.
As a result, the performance of these models in less
frequent classes is often poor.

To address this issue, CSE loss employs the
class-aware soft margin strategy to encourage the
model to have the optimal trade-off between per-
class margins by stimulating the minority classes
to have larger margins, which can be viewed as
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regularization (Wei et al., 2018). More specifi-
cally, as illustrated in Fig. 3, blue samples (head
classes) are classified incorrectly, and the model up-
date gradient is shown with pointed arrows. Green
samples (medium classes) are classified correctly
outside of the margin and the gradient is shown. In-
tuitively, the embedding loss does not give special
consideration to the minority categories, but with
the help of class-aware soft margin, the trade-off of
µ1 (in Fig. 3) can be optimized by shifting the deci-
sion boundary to encourage the tail classes to have
larger margins. So yellow samples (tail classes) are
classified correctly outside of the original margin
but within the enlarged margin, and the embedding
loss has no gradient for these samples. Following
the trade-off between the class margins, we adopt a
class-aware margin for multiple classes of the form

µ̃i ∝ n
−1/4
i =

η

n
1/4
i

. (4)

Here η is a hyper-parameter to be tuned. There-
fore, when yki = −1, the loss can be computed as
max

{
0, µ̃i −∆k

i

}
.

Meanwhile, our loss can be combined with a
re-weighting strategy to be more efficient when it
comes to long-tailed distribution data. We then
define the reference weight based on the empirical
class frequencies {n1, ..., nC} on the training set:

wi =
(1/ni)

γ

∑C
i=1 (1/ni)

γ
, (5)

where γ is a scale hyper-parameter to provide more
flexibility. Hence, the re-weighted class-specific
embedding loss is defined as:

ℓcse =

{
wi∆

k
i , if ỹki = 1,

max
{
0, wi

(
µ̃i −∆k

i

)}
, if ỹki = −1,

(6)

Lcse =
∑N

k=1 ℓcse
N

. (7)

The overall process of class-specific embedding
loss is outlined in Algorithm 1.

3.5 Multi-Label Classification Loss
Our method can be easily combined with the ex-

isting multi-label classification loss functions (Rid-
nik et al., 2021; Lin et al., 2017; Cui et al., 2019;
Wu et al., 2020), regardless of whether they are
designed for long-tailed distributions or not. By

Algorithm 1: Class-Specific Embedding
Loss

Input: Text embeddings of textual descriptions
(captions) t, labels ỹ, prompt o

Output: Class-Specific Embedding Loss Lcse

1 for k = 1, 2, ..., N do
2 ℓcse = 0;
3 for i = 1, 2, ..., C do
4 Calculate class-aware soft margin µ̃i by

Eq. 4;
5 Calculate weight wi by Eq. 5;
6 Calculate ∆k

i = 1− cos
(
tki , oi|Mm

)
;

7 if ỹk
i = 1 then

8 ℓcse = wi∆
k
i ;

9 else
10 ℓcse = ReLU

(
wi

(
µ̃i −∆k

i

))
;

11 Calculate Lcse by Eq. 7.

blending the classification loss functions with our
proposed CSE loss, our method facilitates prompt
learning of more refined class descriptions and se-
mantic relationships between categories, particu-
larly between head and tail classes.

In this study, we introduce the distribution-
balanced loss (Wu et al., 2020) as the classification
loss function, which can be formulated as:

r = α+ σ

(
β ×

(
1
ni∑C
i=1

1
ni

− θ

))
, (8)

vi = −κ×− log

(
1

ni/N
− 1

)
, (9)

ℓcls =

{
−r
(
1− qki

)γ
log
(
qki
)
, if yki = 1,

− r
ζ

(
qki
)γ

log
(
1− qki

)
, if yki = −1,

(10)
where qki = σ

(
zki − vi

)
is for positive instances,

qki = σ
(
ζ
(
zki − vi

))
is for negative ones and

α, β, θ, κ, ζ are hyperparameters. Then Lcls =∑N
k=1 ℓcls/N .
Hence, the overall training loss can be written

as:
L = λLcls + (1− λLcse) , (11)

where λ ∈ [0, 1] is a hyperparameter to balance
Lcls and Lcse.

4 Experiment

4.1 Benchmark Setting

Following (Wu et al., 2020; Guo and Wang, 2021),
we conduct experiments on two datasets for long-
tailed multi-label visual recognition: VOC-LT and
COCO-LT (Wu et al., 2020). They are artificially
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Datasets VOC-LT COCO-LT
Methods total head medium tail total head medium tail
RN-50
ERM 70.86 68.91 80.20 65.31 41.27 48.48 49.06 24.25
RW 74.70 67.58 82.81 73.96 42.27 48.62 45.80 32.02
Focal Loss (Lin et al., 2017) ICCV’17 73.88 69.41 81.43 71.56 49.46 49.80 54.77 42.14
RS (Shen et al., 2016) ECCV’16 75.38 70.95 82.94 73.05 46.97 47.58 50.55 41.70
ML-GCN (Chen et al., 2019b) CVPR’19 68.92 70.14 76.41 62.39 44.24 44.04 48.36 38.96
OLTR (Liu et al., 2019) CVPR’19 71.02 70.31 79.80 64.95 45.83 47.45 50.63 38.05
LDAM (Cao et al., 2019) NeurIPS’19 70.73 68.73 80.38 69.09 40.53 48.77 48.38 22.92
CB Focal (Cui et al., 2019) CVPR’19 75.24 70.30 83.53 72.74 49.06 47.91 53.01 44.85
BBN (Zhou et al., 2020) CVPR’20 73.37 71.31 81.76 68.62 50.00 49.79 53.99 44.91
DB Focal (Wu et al., 2020) ECCV’20 78.94 73.22 84.18 79.30 53.55 51.13 57.05 51.06
LTML (Guo and Wang, 2021) CVPR’21 81.44 75.68 85.53 82.69 56.90 54.13 60.59 54.47
CLIP (Radford et al., 2021) ICML’21 84.30 63.60 88.03 97.03 56.19 35.73 60.52 68.45
CoOp (Zhou et al., 2022b) IJCV’22 81.34 65.10 81.54 93.37 54.94 38.06 56.67 67.51
CoCoOp (Zhou et al., 2022a) CVPR’22 78.63 64.33 80.51 87.94 46.02 36.02 50.57 48.82
DualCoOp (Sun et al., 2022) NeurIPS’22 81.03 66.45 80.53 92.33 53.11 40.48 55.20 62.11
TaI-DPT (Guo et al., 2023) CVPR’23 83.75 66.27 85.17 94.57 56.23 40.52 58.40 66.09
LMPT (ours) 85.44 66.62 88.11 97.86 58.97 41.87 61.60 69.60
ViT-B/16
CLIP (Radford et al., 2021) ICML’21 85.77 66.52 88.93 97.83 60.17 38.52 65.06 72.28
CoOp (Zhou et al., 2022b) IJCV’22 86.02 67.71 88.79 97.67 60.68 41.97 63.18 73.85
CoCoOp (Zhou et al., 2022a) CVPR’22 84.47 64.58 87.82 96.88 61.49 39.81 64.63 76.42
LMPT (ours) 87.88 72.10 89.26 98.49 66.19 44.89 69.80 79.08

Table 1: mAP performance of the proposed method and comparison methods. Above the dotted line is the
performance of image-only models and below is that of vision-language models.

sampled from two multi-label recognition bench-
marks, PascalVOC (Everingham et al., 2015) and
MS-COCO (Lin et al., 2014), respectively.

4.2 Experimental Settings

Metrics. As in (Liu et al., 2019), the classes are
split into three groups by the number of their train-
ing examples: head classes each contain over 100
samples, medium classes each have between 20 and
100 samples, and tail classes with under 20 sam-
ples each. We use mean average precision (mAP)
to evaluate the performance of long-tailed multi-
label visual recognition for all the classes.
Implementation Details. We adopt CLIP ResNet-
50 (He et al., 2016) or ViT-B/16 (Dosovitskiy et al.,
2020) as the visual encoder and use the correspond-
ing CLIP Transformer as the text encoder. During
training, the parameters of both the two encoders
are kept frozen, and only learnable prompts are op-
timized. SGD optimizer is adopted to learn prompt
tokens, and the training epochs are set to 30. The
learning rates for COCO-LT and VOC-LT are em-
pirically initialized with 1e-4, 5e-4, and decay by
the cosine annealing rule during training. For loss
functions, η in Eq. 4, γ in Eq. 5 and λ in Eq. 11 are

set as 1.0, 1.0 and 0.5, respectively. Other hyper-
parameters in DB loss are set as the same as (Wu
et al., 2020).

4.3 Long-Tailed Multi-Label Visual
Recognition

To evaluate the effectiveness of the proposed
method, firstly we compare it with previous meth-
ods of image-only models on the two long-tailed
multi-label datasets. The compared methods in-
clude Empirical Risk Minimization (ERM), a
smooth version of Re-Weighting (RW) using the
inverse proportion to the square root of class fre-
quency, Re-Sampling (RS) (Shen et al., 2016), Fo-
cal Loss (Lin et al., 2017), ML-GCN (Chen et al.,
2019b), OLTR (Liu et al., 2019), LDAM (Cao
et al., 2019), Class-Balanced (CB) Focal (Cui
et al., 2019), BBN (Zhou et al., 2020), Distribution-
Balanced (DB) Focal (Wu et al., 2020) and
LTML (Guo and Wang, 2021). The mAP perfor-
mance of different methods is shown in Table 1.
The prior best performance is achieved by LTML –
mAP of 81.44% over all classes on VOC-LT and
56.90% over all classes on COCO-LT.

Furthermore, we compare zero-shot and prompt
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Datasets VOC-LT
Methods total head medium tail
BCE 82.18 64.90 83.17 94.30
MLS 84.30 64.31 84.82 97.47
Focal Loss 85.37 66.17 87.70 97.52
CB Loss 85.25 65.37 87.71 97.20
R-BCE-Focal 84.56 66.01 86.61 97.67
ASL 86.40 69.12 88.79 98.07
DB Focal 87.88 72.10 89.26 98.49

Datasets COCO-LT
Methods total head medium tail
BCE 58.04 41.79 58.86 73.90
MLS 61.26 41.71 64.11 74.58
Focal Loss 54.40 37.60 59.36 62.33
CB Loss 56.45 34.61 58.77 74.52
R-BCE-Focal 60.13 38.11 64.87 72.79
ASL 64.89 43.18 68.22 78.43
DB Focal 66.19 44.89 69.80 79.08

Table 2: mAP performance of the proposed method with
different multi-label loss functions.

learning methods based on CLIP on the two bench-
marks. The mAP performance of these methods is
shown in Table 1 as well. For a fair comparison, we
initialize the prompt as the default hand-crafted one
“a photo of a" for all the methods. The results show
that when using ViT-B/16 as the backbone, even
the overall mAP performance of zero-shot CLIP
reaches 85.77% and 60.17%, which outperforms
previous SOTA LTML by 4.33 points (85.77%
vs.81.44%) and 3.27 points (60.17% vs.56.90%)
on the two datasets, respectively. Therefore, it is
meaningful to explore how to use prompt tuning
based on CLIP effectively for better performance.
From the perspective of prompt tuning methods,
when using ResNet-50 as the backbone, the perfor-
mance of our method on VOC-LT is more promis-
ing, which is 4.1 points, 6.81 points, 4.41 points
and 1.69 points better than CoOp, CoCoOp, Du-
alCoOp and TaI-DPT, which are popular prompt
learning methods for single-label and multi-label
recognition. The performance on COCO-LT is
similar to that on VOC-LT, which is 4.03 points,
12.95 points, and 5.86 points better than CoOp, Co-
CoOp, and DualCoOp. When replacing the back-
bone with ViT-B/16, the overall mAP performance
of our method can further boost up to 87.88% and
66.19% on VOC-LT and COCO-LT, which is the
current new state-of-the-art of the two datasets.

4.4 Ablation Analysis

Components Analysis. To further analyze which
component makes our methods performant for
LTML, we conduct a set of ablation studies and
report the results in Table 3. We first conduct exper-

iments with CLIP and the mAP performances are
85.77% on VOC-LT, 60.17% on COCO-LT, which
surprisingly outperforms the prior SOTA LTML. It
indicates that pre-trained VLMs demonstrate a ro-
bust capability for visual recognition, providing
a solid foundation for our approach. However,
the mAP performance of the tail classes outper-
forms the head classes by nearly 30 points on both
VOC-LT and COCO-LT. Then CoOp is benefited
from soft prompts and the mAP performance is
improved to 86.02% on VOC-LT and 60.68% on
COCO-LT, with 0.25% and 0.51% increments. Be-
sides, we design the class-specific embedding loss
with class-aware soft margin and re-weighting to
learn more fine-grained and class-related prompts
that build semantic relationships across different
classes, especially for the tail classes by encour-
aging those classes to have larger margins and
weights. The mAP performances of head, medium,
and tail classes after adding the embedding loss
are all significantly improved and the overall mAP
surpasses CoOp by 1.26% and 4.66% on VOC-LT
and COCO-LT, which demonstrates our embedding
loss can help prompts learn fine-grained classes de-
scriptions and semantic relationships across the
classes. Finally, the integration of CASM and RW
strategy further improves the mAP performance
slightly, mainly for the tail performance by 0.65%
and 1.12% on VOC-LT and COCO-LT.
Multi-Label Classification Loss Functions. We
compare a number of multi-label classification loss
functions, including Binary Cross-Entropy Loss
(BCE), Multi-Label Soft Margin Loss (MSL), Fo-
cal Loss, CB Loss, R-BCE-Focal, Asymmetric
Loss (ASL) and DB Focal. As illustrated in Ta-
ble 2, DB Focal loss that takes the co-occurrence
of labels and the dominance of negative labels into
account works significantly better than other multi-
label classification loss for the LTML task.
Effectiveness of Text Supervision. We further
compare our method with fine-tuning CLIP’s im-
age encoder when using ResNet-50 as the back-
bone to explore whether the significant effect of
our approach is due to text supervision or simply
because the CLIP’s image encoder is so powerful.
In order to prevent interference with the trained
CLIP’s image encoder during the fine-tuning phase,
we only fine-tune a fully connected layer added
at the end of the image encoder. The results are
shown in Fig. 4. Obviously, fine-tuning the image
encoder shows promising results, but still largely
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Soft
Prompt

Embedding
Loss

Class-Aware
Soft Margin Re-weighting VOC-LT avg.∆ COCO-LT avg.∆total head medium tail total head medium tail

85.77 66.52 88.93 97.83 60.17 38.52 65.06 72.28
✓ 86.02 67.71 88.79 97.67 +0.29 60.68 41.97 63.18 73.85 +0.91
✓ ✓ 87.28 71.07 89.01 97.84 +0.51 65.34 44.27 69.39 77.96 +5.23
✓ ✓ ✓ 87.62 72.01 89.26 98.13 +1.99 65.81 44.90 69.71 78.76 +5.79
✓ ✓ ✓ ✓ 87.88 72.10 89.26 98.49 +2.17 66.19 44.89 69.80 79.08 +5.98

Table 3: Ablation analysis on different components of the our method. “avg.∆" average performance improvement.

underperforms LMPT, which suggests that the gra-
dients that went through the text encoder provide
more useful information.
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Figure 4: mAP performance of different methods w/o
text supervision on two datasets. (a) VOC-LT. (b)
COCO-LT.

4.5 Case Analysis

To better understand how our method deals with
long-tailed multi-label data, we performed qualita-
tive experiments with ResNet, CLIP, and ours on
COCO-LT and VOC-LT. Fig. 5 shows several cases
where the model justifies its abilities for the pre-
diction. For example, in the third column, ResNet
only recognizes [person] (belongs to head classes)
and fails to classify the image to [train] (belongs
to tail classes), which is a pervasive challenge en-
countered by image-only models. The emergence
of CLIP is a great remedy for this issue, owing to
its huge training data and effective text supervision.
Nevertheless, simple hand-crafted templates as
prompts still cannot accurately identify categories
as they cannot describe the characteristics of each
category. Understanding the inter-class relation-
ships, particularly among head and tail categories,
presents a formidable challenge in multi-label vi-
sual recognition, which is essential for achieving
optimal performance in this domain. With the aid
of our approach, utilizing prompts that learn from
a large corpus of image-caption data, it has be-
come feasible to discern the semantic relationships
between categories and accurately predict the rele-
vant categories of simple objects, even in challeng-
ing scenarios such as identifying [stop sign] from
images. Therefore, our proposed method demon-
strates significant advantages in effectively address-
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Figure 5: Example decisions from our model, CLIP, and
ResNet.

ing the intricate relationship among multiple labels
and the long-tailed problem with the aid of text
supervision.

5 Conclusion

In this work, we propose a new view of prompt tun-
ing for long-tailed multi-label visual recognition
by learning class-specific contexts from the align-
ment of prompts and textual description (caption),
which complements more fine-grained features and
builds semantic relationships across head and tail
classes. Considering the class imbalance, a novel
class-specific embedding loss with the class-aware
soft margin and re-weighting strategy is introduced
to promote increased generalization among the tail
classes. Furthermore, we integrate a distribution-
balanced loss as the classification loss function in
consideration of its empirical efficacy compared to
alternative loss functions. Our method exhibits sig-
nificant improvement over the previous state-of-the-
art (SOTA) and zero-shot CLIP on VOC-LT and
COCO-LT. Additionally, We hope our approach
will inspire future work in this field.
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Abstract

Object hallucination poses a significant chal-
lenge in vision-language (VL) models, often
leading to the generation of nonsensical or un-
faithful responses with non-existent objects.
However, the absence of a general measure-
ment for evaluating object hallucination in VL
models has hindered our understanding and
ability to mitigate this issue. In this work, we
present NOPE (Negative Object Presence Eval-
uation), a novel benchmark designed to assess
object hallucination in VL models through vi-
sual question answering (VQA). We propose a
cost-effective and scalable approach utilizing
large language models to generate 29.5k syn-
thetic negative pronoun (NegP) data of high
quality for NOPE. We extensively investigate
the performance of 10 state-of-the-art VL mod-
els in discerning the non-existence of objects
in visual questions, where the ground truth an-
swers are denoted as NegP (e.g., "none"). Ad-
ditionally, we evaluate their standard perfor-
mance on visual questions on 9 other VQA
datasets. Through our experiments, we demon-
strate that no VL model is immune to the vul-
nerability of object hallucination, as all models
achieve accuracy below 10% on NegP. Further-
more, we uncover that lexically diverse visual
questions, question types with large scopes, and
scene-relevant objects capitalize the risk of ob-
ject hallucination in VL models.

1 Introduction

In recent years, vision-language (VL) research has
witnessed a proliferation of studies focusing on
diverse methods, models, and learning strategies
aimed at bridging the performance gap between
human and model capabilities (Yang et al., 2021;
Yi et al., 2018; Zhou et al., 2020; Ray et al., 2019;
Gokhale et al., 2020; Dai et al., 2021, 2022; Ishii
et al., 2021; Lovenia et al., 2022; Ji et al., 2022b;

∗ The majority of the work was done when the author
was studying at HKUST.

† Joint second authors.

Figure 1: Example of object hallucination and incor-
rectness in VQA. The model hallucinates a non-existent
man sitting on the closest bench in the left image, while
in the right image, it simply answers inaccurately.

Lovenia et al., 2023). Furthermore, researchers
have constructed more rigorous VL benchmarks to
continually raise the performance standard (Antol
et al., 2015; Sheng et al., 2021; Li et al., 2021b;
Goyal et al., 2017; Marino et al., 2019). However,
despite these efforts, VL models continue to grap-
ple with the persistent issue of object hallucination,
where generated responses unfaithfully contain ob-
jects non-existent in the input images (Ji et al.,
2022a; Rohrbach et al., 2018; Dai et al., 2023b;
Kayhan et al., 2021). As illustrated in Figure 1, the
failure of the model to faithfully ground the visual
input leads to the production of unfaithful answers.
These instances of object hallucination not only
result in incorrect responses but also shed light
on fundamental issues within VL models, such as
over-reliance on unimodal priors (Jing et al., 2020;
Agrawal et al., 2018; Gupta et al., 2022; Niu et al.,
2021a) and statistical bias (Agrawal et al., 2016;
Goyal et al., 2017; Agarwal et al., 2020). These
underlying problems impede the models’ ability to
comprehend the concept of non-existence.

Despite the critical importance of addressing ob-
ject hallucination in VL models, only a limited
number of previous works have focused on miti-
gating this issue, primarily due to the challenges
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posed by the existing evaluation method in terms of
generalization and scalability. CHAIR (Rohrbach
et al., 2018) has primarily concentrated on eval-
uating non-existent objects based on handcrafted
parsing criteria as well as a predefined list of object
categories and their synonyms in the context of im-
age captioning tasks, typically utilizing 80 object
categories from MSCOCO (Rohrbach et al., 2018;
Biten et al., 2022; Yi et al., 2018). However, the ap-
plicability of CHAIR to other datasets requires the
generation of a new object category list, which ex-
hibits varying levels of granularity across different
studies (Dai et al., 2023b; Biten et al., 2022).

In this paper, we present NOPE (Negative Object
Presence Evaluation) to quantitatively assess object
hallucination through VQA. We establish a clear
distinction between object hallucination and incor-
rectness as follows: a) object hallucination refers
to the phenomenon in VQA where a VL model’s
response includes a non-existent object, despite the
ground truth answer being a negative indefinite pro-
noun (e.g., "none", "no one", "nobody", "nowhere",
"neither") (Quirk et al., 1985) (NegP); and b) in-
correctness occurs when a VL model fails to ac-
curately respond to a question with a ground truth
answer that is anything other than NegP, denoted
as Others = P\NegP, where P represents the set
of all phrases. By leveraging NegP, we evaluate
object hallucination in NOPE, while Others allows
us to assess normative correctness across diverse
corpora. Our contributions are as follows:

1. By utilizing NOPE, we construct a VQA diag-
nostic benchmark to measure the object hallu-
cination rate of VL models. Our experiment
covers a balanced proportion of NegP and
Others data with a total of ∼30k and ∼36k
data in the dev and test sets, and includes 10
state-of-the-art VL baselines performances.
We provide an in-depth analysis of the per-
formances and limitations of the baselines.

2. We propose a novel automatic data generation
pipeline to produce high-quality NegP VQA
data from existing image captioning data by
multi-turn prompting instruction-tuned large
language models (LLMs). We verify and
analyze our generated NegP data through
automatic validation and human validation.
Our list-then-rewrite method produces high-
quality NegP VQA data with 92% validity.

3. Through extensive analysis in NOPE, we find

that VL models tend to hallucinate more on
data with higher lexical diversity, more scene-
relevant objects, and larger answer scopes.

2 Related Work

2.1 Hallucination in Vision-Language

Only a few works study hallucination in vision-
language, with the vast majority of them focus-
ing on the task of image captioning. Rohrbach
et al. (2018) propose CHAIR, an automatic eval-
uation metric to measure object hallucination in
generated image captions, which is defined as a
phenomenon where the models produce captions
containing objects that do not exist in the input
visual context. Rohrbach et al. (2018); Dai et al.
(2023b); Sharma et al. (2018) also show that stan-
dard captioning metrics, e.g., CIDEr (Vedantam
et al., 2015), METEOR (Banerjee and Lavie, 2005),
SPICE (Niu et al., 2022), under-penalize object hal-
lucination. These evaluations open up a way for
efforts to mitigate hallucination in image caption-
ing (Biten et al., 2022; Zhang et al., 2021; Xiao
and Wang, 2021; Dai et al., 2023b). Concurrent
to our work, Li et al. (2023b) propose POPE and
frame the task of evaluating object hallucination as
a binary-class VQA with only "yes/no" answer.

2.2 Question Generation for VQA Data

Most works rely on human annotators to generate
visual questions with ensured quality: VQAv2.0
and VQAv1.0 (Goyal et al., 2017; Antol et al.,
2015), Visual Genome (Krishna et al., 2016),
Visual7W (Zhu et al., 2016), AdVQA (Sheng
et al., 2021), Vizwiz (Gurari et al., 2018, 2019),
TextVQA (Singh et al., 2019), R-VQA (Lu et al.,
2018), VQA-Rephrasings (Shah et al., 2019), etc.

However, the cost of human annotation is expen-
sive, thus encouraging the exploration of a more
scalable option: automatic VQA data generation.
Ren et al. (2015) present a simple question gen-
eration algorithm with a syntactic parser to con-
vert image descriptions into QA forms. Johnson
et al. (2017) use a functional program to generate
synthetic images of objects as well as their rela-
tionships and relevant QA pairs using the ground-
truth annotations. Kafle and Kanan (2017) popu-
late multiple question templates with the image
annotations (e.g., region descriptions, relationship
graphs, bounding boxes) obtained from image cap-
tioning data to construct TDIUC. Changpinyo et al.
(2022) annotate candidate answers by syntactically
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Figure 2: Only 0.4% of existing VQA corpora consist
of NegP data. The rest 99.6% is Others.

parsing the captions, then derive questions from
them. While prior studies focus on generating
Others VQA data, we aim to generate NegP VQA
data, which has never been done by past works.

3 NOPE to Overcome Limited NegP

As shown in Figure 2, there is only a minuscule
amount of NegP data in the existing VQA datasets.
In total, there are only ∼0.4% of the existing
VQA datasets are NegP, which are not sufficient
to assess object hallucination in VL. For this rea-
son, we create NOPE through a novel NegP data
generation method that aims to produce ques-
tions whose ground truth answers point to the ab-
sence of appropriate existent objects. Such ground
truth NegP answers are denoted as ANegP =
{”none”, ”nothing”, ”nowhere”, ”zero”, ”0”,
”no one”, ”nobody”, ”neither”}. We automati-
cally generate synthetic NegP VQA data by lever-
aging the zero-shot prompting abilities of pre-
trained LLMs. To ensure the quality, we analyze
the generated synthetic NegP VQA data through
both automatic and manual human evaluation. The
resulting NegP dataset is referred to as NOPE
(Negative Object Presence Evaluation).

3.1 Prompting Methodology

We utilize an image captioning dataset Dcap =
{(vi, ci, li}ni=1, where vi denotes a visual context,
ci denotes a textual caption, and li denotes the
relevant image label annotations (i.e., names of ob-
jects in vi). We rely on ci to describe the objects
and the relationship between objects depicted in
vi. We explore two prompting methods with vary-
ing degrees of flexibility to generate NegP ques-
tions from image captions: generate-from-scratch
and list-then-rewrite. For clarity, we include all
prompt templates with the examples in Appendix A

Figure 3: Human evaluation results of NegP questions
by generate-from-scratch and list-then-rewrite ac-
cording to the categories in §3.2.

and the automatic validation methods to ensure the
validity of the generated questions in Appendix C.

Generate-from-scratch In this method, we
prompt an LLM to generate a question qi given
three different variables: 1) an interrogative word
wi ∈ {”what”, ”where”, ”how many”, ”who”,
”which”} to assert the question type needed for qi,
2) a ground truth NegP answer ai ∈ ANegP that
matches wi, and 3) an image caption ci.

List-then-rewrite LLMs can infer conversa-
tional contexts and follow instructions over multi-
ple turns (Nijkamp et al., 2023; Volum et al., 2022;
Bang et al., 2023). Leveraging this multi-turn capa-
bility of LLMs, we frame our question generation
task into two steps. (1) For object listing, given
an image caption ci and the relevant object anno-
tations li, we prompt an LLM to list m objects
oi = {oi,j}mj=1 that are “closely related”1 but not
mentioned. (2) For question rewriting, the LLM
has to paraphrase a provided reference question,
which is sourced from a diverse pool of human-
generated question templates with an object place-
holder in Appendix B. After obtaining m listed
objects from (1), we pick m random question tem-
plates from the pool and replace the object place-
holders with the listed objects oi to construct the
reference questions ri = {ri,j}mj=1. We prompt the
LLM to paraphrase ri to qi = {qi,j}mj=1 to increase
the lexical variety of the rewritten questions qi.

3.2 Human Evaluation Guidelines

We conduct a human evaluation to verify and ana-
lyze the quality of the generated questions obtained
from §3.1, as well as measure the effectiveness

1We use “closely related” (hard) for brevity. However,
this object-scene relevance can be switched to “loosely related”
or “completely unrelated” in practice.
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Figure 4: Distribution of NOPE’s NegP questions by
their starting phrases. The arc length is proportional to
the number of questions containing the word.

of the automatic validations performed. We em-
ploy three human annotators to perform the human
evaluations. Detailed guidelines and examples are
given prior to evaluation. We collect generated
questions that are judged as valid and invalid by
their automatic validation methods. Given a visual
context, an image caption, a ground truth answer
∈ ANegP, and a generated question, the annotators
are asked to determine whether: 1) the question is
valid, 2) the question has a possible Others answer
alternative, 3) the question does not match the an-
swer (according to both the image caption and the
image), 4) the question does not match the answer
(only according to the image), or 5) the question is
unclear or confusing. The examples provided for
each category can be seen in Appendix E.

3.3 Results and Quality Analysis

Using automatic validation approaches explained
in §3.1 and implementation details in Appendix D,
we compare the capabilities of various instruction-
tuned LLMs in generating NegP VQA data. From
the automatic validation results and analysis pre-
sented in Appendix F, we find that employing
ChatGPT yields the highest-quality generated
NegP questions by both generate-from-scratch
and list-then-rewrite prompting methods, hence
its use in the human evaluations. We conduct a
human evaluation on randomly selected 150 gener-
ated questions from each method. For each sample,
we ask 3 human experts to judge each generated
question into one of the 5 options defined in §3.2.

Figure 3 shows the result of our human evalua-
tion. For generate-from-scratch, only ±50% out

Figure 5: Object-scene relevance in the NOPE dataset.
Related denotes “closely related” and unrelated de-
notes “completely unrelated” for brevity.

of the subset that is judged as valid by the auto-
matic validation is actually a valid and appropriate
NegP question according to the human annotators,
and the rest is judged as incorrect by human anno-
tators. The list-then-rewrite prompting approach,
on the other hand, displays a significantly better
question-answer generation quality with ±92% of
the generated questions denoted as valid by the
human annotators. This fact demonstrates that ex-
isting LLMs still fail to perform complex tasks in
an end-to-end manner, while decomposing the com-
plex tasks into several subtasks and coupling them
with simple rule-based approaches can significantly
improve the LLMs’ ability to perform the complex
task effectively and efficiently.

A closer look at the questions generated by the
generate-from-scratch method shows that while
LLMs usually succeed in making questions in an
end-to-end manner, 12% of the NegP generated
questions include an existing object even though
this information is sufficiently provided by the
image caption. Moreover, 14% of the time, the
generated questions also fail to include any ob-
jects and are overly generic, e.g., “What is not
included in this image?”, which aligns with the
observations of (Jang et al., 2023; Hosseini et al.,
2021; Ettinger, 2020; Kassner and Schütze, 2020)
that LMs perform poorly on negation and strug-
gles to understand that negation changes semantics.
These facts show that LLMs cannot consistently
perform this implicit task breakdown. From this
human evaluation result, we can conjecture that the
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dev test

NegP 14718 17983
NOPE (§3.4) 14718 14773
AdVQA 0 88
R-VQA 0 9
TDIUC 0 6
Visual7W 0 1276
VQAv1 Abstract Scenes 0 180
VQAv2 Balanced Real 0 1651

dev test

Others 14850 18150
AdVQA 1350 1650
R-VQA 2700 3300
TDIUC 1350 1650
TextVQA 1350 1650
Visual7W 2700 3300
VizWiz 1350 1650
VQA-Rephrasings 1350 1650
VQAv1 Abstract Scenes 1350 1650
VQAv2 Balanced Real 1350 1650

Table 1: The data statistics of NegP (left) and Others (right) subsets used in the evaluation.

generate-from-scratch prompting method is not
reliable and fails to elicit the LLMs’ understand-
ing of complex tasks such as question generation.
Using the list-then-rewrite method, we generate
29.5k NegP VQA data to build the NOPE dataset
from OpenImagesV7 (Kuznetsova et al., 2020).

3.4 Dataset Statistics

NegP Question Distribution We cluster the
generated questions into various types based on
the starting n-grams in Figure 4. NOPE dataset ex-
hibits a very broad lexical diversity of the generated
questions, including variations in which the ques-
tions start with words other than the typical inter-
rogative words (e.g., “what”, “where”, “how”, etc.),
such as “Could you tell...”, “In what location...”,
“Do you know...”, and more. This is vital to resist
VL models’ notorious brittleness against linguis-
tic variations (Shah et al., 2019; Ray et al., 2019;
Kervadec et al., 2021; Whitehead et al., 2020).

Object-Scene Relevance Based on the descriptor
used in the object listing step in list-then-rewrite1,
the data in NOPE are divided into three categories.
Figure 5 illustrates how these object-scene rele-
vance descriptors of the generated NegP VQA data
correspond to the relationship between the textual
semantic similarity of the selected object and the
image caption, as well as the image-text seman-
tic similarity of the image and the QA pair. We
compute the textual similarity using the Sentence-
Transformer library2 and the image-text similarity
using CLIPScore (Hessel et al., 2021).

2https://www.sbert.net/docs/usage/semantic_
textual_similarity.html

4 Experimental Settings

The object hallucination benchmark consists of the
validation and test sets of 10 VQA corpora, includ-
ing NOPE (§3.4) with balanced object-scene rele-
vance proportions. It displays the comparison be-
tween incorrectness and object hallucination over
various baselines, which serves as a foundation for
assessing object hallucination in addition to the
standard incorrectness in 10 VL models.

4.1 Datasets

Table 1 describes the data distribution of the dev
and test sets of the benchmark. Each set re-
spectively comprises ∼30k and ∼36k data, main-
taining near-balanced proportions of NegP and
Others data. To ensure the quality of the visual
questions in the benchmark, we also analyze the
lexical diversity and the fluency of the compris-
ing datasets, which are useful to assert a robust
evaluation using questions that are linguistically
diverse and coherent. In Figure 6, we show that
the datasets whose data construction utilizes auto-
matic question generation, i.e., NOPE and TDIUC,
have comparable lexical diversity and fluency to
the other datasets, which entirely rely on question
generation by human annotators.

For lexical diversity, we employ length-agnostic
lexical diversity metrics, i.e., moving average
type-token ratio (MATTR) (Covington and Mc-
Fall, 2010), measure of textual lexical diversity
(MTLD) (McCarthy, 2005), and hypergeometric
distribution diversity (HDD) (McCarthy and Jarvis,
2007, 2010), and average them. We use Lexical-
Richness (Shen, 2021, 2022) v0.5.03 to calculate
these metrics. We also employ a large pre-trained
LM GPT-Neo (Black et al., 2021) with 2.7B param-

3https://pypi.org/project/lexicalrichness/
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Figure 6: Question quality in the benchmark in terms of
lexical diversity and fluency.

eters to compute the perplexity of the questions,
which is often used as a measure of both lexical di-
versity (Lewis et al., 2017; Tevet and Berant, 2021)
and fluency (Fan et al., 2018; Wang et al., 2019;
Cahyawijaya et al., 2021; Anonymous, 2023).

4.2 Baselines
For the baselines in our benchmark, we employ
various vision-language model architectures on the
benchmark in both zero-shot & few-shot and fine-
tuned fashion. For the fine-tuned setting, we uti-
lize five models: 1) OFA (Wang et al., 2022b),
which unifies architectures, tasks, and modalities
by formulating a unified sequence-to-sequence ab-
straction via handcrafted instructions to achieve
task agnosticism; 2) and 3) BLIP (Li et al., 2022),
which incorporates two key contributions, i.e., mul-
timodal mixture of encoder-decoder (MED) to
operate as either a unimodal encoder, an image-
grounded text encoder, or an image-grounded text
decoder, and CapFilt as a new dataset bootstrapping
method for learning from noisy image-text pairs;
4) ALBEF (Li et al., 2021a), which is trained using
momentum distillation to improve learning from
noisy web data; 5) GIT (Wang et al., 2022a), which
employs an image encoder and a text decoder pre-
trained using a language modeling objective to map
the input image to its corresponding description.

For the zero-shot setting, we employ: 1) BLIP-
2 (Li et al., 2023a), which utilizes a scalable mul-
timodal pre-training method to enable any LLMs
to ingest and understand images; 2) and 3) Prompt-
Cap (Hu et al., 2022), which is trained to gener-
ate captions that help downstream LMs answer vi-
sual questions; 4) InstructBLIP (Dai et al., 2023a),
which is an instruction-tuned version of BLIP-2
on various tasks including VQA. We also employ
5) OpenFlamingo (Alayrac et al., 2022; Awadalla
et al., 2023), which is an open-source version of

Model
size

# Pre-train
images

Zero-shot & Few-shot
PromptCapBASE 696M 34M
PromptCap 3B 34M
BLIP-2 3.8B 129M
OpenFlamingo 9B ∼2.5B

VQA fine-tuned
OFA 929M 34M
BLIP 385M 129M
BLIPCapFilt−L 385M 129M
ALBEF 628M 14M
GITLARGE 347M 1.4B
InstructBLIPFLANXL

3.8B 129M+

Table 2: VL baseline models in the benchmark.

a large pre-trained VL model specialized in few-
shot prompting, in the two-shot setting. Table 2
provides the model and data sizes of the baselines
and Appendix H lists the model variants.

4.3 Evaluation Settings

For both NegP and Others, we compute accu-
racy and METEOR (Banerjee and Lavie, 2005)
to measure the performance of vision-language
models on the benchmark. While accuracy mea-
sures the performance based on an exact match
between the generated answer and the ground truth
answer, METEOR caters to partial (i.e., unigram)
matches by computing a score for this matching us-
ing a combination of unigram-precision, unigram-
recall, and alignment between the unigrams in the
generated answer and ground truth answer. Addi-
tionally, for NegP, we employ a rule-based accu-
racy, referred to as NegP accuracy, which focuses
on determining whether the generated answer is
a negative indefinite pronoun (i.e., ∈ ANegP =
{”none”, ”nothing”, ”nowhere”, ”zero”, ”0”,
”no one”, ”nobody”, ”neither”}) or not. All
scores are computed per task and then the weighted
averages according to each task size are retrieved.

5 Results

We present the results on the test set of the bench-
mark in Table 3. Examples of object hallucination
are in Appendix I. While the VQA-finetuned base-
lines are slightly better at NegP and comparable
to the zero-shot & few-shot baselines on Others,
as in Figure 7, we observe that all zero-shot and
VQA-finetuned baselines notably perform much
worse on NegP tasks that Others with the aver-
aged discrepancies of ±22% and ±18% accuracy,

42



Others test (%) NegP test (%)

Overall Existing datasets NOPE test (§3.4) Overall

Acc. METEOR Acc. METEOR Acc. METEOR NegP Acc. Acc. METEOR

Zero-shot & few-shot
PromptCapBASE 30.18 21.45 2.87 3.05 0.21 0.29 0.95 0.68 0.78
PromptCap 32.69 22.66 3.61 2.20 0.42 0.56 1.67 0.99 0.85
BLIP-2 19.84 17.94 4.39 1.49 2.11 1.22 5.25 2.51 1.27
OpenFlamingo 14.29 24.32 0.09 7.96 0.00 0.08 0.02 0.02 1.49

VQA fine-tuned
OFA 29.43 17.06 3.24 4.10 2.75 9.11 8.21 2.84 8.21
BLIP 23.27 12.07 5.95 5.12 1.60 3.63 6.48 2.38 3.90
BLIPCapFilt−L 23.28 12.08 5.95 5.12 1.60 3.61 6.47 2.37 3.88
ALBEF 16.33 21.87 19.31 26.31 1.86 6.76 8.18 4.98 10.25
GITLARGE 41.00 21.75 34.89 20.43 4.00 5.90 17.92 9.51 8.49
InstructBLIP 40.62 22.55 21.40 13.50 5.08 5.19 17.69 7.99 6.67

Table 3: Weighted model performances on the test set of the benchmark. Errors made on Others VQA data represent
incorrectness, while errors made on NegP VQA data represent object hallucination. Bold and underline denote the
best performances overall and in the group, respectively.

respectively. This demonstrates that all baselines
are more vulnerable and susceptible to object hal-
lucination than standard incorrectness. In addition,
less incorrectness does not entail less object hallu-
cination. For instance, PromptCapBASE , Prompt-
Cap, and BLIP have lower scores on NegP than
ALBEF despite outperforming it on Others setting.
It also means that existing evaluations that solely
utilize Others cases cannot effectively capture the
models’ risk of object hallucination.

Another point that we observe is, GIT out-
performs the other baselines on both NegP and
Others data, as well as manages to surpass much
bigger models (e.g., InstructBLIP and Flamingo),
showing that GIT is more robust against both ob-
ject hallucination and general incorrectness, despite
being the smallest in size (Table 2) and having a
simple architecture. This achievement could be at-
tributed to its substantial number of pre-training
images, which is an order of magnitude larger
than those of the other baselines. This also aligns
with (Hoffmann et al., 2022), in which for the same
compute budget, a smaller model trained on more
data outperforms a larger model trained on fewer
data and achieves more optimal performance.

6 Analysis and Discussions

6.1 Object hallucination and lexical diversity

Table 3 also show that NegP performance scores
on existing datasets are significantly higher than
on NOPE across the metrics, indicating that ob-

Figure 7: All baselines consistently score lower on
NegP (%NegP Acc.) than Others (%Acc.).

ject hallucination is more likely to occur when the
models attempt to solve the questions in NOPE.
This is mainly due to the NOPE dataset having
a relatively higher lexical diversity compared to
the other NegP corpora, which are mostly com-
posed of VQAv2 and Visual7W (see in Figure 6).
This also aligns with the fact that NegP model
performances have a strong negative Pearson cor-
relation with the lexical diversity measures (r =
{−0.8,−0.66,−0.65,−0.7} for METEOR and
HDD, MTLD, MATTR, perplexity) and proves that
corpora with higher lexical diversity (e.g., NOPE)
provide more challenging NegP VQA problems to
assess object hallucination.

6.2 Object hallucination and language bias

As shown in Figure 9, among 5 NegP ques-
tion types, all VQA-finetuned VL models fail on
NegP questions about color (e.g., “What is the
color of...?”), object (e.g., “What is the object
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Figure 8: VL models are more prone to object halluci-
nation on lexically diverse NegP VQA data. Dot size
represents dataset size (§4.1).

Figure 9: NegP performance of VQA fine-tuned base-
lines over different question types.

beside...?”), and location (e.g., “Where is...?”),
while most VL models tend to hallucinate less
on NegP questions about counting (e.g., “How
many...?”) and person (e.g., “Who is using...?”). A
similar trend is observed for the zero-shot & few-
shot baselines. We further inspect these two cate-
gories and find out that their answer scopes are of
a smaller scope than the others in the training data.
For instance, the answers to counting questions are
often numbers ≤ 5, and the answers to the person
questions are often the generic "man", "woman",
"person", "people", and others which have fewer
variations compared to object types, color names,
or absolute and relative places. These facts suggest
that existing VL models have a strong language
bias (KV and Mittal, 2020; Niu et al., 2021b; Wu
et al., 2022) toward certain question types, which
result in acceptable NegP performances on those
question types. Nevertheless, language bias does
not solve object hallucination and even might make
it worse, due to the VL models having weak vi-
sual grounding skills to verify the answer to the
visual context, which might lead to errors on both
NegP and Others questions.

Figure 10: NegP performance of (left) zero-shot & few-
shot and (right) VQA fine-tuned baselines per object-
scene relevance.

6.3 Object hallucination and object-scene
relevance

As shown in Figure 10, all VQA fine-tuned models
perform lower when the object is closely related to
the scene compared to when the object is loosely
related or unrelated. This indicates that VL models
have some degree of understanding NegP based
on the relevance of the object in question with the
scene. Although this helps VL models to under-
stand about objects better in some cases, this also
causes VL models to hallucinate more on objects
that are relevant to the scene (Rohrbach et al., 2018;
Kayhan et al., 2021; Dai et al., 2023b). On the other
hand, the performance on loosely related or unre-
lated objects tend to be similar, which aligns with
the similarity analysis provided in Figure 5. In
contrast, for zero-shot & few-shot baselines, the
differences between object-scene relevance are less
apparent. However, in general, the NegP scores
are also very low, except for BLIP-2, which sug-
gests that most zero-shot models do not have an
adequate understanding of NegP.

7 Conclusion

We have addressed the critical issue of object hal-
lucination in VL models, which has been lacking a
general measurement. We have introduced NOPE
to assess object hallucination in VL models, investi-
gating the discernment of objects’ non-existence in
visual questions by 10 state-of-the-art VL models,
alongside their standard performances. Addition-
ally, we have presented a cost-effective and scal-
able method for generating high-quality synthetic
data with over 90% validity to overcome the severe
underrepresentation of NegP cases. Through our
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comprehensive experiments, we have demonstrated
that no VL model is exempt from object halluci-
nation, highlighting their lack of understanding of
negative object presence. Furthermore, we have
identified lexical diversity, question type, and the
relevance of the object to the visual scene as influ-
ential factors impacting VL models’ susceptibility
to object hallucination. These findings provide
valuable insights into the assessment of object hal-
lucination in VL, thereby paving the way for the
future development of enhanced VL models.

8 Limitation and Future Work

Evaluation Metrics for Object Hallucination
In this work, we show three metrics to measure
object hallucination and incorrectness, i.e., the ex-
act match accuracy, METEOR, and NegP accu-
racy. Nevertheless, in some cases, these metrics
fail to capture some equivalent answer that has the
same semantic meaning. For example, given an
NegP question “Where is the spoon in the picture?”
with the corresponding label “Nowhere”, a system
that answers with “There is no spoon in the picture”
will get 0 scores on these three metrics, despite the
answer is actually correct. We argue that the limi-
tation of the existing metrics might hinder further
research in alleviating object hallucination and we
expect future works to focus on developing better
metrics for measuring object hallucination.

Object Hallucination Outside of NegP Since
object hallucination refers to an effect (i.e., gen-
erating non-existent objects) and not a cause, our
measurement of object hallucination is limited to
NegP cases, in which a VL model unfaithfully in-
fers a supposedly non-existent object as existent in
the visual context. For cases where a VL model
provides an incorrect answer to Others VQA, the
fine line between misclassification and object hal-
lucination has not yet been defined.

Performances on Full Others Test Sets In or-
der to observe the incorrectness of VL models on
Others on various datasets, we compose a bal-
anced set of ∼15k data in our dev split and ∼18k
data in our test split from diverse VQA corpora. Ob-
taining the full performance on each of the source
datasets requires re-running the baselines on the
full test sets of each source dataset.

9 Ethics Statement

This research on object hallucination in vision-
language models aims to improve the reliability
and faithfulness of these models, which have sig-
nificant applications in various fields such as health-
care and autonomous driving. We acknowledge the
potential impact of our findings and commit to pro-
moting responsible and ethical use of these models.
We recognize that such models have the potential
to perpetuate biases and stereotypes, and we have
taken steps to mitigate this risk. For instance, we
ensured that the synthetic data used in this study
was generated in a manner that respects privacy and
does not perpetuate biases or stereotypes. Further-
more, we recognize the importance of transparency
and accountability in the development and use of
these models. Therefore, we commit to sharing
our findings and methodologies openly and making
them accessible to the wider research community.
We also acknowledge that these models can have
unintended consequences and commit to ongoing
monitoring and evaluation of their impact. Finally,
we recognize that the development and use of these
models must be guided by ethical principles that
prioritize human well-being and social responsibil-
ity. We are committed to upholding these principles
and contributing to the development of responsible
and ethical practices in the field of vision-language
modeling.
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A Prompt Templates

We provide the prompt templates and examples for the generate-from-scratch and list-then-rewrite
methods in Table 4 and Table 5, respectively.

Template 1
Create a question beginning with "<INTERROGATIVE_WORD>" from this image caption: "<IM-
AGE_CAPTION>" with an answer of "<ANSWER>".
Example: Create a question beginning with "who" from this image caption: "This image consists of an
airplane in the air. On which, we can see the text. In the background, there is sky." with an answer of
"nobody".
Generated question: Who is in the airplane in this image?

Template 2
Turn the text "<IMAGE_CAPTION>" into a "<INTERROGATIVE_WORD>" question with an answer
"<ANSWER>":
Example: Turn the text "This is an outside view. Here I can see the cars on the ground and there are two
persons standing. In the background there is a tent, shelter and trees. At the top of the image there is the
sky. At the bottom there is grass." into a "how many" question with an answer "none":
Generated question: How many buildings are visible in the outside view?

Template 3
Given an answer "<ANSWER>", generate an appropriate question starting with "<INTERROGA-
TIVE_WORD>" from the text "<IMAGE_CAPTION>".
Example: Given an answer "nowhere", generate an appropriate question starting with "where" from the
text "In this picture, we see a woman. She is staring at something and she might be posing for the photo.
We see a nail is pierced on her face. She might be taking bath. In the background, we see a wall and a
white color object which looks like a bathtub.".
Generated question: Where is the ideal location to put a nail on a person’s face while they are taking a
bath?

Template 4
Write a question that begins with "<INTERROGATIVE_WORD>" and is answered by "<ANSWER>"
based on the text "<IMAGE_CAPTION>".
Example: Write a question that begins with "what" and is answered by "nothing" based on the text "In
this image I can see food item in a cooking vessel, which is on the stove. In the background there are
some objects.".
Generated question: What can you see in the background of the image?

Template 5
Rewrite the statement "<IMAGE_CAPTION>" as a question that starts with interrogative phrase "<IN-
TERROGATIVE_WORD>" and has an answer of "<ANSWER>".
Example: Rewrite the statement "In the image I can see food item in the bowl. The background of
the image is blurred." as a question that starts with interrogative phrase "which" and has an answer of
"neither".
Generated question: Which part of the image is not blurred and which object is visible in the bowl?

Table 4: Prompt templates used in the generate-from-scratch (§3.1) and their corresponding examples.

51



Object Listing Template
Description:
"<IMAGE_CAPTION>"

List 10 tangible objects that are closely related to the description, but are not mentioned there. Also avoid
these objects: <IMAGE_LABELS>.
Example:
Description:
"In this picture we can see some food products in the glass jars."

List 10 tangible objects that are closely related to the description, but are not mentioned there. Also avoid
these objects: Vegetable.
Response:
1. Spices, 2. Canned fruits, 3. Nuts, 4. Sugar, 5. Coffee beans, 6. Honey, 7. Pasta, 8. Chocolates, 9. Tea
leaves, 10. Jams and preserves

Question Rewriting Template
Question templates:
<REFERENCE_QUESTIONS_BASED_ON_FIRST_TURN_ANSWER>

Paraphrase each of these <NUMBER> questions while keeping the sentence as a question with a question
mark.
Example:
Question templates:
1. Who is using the object above the spices?
2. What object is located under the canned fruits?
3. Who is holding the object on the right of the nuts?
4. What is the color of the sugar?
5. Who is using the coffee beans?
6. What object is located on the left of the honey?
7. What object is located on the left of the pasta?
8. What object is located on the left of the chocolates?
9. What is the color of the tea leaves?
10. Where is the jams and preserves located in the image?

Paraphrase each of these 10 questions while keeping the sentence as a question with a question mark.
Generated question:
1. Who is the user of the spices in the picture?
2. Which product can be found below the canned fruits?
3. Who is the individual holding the object to the right of the nuts?
4. Can you tell me the color of the sugar in the glass jars?
5. Who might be utilizing the coffee beans shown in the image?
6. What is the item on the right side of the honey?
7. What comes up on the left of the pasta in the photograph?
8. What is situated on the left of the chocolates in the picture?
9. What is the color of the tea leaves displayed in the glass jars?
10. Where exactly can the jams and preserves be found in this image?

Table 5: Prompt templates used in the list-then-rewrite (§3.1) and their corresponding examples.
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B Reference Question Templates

Table 6 presents the pool of question templates used to automatically build the reference questions for the
list-then-rewrite in §3.1.

No Question template NegP answer

1 What is the color of the <OBJECT>? none / nothing
2 What object is located above / under / on the left of / on the right of the

<OBJECT>?
none / nothing

3 Where is the <OBJECT> located in the image? nowhere
4 How many <OBJECT> are there in the image? zero / 0 / none
5 Who is holding / using the <OBJECT>? no one / nobody
6 Who is holding / using the object above / under / on the left of / on the right of

the <OBJECT>?
no one / nobody

Table 6: Question templates utilized to construct the reference questions for the question rewriting step in the
list-then-rewrite prompting methodology in §3.1.

C Automatic Validation Methodologies of NegP VQA Data Generation

Generate-from-scratch To ensure the validity of qi, we use a model fine-tuned on natural language
inference (NLI) to determine whether a generated question qi and answer ai pair (i.e., hypothesis) logically
entails its corresponding image caption ci (i.e., premise). We also utilize a fine-tuned binary classifier to
determine whether a generated question qi and answer ai pair fits a given visual context vi. If the question
qi and answer ai pair is true (entailment) or undetermined (neutral) given ci as well as matches with vi,
then the generated question qi is judged as valid by the automatic validation.

List-then-rewrite For the automatic validation of a listed object oi,j , we extract lemmatized noun tokens
from its corresponding image caption ci and obtain the object names from li as the objects present in
vi. If oi,j does not match with any of the extracted objects, then oi,j is a valid non-existent object. For
the automatic validation of a generated question qi,j , if qi,j does not contradict its respective reference
question ri,j , then the generated question qi,j is considered valid.

D Implementation Details of NegP VQA Data Generation

We implement §3.1 with the following LLMs that employ: 1) multi-task prompted fine-tuning, i.e.,
BLOOMZ (Muennighoff et al., 2022) and T0 (Sanh et al., 2022); 2) instruction meta-learning, i.e.,
OPT-IML (Iyer et al., 2022); 3) synthetic self-instruct, i.e., Alpaca (Wang et al., 2022c); 4) instruc-
tion (Wei et al., 2022a) and chain-of-thought fine-tuning (Wei et al., 2022b), i.e., FLAN T5 and FLAN
Alpaca (Chung et al., 2022); 5) multi-task instruction pre-training, i.e., ChatGLM (Zeng et al., 2023); 6)
conversation-style instruction tuning and reinforcement learning with human feedback (RLHF) (Christiano
et al., 2017; Stiennon et al., 2020), i.e., ChatGPT (GPT-3.5). More details are presented in Table 7.

We utilize Open Images v7 as our image captioning dataset Dcap with respect to the provided splits.
For automatic validation with NLI, we use the RoBERTa model fine-tuned on various NLI corpora that
achieves the best performance on the Adversarial NLI benchmark (Nie et al., 2020).4 For automatic
validation with image-QA pair classification, we build a simple CLIP-based (Radford et al., 2021) binary
classifier. We provide the details in Appendix D.1. For the list-then-rewrite method, we use m = 10.

D.1 Image-QA Pair Classification

To construct a model for our image-QA pair classification, we construct a balanced image-QA corpus
using NegP and Others VQA data randomly selected from 9 existing VQA datasets, i.e., VQAv2

4https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
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No Model Size References Access
1 BLOOMZ (3B) 3B (Muennighoff et al., 2022; Scao et al., 2022) https://huggingface.co/bigscience/bloomz-3b
2 BLOOMZ (7.1B) 7.1B (Muennighoff et al., 2022; Scao et al., 2022) https://huggingface.co/bigscience/bloomz-7b1
3 T0 3B (Sanh et al., 2022) https://huggingface.co/bigscience/T0_3B
4 OPT-IML 1.3B (Iyer et al., 2022; Zhang et al., 2022) https://huggingface.co/facebook/opt-iml-max-1.3b
5 Alpaca 7B (Wang et al., 2022c; Touvron et al., 2023) https://huggingface.co/chavinlo/alpaca-native
6 FLAN T5 XL 3B (Chung et al., 2022; Raffel et al., 2020) https://huggingface.co/google/flan-t5-xl
7 FLAN T5 XXL 11B (Chung et al., 2022; Raffel et al., 2020) https://huggingface.co/google/flan-t5-xxl
8 FLAN Alpaca XL 3B (Chung et al., 2022; Wang et al., 2022c) https://huggingface.co/declare-lab/flan-alpaca-xl
9 ChatGLM 6B (Zeng et al., 2023; Du et al., 2022) https://huggingface.co/THUDM/chatglm-6b
10 ChatGPT 175B - https://platform.openai.com/docs/models/gpt-3-5

Table 7: Instruction-tuned LLMs used in Appendix D.

(Balanced Real) (Antol et al., 2015), AdVQA (Sheng et al., 2021), VizWiz (Gurari et al., 2018, 2019),
TextVQA (Singh et al., 2019), R-VQA (Lu et al., 2018), Visual7W (Zhu et al., 2016), TDIUC (Kafle and
Kanan, 2017), VQA-Rephrasings (Shah et al., 2019), and VQAv1 (Abstract Scenes) (Antol et al., 2015).

For the image-QA pairs from the NegP VQA data, we assign a binary label of 1 (valid), which means
that the QAs correctly fit the corresponding images as valid pairs. For the Others VQA data, we replace
the Others ground truth answers with NegP answers ∈ ANegP to make the invalid image-QA pairs (a
binary label of 0). We split the corpus into 6k training, 2k validation, and 2k test set.

Using this corpus, we train a simple classifier with one hidden layer on top of a frozen CLIP (Radford
et al., 2021). We leverage the image-text alignment learned by CLIP (Radford et al., 2021), which has
been pre-trained on 400M image-text pairs using contrastive learning, to extract the image features of the
images and the textual features of their question-answer counterparts. We simply concatenate both image
and text features, then input them into the classifier. Our image-QA pair classifier yields an F1-score of
91.29% on the test set.

E Human Evaluation Category Examples

We provide the human evaluation categories (§3.2) in Figure 11.

Figure 11: Examples of the human evaluation judgments for the generate-from-scratch prompting method in §3.2.
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F Automatic Validation Results of NegP VQA Data Generation

Figure 12: Automatic validation results on 1000 NegP questions generated using generate-from-scratch (§3.1)
over five prompt templates.

Proportion of human eval. judgement

Both Valid

Wrong Text 
Entailment

Wrong Image-
QA

Both Wrong

0% 25% 50% 75%

Valid NP Question Possible ~NP Question ~NP Question (Caption)
~NP Question (Image) Question is confusing / unclear

Figure 13: Human evaluation results on NegP questions generated by ChatGPT using generate-from-scratch
(§3.1). The Y-axis denotes the verdict from the automatic validators, i.e., caption-QA and image-QA entailment
models.

Generate-from-scratch Figure 12 shows the proportions of valid generated NegP VQA data using 10
instruction-tuned LLMs listed in Appendix D over five different prompt templates, where each model
generates 1k questions per template. The prompt templates are provided in Appendix A. The result shows
that only ∼25% of the generated questions by the best-performing model, ChatGPT, are valid according
to the automatic validation, while other models’ valid generated questions range from 6%-23%. This
indicates that the task of NegP question generation is more complex and difficult than the instructions
used to fine-tune the LLMs.

Next, we conduct a human evaluation on randomly selected 240 generated questions (i.e., 60 for each
category in §3.2) by ChatGPT, which is the best-performing model. We ask 3 human experts to judge each
generated question and answer pair into one of the five options defined in §3.2. Figure 13 demonstrates the
result of our human evaluation. The result shows that automatic validation judgments do not agree with
the human judgments on a considerable amount of the data, even for simple valid/invalid classification, the
automatic validation judgments misclassify 27%-50% of the subsets. From this result, we can conjecture
that our automatic validation approach is not effective at verifying whether the generated NegP questions
are valid or invalid and that the generate-from-scratch prompting method is not reliable and fails to elicit
the LLMs’ understanding of the task.
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Instruction-tuned LLM % Valid objects % Valid objects & questions

FLAN T5 XL 11 10
FLAN T5 XXL 5 17
Alpaca 44 53
FLAN Alpaca XL 25 11
ChatGLM 84 44
ChatGPT 99 98

Table 8: Automatic validation results on 100 NegP questions generated using list-then-rewrite (§3.1).

Proportion of human eval. judgement

Correct

Wrong Textual 
Entailment

Wrong Object

0% 25% 50% 75%

Valid NP Question Possible ~NP Question ~NP Question (Caption)
~NP Question (Image) Question is confusing / unclear

Figure 14: Human evaluation results on NegP questions generated by ChatGPT using list-then-rewrite (§3.1).

List-then-rewrite The automatic validation results on 100 generated questions (i.e., with the category
proportion of 50, 35, and 15, respectively) by list-then-rewrite are provided in Table 8. The best-
performing model, ChatGPT, yields 98% valid questions with a valid non-existent object according to
the automatic validation judgments, which is a huge improvement compared to generate-from-scratch.
Similarly, Alpaca and ChatGLM also experience the same increase in validity (albeit not as significant),
while the FLAN family models deteriorate due to their inability to handle lists inside the instructions, thus
forcing them to respond with only one object instead of 10 objects (§D).

Our human evaluation on 300 generated questions by ChatGPT (presented in Figure 14) also proves
that, when we omit the question generation on the wrong object, we can achieve around 90% high-quality
NegP questions generated by the list-the-rewrite method. However, this method would benefit from
the establishment of a more suitable penalizing method to filter out the generated questions that are
inconsistent with the image captions.
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G Question Diversity of Existing VQA Datasets

We provide the illustrations of question diversity of existing VQA datasets: VQAv2 dataset (Antol et al.,
2015) which utilizes a manual data generation method (presented in Figure 15a) and VQA-Rephrasings
dataset (Shah et al., 2019) which utilizes an automatic data generation method (presented in Figure 15b).

(a) VQAv2 dataset (Antol et al., 2015) (b) VQ2A dataset (Changpinyo et al., 2022)

Figure 15: Question diversity of existing datasets. The figures are taken from the respective original papers.

H Baselines in NOPE Benchmark

The variant details of the baselines used in NOPE are presented in Table 9.

No Model References Access
Zero-shot & Few-shot

1 PromptCapBASE (Hu et al., 2022) https://huggingface.co/tifa-benchmark/promptcap-coco-vqa,
https://huggingface.co/allenai/unifiedqa-t5-base

2 PromptCap (Hu et al., 2022) https://huggingface.co/tifa-benchmark/promptcap-coco-vqa,
https://huggingface.co/allenai/unifiedqa-t5-3b

3 BLIP-2 (Li et al., 2023a) https://huggingface.co/Salesforce/blip2-opt-2.7b
4 OpenFlamingo (Alayrac et al., 2022;

Awadalla et al., 2023)
https://huggingface.co/OpenFlamingo/OpenFlamingo-9B

5 InstructBLIP (Dai et al., 2023a) https://huggingface.co/Salesforce/instructblip-flan-t5-xl

VQA fine-tuned
1 OFA (Wang et al., 2022b) https://huggingface.co/OFA-Sys/ofa-huge-vqa
2 BLIP (Li et al., 2022) https://huggingface.co/Salesforce/blip-vqa-base
3 BLIPCapFilt−L (Li et al., 2022) https://huggingface.co/Salesforce/blip-vqa-capfilt-large
4 ALBEF (Li et al., 2021a) https://github.com/salesforce/ALBEF#download#

Finetuned-checkpoint-for-VQA
5 GITLARGE (Wang et al., 2022a) https://huggingface.co/microsoft/git-large-vqav2

Table 9: Variant details of the baselines in NOPE (§4.2).

I Examples of Object Hallucination in NOPE

We list the examples of object hallucination from the dev set of NOPE in Table 10.
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ID Object-scene
relevance

Visual context Question-answer

390 Related

Question can you point out the location of the dog collar in the image?
GT answer nowhere

PromptCap yes
OpenFlamingo The dog collar is located on the dog’s neck.

BLIP-2 yes, it is on the dog’s collar
OFA no
BLIP no

ALBEF dog’s neck
GITLARGE no

InstructBLIP no

822 Related

Question how many menu cards have been captured in the image?
GT answer none

PromptCap 1
OpenFlamingo 10

BLIP-2 none
OFA 8
BLIP six

ALBEF 2,3
GITLARGE 0

InstructBLIP 0

982 Related

Question where can the clouds be spotted in the image?
GT answer nowhere

PromptCap in the sky
OpenFlamingo On the head of a goose.

BLIP-2 the clouds are in the sky
OFA the sky
BLIP yes

ALBEF in the snow.
GITLARGE no

InstructBLIP sky

9165 Partially related

Question who can you see using the fishing rod?
GT answer nobody

PromptCap a gray van
OpenFlamingo The owner of this Dodge B250 van.

BLIP-2 the guy in the back of the van
OFA no 1
BLIP no idea

ALBEF man dancing
GITLARGE no

InstructBLIP no one

10135 Unrelated

Question which color is the pillow in the image?
GT answer nothing

PromptCap blue
OpenFlamingo blue

BLIP-2 blue
OFA black
BLIP red and white

ALBEF red black white
GITLARGE blue

InstructBLIP white

Table 10: Examples of object hallucination in the dev set of NOPE. The hallucinated answers are shown in pink.
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Abstract

Various benchmarks have been proposed to test
linguistic understanding in pre-trained vision
& language (VL) models. Here we build on
the existence task from the VALSE benchmark
(Parcalabescu et al., 2022) which we use to
test models’ understanding of negation, a par-
ticularly interesting issue for multimodal mod-
els. However, while such VL benchmarks are
useful for measuring model performance, they
do not reveal anything about the internal pro-
cesses through which these models arrive at
their outputs in such visio-linguistic tasks. We
take inspiration from the growing literature on
model interpretability to explain the behaviour
of VL models on the understanding of nega-
tion. Specifically, we approach these questions
through an in-depth analysis of the text encoder
in CLIP (Radford et al., 2021), a highly influen-
tial VL model. We localise parts of the encoder
that process negation and analyse the role of at-
tention heads in this task. Our contributions are
threefold. We demonstrate how methods from
the language model interpretability literature
(such as causal tracing) can be translated to mul-
timodal models and tasks; we provide concrete
insights into how CLIP processes negation on
the VALSE existence task; and we highlight
inherent limitations in the VALSE dataset as a
benchmark for linguistic understanding.

1 Introduction

Research in vision & language (VL) modelling has
produced various pre-trained models that are capa-
ble of jointly processing image and text informa-
tion by learning multimodal representations (e.g.,

*Work carried out as M.Sc. student at Utrecht University

Li et al., 2019; Lu et al., 2019; Radford et al., 2021;
Jia et al., 2021; Li et al., 2021). This makes them
applicable to a host of downstream tasks, such as vi-
sual question answering, image caption generation
or zero-shot image classification.

Various benchmarks have been proposed to test
these models’ understanding of different linguistic
features, such as word order (Akula et al., 2020),
verb meaning (Hendricks and Nematzadeh, 2021),
and compositionality (Thrush et al., 2022). The
VALSE benchmark (Parcalabescu et al., 2022) was
introduced to test these models’ ability to ground
features such as existence, plurality, or spatial re-
lations in images. An example of the existence
piece is shown in Figure 1. Given an image, a
model must choose between a correct caption and
an incorrect foil, one of which contains a negation
operator.

As such, this piece can be used to test a model’s
understanding of negation, a particularly interest-
ing issue for multimodal models, which typically
include a visual backbone pretrained on computer
vision tasks such as object labelling. The mod-
els themselves are further pretrained on image-text
pairs where there is likely to be a positive bias,
since captions describing images will typically re-
fer to what is depicted there. This raises the ques-
tion whether VL models are capable of processing
operators such as “no” in instances such as those
in Figure 1. Indeed, negation remains a weakness
of even the most state-of-the-art large language
models (Truong et al., 2023)

In line with these intuitions, initial VALSE re-
sults reveal that models only achieve moderate per-
formance in this (and other) linguistic categories.
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However, while VL benchmarks such as VALSE
are useful for measuring current and future model
performance, they do not reveal anything about
the internal processes through which these models
arrive at their outputs in such visio-linguistic tasks.

We aim to make use of the growing literature
on model interpretability (Räuker et al., 2022) in
order to explain the behaviour (and shortcomings)
of VL models on the understanding of negation. To
do this, we use the existence sub-task in VALSE,
with some extensions, exploiting localisation tech-
niques to quantify the roles that different model
components play in this task. This yields the fol-
lowing research question: Which components of
VL models are responsible for the model’s under-
standing of negation? We address two issues that
arise from this general question, namely (1) the ex-
tent to which processing of negation is localised vs.
distributed; and (2) whether model performance on
VALSE-like tasks involving negation can in part be
explained by high-level dataset features.

Specifically, we approach these questions
through an in-depth analysis of CLIP (Radford
et al., 2021), a highly influential VL model. CLIP
has a relatively simple design based exclusively on
Transformers, which allows us to leverage inter-
pretability techniques that target this architecture.
Additionally, prior work by Parcalabescu and Frank
(2023) shows that CLIP makes balanced use of text
and image input and avoids so-called unimodal col-
lapse (Madhyastha et al., 2018; Hessel and Lee,
2020; Frank et al., 2021), an important considera-
tion for a study of multimodal model interpretabil-
ity. Finally, CLIP remains central to developments
in both vision (e.g. the CLIPSeg segmentation
model; Lüddecke and Ecker, 2022) and VL tasks
(e.g. CLIP is a component of several text-to-image
and image-to-text models, including Mokady et al.,
2021; Li et al., 2023; Ramesh et al., 2022; Rom-
bach et al., 2022, among others).

In our analysis of negation, we focus on the CLIP
text encoder. However, it is important to note that
CLIP is pretrained with a multimodal contrastive
objective, which has been shown to yield differ-
ent representations compared to text-only encoders
with comparable architecture but different training
objectives (Wolfe and Caliskan, 2022). Thus, we
take the insights into the text encoder’s ability to
process negation as reflecting on the success or oth-
erwise of the contrastive, multimodal pretraining
in such models.

The contributions of this work are threefold:

firstly, we demonstrate how methods from the lan-
guage model interpretability literature (e.g., causal
tracing; Meng et al., 2023) can be translated to
multimodal models and tasks; secondly, we pro-
vide concrete insights into how CLIP processes
negation on the VALSE existence task; thirdly, we
highlight inherent limitations in the VALSE dataset
as a benchmark for linguistic understanding.

2 Related work

Vision-and-language models VL pretraining
gained impetus from the development of multi-
modal, pretrained encoders inspired by BERT (De-
vlin et al., 2019). Bugliarello et al. (2021) provide
a unified analysis of the varying VL BERT archi-
tectures.

With the introduction of CLIP (Radford et al.,
2021), contrastive learning objectives have become
prominent in VL models, with or without addi-
tional objectives that address multimodal fusion
(Jia et al., 2021; Li et al., 2021; Singh et al., 2022a;
Zeng et al., 2022). Models such as BLIP (Li et al.,
2022) and FLAVA (Singh et al., 2022b) combine
contrastive objectives with unimodal pretraining of
vision and language encoders. Architectures such
as Flamingo (Alayrac et al., 2022) and BLIP-2 (Li
et al., 2023) reduce training cost by training rela-
tively small networks to map between representa-
tions from pretrained image and language models.

In CLIP, an image encoder and a text encoder
process their respective inputs completely sepa-
rately from each other, i.e., without any multi-
modal cross-attention and project them into the
same latent space. The goal of contrastive learn-
ing is to maximise similarity between matching
image-text pairs, minimising the similarity between
non-matching pairs. During inference, CLIP com-
putes the similarity of an image and a text in the
form of a scaled dot product between their embed-
dings. Contrastive objectives have been shown to
yield better embedding representations (Wolfe and
Caliskan, 2022) leading to improved performance
on semantic evaluation tasks (Mu et al., 2018).

Vision-and-language benchmarks VL bench-
marks focusing on specific linguistic phenomena
play an important role in highlighting strengths and
weaknesses in models’ grounding capabilities. For
example, a recent study combining several bench-
marks (Bugliarello et al., 2023) showed that models
still find certain linguistic phenomena challenging,
and that grounding capabilities may be less related
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Type Image Caption Foil

Negation
in foil

There are giraffes There are no giraffes

Negation
in caption

There are no people There are people

Figure 1: Examples from VALSE existence (Parcalabescu et al., 2022). Caption and foil only differ in the presence
or absence of the negator “no”. The negator is either in the caption or the foil.

to model size, and more to other variables, includ-
ing the fine-grained object recognition capabilities
of the visual backbone (e.g. Zheng et al., 2022).

One class of benchmarks focuses on the robust-
ness of models to syntactic permutations and/or
their ability to reason compositionally when pre-
dicting whether visual inputs correspond to linguis-
tic descriptions (e.g., Akula et al., 2020; Hendricks
and Nematzadeh, 2021; Thrush et al., 2022; Ma
et al., 2023; Yuksekgonul et al., 2023; Chen et al.,
2023). Some of these benchmarks focus on spe-
cific linguistic phenomena, such as spatial relations
(Liu et al., 2023; Kamath et al., 2023) or temporal
relations (e.g. Kesen et al., 2024).

VALSE (Parcalabescu et al., 2022), on which
we build the present study, prompts a model with
an image along with both its correct caption and
a foiled caption and tests a model’s ability to dis-
tinguish the caption from foil. This extends the
original foiling task introduced by Shekhar et al.
(2017). VALSE is divided into six sub-tasks or
‘pieces’, corresponding to six different linguistic
phenomena. In this paper, we focus exclusively on
the existence piece; see Figure 1.

Model interpretability Räuker et al. (2022) de-
fine inner interpretability methods as those that help
understand a model’s internal structures and activa-
tions. One recurring strategy in such techniques is
to analyse the effect of perturbations or ablations
on the model’s behaviour and output, whether this
is applied to individual neurons (e.g. Zhou et al.,
2018; Ghorbani and Zou, 2020) or to weights, with
the goal of identifing modular subnetworks (Csor-
dás et al., 2021).

The choice of a suitable level of granularity at
which to apply ablation is largely dictated by the
model’s size and complexity. Interpretability meth-
ods for transformers often operate at the level of at-
tention heads, MHA modules, MLPs, or full Trans-
former layers.1 Meng et al. (2023) introduced the
causal tracing methodology to localise factual as-
sociations in a model.

In Meng et al. (2023), this localisation step
serves as the basis for subsequent model editing in
the ROME method. However, follow-up work has
suggested that the ability to edit knowledge in a
particular layer does not imply that this knowledge
is localised in this layer (Hase et al., 2023) and can
also introduce unwanted side effects (Hoelscher-
Obermaier et al., 2023). Given these uncertainties
surrounding model editing techniques, the present
study focuses on localisation only.

A final line of relevant interpretability literature
focuses on attention patterns in large Transformer
models, which reveal the role of specific attention
heads in processing linguistic phenomena such as
syntactic roles (Clark et al., 2019; Kovaleva et al.,
2019; Vig and Belinkov, 2019). All of these stud-
ies converge on the finding that pre-trained Trans-
former language models allocate significant atten-
tion to tokens that do not carry inherent semantic
meaning, such as the separator token in BERT or
the start-of-sequence token in GPT-2.

1Goh et al. (2021) also produced neuron-level interpreta-
tions of CLIP’s image encoder, albeit the ResNet and not the
ViT variant.
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Correct Ambiguous Incorrect
d > 1 1 ≥ d > −1 d ≤ −1

Caption 72 150 28

Foil 81 145 14

Table 1: Number of instances per segment in the VALSE
existence dataset.

3 Methods

3.1 Definitions
A forward pass in CLIP of a single VALSE exis-
tence instance (Fig. 1) consists of a text caption, a
text foil, and an image. This produces one similar-
ity score for caption and image and one for caption
and foil, denoted Sc,i and Sf,i, respectively.

CLIP is said to correctly classify a caption-foil-
image triple if Sc,i > Sf,i. We can quantify CLIP’s
classification performance using the difference be-
tween the two similarities. We denote this classifi-
cation score d = Sc,i−Sf,i and the absolute size of
d can be seen as an indicator of CLIP’s confidence
in the classification.

3.2 Data
The VALSE existence benchmark consists of 505
image-caption-foil triples. The dataset is divided
into instances where the negation is in the foil (249)
and instances where the negation is in the caption
(256). The presence or absence of a negation op-
erator means that sometimes captions or foils can
differ in token length. For our purposes, it is impor-
tant that strings are of equal length; hence we insert
the word some before the noun in non-negated sen-
tences. See Appendix A.1 for full details.

CLIP only achieves a moderate accuracy of
0.686 on VALSE existence. To identify patterns
of processing in the model that give rise to correct
classification of negation it is necessary to anal-
yse correctly and incorrectly classified instances
separately. To do this consistently across different
analyses, the dataset was divided into three seg-
ments (correct, ambiguous, incorrect) based on the
classification score d. Table 1 shows the distribu-
tion of instances per segment.

3.3 Causal tracing
Here we outline our adaption of the causal tracing
method from Meng et al. (2023) for the part of the
dataset where the negation is in the foil. Figure 2
provides a visual summary of the method.

Figure 2: Illustration of the causal tracing methodology.
The activation at a single position and layer from the
negated forward pass are inserted into the corresponding
layer and position of the non-negated forward pass. This
shows what proportion of the original effect can be
restored by this layer-position pair. Image and text are
taken from VALSE existence (Parcalabescu et al., 2022).

A standard forward pass is carried out with cap-
tion, foil, and image, yielding the regular classi-
fication score d = Sc,i − Sf,i. Importantly, the
activations from the forward pass at each layer
and each position in the text encoder are recorded.
In the subsequent modified forward pass only the
(non-negated) caption is used in the forward pass
alongside the image. During this forward pass, the
text encoder’s activation at a given layer and po-
sition is replaced by the activation from the foil’s
original forward pass at the corresponding layer
and position. This is done individually for each
combination of layer and position.

Intuitively, this achieves the following. The
model processes the non-negated caption, but at
a given layer and position it is made to behave as if
it was processing the negated foil. If, and only if, a
certain layer and position is specialised in process-
ing negation, then substituting the activation from
the negated forward pass into the non-negated one
should affect the output in a visible way.

This intuition is quantified in the following way.
For a given layer l and a position p the modified for-
ward pass produces a similarity score S∗lp

c,i . This al-
lows us to calculate a modified classification score

d∗ = Sc,i − S∗lp
c,i

With this modified classification score we calculate
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the causal tracing effect of layer l at position p

CTE(l, p) = d∗/d

This effect represents the proportion of the original
classification score d that can be “restored” by layer
l at position p.

To apply this method to cases where the nega-
tion is in the caption, one has to swap caption and
foil such that, once again, the activations from the
negated sentence (now the caption) are substituted
into the forward pass of the non-negated sentence
(now the foil). This means that we obtain a modi-
fied classification score, which is used to calculate
the causal tracing effect in the same way.

d∗ = S∗lp
f,i − Sf,i

This method yields a causal tracing effect for
each layer and position for each VALSE existence
triple. All captions in the dataset share the same
beginning (SOT, There, is/are, a/some, subject) and
ending set of tokens (., EOT). However, they differ
in the number of tokens in between these two sets.
Therefore, the CTE from all positions in between
the beginning and end sets of tokens are averaged
into one placeholder position called “further sub-
ject tokens”. If there are no positions between the
beginning and end sets, then a CTE of 0 is recorded
at this position. Consequently, we can average
CTEs across the dataset (or a segment thereof). To
represent each instance according to its sequence
length, the averaged effect at the “further subject to-
kens” position is weighted by the number of tokens
that make up this position in each instance.

Lastly, we want to be able to describe the degree
of localisation in particular layers. Localisation
is strongest when one position in a layer, to the
exclusion of all other positions, restores the full
effect. Conversely, localisation is absent when each
position restores the same proportion of the effect.
Hence, we can quantify the degree of localisation
in a layer l as the standard deviation of the causal
tracing effects at each position in this layer, starting
at the negator position.

3.4 Negator-selective attention in text encoder
The purpose of this analysis is to identify attention
heads in CLIP’s text encoder that selectively pay
attention to negators. Since a regular forward pass
consists of both caption and foil, this yields two
attention maps per head in the text encoder. Each
attention map is an array of size P × P where P

is the number of positions in the input sequence,
where the attention mask forces all elements to the
right of the diagonal of this array to be 0.

The attention map is filtered to the column rep-
resenting the position of the negator in the negated
input sentence (or the quantifier in the correspond-
ing non-negated sentence). To identify negator-
selective attention, we subtract the values from the
non-negated sentence from those from the negated
sentence. Finally, the maximum of the resulting
difference values is taken over all source positions
and this represents the amount of negator-selective
attention of a particular attention head on this par-
ticular dataset instance. This procedure can then
be repeated over the whole dataset yielding an av-
erage negator-selective attention value aNlh for each
attention head h in each layer l.

Instead of taking the maximum value over source
positions, negator-selective attention can also be
calculated for each source position. In heads with
high negator-selective attention, this creates a more
fine-grained picture of the negator-selective atten-
tion patterns involved.

To test the validity of the results from this analy-
sis, it is further adapted to a subset of the CANNOT
dataset (Anschütz et al., 2023), from which we use
554 negated sentences and create a positive coun-
terpart for each. See Appendix A.2 for details.

4 Results

4.1 Causal tracing in text encoder

The left heatmap in Figure 3 shows the causal trac-
ing effect per layer and position for the correct
segment of the data with negation in the foil.

We are interested in the effect of components
that lie in between the negator position in layer 0
(embeddings) and the last position in the final layer
(encoder output), as these possibly mediate CLIP’s
correct processing of negation in the text input.2

Figure 3 shows that this effect is limited to only
a subset of positions and layers and seems to sug-
gest a path through the model. In particular, in
layers 0-3 the effect is practically limited to the
negator position, suggesting that in these early lay-
ers the negation information is processed mainly
at its original position. The effect at the negator
position then drops sharply at layer 4 and further
decreases until the final layer. This indicates that

2Since the encoder uses masked attention, positions prior
to the negator position cannot be affected by the intervention
and therefore do not show any effect.
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[SOT]

there

is/are

a/some

First subject token

Further subject tokens

.

[EOT]

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

1.00.90 .86 .69 .18 .12 .10 .09 .06 .05 .01 .01 .00

.00 .03 .09 .15 .17 .09 .09 .07 .03 .01 .02 .02 .00

.00 .01 .04 .06 .11 .08 .09 .06 .04 .02 .02 .01 .00

.00 .01 .03 .07 .36 .30 .29 .26 .19 .13 .09 .05 .00

.00 .00 .01 .01 .19 .25 .29 .33 .45 .59 .68 .791.00

Negation in foil

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

1.00.71 .62 .48 .04 .03 .04 .04 .02 .02 .00 -.00 .00

.00 .13 .30 .44 .60 .55 .40 .38 .30 .17 .14 .07 .00

.00 -.00 .07 .10 .19 .17 .17 .13 .13 .08 .07 .04 .00

.00 .01 .05 .03 .35 .46 .45 .43 .41 .30 .25 .14 .00

.00 .00 .00 -.02 .13 .23 .31 .36 .43 .68 .77 .931.00

Negation in caption
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Figure 3: Causal tracing effect (CTE) of the correct segment, split by whether negation is in foil or caption. The
heatmaps show the CTE of each layer-position pair in the text encoder. The bar charts show the standard deviation
of all CTE in the corresponding layer as an overall measure of localisation. Layer 0 denotes the embedding layer.

the negator position only plays a pivotal role in the
early layers and that the processing is in fact shifted
to the second-to-last and last positions at layer 4.
We will return to this in the analysis of attention
patterns in Section 4.2. In the central layers 4-7
these two positions seem to play an equally im-
portant role, judging by their respective CTE, and
from layer 8 onwards, the effect is concentrated in
the last layer.

The bar charts in Figure 3 show the degree of lo-
calisation in each layer asmeasured by the standard
deviation of the CTE. In line with the interpretation
above, localisation is high in the early layers 0-
3, then drops sharply in layer 4, remains low in
the middle layers, and goes up again in the late
layers 9-12.

The right part of Figure 3 shows the results from
the same experiment on the correct segment of the
data where the negation is in the caption. The gen-
eral pattern of these results is comparable to the
one described above. However, the first subject po-
sition already has a visible effect in the early layers,
leading to reduced localisation. The effect of the
first subject position becomes most pronounced in
the middle layers which constitutes the most sub-
stantial difference between the two sets of results
and in fact leads to greater localisation in the mid-
dle layers. In the late layers 9-12, the effect is once
again concentrated in the last position.

4.2 Negator-selective attention in text encoder

Figure 4 shows the negator-selective attention of
each attention head of each layer in CLIP’s text
encoder, divided by whether the negation is in
foil or caption. As expected, the patterns in both
parts of the dataset are practically identical, since
this analysis is not affected by any visual input.
As a general observation, only a small subset
of heads display any negator-selective attention
(8% of heads with aNlh > 0.1) and the majority
of them are found in the early layers. The most
negator-selective attention head is found in layer 4.

Note that these results are reported across all
dataset segments (incorrect, ambiguous, correct),
since the patterns do not meaningfully differ be-
tween them. This suggests that negator-selective
attention cannot explain the difference in CLIP’s
classification performance on different instances
of VALSE existence, since the same patterns are
found in correctly and incorrectly classified cases.
In fact, none of the attention heads that show
negator-selective attention of at least 0.1 show a
correlation between negator-selective attention and
classification score (all |r| < 0.2).

Layer 4, where the most negator-selective atten-
tion is found, is the same layer, where the causal
tracing results from Section 4.1 suggested that nega-
tion information is moved from its original position
to later positions, in particular the second-to-last
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Figure 4: Negator-selective attention across all dataset segments, split by whether negation is in foil or caption. The
heatmaps indicate the degree of negator-selective attention for each attention head and layer. The bar charts show
the average of each layer as an overall measure of negator-selective attention.

one. We analyse the source of this negator-specific
attention, i.e., which specific positions attend par-
ticularly to the negator position in the identified
heads of interest. Figure 6 (Appendix A.3) con-
firms that the source of negator-selective attention
in Head 2 is the second-to-last position. Further-
more, when the negation is in the caption, we find
that additional negator-selective attention comes
from the first subject position, which aligns with
the greater role this position plays in this part of the
dataset, as already suggested by the causal tracing
results in Section 4.1. Thus, the causal tracing and
negator-selective attention results form a coherent
narrative.

We validate these observations using the CAN-
NOT dataset. Here, we observe similar trends, with
most negator-selective attention found in the early
layers 1-4. See Appendix A.4 for details.

4.3 Dataset features

We investigate whether the similarity between a
caption and a foil for a given VALSE instance is
correlated with the instance’s classification score.
Full details are in Appendix A.5, especially Fig-
ure 8. We make two primary observations. First the
classification score is weakly correlated with the
similarity between caption and foil, especially for
those instances when the negation is in the foil. Sec-
ond, longer sequences exhibit greater foil-caption
similarity, leading to lower scores.

To investigate the effect of the size of the cap-
tion’s subject (e.g. ‘giraffe’ in Figure 1), we find
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Figure 5: Relative size of image subject vs. CLIP’s clas-
sification score. All instances where the subject from the
caption is shown in the image. Colour indicates dataset
segment. The blue line shows classification accuracy
when imposing a minimum subject size threshold.

its bounding box using CLIPSeg (Lüddecke and
Ecker, 2022), and compare its relative size to the
instance’s classification score (Figure 5). The cor-
relation of r = 0.32 shows that images with more
prominent subjects tend to be classified more ac-
curately. In fact, when imposing a subject size
threshold of 0.1 (which removes 43% of instances),
CLIP achieves an accuracy of 0.85. The accuracy
as a function of the subject size threshold is shown
by the line in Figure 5. Note, however, that the va-
lidity of these results decreases with higher thresh-
olds, as the remaining sample size gets very small.
Nonetheless, these results suggest that CLIP ex-
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hibits better existence classification results on in-
stances with more salient subjects.

5 Discussion

The causal tracing results from Section 4.1 suggest
relatively strong localisation in the early (1-3) and
late (8-12) layers, meaning that negation is largely
represented at singular positions in these layers.

In layer 4, the CTE at the negator position drops
sharply, and this conincides with the finding of
negator-selective attention heads in layer 4 which
appear to shift negation information to later posi-
tions. The locations of these attention heads also
overlap with those found on the CANNOT dataset,
which provides initial evidence that the CLIP text
encoder uses certain attention heads for specific
syntactic functions.

In the middle layers localisation is generally
lower with no single position restoring more than
60% of the original effect. This implies that repre-
sentation of negation is distributed across positions
and that the model relies on combining the repre-
sentations at each position in order to make correct
judgements about negations.

Furthermore, the first subject token position ap-
pears to play a unique role in cases with negation
in the caption, which could be due to the asym-
metry in the two tasks. When the negation is in
the foil, the label’s subject is shown in the image
and, intuitively, once it is detected, a decision can
be made and no further processing is necessary.
Conversely, when the negation is in the caption,
the entire image needs to be scanned to ensure that
the label’s caption is in fact absent from all parts
of the image. This difference could be part of the
reason why the first subject token position appears
to play a role up until deeper layers of the network,
when the negation is in the caption. The effects of
the subject position in deeper layers could imply
that the subject information is in fact more deeply
processed and thus more strongly represented in
the final text encoder’s output which, in turn, could
be conducive to the model’s task of “searching” for
the subject in the image’s representation. However,
these explanations are speculative and must not be
accepted without further experiments.

Section 4.3 highlights that the label’s length and
the subject’s size in the image show non-negligible
correlations with respect to the classification score.
This suggests that CLIP is better at the VALSE
Existence task when labels are shorter and therefore

produce less similar multimodal embeddings and
when the subject in the image is sufficiently large.

Arguably, the more variance in classification
score can be explained on the basis of such dataset
variables, the less CLIP’s benchmark score can
be interpreted as an indicator of its linguistic un-
derstanding, thus calling into question the validity
of the VALSE benchmark. However, none of the
correlations found in the present study are particu-
larly high and thus further analyses are needed to
support this conclusion.

6 Limitations and future work

The degree of localisation found in CLIP’s text
encoder is hard to interpret without reference to
other results. Future work could extend the present
methodology to other tasks and potentially other
models.

Our study is also limited to simple effects of indi-
vidual layer/position pairs. An analysis of the inter-
action of certain layers or positions (e.g., by simul-
taneously patching activations in multiple places
during causal tracing) might draw a more robust
and conclusive picture of the inner processes that
govern CLIP’s understanding of negation.

More generally, localisation methods may not be
suited for analysing model behaviour that is shown
with only moderate reliability. Note that the meth-
ods used in the present study had originally been
proposed and applied to language model capabil-
ities that are shown reliably across a large corpus
of data, e.g., indirect object identification (Wang
et al., 2022), simple factual knowledge (Meng et al.,
2023), or docstring completion (Heimersheim and
Janiak, 2023). By contrast, CLIP does not reliably
handle negation in a multimodal context (CLIP’s
accuracy is only 66.9%) and these results are based
on a relatively small dataset (n = 490). In this
case, methods like causal tracing do not intuitively
lend themselves to comparing situations evincing
a particular model behaviour to those where the
behaviour is absent. That is because they focus on
the degree to which an effect that represents a par-
ticular model behaviour can be restored or ablated,
but the methodology breaks down when this effect
isn’t present in the first place.

Thus, whilst illuminating the role of various com-
ponents in CLIP’s processing of negation, we can-
not provide strong insights into why this process-
ing yields correct classifications only in a fraction
of cases. Furthermore, since correct classification
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only occurs in a subset of instances of VALSE,
which is moderately sized to begin with, the results
described here require a larger and potentially more
diverse dataset to obtain greater validity.

With respect to the validity of the underlying
VALSE benchmark, it might be worthwhile to con-
duct a larger study on dataset features (e.g., image
brightness, contrast, etc.) that correlate with bench-
mark performance. Comparisons with other VL
benchmarks would further help putting these re-
sults into perspective. Such features that are predic-
tive of benchmark performance limit the validity of
linguistic benchmarks and highlight variables that
should be controlled for in the creation of future
benchmarks.
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A Appendix

A.1 Preprocessing of VALSE instances

Since caption and foil in the VALSE existence
dataset differ only in the presence of the negator,
they sometimes have a different number of tokens.
Concretely, this is the case in “bare plural” sen-
tences where there is no article or other qualifier in
the non-negated sentence (e.g., “There are tennis
players.” vs “There are no tennis players.”). Identi-
fying differences in how CLIP processes negated
vs. non-negated labels is a core facet of the present
study and such comparisons are greatly facilitated
if caption and foil have the same number of to-
kens. Therefore, labels were rephrased to achieve
equal sequence length by inserting the qualifier
“some” into the non-negated plural sentences right
before the subject. For example, “There are tennis
players” was rephrased to “There are some tennis
players”. 15 instances (0.03%) from the original
dataset have labels that do not follow the simple
“There is/are no [subject] ...” structure and therefore
aren’t amenable to the rephrasing rule described
above. For reasons of simplicity, these were omit-
ted from the rephrased dataset.

Importantly, rephrasing the dataset in this way
only led to minor changes in CLIP’s classifica-
tion accuracy on this dataset (0.691 before, 0.686
after rephrasing). All analyses are based on the
rephrased dataset, unless denoted otherwise.

A.2 CANNOT dataset

We use the CANNOT dataset to indpendently vali-
date our analysis of negator-selective attention in
the CLIP text encoder.

For the present purposes, the dataset is filtered
to 554 negated sentences that contain the word
“no” as the determiner of the sentence subject (e.g.,
“Medical organizations recommend no alcohol dur-
ing pregnancy for this reason”), using a tokeniser
from the spacy Python library (Honnibal et al.,
2020).

For each of these sentences, a non-negated coun-
terpart is then generated by replacing the word “no”
with “some”.

This yields a set of sentence pairs, comparable
to the caption-foil pairs from VALSE existence,
which thus allows us to apply the same methodol-
ogy for negator-selective attention.
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A.3 Negator-selective attention on VALSE
As discussed in Section 4.2, Figure 6 confirms that
the source of negator-specific attention in Head 2
is the second-to-last position.

A.4 Negator-selective attention results on
CANNOT

For validation purposes, Figure 7 shows negator-
selective attention on a subset of the CANNOT
dataset. Just like on the VALSE dataset, most
negator-selective attention is found in the early
layers 1-4. Head 2 in layer 4 once again shows
particularly high negator-selective attention, albeit
not the highest, which here is found in head 1 in
layer 2. In summary, this provides converging ev-
idence for the negator-selective attention results
found in VALSE existence.

A.5 Dataset features
Figure 8 shows the cosine similarity of each in-
stance’s caption and foil in CLIP’s multimodal em-
bedding space against that instance’s classification
score, split by whether the negation is in the caption
or foil.

When the negation is in the foil, similarity and
score are weakly correlated (r = −0.22), whereas
no correlation is found when the negation is in the
caption (r = 0.03). The latter is however influ-
enced by the presence of a set of outliers, all with
the same caption “There are no people.”. Remov-
ing them from this analysis yields a correlation of
r = −0.20, comparable to the one found when the
negation is in the foil.

Figure 8 also encodes sequence length, with
longer sequences (darker colour) tending to exhibit
greater caption-foil similarity. This is to be ex-
pected since caption and foil differ in exactly one
position. If the total number of positions increases,
then the relative size of this difference decreases,
leading to greater similarity. These results sug-
gest that CLIP’s failure to correctly classify some
VALSE Existence instances might be partly due
to instances with longer captions and foils that are
more similar in their representation and therefore
more difficult to tell apart. However, filtering the
dataset to instances with shorter sequences does not
meaningfully improve CLIP’s accuracy, suggesting
that sequence length plays a minor role at best.
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Figure 6: Source of negator-selective attention in layer 4 across all dataset segments, split by whether negation is in
foil or caption. The heatmaps show the degree of negator-selective attention from each sequence position (y-axis) in
each attention head (x-axis).
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Abstract

Continual learning focuses on incrementally
training a model on a sequence of tasks with
the aim of learning new tasks while minimiz-
ing performance drop on previous tasks. Ex-
isting approaches at the intersection of Contin-
ual Learning and Visual Question Answering
(VQA) do not study how the multimodal na-
ture of the input affects the learning dynam-
ics of a model. In this paper, we demonstrate
that each modality evolves at different rates
across a continuum of tasks and that this behav-
ior occurs in established encoder-only models
as well as modern recipes for developing Vi-
sion & Language (VL) models. Motivated by
this observation, we propose a modality-aware
feature distillation (MAFED) approach which
outperforms existing baselines across models
of varying scale in three multimodal continual
learning settings. Furthermore, we provide ab-
lations showcasing that modality-aware distil-
lation complements experience replay. Overall,
our results emphasize the importance of ad-
dressing modality-specific dynamics to prevent
forgetting in multimodal continual learning.

1 Introduction

Large Language Models (LLMs) (Touvron et al.,
2023; Jiang et al., 2023) and Visual Language
Models (VLMs) (Bai et al., 2023b; Liu et al.,
2024), have achieved unprecedented performance
and have become the go-to option for most NLP
and Vision & Language (VL) tasks. However, once
they have been trained, it is not straightforward how
to update them to accommodate for novel concepts
or concepts with reworked meanings. As a result,
over time, the knowledge of these models may be
obsolete or needs to be refined periodically to main-
tain their relevance. Consider two examples: 1) As
of July 2023, Twitter has been re-branded to X with
a new logo. 2) According to the Oxford English
Dictionary (OED), as of March 2024, more than
1000 English words or phrases have been either
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Figure 1: Overview of MAFED. Along with training
on the data from the current task and a memory buffer,
we apply feature distillation using the previous check-
point as the teacher. The distillation losses applied to
the representations from question and visual tokens are
weighted separately to compensate for modality-specific
training dynamics.

been revised or included as novel entries1. In these
cases, models trained with data from a preceding
period will inevitably show performance deterio-
ration (Lazaridou et al., 2021). Commercialized
LLMs circumvent this limitation (OpenAI, 2022;
Gemini Team et al., 2023; Anthropic, 2024) with
statements regarding the knowledge cutoff of these
models. On the other hand, humans continuously
update their knowledge and acquire new skills over
time. Continual learning is a paradigm that aims
to simulate this behavior, focusing on models that
learn incrementally from a sequence of tasks with
minimal catastrophic forgetting (McCloskey and
Cohen, 1989; Ratcliff, 1990).

Continual learning has started being explored
more widely in VL settings (Greco et al., 2019;
Srinivasan et al., 2022; Nikandrou et al., 2022;

1OED March 2024 update lists entries appearing for the
first time, or entries with updated meanings.
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Zhang et al., 2023; Lei et al., 2023; Cui et al., 2024).
However, existing approaches do not explicitly ac-
count for the dissimilarities in the representation
space of multimodal inputs and their effect on the
learning dynamics, which we argue is necessary for
effective continual learning of VL tasks. Previous
work on the optimization dynamics of multimodal
learning has demonstrated that different modalities
are learned at different speeds (Wang et al., 2020;
Wu et al., 2022). Using encoder and decoder-only
VLMs, we empirically showcase a similar forget-
ting discrepancy (Section 4.1), which indicates that
representations from each modality evolve at dif-
ferent rates across a sequence of tasks.

Motivated by this observation, we propose
MAFED, a Modality-Aware FEature Distillation
approach summarized in Figure 1. We explore dif-
ferent strategies for weighting the distillation losses
derived from the tokens of each modality, using ei-
ther fixed balanced weights or adaptive weights de-
rived from the loss gradients computed with respect
to the inputs. We combine both variants with expe-
rience replay and show promising results across all
VLM families compared to established continual
learning methods. Additionally, we conduct ex-
periments with decoder-only VLMs ranging from
100M to 1B parameters, showing that although
scale alleviates forgetting, certain settings remain
challenging. Our ablations comparing experience
replay and feature distillation approach showcase
that these methods are complementary and yield
greater performance when combined. Overall, our
results emphasize the need to address modality-
specific dynamics to effectively mitigate forgetting
in multimodal continual learning.

2 Related Work

2.1 Continual Learning

Continual Learning Approaches Continual
learning approaches can be categorized as regu-
larization, replay, and architecture-based (Delange
et al., 2021). Regularization-based approaches in-
troduce auxiliary losses that aim to constrain the
model weights (Kirkpatrick et al., 2017; Zenke
et al., 2017; Aljundi et al., 2018), outputs (Li and
Hoiem, 2018; Rebuffi et al., 2017), or internal rep-
resentations (Hou et al., 2019). Replay-based ap-
proaches rely on storing (Chaudhry et al., 2019;
Buzzega et al., 2020; Bagus and Gepperth, 2021) or
generating samples (Van de Ven and Tolias, 2018;
Sun et al., 2019) from past tasks so that they can be

sampled along with new samples during training.
Finally, architecture-based approaches introduce
task-specific parameters, either by masking the
model parameters (Yoon et al., 2020; Serrà et al.,
2018) or adding new ones for each task (Fernando
et al., 2017; Madotto et al., 2021).

Most recent work tends to combine techniques
from multiple categories in order to maximize per-
formance. Similarly, our work utilizes replay and
regularization through feature distillation. Distil-
lation has been used in various continual learning
approaches. Some focus on knowledge distilla-
tion on the output level, using the logits (Li and
Hoiem, 2018) or pseudo-labels from a past check-
point (Wang et al., 2022; Karim et al., 2022). Other
work applies distillation on the internal model rep-
resentations (Dhar et al., 2019; Douillard et al.,
2020; Kang et al., 2022). MAFED expands this
line of work by introducing different weighting
schemes to balance the distillation loss from visual
and textual representations.

VL Continual Learning Previous work has stud-
ied varying instantiations of VL continual learning
problems, including image captioning (Del Chiaro
et al., 2020; Nguyen et al., 2019), compositional
phrase generalization (Jin et al., 2020), and task-
incremental learning (Srinivasan et al., 2022).
Within VQA, prior work has investigated contin-
ual learning based on question types (Greco et al.,
2019), across varying domains (Zhang et al., 2022;
Lao et al., 2023), and from a compositionality per-
spective (Zhang et al., 2023). Lei et al. (2023);
Nikandrou et al. (2022) further study how VQA
models evolve in different settings, including novel
visual scenes or different question types. How-
ever, these works have not investigated the effect
of modality-aware methods with the exception of
Qian et al. (2023) that focus on multimodal prompt
learning for vision, text and fusion modules. In con-
trast, feature distillation does not assume separate
modality-specific and multimodal parameters and
can be applied to more varied VLM architectures.

2.2 VLMs

Progress in representation learning has led to mod-
els that achieve impressive performance across mul-
timodal benchmarks (Goyal et al., 2017; Hudson
and Manning, 2019; Li et al., 2023). Early ap-
proaches relied on complicated architectures (Tan
and Bansal, 2019; Lu et al., 2019), and multiple
learning objectives (Chen et al., 2020; Li et al.,
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Figure 2: Illustration of tasks in each of the three continual learning settings for VQA. Each of these settings consists
of five tasks. The first two settings are defined based on the visual categories. In Diverse Content, the objects
present in each task are grouped randomly, while in Taxonomy Content, the objects are grouped based on their
supercategory. Finally, in Question Types, the tasks are defined according to the type of the questions.

2021; Jia et al., 2021). More recently, given
the rapid development of increasingly capable
LLMs (Touvron et al., 2023; Jiang et al., 2023;
Bai et al., 2023a), these approaches have been su-
perseded by a new paradigm where representations
from visual experts (Radford et al., 2021; Oquab
et al., 2024) are treated as input tokens for the
LLM. This shift has led the development of modern
VLMs (Liu et al., 2024; Dai et al., 2024; Laurençon
et al., 2024a) that are based on the same underly-
ing principles with deviations regarding the choice
of the experts, or how the patch tokens are inte-
grated into the language model. Our experiments
demonstrate the effectiveness of our approach in
both encoder-only (Chen et al., 2020; Kim et al.,
2021) as well as decoder-only models.

3 Preliminaries

3.1 Data

We leverage an existing evaluation suite for Con-
tinual Learning in VQA (Nikandrou et al., 2022)
comprised of three settings based on the visual and
the language input. In particular, each of these
settings consists of five tasks and is designed to
test the model’s performance on learning varying
concepts or question types. Figure 2 illustrates ex-
emplary images and questions from different tasks
in each of the settings. Below, we provide a brief
summary for each of these settings.

Diverse Content corresponds to a real-world
use case as well as a common standard procedure
within continual learning (Lomonaco and Maltoni,
2017; Rebuffi et al., 2017; Zenke et al., 2017; Lin
et al., 2021), where a model is trained on new sets

of concepts progressively that do not necessarily
comply to a taxonomy. Each task in this setting
covers 10 distinct object categories from the COCO
dateset (Lin et al., 2014).

Taxonomy Content In this setting, each task con-
sists of questions regarding objects based on the
same super-category. This setting contains ques-
tions from the following categories: Animals, Food,
Interior, Sports, and Transport, and simulates a
more progressive approach, where a model learns
about a fixed (and similar) pool of concepts before
being applied to a different domain. Importantly,
we note that in both Diverse Content and Taxon-
omy Content, images containing objects shared
between tasks are discarded to create clean task
splits, preventing contamination between them. In
total, there are 181K train, 45K validation, and
110K test samples for both settings.

Question Types The final setting resembles a
scenario where the model learns to answer different
categories of questions. In this setting, the model
is tasked with learning from a sequence of five
tasks: Count, Color, Scene-level, Subcategory, and
Action recognition. Question Types have a total of
140K train, 35K validation, and 84K test samples.

3.2 Models

Throughout our experiments, we use two families
of models, including encoder- and decoder-only
pretrained models. Specifically, we use the encoder-
only models, UNITER-base (Chen et al., 2020) and
ViLT-base (Kim et al., 2021), that differ in terms
of how the visual input is encoded. UNITER uses
region features extracted from the Faster R-CNN
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Figure 3: Ratio of text-to-image representation similarity across layers and tasks, for UNITER (first row), ViLT (second-
row), and VL-Pythia (third-row). We consistently observe that in the earlier layers, the ratio is close to one, indicating that
representations from both modalities change at a similar rate. However, in intermediate or deeper layers, text representations
seem to retain larger similarities.

object detector (Anderson et al., 2018). On the
other hand, ViLT is a patch-based model that does
not use an additional vision encoder.

However, recent trends in the development of
VLMs have moved towards decoder-only architec-
tures that combine an expert vision encoder with an
LLM using a connector module that learns a map-
ping between them (Liu et al., 2024). We employ
a similar recipe to combine EVA02 (Fang et al.,
2023) as the visual encoder and Pythia (Biderman
et al., 2023) as our LLM. Regarding the connec-
tion module, we follow the LLaVA-1.5 (Liu et al.,
2023) approach with a two-layer MLP that matches
the dimensionality of the visual and the language
embeddings. We refer to this model as VL-Pythia.

We refrain from using other existing VLMs for
two reasons. First, we aim to match the parame-
ters and pretraining data between the encoder-only
and the generative models. Pythia models pro-
vide a collection of checkpoints covering a wide
range of sizes that have been pretrained following
a state-of-art transformer recipe (Su et al., 2024;
Dao et al., 2022). For a controlled comparison
with encoder-only models, we train VL-Pythia us-

ing the same data used to train UNITER and ViLT
(see Appendix A.1 for additional details regarding
the pretraining of the model). In particular, we
use the checkpoints with 160M, 410M, and 1B pa-
rameters. The smaller model is on par with the
encoder-only ones, while the larger models allow
us to explore the role of model capacity. Secondly,
existing VLMs (Liu et al., 2024; Dai et al., 2024;
Bai et al., 2023a; Laurençon et al., 2024a,b) are
typically instruction-tuned on datasets that include
VQA-v2 (Goyal et al., 2017) on which the con-
tinual learning settings are based. This overlap is
undesirable since we want to prevent any form of
data contamination between tasks.

During continual learning, we keep the vision
encoders of UNITER and VL-Pythia frozen. In
encoder-only models, VQA is treated as a clas-
sification task. The classification (CLS) token is
passed to a classification head that gets expanded
with the new answers from each task. On the con-
trary, VL-Pythia is fine-tuned to generate answers
autoregressively. In our experiments, we follow a
greedy decoding strategy during inference.
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4 Method

4.1 Motivation
In this work, we argue that modality-specific learn-
ing dynamics, and more specifically, the different
speeds at which each modality is learned (Wu et al.,
2022) or forgotten, should be accounted for in mul-
timodal continual learning settings. We demon-
strate this behavior by measuring the similarities of
the question Q and image V representations from
sequential model checkpoints using Centered Ker-
nel Alignment (CKA) (Kornblith et al., 2019). In
particular, we extract text Qt and image Vt repre-
sentations for data of the first task after training on
the first t = 1 and each subsequent task t = 2 · · ·T ,
and we compute the CKA similarity across time.
Finally, we visualize the ratio Rt of the text over
image similarities:

Rt =
CKA(Q1, Qt)

CKA(V1, Vt)
∀t = 2 · · ·T (1)

Figure 3 shows the Text-to-Image CKA ratio per
layer. We observe that there are differences in how
the modalities evolve within the models and across
settings. First, we note that the ratio is greater or
equal to one in all cases, meaning that visual tokens
exhibit decreasing similarity throughout the learn-
ing process. In UNITER, the ratio remains close to
one for earlier layers and increases only for the last
three layers. ViLT and Pythia exhibit a different
trend, where the ratio peaks for intermediate lay-
ers. As a result, we hypothesize that incorporating
the variability of each modality in a regularization
technique can benefit continual learning strategies.
Due to parameter sharing between the two modali-
ties, we materialize this in a modality-aware feature
distillation strategy, which we elaborate on below.

4.2 Modality-Aware Feature Distillation
Feature Distillation (FD) is an established contin-
ual learning technique (Hou et al., 2019; Douillard
et al., 2020; Kang et al., 2022) that adds a regu-
larization loss term to prevent the drift of model
representations. Given two model checkpoints ft−1

and ft from consecutive tasks, we extract represen-
tations H from an intermediate layer and compute
the feature distillation loss li using the representa-
tions of each token hi:

LFD =
1

N

N∑

i=1

li =
1

N

N∑

i=1

∥ hi,t − hi,t−1 ∥22 (2)

Assuming an example has Q text tokens and V
visual tokens, we can rewrite Equation (2) in terms
of the average loss contributed by the language and
the vision tokens, LFD,Q and LFD,V respectively:

LFD,weighted = α · LFD,Q + (1− α) · LFD,V (3)

In the simplest case, α is proportional to the num-
ber of tokens available from each input modality. In
practice, this might be suboptimal since it depends
on the input tokenization strategy. In fact, across
the examined settings, the average tokenized inputs
have approximately 9 question tokens and 33 or
199 visual tokens for region and patch-based image
features, respectively. Consequently, visual tokens
will dominate the distillation loss of Equation (3)
potentially leading to inferior performance.

Therefore, we experiment with two modifica-
tions: i) MAFED-B which balances the losses from
each modality by fixing α to 0.5, and ii) MAFED-A
which uses an adaptive weighting approach based
on modality importance inspired by Kang et al.
(2022). Modality importances IQ and IV are esti-
mated using the gradient of the VQA classification
loss2, with respect to the intermediate model repre-
sentations Hm from each modality m. IQ and IV
are updated at the beginning of each training task
using the available memory data Mt as follows:

Im = E(x,y)∼Mt

[
∥ ∇HmLcls(ft(x), y) ∥2F

]
(4)

where ∥ · ∥ corresponds to the Frobenius norm.
Finally, the weight α is computed by normalizing
the importance of the question tokens:

α =
IQ

IQ + IV
(5)

We apply feature distillation to all layers except
the last since only the representation of CLS to-
ken in encoder-only and the final question token
in decoder-only models is propagated to the model
output’s head. Furthermore, in Section 4.1, we
showcased that the representations of deeper lay-
ers are affected more during continual learning.
Therefore, we introduce a discount factor wd that
is used to weigh the contribution of the loss from
each layer proportionally to its distance d from the
model’s head:

wd =
γd

∑D
d=0 γ

d
(6)

2Or the language model head in the case of Pythia.
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Diverse Content Taxonomy Content Question Types
Model Method Accuracy SBWT Accuracy SBWT Accuracy SBWT

U
N

IT
E

R
FT∗ 64.59 ± 0.56 -1.93 ± 0.39 63.65 ± 0.63 -3.89 ± 0.53 48.81 ± 5.56 -22.43 ± 7.02

EWC∗ 66.26 ± 0.55 -0.67 ± 0.29 67.70 ± 0.29 -0.62 ± 0.19 66.77 ± 3.54 -2.62 ± 2.28

ER∗ 66.47 ± 0.51 -0.29 ± 0.18 66.76 ± 0.16 -1.22 ± 0.10 69.01 ± 0.76 -1.42 ± 0.31

FD 66.67 ± 0.38 -0.17 ± 0.19 66.94 ± 0.23 -0.68 ± 0.17 69.53 ± 0.12 -1.22 ± 0.51

MAFED-B 66.77 ± 0.24 -0.12 ± 0.17 67.05 ± 0.23 -0.57 ± 0.08 69.58 ± 0.55 -1.17 ± 0.31

MAFED-A 66.52 ± 0.26 -0.23 ± 0.12 66.84 ± 0.25 -0.70 ± 0.45 69.34 ± 0.43 -0.94 ± 0.48

Multitask∗ 69.76 ± 0.18 - 70.08 ± 0.18 - 72.54 ± 0.15 -

V
iL

T

FT∗ 61.07 ± 0.41 -2.80 ± 0.41 61.25 ± 0.50 -4.09 ± 0.50 36.95± 11.09 -32.86 ± 11.09

EWC∗ 61.80 ± 0.96 -1.14 ± 0.96 63.69 ± 0.46 -0.92 ± 0.46 60.25 ± 2.86 -8.19 ± 2.86

ER∗ 64.22 ± 0.10 -0.25 ± 0.10 63.52 ± 0.20 -1.46 ± 0.20 65.61 ± 0.76 -2.86 ± 0.76

FD 64.57 ± 0.57 -0.51 ± 0.12 64.24 ± 0.73 -1.07 ± 0.46 67.70 ± 0.54 -1.98 ± 0.70

MAFED-B 64.78 ± 0.55 -0.34 ± 0.27 64.51 ± 0.36 -1.02 ± 0.17 67.76 ± 0.27 -1.85 ± 0.61

MAFED-A 65.00 ± 0.41 -0.28 ± 0.19 64.63 ± 0.37 -0.89 ± 0.21 67.67 ± 0.46 -2.01 ± 0.84

Multitask∗ 67.51 ± 1.94 - 67.84 ± 3.92 - 72.41 ± 3.75 -

Table 1: UNITER and ViLT average accuracy and semantic backward transfer over five task orders. ∗ results
reported in (Nikandrou et al., 2022).

where γ ∈ (0, 1] is a hyperparameter such that
lower γ values assign more weight to deeper lay-
ers, and γ = 1 weighs the losses from all layers
equally. Unless stated otherwise, we combine fea-
ture distillation with replay since it requires no
computational overhead and helps mitigate the mis-
calibration of the output layer, which can negatively
impact performance on past tasks (Wu et al., 2019).

5 Experiments

5.1 Baselines

We compare our methods against naive Fine Tuning
(FT), where a model is trained sequentially on each
task. Our continual learning baselines include Elas-
tic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017) and Experience Replay (ER) (Chaudhry
et al., 2019), which have been shown to perform
competitively. Finally, we report the upper bound
performance of Multitask learning, where the
model is trained on all tasks simultaneously. Note
that this is the de facto standard for instruction-
tuning in VLMs (Dai et al., 2024; Liu et al., 2023).

5.2 Evaluation Metrics

We measure the performance of a model using
three metrics. First, we report the macro-average
accuracy at the end of a training sequence, A =
1
T

∑T
i=1AT,i, where AT,i depicts the performance

of the model on the data from task i after training
on final task T . Additionally, we report the Seman-
tic Backward Transfer (SBWT) (Nikandrou et al.,
2022), which captures the impact of catastrophic
forgetting, weighted by the semantic similarity of
the prediction and the target:

SBWT =
1

T − 1

T−1∑

i=1

ST,i (7)

where ST,i is the average weighted accuracy differ-
ence for task i.

5.3 Implementation Details
We train all models using the Adam optimizer
(Kingma and Ba, 2014) and a learning rate sched-
ule that follows linear decay after a warmup for
10% of the training steps. The maximum learning
rate is optimized through grid search separately for
each setting based on the performance of the fine-
tuning method. For UNITER and ViLT, we set the
number of epochs per task to 60 with a patience
of 5. We found that VL-Pythia models reach their
peak accuracy for fewer updates, possibly because
they do not use a randomly initialized classification
head. As a result, we set the maximum number of
epochs to 15. For all replay and feature distillation
runs, we keep a memory of 1000 randomly selected
samples per task, ensuring that the same samples
are stored across methods for the same task order.
Further details about the selected hyperparameters
are listed in Appendix A.2.

5.4 Results
5.4.1 Encoder-only Models
Table 1 reports the results across the three set-
tings using the encoder-only models UNITER and
ViLT. Adding the feature distillation loss improves
upon the ER baseline in all settings. Although
the benefits with UNITER are moderate, as ER al-
ready achieves low forgetting, when using ViLT,
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VL-Pythia 160M VL-Pythia 410M VL-Pythia 1B
Setting Method Accuracy SBWT Accuracy SBWT Accuracy SBWT

Q
ue

st
io

n
Ty

pe
s FT 25.98 ± 8.23 -31.35 ± 7.27 63.20 ± 2.10 -7.22 ± 1.98 65.52 ± 5.60 -6.16 ± 5.42

EWC 41.55 ± 8.31 -8.58 ± 6.96 66.83 ± 2.45 -3.85 ± 2.48 66.78 ± 2.98 -5.30 ± 2.93

ER 53.56 ± 0.72 -5.20 ± 1.06 70.25 ± 1.00 -0.52 ± 0.67 69.66 ± 3.34 -2.27 ± 1.88

FD 56.19 ± 1.59 -3.04 ± 1.21 70.76 ± 0.50 -0.22 ± 0.25 71.85 ± 1.07 -0.62 ± 0.54

MAFED-B 57.53 ± 0.76 -2.83 ± 0.42 70.82± 0.38 -0.17 ± 0.10 72.19 ± 1.40 -0.55 ± 0.80

MAFED-A 57.65 ± 0.24 -2.46 ± 0.29 71.06 ± 0.30 -0.19 ± 0.28 72.69 ± 0.12 -0.10 ± 0.07

Multitask 65.65 ±0.14 - 71.96 ± 0.15 - 73.44 ± 0.18 -

Table 2: Performance of different VL-Pythia model sizes across three task orders.

FD offers substantial accuracy gains of up to 2.6 in
Question Types. Comparing the feature distillation
variants, modality-aware weighting (MAFED-A or
MAFED-B) consistently boosts performance. For
UNITER and ViLT in Question Types, equally bal-
ancing the modality losses with MAFED-B shows
the best performance. In the image-based set-
tings with ViLT, adaptive weighting performs bet-
ter. Given the similarity ratios shown in Figure 3,
these results suggest that MAFED-B is more ef-
fective when the relative change of text and vision
representation is small, while MAFED-A is more
appropriate in cases of larger discrepancies.

5.4.2 Scaling to larger decoder-only VLMs

Setting Accuracy BWT

Diverse Content 70.11 1.58
Taxonomy Content 69.03 0.44
Question Types 66.01 -9.70

Table 3: Average accuracy and backward transfer for
finetuning VL-Pythia 1B across settings. We report the
accuracy of three task orders on the validation set.

As decoder-only architectures have become
more widely used, we also experiment with three
model sizes of VL-Pythia (160M, 410M, 1B pa-
rameters). In our initial results shown in Table 3,
we find that larger models exhibit no forgetting in
the image-based settings of Diverse and Taxonomy
Content. As a result, we focus on more challenging
Question Types setting.

Table 2 provides the results for different contin-
ual learning strategies using the VL-Pythia vari-
ants. We observe that scaling leads to higher final
accuracy and less catastrophic forgetting similar to
previous work (Mirzadeh et al., 2022; Ramasesh
et al., 2022). Nevertheless, even the largest ex-
plored model has a gap of almost 8% between naive
finetuning and multitask learning. Compared to ex-
perience replay, we find that the benefit of EWC

diminishes for larger models. As in encoder-only
models, the inclusion of feature distillation further
improves performance, and modality-aware weight-
ing of the distillation losses is beneficial in all cases.
For VL-Pythia, MAFED-A leads to the best per-
formance, improving the accuracy on average by
+2.6 compared to ER and +0.87 compared to FD.
As mentioned in Section 5.4.1, we hypothesize that
adaptive modality weighting can be particularly ef-
fective where the text and visual representations
change more unequally. Overall, our results indi-
cate that stabilizing the representations from vision
and language tokens separately can improve multi-
modal continual learning.

6 Analysis

6.1 Distillation without Replay

Method Accuracy SBWT

FT 62.77 -5.27
ER 66.18 -3.42

FD 72.05 -1.00
w/o Replay 63.53 -4.87

MAFED-B 72.91 -0.16
w/o Replay 67.66 -3.67

MAFED-A 72.56 -0.24
w/o Replay 64.14 -4.09

Table 4: Ablation of feature distillation methods without
replay using VL-Pythia (1B) on Question Types.

In the previous section, we applied feature dis-
tillation in conjunction with experience replay. Ta-
ble 4 shows the performance when applying feature
distillation with and without experience replay on
VL-Pythia (1B) for one task order on the Ques-
tion Types setting. Feature distillation improves
the model performance, while standalone modality-
aware methods are competitive with experience
replay. The combination of the two approaches
yields the greatest performance with no additional
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cost over standalone feature distillation. Both meth-
ods require maintaining a memory of past samples
that are passed through the current model. There-
fore, applying replay puts no additional overhead
on training time and memory.

6.2 Distillation Layer Ablation

3 6 9 12 15
Layer
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64

66
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70

72
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cy

Accuracy per layer

MAFED-A MAFED-B MAFED-A+ MAFED-B+

Figure 4: Ablation of feature distillation from a single
or cumulative (+) model layers.

Next, we explore the effectiveness of applying
modality-aware feature distillation from a single
layer, as well as a subset of layers. Figure 4 il-
lustrates the performance of VL-Pythia (1B) after
applying MAFED-B and MAFED-A every three
layers. As expected, applying both methods on a
deeper layer of the model but also distilling from all
previous layers yields greater performance. How-
ever, the performance of all four variants does not
increase monotonically with the layer depth. More
specifically, we observe that distilling from layer 6
leads to performance degradation. This behavior
correlates with the results in Figure 3, where the
per-modality similarities diverge the most at layer
6 and gradually align throughout the deeper layers
of the model.

6.3 Modality Weights in MAFED-A

Figure 5 shows the weight α placed on the distilla-
tion loss of the language tokens using the MAFED-
A method. In all models, MAFED-A assigns more
weight to language tokens. Interestingly, we ob-
serve that in encoder-only models, the language
weight progressively increases up to layer 8 and
then drops. On the other hand, in VL-Pythia (1B),
more than 90% of the weight is assigned to lan-
guage tokens for all layers. We hypothesize that
this is because the model is causal, and the last
token before the answer is a text token.
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Layer
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FD-A Language Weight in Question Types
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Figure 5: Language weight during MAFED-A. Note
that language tokens in the encoder family (UNITER
and ViLT) are weighted similarly across the layers of the
models. For the causal VL-Pythia model, the language
tokens have higher weights.

7 Conclusion

In this paper, we argued that applying approaches
that were developed with unimodal models in mind
is suboptimal for continual learning in VQA since
this ignores modality-specific learning dynamics.
We empirically showcased that the visual and the
textual representations evolve at different rates – a
phenomenon that occurs in both encoder-only and
decoder-only VLMs. Given this observation, we
proposed two modality-aware feature distillation
approaches that equally weigh the distillation loss
from each modality or adaptively estimate the im-
portance of a modality based on the gradients with
respect to the inputs. We believe this is a promising
direction towards closing the gap with multitask
training in multimodal continual learning.

7.1 Limitations & Future Work

Despite the promising results, our method has cer-
tain limitations. First, distillation is more com-
putationally expensive than replay, as it requires
accessing the representations from the previous
model. However, compared to established distilla-
tion methods, MAFED-B improves performance
with no overhead, while MAFED-A requires com-
puting importance weights, which are only updated
between tasks. Furthermore, our work does not in-
vestigate the potential effectiveness of architecture-
based approaches, which could offer greater control
over the learning of each modality through novel
parameter-isolation approaches. Finally, we show
that larger models exhibit less or even no forget-
ting depending on the setting. Future work should
explore whether increasing the model size or the
VL pretraining data (Ostapenko et al., 2022) can
further decrease forgetting in VQA settings.
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A Experiments

A.1 Pretraining VL-Pythia
We pretrain all VL-Pythia models following the
LLaVA-1.5 recipe (Liu et al., 2023). The only dif-
ference is that we skip the first stage for multimodal
alignment as recent work (Karamcheti et al., 2024)
has shown that the two-stage training can be re-
dundant and the same performance can achieved
when omitting the first stage of training. Through-
out VL pretraining, the vision encoder remains
frozen, while the LLM and connector parameters
are trained using the Adam optimizer (Kingma and
Ba, 2014) with a batch size of 256 and a learning
rate of 1e-3. For all models, we used the same data
to train UNITER and ViLT - COCO (Lin et al.,
2014), SBU captions (Ordonez et al., 2011), Visual
Genome captions (Krishna et al., 2017) and Con-
ceptual Captions 3M (Sharma et al., 2018). We
perform one epoch of pretraining and keep the final
checkpoint.

A.2 Hyperparameters

Model Setting Batch Size LR EWC λ FD γ

Diverse Content 1024 8e-5 500 0.8
UNITER Taxonomy Content 1024 5e-5 500 0.8

Question Types 512 5e-5 20K 0.6
Diverse Content 1024 1e-5 500 1

ViLT Taxonomy Content 1024 1e-5 700 1
Question Types 512 8e-5 10K 0.5
Diverse Content 128 5e-5 - 0.5

VL-Pythia Taxonomy Content 128 5e-5 - 0.5
Question Types 128 5e-5 10K 0.5

Table 5: Selected hyperparameters.

We tune the hyperparameters using grid search
based on the validation accuracy of a single task
order. For VL-Pythia variants, we use the same
hyperparameters for all model sizes, as we find
them to perform reasonably well. For UNITER
and ViLT, we keep the batch size, learning rate
(LR), and EWC loss weight λ reported in prior
work (Nikandrou et al., 2022). For the remain-
ing values, we perform the following grid search:
lr ∈ {1e − 5, 5.e − 5, 8e − 5, 1e − 4}, EWC
λ ∈ {500, 1K, 5K, 10K}, FD discount factor
γ ∈ [0.3, 1.0] with a step of 0.1.
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Abstract

We work on a multimodal machine transla-
tion of the audio contained in English lec-
ture videos to generate Japanese subtitles.
Image-guided multimodal machine translation
is promising for error correction in speech
recognition and for text disambiguation. In
our situation, lecture videos provide a vari-
ety of images. Images of presentation materi-
als can complement information not available
from audio and may help improve translation
quality. However, images of speakers or audi-
ences would not directly affect the translation
quality. We construct a multimodal parallel
corpus with automatic speech recognition text
and multiple images for a transcribed parallel
corpus of lecture videos, and propose a method
to select the most relevant ones from the mul-
tiple images with the speech text for improv-
ing the performance of image-guided multi-
modal machine translation. Experimental re-
sults on translating automatic speech recogni-
tion or transcribed English text into Japanese
show the effectiveness of our method to select
a relevant image.

1 Introduction

Multimodal machine translation (Sulubacak et al.,
2020) is a machine translation (MT) approach that
combines information from modalities other than
text, such as audio and images. Since images pro-
vide visual information that is not included in au-
dio or text, it is expected to improve translation
quality by correcting errors in automatic speech
recognition (ASR) or by complementing informa-
tion in ambiguous text.

This study tackles the task of translating En-
glish audio or subtitles from lecture videos into
Japanese. In such situations, since useful informa-
tion can be obtained from the images in the presen-
tation materials, image-guided MT can improve
translation quality over text-only MT. However,
some of the images derived from lecture videos are

when you do that here's what I can
promise you're going to be the 800-
pound gorilla in the forest

ASR text
 (English)

So when you do that, here's what I
can promise: You're going to be the
800 pound gorilla in the forest.

Transcribed text
(English)

⼿書きの⼿紙の⼒によって、森にい
る体重 300 キ ロの ゴリラのような
存在になれるでしょう。 

Translation 
(Japanese)

Figure 1: An example of our multimodal parallel cor-
pus. Our corpus includes five sets of images, au-
dio in English, ASR sentences in English, transcribed
sentences in English, and reference translations in
Japanese. Three images are included, corresponding
to the beginning, middle, and end of the audio.

not directly related to the subtitle text, such as the
image shown on the left in Figure 1, which shows
only the speaker. No improvement in translation
quality can be expected from such images.

To improve the performance of image-guided
MT, we propose a method to select the image
most relevant to the text among multiple images
that correspond in time to the subtitle text. Ad-
ditionally, to evaluate our method, we construct
a multimodal parallel corpus, TAIL1 (English-
to-Japanese Translation Corpus with Audio and
Images from Lecture Videos), consisting of En-
glish subtitles of lecture videos and their Japanese
translations. Experimental results on translating
ASR or transcribed English text into Japanese sub-
titles show the effectiveness of our method to se-
lect a relevant image.

1https://github.com/EhimeNLP/TAIL
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Audio

Timestamps for each sentence

⑤ Get images

ASR sentence

① Convert to audio ④ Convert to text

Japanese English

② Get timestamps

Split audio into 1 sentence

③ Audio segmentation

3 images per sentence

[00:00.000 - 00:21.360]
[00:21.360 - 00:45.920]
[00:45.920 - 00:54.000]
[00:54.000 - 00:56.880]
…

Figure 2: Overview of our corpus construction.

2 Related Work

2.1 Multimodal Parallel Corpus
Previous studies of multimodal MT have often
involved adding some one modality to the text,
such as MT from speech (Di Gangi et al., 2019;
Wang et al., 2020; Salesky et al., 2021) or image-
guided MT (Elliott et al., 2016; Parida et al., 2019;
Thapliyal et al., 2022). Furthermore, we can
expect further improvement in translation qual-
ity by combining three modalities of text, au-
dio, and images. Previous studies combining the
three modalities include video-guided MT, such as
How-2 (Sanabria et al., 2018) and QED (Abdelali
et al., 2014). However, these are limited in scope
because How-2 only covers English-Portuguese
language pairs and QED only covers education do-
main. To cover English-Japanese lecture subtitles,
we need to expand the multimodal parallel corpus.

2.2 Image-guided Machine Translation
Image-guided MT (Specia et al., 2016) improves
translation quality by complementing textual am-
biguity with visual information derived from im-
ages. Early studies (Caglayan et al., 2016; Li-
bovický and Helcl, 2017; Calixto and Liu, 2017)
combined CNN-based visual representations with
textual representations in RNN-based encoder-
decoder models. In the modern approach (Li et al.,
2022a), both vision and language inputs are en-
coded by the Transformer (Vaswani et al., 2017;
Dosovitskiy et al., 2021), integrated by selective
attention, and fed to the Transformer decoder. The
image-guided machine translation model, based
on the powerful Vision Transformer (Dosovitskiy
et al., 2021), achieves higher translation qual-
ity with images that are more relevant to the
text (Yuasa et al., 2023). Therefore, in situations
where multiple images are available, translation
quality can be improved by selecting images that
are more relevant to the text.

2.3 Vision and Language Pre-training
In image-text matching, CLIP (Radford et al.,
2021) and BLIP (Li et al., 2022b), trained by
multimodal contrastive learning, have achieved
state-of-the-art performance. Especially, BLIP is
trained in a multi-task learning manner of image-
text matching and image caption generation as
well as contrastive learning, which allows a single
model to perform both understanding and generat-
ing on vision and language tasks.

3 TAIL Corpus

For English-to-Japanese multimodal MT of lec-
ture subtitles, we construct a corpus consisting of
five sets of images, audio in English, ASR sen-
tences in English, transcribed sentences in En-
glish, and reference translations in Japanese for
lecture videos from TED.2 Since an English-
Japanese parallel corpus consisting of transcribed
sentences for TED lecture videos has been re-
leased in the IWSLT2017 competition (Cettolo
et al., 2017), we annotate it with images, audio,
and ASR sentences, as shown in Figure 2.

3.1 Audio Annotation
First, we annotate both audio and ASR sentences
in English on top of the IWSLT2017 En-Ja corpus.

Audio Acquisition We downloaded the lecture
videos in MP4 format from the URLs provided
in the metadata of the IWSLT2017 En-Ja corpus.
These videos are converted to audio in FLAC for-
mat with ffmpeg converter.3 (Step 1 in Figure 2)

Forced Alignment For each lecture video,
the transcribed English sentences from the
IWSLT2017 En-Ja corpus and the audio from
Step 1 are aligned by aeneas toolkit.4 Here, both

2https://www.ted.com
3https://ffmpeg.org
4https://github.com/readbeyond/aeneas
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start and end timestamps are recorded for each
sentence (Step 2 in Figure 2), and the audio is seg-
mented by ffmpeg (Step 3 in Figure 2).

Automatic Speech Recognition The audio,
which was segmented into sentences in Step 3,
is converted into text using Google Speech
Recognition.5 (Step 4 in Figure 2)

3.2 Image Annotation
In this section, we further annotate images on top
of our corpus to construct five sets. Since some
scenes in TED videos do not represent the con-
tent of the lecture, such as scenes showing only
the speaker, we collect multiple images for each
sentence. Specifically, we use three images cor-
responding to the beginning, middle, and end of
the timestamp of each sentence. Three images
per sentence were extracted using OpenCV library6

with video and timestamps for each lecture video.

3.3 Parallel Corpus Filtering
The IWSLT2017 En-Ja corpus originally released
223k sentence pairs, but only 212k sentence pairs
allowed us to access the videos from the URLs. To
reduce noise in the corpus due to errors in times-
tamping and alignment, we automatically filter our
parallel corpus. We filter out noisy sentence pairs
by both sentence length difference and word er-
ror rate (WER) between automatically recognized
(ASR) and manually transcribed (REF) English
sentences. We keep 0.8 ≤ len(ASR)/len(REF) ≤
1.2 cases with small sentence length differences.
Where len(·) is the number of words in the sen-
tence. It also keeps WER(ASR, REF) ≤ 0.5 cases
with small WER. In the WER calculation, text was
lowercased and symbols were removed as a pre-
processing step. This left 102k sentence pairs.

We further exclude pairs where all images are
unrelated to the text, which is not beneficial to the

5https://github.com/Uberi/speech_recognition
6https://opencv.org

image-guided MT. We compute the cosine simi-
larity between the text and each of the three im-
ages assigned to it, and employ the 70,000 sen-
tence pairs in descending order of their maximum
value for our experiment. Here, BLIP-based mul-
timodal embeddings (Li et al., 2022b) are used for
similarity calculations, as in the next section.

4 Image-guided Machine Translation

In this study, as shown in Figure 1, we are given
an English sentence that has been automatically
recognized or manually transcribed from a lecture
subtitle as well as three images that correspond in
time to the text. The image-guided machine trans-
lation that we are working on is the task of in-
putting one image selected from among three im-
ages along with its English text and translating it
into Japanese subtitles.

To select the image related to a given English
sentence, we estimate the semantic similarity be-
tween vision and language. Both of the follow-
ing two proposed methods are based on BLIP (Li
et al., 2022b), a pre-trained multimodal model.

• Embedding-based method: Encode each
given text and image with BLIP and then rank
multiple images by the cosine similarity be-
tween their embeddings.

• Captioning-based method: Generate an En-
glish caption with BLIP from a given image
and rank multiple images by the BLEU (Pap-
ineni et al., 2002) between the input text and
the caption. (Right side of Figure 3)

5 Evaluation

5.1 Setting

Model Our multimodal MT model employed
the Selective Attention model7 (Li et al., 2022a).

7https://github.com/libeineu/fairseq_mmt
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This model is a 4-layer, 128-dimensional Trans-
former (Vaswani et al., 2017) combined with
image features from the Vision Transformer
(vit_tiny_patch16_384) (Dosovitskiy et al., 2021).
RAdam (Liu et al., 2020) was used for optimiza-
tion and trained with a batch size of 4, 096 tokens
and a learning rate of 1e− 4. Training was termi-
nated when the cross-entropy loss in the validation
dataset was not updated 10 times.

Data The TAIL corpus described in Section 3
was used for our experiments. We used 70,000
sentence pairs for training, 2,669 for validation,
and 2,371 for evaluation. As a preprocess-
ing, MosesTokenizer8 (Koehn et al., 2007) and
MeCab9 (IPADIC) (Kudo et al., 2004) were used
for word segmentation for English and Japanese,
respectively. Subsequently, a subword segmen-
tation with a vocabulary size of 16, 000 was per-
formed by fastBPE10 (Sennrich et al., 2016).

Comparison We evaluate the effectiveness of
our image-text matching for image-guided MT by
comparing it to the following three baseline mod-
els. Each model is trained three times with chang-
ing random seed, and the averaged BLEU (Pap-
ineni et al., 2002) is reported.

• w/o Image baseline: Text-only MT model.
We discuss the effectiveness of the image-
guided MT in comparison to this baseline.

• w/ Random Image baseline: An image-
guided MT model that uses a randomly se-
lected image from the entire dataset. We dis-
cuss the effectiveness of the use of related im-
ages in comparison to this baseline.

• w/ Related Image baseline: An image-
guided MT model that uses a randomly se-
lected image from a set of three images that
correspond in time to given sentence. We dis-
cuss the effectiveness of the use of the most
related images in comparison to this baseline.

5.2 Results

Automatic Evaluation Experimental results are
shown in the BLEU columns of Table 1. Note
that the ASR column is the translation quality for
automatically recognized English sentences, while

8https://github.com/moses-smt/mosesdecoder
9https://taku910.github.io/mecab/

10https://github.com/glample/fastBPE

BLEU Accuracy

ASR IWSLT IWSLT

w/o Image 3.94 4.73 -
w/ Random Image 7.04 8.98 -
w/ Related Image 7.07 8.97 0.495

Embedding-based 7.30 9.48 0.785
Captioning-based 6.96 8.90 0.410

Table 1: Performance of English-Japanese Translation.

the IWSLT column is for manually transcribed En-
glish sentences. Compared to the baseline model
without images, the other image-guided MT mod-
els achieved significantly higher translation qual-
ity. This suggests the effectiveness of comple-
menting MT of lecture subtitles with images.

Two baselines of image-guided MT (w/ Ran-
dom Image and w/ Related Image) achieved com-
parable translation quality. This suggests that sim-
ply using images that correspond in time to the in-
put text does not necessarily result in high perfor-
mance. In contrast, our embedding-based method
of selecting images to match text achieved the best
performance for both ASR and IWSLT text.

Human Evaluation The Accuracy column in
Table 1 shows the human evaluation of the ac-
curacy of image selection for randomly sampled
200 texts. Note that these samples do not in-
clude cases where all images are related to or un-
related to the text. As with translation quality, our
embedding-based method achieved the best per-
formance. These results reveal a strong correlation
between the performance of image-text matching
and translation quality. It is suggested that mul-
timodal MT performance can be improved by se-
lecting images that are well related to the text.

6 Conclusion

In this study, we constructed a multimodal par-
allel corpus of images, audio in English, ASR
sentences in English, transcribed sentences in En-
glish, and reference translations in Japanese of ap-
proximately 75k sentence pairs to generate cross-
lingual subtitles from lecture videos. Experimen-
tal results reveal that our embedding-based image-
text matching method contributes to improved per-
formance of image-guided machine translation.
Our future work includes further improvement of
translation quality by combining multiple images.
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Abstract

Multimodal large language models (MLLMs)
are flourishing, but mainly focus on images
with less attention than videos, especially in
sub-fields such as prompt engineering, video
chain-of-thought (CoT), and instruction tuning
on videos. Therefore, we try to explore the
collection of CoT datasets in videos to lead to
video OpenQA and improve the reasoning abil-
ity of MLLMs. Unfortunately, making such
video CoT datasets is not an easy task. Given
that human annotation is too cumbersome and
expensive, while machine-generated is not re-
liable due to the hallucination issue, we de-
velop an automatic annotation tool that com-
bines machine and human experts, under the
active learning paradigm. Active learning is
an interactive strategy between the model and
human experts, in this way, the workload of
human labeling can be reduced and the qual-
ity of the dataset can be guaranteed. With the
help of the automatic annotation tool, we strive
to contribute three datasets, namely VideoCoT,
TopicQA, TopicCoT. Furthermore, we propose
a simple but effective benchmark based on the
collected datasets, which exploits CoT to max-
imize the complex reasoning capabilities of
MLLMs. Extensive experiments demonstrate
the effectiveness our solution.

1 Introduction

With the emergence of ChatGPT1, large language
models (LLMs) have experienced unprecedented
growth and have gradually expanded into the mul-
timodal domain. Pioneers have explored multi-
ple feasible paths around multimodal large models
(MLLMs), such as training MLLMs from scratch
(e.g. Kosmos-1 (Huang et al., 2023)), or bridging
LLMs and vision modules (e.g. BLIP-2 (Li et al.,
2023b)). Moreover, prompt engineering, chain-

*Corresponding author.
1https://openai.com/blog/chatgpt

Question: Why does [person_1] have to stop?

A: Because it is controlled by [person_1].
B: Because [person_1] can't eat anymore.
C: [person_1] ran into a newly - spread bitumen road.
D: Because [person_1] has to use the machine to do the exercise.
E: Because [person_1] is hurdler.

Video: 3IAUsdx5C8_000004_000014

(a) Spatio-temporal changes in video.

(b) Significant differences among options.

Question: Why does [person_1] have to stop?
A: Because it is controlled by [person_1].
B: Because [person_1] can't eat anymore.
C: [person_1] ran into a newly - spread bitumen road.
D: Because [person_1] has to use the machine to do the exercise.
E: Because [person_1] is hurdler.

Video: 3IAUsdx5C8_000004_000014

(b) Spatio-temporal changes in video.

(a) Significant differences among options.

Figure 1: The case analysis of video question answering.

of-thought (CoT), and instruction tuning for multi-
modal LLMs are also flourishing. However, the ma-
jority of current research focuses on images, with
video research (Deng et al., 2022; Zeng et al., 2022)
remaining underdeveloped. For instance, Alayrac
et al. (2022) employs a video understanding model
to extract features, which are then inputted, while
Ye et al. (2023) utilizes multiple frames of the video
as input. Similarly, few researchers have devoted
attention to sub-fields such as video prompt engi-
neering (Li et al., 2023a; Zeng, 2022), and video
instruction fine-tuning (Zhang et al., 2023b). We
attribute this phenomenon to the fact that MLLMs
are less mature than LLMs that solely rely on nat-
ural language input, and there are still numerous
issues to be explored.

To advance the development of MLLMs for
videos, our primary interest lies in CoT in videos.
Video CoT has multiple benefits as follows: 1) To-
wards OpenQA in video. Currently, the VideoQA
dataset widely adopts the form of multiple-choice
questions, but there are significant differences be-
tween the answer options (Kamalloo et al., 2023).
As illustrated in Fig.1(a), the options between A-E
are significantly different, especially the descrip-
tions of eating and being a hurdler are completely
irrelevant to the video. This fact lead to models
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Dataset Rationale Language #Videos #Q Video Source Annotation QA Task
MSVD-QA (Chen and Dolan, 2011) % English 1.9K 50K Web Videos Auto OE

MovieQA (Tapaswi et al., 2016) % English 6.7K 6.4K Movies Manual MC
MSRVTT-QA (Xu et al., 2017) % English 10K 243K Web Videos Auto OE

TVQA (Lei et al., 2019) % English 21K 152K TV Manual MC
ActivityNet-QA (Yu et al., 2019) % English 5.8K 58K Web Videos Manual OE

NExT-QA (Xiao et al., 2021) % English 5.4K 52K YFCC-100M Manual MC,OE
Causal-VidQA (Li et al., 2022) % English 26K 107K Kinetics-700 Manual MC

FIBER (Castro et al., 2022) % English 28K 2K VaTEX Manual OE
VideoCoT (Ours) " English, Chinese 11K 22K Kinetics-700 Auto, Manual MC, OE
TopicQA (Ours) % English, Chinese 11K 22K Kinetics-700 Auto, Manual MC, OE
TopicCoT (Ours) " English, Chinese 11K 22K Kinetics-700 Auto, Manual MC, OE

Table 1: Comparision between our collected datasets (i.e. VideoCoT, TopicQA and TopicCoT) and other existing
datasets. Among them, MC in the “QA Task” column means multiple-choice, while OE represents open-ended
question answering.

finding shortcuts to the dataset pattern. 2) Enhance
understanding. Videos contain more temporal and
spatial changes than images, and CoT can help cap-
ture the complex semantics of these changes (Zeng
et al., 2021). As shown in Fig.1(b), the key to
solving the question, that is, the girl changes from
moving to stopping (temporal) and the appearance
of the bitumen road (spatial), is to develop with
the video. 3) Improving the reasoning ability of
MLLMs. A more logical CoT can enhance the rea-
soning ability of MLLMs when used for training.

Although video CoT shows great potential, cre-
ating a video CoT dataset is a non-trivial task. The
process of fully annotating CoTs by humans is both
tedious and expensive, which is why we aim to de-
velop an automatic pipeline for generating CoTs.
Intuitively, one widely adopted strategy is to use
off-the-shelf MLLMs or LLMs as assistants for rea-
soning. However, there are several challenges that
need to be addressed. Firstly, MLLMs do not pos-
sess strong reasoning abilities and cannot directly
generate reliable CoTs. Secondly, while LLMs
have reasoning capabilities, they cannot use im-
ages as input for CoT generation. Lastly, machine-
generated data is often unreliable due to ethical
doubts and hallucination issues (Liu et al., 2023;
Qin et al., 2023), which require human correction
for quality control.

Therefore, in this paper, we develop an auto-
matic annotation tool that combines machine and
human experts, under the active learning paradigm
(Zhang et al., 2023a). As shown in Fig.2, active
learning is a strategy that involves interaction be-
tween the model and human experts, where the
model actively seeks the opinions and standards of
experts when encountering difficult samples (Zhai
et al., 2022). In this way, the workload of human la-

beling can be reduced and the quality of the dataset
can be guaranteed in the process(Wu et al., 2024;
Lu et al., 2021). Specifically, we will train a prompt
generator to guide LLMs to generate complex CoT
based on video information. Meanwhile, we will
formulate a quality score to evaluate the generated
CoT sentences from multiple aspects. Among them,
low-quality sentences will be modified by human
experts, and the modified CoT will be used to train
the prompt generator to guide LLMs to generate
more reasonable CoT(Guo et al., 2022; Liu et al.,
2022).

With the help of the aforementioned auto-
matic annotation tools under the active learning
paradigm, we strive to contribute three videoCoT
datasets, namely VideoCoT, TopicQA, TopicCoT.
Among them, VideoCoT is designed to supplement
CoT between question and answer from existing
datasets. Furthermore, we leverage the topic items
in the dataset to construct TopicQA, which enables
MLLMs to learn the relevant relationship between
videos and topics, and TopicCoT, which facilitates
reasoning about the topic relevance. Furthermore,
we apply these datasets to propose a simple bench-
mark. Extensive experiments demonstrate the ef-
fectiveness of our datasets and solution. The main
contributions are summarized as follows:

• To the best of our knowledge, this is the first
work that introduces an automatic annotation tool
under the active learning paradigm for complex
CoT generation in the video domain.

• We have collected three dataset to fill the vacuum
of Video CoT via our automatic annotation tool,
namely VideoCoT, TopicQA, TopicCoT.

• We propose a simple but effective benchmark
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Figure 2: The process of automatic dataset construction for VideoCoT and TopicCoT.

based on the collected datasets, which exploits
CoT to achieve better reasoning ability.

2 Related Work

2.1 Multimodal Large Models

As a result of the flourishing development of LLMs
(Pan and Zeng, 2023), many frameworks and tech-
niques have been extended, such as prompt engi-
neering, chain-of-thought, and instruction tuning.
In the field of multimedia, these hotspots are still
the topic of discussion (Li et al., 2024). Subse-
quently, Zhu et al. (2023) proposed mini-GPT4, Li
et al. (2023b) introduced blip2, and Ye et al. (2023)
intruduced mPLUG-OWL. However, the majority
of current research focuses on images, with video
research remaining underdeveloped. To fill the
academic vacuum, we propose an automatic anno-
tation tool under the active learning paradigm, and
further collect three datasets based on it. In this
way, the complex reasoning ability of MLLMs is
improved (Rajesh et al., 2023; Zeng et al., 2024).

2.2 Chain-of-Thought

Chain-of-Thought (CoT) has been proven to be
an effective strategy to enhance reasoning, and its
effectiveness has been widely demonstrated in the
field of LLMs (Ma et al., 2023). In the field of
multimedia, works such as ScienceQA (Lu et al.,
2022) and VisualCoT (Rose et al., 2023) have also
been proposed. Inspired by the above work, we try
to extend the potential of CoT in the field of video
understanding, which helps improve the reasoning
ability of MLLMs.

3 Dataset Collection

Following Causal-VidQA (Li et al., 2022), we built
three datasets around videos based on Kinetics-
700, namely VideoCoT, TopicQA, and TopicCoT.
In this section, we will introduce the process of
active annotation tool, on which both VideoCoT
and TopicCoT are collected.

3.1 Active Annotation Tool

Fig.2 illustrates the pipeline of our automatic
dataset construction approach, which implements
the prompt generation for LLMs under the active
learning paradigm to generate the logical CoT pro-
cesses. Active learning is an interrogation method
between the model and human experts (Zhang et al.,
2023a), which reduces the annotation workload and
guarantees the quality of the dataset.

Specifically, the automated process is divided
into three steps, namely prompt generation, auto-
matic scoring, and expert refinement. Among them,
prompt generation aims to generate suitable prompt
to guide LLMs to generate comprehensive and rea-
sonable CoT, while automatic scoring checks the
quality of machine-generated CoT from multiple
quality dimensions. Among them, the low-quality
CoT will be refined and modified by experts, which
is also used to train the prompt generator to im-
prove the quality of CoT generation.

3.1.1 Prompt Generation
We try to drive the off-the-shelf LLMs (i.e. GPT-4)
to generate some high-quality CoT data for us, but
unfortunately, the logic of the generated sentences
obtained by the fixed template (i.e. prompt) is in-
complete and incoherent. Therefore, we introduce
a prompt generator to maximize the potential of
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guiding LLMs and ultimately reduce manual labor.
Specifically, we borrow a summarization model

(Rao et al., 2021) capable of handling long sen-
tences as the prompt generator, which will be
trained in interaction with human experts. In the
initial stage, it is fed a long video description, a
question and a answer, and finally outputs a short
summary. Obviously, such a prompt is difficult to
guide LLMs to get a reasonable CoT between the
question and the answer, so it needs to learn from
human modified sentences. We will present the
scoring mechanism and human refinement in the
next subsection.

After multiple rounds of iterations, the generator
will flexibly deal with different videos to generate
corresponding prompts. Thereafter, since MLLMs
do not yet have good reasoning capabilities (which
is what we hope to do), we still implement gener-
ation based on LLMs (i.e. GPT-4). Finally, after
manual inspection with less labor, a reasonable
CoT can be obtained, as shown in the Fig.3.

3.1.2 Automatic Scoring

In order for a quality-required CoT to be generated,
we believe that a high-quality CoT CvCoT

2 should
have both: 1) the generated sentences are fluent,
2) a comprehensive understanding of objects and
relations, 3) and reasonable reasoning between the
question and the answer. To achieve this, we de-
sign a scoring function SvCoT that automatically
evaluates from six dimensions, i.e., perplexity Sppl,
background Sbac, temporal changes Stem, spatial
objects Sspa, relations Srel, summary Ssum.

SvCoT = Sppl+Sbac+Stem+Sspa+Srel+Ssum.
(1)

Among them, the “perplexity” evaluates the fluency
of generated CoT, and its reciprocal is used as part
of the quality score (Basu et al., 2021). This score
is closer to 1 when the CoT sentence CvCoT is more
fluent.

Sppl =
1

PPL(CvCoT )
. (2)

The “background” Sbac indicates whether the
generated CoT describes the video scene or not. We
collect some keywords to evaluate this, i.e., when
a sentence of CoT has words such as background,
video scene, etc., it is considered to meet the qual-

2Cv represents “video”, while CvCoT represents Video-
CoT, which serves to differentiate it from TopicCoT CtCoT .

Round 1
An apple is peeling by a peeler and the peeler is pressed.  They are playing 
the apple and peeler.
(一个苹果正在用削皮器削皮，削皮器被压着。他们在玩苹果削皮游戏)

Round N
First, the scene takes place in a toy store where a person is peeling an apple 
using a hand-held peeler. They are holding the apple in their hand and using 
the peeler to remove the skin. 
(首先，场景发生在一家玩具店，一个人正在用手持削皮器剥苹果。他
们手里拿着苹果，用削皮器去皮)

The essential function of the handheld apple peeler is to remove the skin 
from the apple. It is a small tool that can easily slip or move around while in 
use, so it needs to be held stable to ensure efficient and effective peeling. 
This action allows them to control the depth and angle of the peeler, 
ensuring that they remove only the skin and not too much of the flesh. 
(手持式苹果削皮机的基本功能是去除苹果的果皮。它是一种小型工具，
在使用时可以轻松滑动或移动，因此需要保持稳定，以确保高效和有
效的剥离。这个动作允许他们控制削皮器的深度和角度，确保他们只
去除皮肤，而不是太多的果肉)

Therefore, the answer is that the person presses the handheld apple peeler to 
keep it stable.
(因此，答案是，这个人按下手持苹果削皮器以保持其稳定)

Background

Spatial objects

Relations Summary 

Temporal Changes

Perplexity

Video Score

Figure 3: After multiple rounds of training, the quality
score of the generated CoT is improved from 0.07 to
0.97.

ity requirement.

Sbac =
{

1 if the video scene is described in CvCoT

0 otherwise
(3)

The “spatial objects” Sspa and “temporal
changes” Stem represent how many objects and
actions are included in the generated CoT, re-
spectively. The objects and actions (extracted by
GRiT(Wu et al., 2022)) that should be included are
taken as the evaluation criteria, i.e. the more objects
and actions are included in CvCoT , the higher the
score Sspa and Stem. Conversely, if irrelevant ob-
jects or actions appear in the sentence CvCoT (most
likely hallucinations), the score will be negative.

Sspa =
poso(CvCoT )− nego(CvCoT )

ground_truth(CvCoT )
, (4)

Stem =
posa(CvCoT )− nega(CvCoT )

ground_truth(CvCoT )
, (5)

where poso and posa indicate the number of objects
and actions present in the CoT, where pos indicates
real presence in the video, and neg indicates hallu-
cinated objects or actions.

The “relations” Srel represents whether the gen-
erated CoT has the analysis of spatio-temporal re-
lationship among objects, and the connection with
video scene. And the “summary” Ssum evaluates
whether a summary is included in the generated
CvCoT (i.e., the answer is output via step-by-step
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Figure 4: The topic and question distribution for VideoCoT and TopicCoT.

reasoning).

Srel =
{

1 if the analysis is included in CvCoT

0 otherwise
(6)

Ssum =

{
1 if the summary is included in CvCoT

0 otherwise
(7)

All the above scores belong to the interval from
0 to 1, which is convenient for us to do further
normalization. The automatic score S serves as a
“rough indicator" to identify the worst sample and
help us optimize prompt generator. In particular,
since Sspa and Stem are more important for this
task, we set the balance parameters in Eqn.1 as
(0.1, 0.1, 0.3, 0.3, 0.1, 0.1). Furthermore, to con-
trol the quality of CoT, when the normalized score
is lower than 0.9, it will be sent to human experts
for refinement.

3.1.3 Expert Refinement
We enlisted ten human experts with backgrounds
in artificial intelligence to participate in the anno-
tation process. To ensure consistency in the la-
beling results across different experts, a 5-rounds
pre-annotation training was conducted prior to of-
ficial annotation. Specifically, each expert was re-
quired to label a small number of samples to gain
an understanding of the annotation rules, which
were standardized to ensure consistency among all
participants.

For the generated CoT whose quality score is
less than the threshold (i.e. 0.9), they will be mod-
ified by human experts. As much as possible, ex-
perts are asked to make sentences include scene de-
scriptions in video, spatio-temporal relationships,

and logical reasoning between the question and an-
swer. Meanwhile, the refined samples will return
to the dataset pool and participate in training of
prompt generation until the quality of all annota-
tions meets our requirements. Through this interac-
tive active learning paradigm, the high-quality CoT
are semi-automatically constructed.

3.2 Automatic Datatset Construction
With the help of the aforementioned annotation
tool under the active learning paradigm, we strive
to contribute three datasets, namely VideoCoT, Top-
icQA, TopicCoT.

3.2.1 VideoCoT
VideoCoT is designed to supplement CoT between
question and answer from existing datasets, Causal-
VidQA. Based on the settings, we collect 11, 182
samples containing CoT, as shown in Table 1.

3.2.2 TopicQA
Further, we leverage the topic items in the Kinetics-
700 dataset to construct TopicQA, which enables
MLLMs to learn the relevant relationship between
videos and topics. In this dataset, we take “is the
video relevant to the topic” as the question and
“yes” or “no” as the answer.

3.2.3 TopicCoT
TopicCoT, similar to the construction process of
VideoCoT, which contains step-by-step reason-
ing between questions and answers in TpoicQA.
Specifically, TopicCoT CtCoT is still based on our
automatic annotation tool, but the scoring function
is different, which is defined as follows:

StCoT = Sppl +Stem+Sspa+Scon+Ssum. (8)
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Figure 5: The length distribution of our dataset, where
the y-axis represents the number of samples whose
length is the x-axis value.

where Scon represents the concept of the
topic, and the others are consistent with Eqn.1.
Moreover, the balance parameters are set to
(0.1, 0.2, 0.2, 0.4, 0.1) for normalization. Then,
when this score StCoT is less than 0.9, it will be
sent to humans for modification.

3.3 Dataset Analysis

3.3.1 Property Quality
The statistical analysis of textual description in our
VideoCoT and TopicCoT dataset is shown in Fig.5.
Based on statistical results, the original dataset,
which includes both questions and multiple choices,
has an average length of approximately 50 words.
In contrast, the rationale length of our VideoCoT
and TopicCoT is distributed between 100 and 150
words.

3.3.2 Diversity Quality
To assess the diversity of sentences in the Video-
CoT and TopicCoT datasets, we conduct a word
frequency analysis of nouns, verbs, and conjunc-
tions, which represent descriptive, temporal, and
logical aspects, respectively. Fig.6 illustrates the
top 5 frequency of each category in the rationale
of the two datasets. 1) Noun: We observe that the
high-frequency nouns in VideoCoT mostly refer to
specific objects, such as “person" and “man", as
well as key words in the reasoning process, such
as “scene", “answer" and “function". In contrast,
the top nouns in TopicCoT mainly involve “topic"
and “concept", indicating that detailed descriptions
revolve around the topic and object concepts of
the video. 2) Verb: The main verbs in VideoCoT
describe specific human activities, focusing on the
temporal aspect of the video. In TopicCoT, the

Figure 6: The top words of our dataset, where the y-axis
represents the frequency of word count.

high-frequency verbs are mostly reasoning verbs,
focusing on the association between the question
and the topic of the video. 3) Conjunction: The
conjunction with the highest frequency in both
datasets is “therefore", which indicates the logi-
cal and summary aspects of the rationale.

3.3.3 Visualization Quality
To verify the rationality of the human experts’ op-
eration, we also check some cases as shown in
the Fig.3. There are two languages present in our
dataset, namely English and Chinese. The initial
generated by LLMs was of low quality, which hin-
dered the establishment of relationships. However,
after undergoing multiple round of interaction be-
tween human and model, the score of generated
CoT increased from 0.07 to 0.97 points, indicat-
ing a significant improvement in the quality of the
output.

4 Proposed Method

The overall training framework is depicted with an
illustration in Fig.7. For the task of video question
answering (Zhong et al., 2022), multiple choice
(MC) is more popular, but the differences between
the options are too significant, and it is easy for
the model to find shortcuts. Therefore, we are
committed to achieving a free-form open-ended
(OE) with logic rationale (Lu et al., 2022).

4.1 Training strategy of original dataset

The input of MC strategy is defined as
X= (XQ, XMC , XV ), where XQ represents the
question, XMC represents answer options, and XV

represents the image.
Following the work of (Kamalloo et al., 2023),

who trains the model using fixed long sentence
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MLLMs

Original Dataset

(a) Training strategy of original dataset

(b) Training strategy of our VideoCoT

Question: Why is the person 
bending over while skateboarding? 
Choices: (a)...(b)...(c)...(d)...(e)...

The answer is (c): skateboarding to 
maintain balance and control while going 
faster.

Original Answer

MLLMs

VideoCoT Dataset

Question: Why is the person 
bending over while skateboarding? 

First, this video describes a person ... 
Then, skateboarding requires balance ...
The relationship between the action of ... 
and the object of ... 
Therefore, the answer is to maintain ....

Answer with Rationale

Figure 7: Comparison of training strategies on the original dataset and our datasets.

templates with correct options for filling in the
blanks, the probability of generating an answer can
be formulated as follows:

p(Y |XQ, XMC , XV ) (9)

=
m∑

t=1

log p(yt|y<t, XQ, XMC , XV ), (10)

where Y = (y1, y2, . . . , ym) represents the target to-
kens.

4.2 Training strategy of VideoCoT
Similarly, the input of OE strategy is defined as
X= (XQ, XV ).

In this way, the input X will be removed the an-
swer options XMC , while the target answer Y will
be redefined as the rationale R= (r1, r2, . . . , rn).

Formally, the probability of generating rationale
can be formulated as follows:

p(R|XQ, XV )=
n∑

t=1

log p(rt|r<t, XQ, XV ). (11)

Through this training strategy of CoT, more prior
knowledge of MLLMs can be invoked, and finally
answer questions through logical reasoning.

5 Experiments

5.1 Experimental Settings
5.1.1 Datasets
Our datasets are split into 3 non-overlapping sub-
sets, where 0.6, 0.2 and 0.2 are used for training,
validation and testing.

5.1.2 Evaluation Protocol
We adopt accuracy as our evaluation metric, which
is utilized to measure whether the answers gen-
erated by models are correct. Notably, in the

multi-choice setting, the accuracy AccMC can
be directly compared with ground-truth. In the
case of open-ended QA, we adopt two metrics, 1)
AccOE(keywords): whether the “summary" sen-
tence hits the keywords in the ground-truth answer.
Specifically, keywords and their synonyms are ac-
quired by giving some few-shot template and QA
pair to GPT4. We then calculate the correct pro-
portion of keywords for each question as its score.
2) AccOE(GPT-4): regard GPT-43 as a referee to
evaluate semantic relevance.

5.1.3 Baselines
We select the following models as our baselines:
mPLUG-Owl (Ye et al., 2023), VisualGLM (Du
et al., 2022), mini-GPT4 (Zhu et al., 2023).

5.2 Overall Performance Comparison

To verify the effectiveness of our datasets, we train
several MLLMs with the original dataset and our
datasets respectively4. Among them, for the eval-
uation of OE task, we adopt two kinds of metrics,
namely a hard metric (based on keywords) and a
soft metric (based on GPT-4).

The experimental results are presented in Table
2, and the following observations can be made: 1)
In comparison to the multi-choice setup, both mod-
els exhibit improved performance in open-ended
QA accuracy. Upon analyzing the multi-choice
outputs, it is evident that the models often provide
justifications for each individual option rather than
selecting a single response to address the given
question. 2) The superiority of both VideoCoT
trained MLLMs over the original method is evident
in the improvements observed across both keyword

3https://openai.com/product/gpt-4
4TopicQA is an ordinary QA dataset, which will not be

adopted to discuss the impact of CoT on reasoning ability, but
it can still be a traditional QA dataset.
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Model AccMC
VideoCoT TopicCoT VideoCoT & TopicCoT

AccOE(GPT-4) AccOE(keywords) AccOE(GPT-4) AccOE(GPT-4)
mPLUG-Owl 31.51% 48.32% 52.66% 40.12% –
VisualGLM 13.81% 45.32% 46.78% 23.34% –
mini-GPT4 29.05% 43.58% 51.21% 19.21% –

mPLUG-Owl (trained) – 77.42% (+29.1) 81.24% (+28.58) 89.76% (+49.64) 90.18%
VisualGLM (trained) – 69.91% (+24.59) 70.71% (+23.93) 78.96% (+55.62) 79.24%
mini-GPT4 (trained) – 64.14% (+20.56) 75.20% (+23.99) 82.55% (+63.34) 82.85%

Table 2: Overall performance comparison among various methods on our VideoCoT and TopicCoT.

and GPT-4 metrics. This highlights the significant
impact of employing a chain of thoughts within
the generation model’s creative process. 3) We
also observe that the accuracy of keywords on all
models surpasses the accuracy of GPT-4, which
is due to the former metric being more relaxed
than the latter. 4) Additionally, we conduct an
experiment utilizing a hybrid training dataset com-
prising both VideoCoT and TopicCoT. The subse-
quent evaluation of models take place on the testing
of VideoCoT. Remarkably, when contrasted with
models solely trained on VideoCoT, the GPT-4 met-
ric exhibited a noteworthy improvement through
hybrid training. This improvement surpassed the
performance of all models that are only trained on
VideoCoT. This outcome serves as a compelling
indicator that hybrid training fosters a reciprocal
influence, allowing models to acquire the capacity
for incremental and reasoned thinking.

5.3 Reasoning Ability Visualization

The visualization is shown in Fig.8, the mPLUG-
Owl possesses the capability to depict the content
of the image and execute the basic task of question
and answer. However, its performance is unsatisfac-
tory when confronted with more complex questions
that necessitate reasoning. Conversely, upon being
trained on our datasets, it acquires the ability to
identify objects in the image (e.g. “a group of peo-
ple”), discern the fundamental functions of objects
or events (e.g. “the essential fuction of”), and fi-
nally integrate objects and relationships to engage
in reasoning (e.g. “because they might participat-
ing in a fitness event”).

6 Conclusions

In this work, we strive to explore the collection
of CoT datasets on videos to bootstrap OpenQA
on videos and improve the inference ability of
MLLMs. To reduce the cost of manual annotation,
we develop an automatic annotation tool that com-

Round 1
An apple is peeling by a peeler and the peeler is pressed.  They are playing 
the apple and peeler.
(一个苹果正在用削皮器削皮，削皮器被压着。他们在玩苹果削皮游戏)

Round N
First, the scene takes place in a toy store where a person is peeling an apple 
using a hand-held peeler. They are holding the apple in their hand and using 
the peeler to remove the skin. 
(首先，场景发生在一家玩具店，一个人正在用手持削皮器剥苹果。他
们手里拿着苹果，用削皮器去皮)

The essential function of the handheld apple peeler is to remove the skin 
from the apple. It is a small tool that can easily slip or move around while in 
use, so it needs to be held stable to ensure efficient and effective peeling. 
This action allows them to control the depth and angle of the peeler, 
ensuring that they remove only the skin and not too much of the flesh. 
(手持式苹果削皮机的基本功能是去除苹果的果皮。它是一种小型工具，
在使用时可以轻松滑动或移动，因此需要保持稳定，以确保高效和有
效的剥离。这个动作允许他们控制削皮器的深度和角度，确保他们只
去除皮肤，而不是太多的果肉)

Therefore, the answer is that the person presses the handheld apple peeler to 
keep it stable.
(因此，答案是，这个人按下手持苹果削皮器以保持其稳定)

Background

Spatial objects

Relations Summary 

Temporal Changes

Perplexity

Video Score

mPLUG-Owl trained on VideoCoT:
First, a group of people is standing in front of an exercise 
machine and running on the track. 
Then, the essential function of the exercise machine is to 
provide resistance for the legs during exercise. This can 
help improve muscle strength and endurance. 
Therefore, the answer to why someone is running on the 
track is because they might participating in a fitness event...

mPLUG-Owl:
The person is running on a treadmill in the gym...

Question: Why is the person running?
Answer: The person wants to keep fit.

Figure 8: The visualization case of generated answers.

bines machine and human experts, under the active
learning paradigm. With the help of this annota-
tion tool, we contribute three videoCoT datasets,
namely VideoCoT, TopicQA, TopicCoT. Experi-
mental results show that our datasets achieve supe-
rior effectiveness, diversity and explainability.
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Limitations

In regards to the active annotation tool, using our
tool on additional datasets can enhance the visual
reasoning abilities of more models. However, fund-
ing constraints limited the invitation of annotation
experts. Nonetheless, we are committed to ex-
panding the impact of this paper in future research.
Moreover, our training resources currently restrict
the application of our dataset to significantly more
larger models.
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1Bundeswehr University Munich, Germany
2Faculty of Mathematics and Physics, Charles University, Czech Republic
{philipp.roesch,norbert.oswald,michaela.geierhos}@unibw.de

libovicky@ufal.mff.cuni.cz

Abstract

Current vision-language models leveraging
contrastive learning often face limitations in
developing fine-grained conceptual understand-
ing. This is due to random negative samples
during pretraining, causing almost exclusively
very dissimilar concepts to be compared in the
loss function. Consequently, the models strug-
gle with fine-grained semantic differences. To
address this problem, we introduce a novel pre-
training method incorporating synthetic hard
negative text examples. The hard negatives re-
place terms corresponding to visual concepts,
leading to a more fine-grained visual and tex-
tual concept alignment. Further, we introduce
InpaintCOCO, a new challenging dataset for
assessing the fine-grained alignment of colors,
objects, and sizes in vision-language models.
We created the dataset using generative inpaint-
ing from COCO images by changing the visual
concepts so that the images no longer match
their original captions. Our results show sig-
nificant improvements in fine-grained concept
understanding across various vision-language
datasets, including our InpaintCOCO dataset.

1 Introduction

Recent advancements in vision-language (VL)
modeling have demonstrated the effectiveness of
contrastive learning in various multimodal tasks
(Radford et al., 2021; Jia et al., 2021; Yao et al.,
2021). However, this training method does not pro-
vide sufficient training signals for several important
visual concepts (Zhao et al., 2023). We attributed
it to the objective function’s use of random and,
therefore, too dissimilar negative samples, which
prevents the model from learning fine-grained se-
mantic representations of the concepts.

Therefore, we propose a novel approach to ad-
dress the issue of poorly represented concepts in
contrastive learning. We introduce a mechanism

to incorporate hard negative samples into the con-
trastive learning loss. Specifically, we generate
synthetic hard negative samples by substituting
keywords in the captions of original image-text
pairs, disrupting the alignment between the image
content and its description.

This paper presents three key contributions:

(i) We present a novel method for using hard
negative samples in the contrastive learning objec-
tive, allowing the model to focus on refining its
understanding of concepts.

(ii) By introducing hard negative samples in
the language component, we compel the model
to learn proper visual and language alignment. Our
approach improves multimodal performance, al-
though it operates exclusively on the language side
of the model.

(iii) To evaluate the model from the visual per-
spective, we create a challenge set with over 1,260
adversarial examples by using generative image
inpainting. This dataset serves as a comprehensive
benchmark, allowing us to assess the model’s abil-
ity to validate its conceptual understanding. This
is because the image was created in a standardized
setting in which only a small part was changed.

In this work, we conduct extensive evaluations
of four basic concepts – color, object, location, and
size. These concepts were selected as examples
to demonstrate the effectiveness and robustness of
our proposed approach in capturing nuanced se-
mantic relations, but it is important to note that the
choice of concepts is flexible and can be tailored
to specific applications. Furthermore, our method-
ology is easy to construct, requiring only minimal
domain expertise and the simple usage of regular
expressions. This study shows that simple tweaks
in contrastive learning can significantly enhance
multimodal understanding and model performance.
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der a black open
umbrella.

a person standing on
a loading platform
next to a train.
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door of a creatively
painted tour bus.

a brown cat sits un-
der a black open
umbrella.

Figure 1: Classical contrastive learning approaches use (I1, T
pos
1 ) as positive pairs in combination with negative

samples like Tneg
2 and Tneg

3 to learn an image-text alignment. A bag of words (e.g., nouns) is often sufficient to
extract the correct text that matches a given image, resulting in only broad concepts learned. We also use hard
negatives like Thn

1 so that fine-grained semantic concepts are learned for visual and textual alignment.
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Figure 2: Hard negative contrastive learning: Keyword substitution produces hard negative text samples, which are
then randomly injected for each image ui, replacing a simple negative sample in InfoNCE loss.

2 Vision-Language Representation
Learning

Contrastive Learning. The objective of con-
trastive representation learning is to learn repre-
sentations that are close to each other for similar
samples and distant from each other for dissim-
ilar samples. While many objectives originally
addressed a single modality (Chopra et al., 2005;
Schroff et al., 2015; Sohn, 2016; Oord et al., 2018),
the idea can also be extended to multimodal train-
ing as well.

A successful example of multimodal learning is
CLIP (Radford et al., 2021). CLIP is a Transformer-
based model that consists of an image encoder and
a text encoder, which are trained simultaneously.
The objective is to maximize the cosine similarity

of the image and text embeddings from the correct
image-text pairs and to minimize the similarity be-
tween the incorrect pairs. A batch of N training
samples (i.e., matching image-text pairs) results in
a similarity matrix for each image-text combina-
tion. The main diagonal indicates the correct pair
matches; the remaining entries correspond to neg-
ative entries. The symmetric cross-entropy loss is
applied on N ×N similarity scores.

This heuristical construction of negative sam-
ples has several issues. Negative captions can still
match the given image in some cases, especially
if the text is short and lacks details. Additionally,
the negative pairs are often very dissimilar, which
causes the model to decide only on coarse-grained
features.

We illustrate this in Figure 1 with text-image
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pair I1 and T pos
1 . The original learning process

only uses negative text samples, such as Tneg
2 and

Tneg
3 . Here, it is sufficient that the model can as-

sign or negate objects from texts (i.e., nouns) to
the objects in the image. The fact that no “person”
and no “door” are present in image I1 is sufficient
for the model to discard these image descriptions.
As a result, fine-grained concepts like object-color
alignment, size, or spatial details (“cat under um-
brella”) are not necessary for reaching low loss.
In this example, the model can rely solely on the
presence and absence of specific objects. In this
scenario, the caption can be seen as a bag of words
without linguistic structure.

We address this problem by creating new hard
negative data samples to learn more fine-grained
concepts. See § 3 for details.

Related work. Several approaches incorporate
hard negative samples in multimodal learning.

Radenovic et al. (2023) use importance sampling
(based on Robinson et al., 2021), which up-samples
hard negative samples and down-samples or ig-
nores simple negatives. Yet, they reweight the sim-
ple negative samples per batch only but do not cre-
ate new, challenging samples requiring fine-grained
understanding.

Rösch and Libovický (2022) propose keyword
permutation to create hard negative samples to
learn spatial concepts. They added a spatial un-
derstanding classifier as an auxiliary pretraining
objective and evaluated the models on visual ques-
tion answering (VQA). Their model is based on
LXMERT (Tan and Bansal, 2019) and not on a
contrastive learning approach like CLIP.

Doveh et al. (2023) generate hard negatives us-
ing a rule-based procedure where they replace key-
words. Moreover, they implement an approach
where they randomly parse parts of speech and fill
the mask using a BERT encoder with a plausible
but wrong word. Unlike us, they do not incorporate
hard negatives into the similarity matrix but use an
auxiliary loss summed with the original contrastive
loss. They use four distinct loss functions in total,
introducing an additional layer of complexity to the
overall procedure. In contrast, our approach uses
the original loss function, with minimal modifica-
tions limited to the text inputs.

3 Contrastive Learning with Hard
Negatives

We present a novel contrastive learning approach
using sampled negative pairs and artificially gener-
ated textual hard negatives.

Instead of training with one positive sample and
several weak negative samples, we create a scenario
where models also minimize the similarity to hard
negative textual samples. This forces the model to
learn fine-grained concepts during training.

We use keyword substitutions for different con-
cepts to break the correct meaning of an image
caption. See Figure 1 for an example of the con-
cept color. As a result, the new caption still lists,
e.g., correct objects (e.g., “cat” and “umbrella”)
and actions (e.g., “cat sits”) from the image but is
no longer correct. We call this a “hard negative
sample”. Using these samples during training, we
ensure that fine-grained concepts are learned. The
idea to inject hard negative samples in contrastive
learning is highlighted in Figure 2.

3.1 Creating Hard Negative Text Samples
For various concepts, we replace specific keywords
using a regex-based tool. For example, we replace
“white cat” with “brown cat” or “cat” with “dog”.
We create substitution heuristics for four different
concepts, namely colors, objects, size, location:

• For color, any of the 9 most occurring color
names in COCO can be replaced by any other
color name.

• For objects, any of 80 object names can be
replaced by any other. The 80 words originate
from COCO object categories.

• For location keywords we use 12 one-to-one
substitution relations.

• For size keywords we use 11 one-to-one sub-
stitution relations.

The full list of heuristics is shown in Table 3 in
the Appendix. The created samples are used for
training and evaluation in § 5.1 and § 5.3.

The keywords were selected based on dataset
statistics. For specific applications, a domain expert
may have to select other terms (e.g. specific colors
in the fashion industry).

3.2 Training Details
In our experiments, we use CLIP’s image and text
encoder from the ViT-B/32 model,1 which has
87 million and 63 million parameters respectively.

1https://huggingface.co/openai/clip-vit-base-patch32

104

https://huggingface.co/openai/clip-vit-base-patch32


COCO sample

A red fire hydrant
is on the sidewalk

next to a sign.
M

as
k

“fi
re

hy
dr

an
t”

Mask

In
pa

in
t“

ye
llo

w
fir

e
hy

dr
an

t”

Inpainted

A
dd

C
ap

tio
n New sample

A yellow fire hydrant
is on the sidewalk

next to a sign.

Figure 3: Create hard negative image samples using open vocabulary segmentation for the masking prompt and
text-to-image generation for the inpainting prompt. Additionally, a new correct caption is created manually. The
InpaintCOCO dataset was created for concepts object, color, and size.

And hence, is a relatively small model compared
with current multimodal GenAI models. Our code
is modular, and any image and text encoder from
transformers (Wolf et al., 2020) can be used in
the framework.

We train all models using a batch size of 64.
For concepts with multiple negative examples (i.e.,
color, object), we train models with 1, 2, and 3
hard negatives. This results in a proportion of hard
negatives of 1.5%, 3%, and 4.5%, respectively. We
only use one hard negative for the other concepts.

In all experiments, we use Adam optimizer
(Kingma and Ba, 2014) with a weight decay of
0.1. We run evaluations with different learning
rates (5 × 10−7, 1 × 10−6, 5 × 10−6, 1 × 10−5,
5×10−5) and finally use 5×10−6, since it leads to
the best trade-off results for evaluation displayed in
Figure 4. We do not use a learning rate scheduler
since weights are already aligned. (This is not the
case if encoders that were not trained simultane-
ously are used.) Checkpoints are saved every 10%
of the data, and we train for 3 epochs.

The training time for all models was less than
two hours on an Nvidia V100. Utilizing FP16
training, the GPU memory consumption remained
below 12 GB.

3.3 Training Data

CLIP is pretrained on 400 million image-text pairs
from web sources, and we continue the model
pretraining. We use the COCO image captioning
dataset (Lin et al., 2015), which has 591 thousand
image-text pairs (2017 train version). For each
concept, we filtered out samples where at least one
keyword was present so that a keyword substitution
could be applied. For evaluation, we use the vali-
dation set of COCO 2017. The respective dataset
sizes are shown in the Appendix in Table 5.

4 InpaintCOCO: Challenge Set from the
Visual Perspective

Many multimodal tasks, such as VL Retrieval
and Visual Question Answering, present results
in terms of overall performance. Unfortunately,
this approach overlooks more nuanced concepts,
leaving us unaware of which specific concepts con-
tribute to the success of current models and which
are ignored. More recent benchmarks attempt to
assess particular aspects of vision-language mod-
els in response to this limitation. Some existing
datasets focus on linguistic concepts utilizing one
image paired with multiple captions; others adopt
a visual or cross-modal perspective. In this study,
we are particularly interested in fine-grained vi-
sual concept understanding, which we believe is
not covered in existing benchmarks in sufficient
isolation. Therefore, we create the InpaintCOCO
dataset with image pairs with minimum differences
that lead to changes in the captions.

Related Work. Benchmarks such as ARO (Yuk-
sekgonul et al., 2023) or VL-CheckList (Zhao et al.,
2022) evaluate models from the language perspec-
tive. ARO examines understanding of attributes
and relations without using specific concepts such
as color or size. VL-CheckList2 is a dataset that in-
vestigates concrete concepts such as location, size,
material, color, and relations.

On the other side, SVO (Hendricks and Ne-
matzadeh, 2021) is a dataset that allows analy-
sis from the visual perspective (2 images with 1
caption). Here, relations that deal with verbs are
examined. To our knowledge, the only dataset
that deals with fine-grained comprehension from
a cross-model perspective is Winoground (Thrush
et al., 2022). The dataset consists of two image-

2Parts of the dataset are not available anymore.

105



text pairs that are very similar to each other. This
benchmark probes object relations that do not re-
fer to specific concepts. The images show similar
concepts but are very dissimilar in overall appear-
ance. For samples of the two latter datasets, see
Figure 5 in the Appendix. Both datasets contain
real-world images that are in some ways similar in
terms of objects, but the scenes still differ signifi-
cantly. Therefore, it is difficult to tell which image
differences cause the model predictions.

We overcome this limitation by creating Inpaint-
COCO, the first dataset with only minor changes
in the visual components, so that concept compre-
hension can be analyzed in a more standardized
setting.

Dataset Creation. The dataset creation process
can be viewed a complement to textual hard-
negative samples (§ 3) in the visual domain. Unlike
keyword substitutions, this cannot be done automat-
ically with sufficient accuracy. Even though image
segmentation and generative inpainting tools reach
impressive results, they still require human super-
vision to produce high-quality images. Creating a
high-quality test set, therefore, requires annotation
work.

To generate hard negative image samples, we
need to change individual details in the image so
that the textual image description no longer fits.
The procedure is illustrated in Figure 3.

The annotation proceeds as follows: The anno-
tators are provided with an image and decide if
they want to edit it. If yes, they input the prompt
for the object that should be replaced. Using the
open vocabulary segmentation model CLIPSeg3

(Lüddecke and Ecker, 2022) we obtain a mask for
our object of interest (i.e., “fire hydrant”). Then,
the annotator inputs a prompt for Stable Diffusion
v2 Inpainting4 (Rombach et al., 2022) (e.g. with
the prompt “yellow fire hydrant”), which shows
three candidate images. The annotators can try new
prompts or skip the current image if the result is
insufficient. Finally, the annotator enters a new
caption that matches the edited image. See Ap-
pendix A for all details. The images and captions
come from the COCO 2017 validation data. We
only use images that contain the desired concept
and where licenses allow adaptations.

We provide 452 images for the concept object,

3https://huggingface.co/CIDAS/clipseg-rd64-refined
4https://huggingface.co/stabilityai/stable-diffusion-2-

inpainting

465 for color, and 343 for size. In contrast to
the training process, objects in images are only
replaced with objects from the same COCO super
category, i.e., “cat” with another animal or “chair”
for another piece of furniture. Since location would
require erasing at one spot and implanting objects
at another in a nontrivial way (especially regarding
depth), we discard this one concept in the newly
created dataset. The dataset will be available upon
publishing via the HuggingFace hub.

5 Experiments

We run several experiments to evaluate the pro-
posed method. We compare the original OpenAI
model (Orig.), with continued pretraining CLIP
model using the classical contrastive learning ap-
proach (Clas.) and our method with 1 up to 3 hard
negative values per batch (HN1, HN2, HN3). We
measure both how well concepts are learned and
whether the general image retrieval capability of
the model changes on the COCO dataset (§ 5.1).
Additionally, we evaluate the method using our In-
paintCOCO challenge set (§ 5.2), and several other
datasets (§ 5.3).

5.1 Fine-grained vs. Coarse Understanding

Fine-grained Concept Understanding. Here,
we are interested in whether models have learned
detailed concept knowledge. We pose the evalua-
tion as a ranking problem with one image on one
side and n different texts on the other side. Besides
the correct text (containing the correct keyword),
we generate all possible n− 1 negative examples
using the same procedure as in § 3.1 and rank the
texts with the model. We evaluate the ranking using
the top-1 accuracy. See Table 4 in the Appendix
for some examples.

General Image Retrieval. We evaluate the gen-
eral capabilities of our models using the COCO
dataset. We want the general retrieval capability to
remain high even though we train our models with
a focus on one concept. We report text-to-image
retrieval Recall@5 on the whole COCO validation
set.

Results. Results are shown in Figure 4 (and exact
results per epoch are displayed in Table 7 in the
Appendix). The performance of the original Ope-
nAI CLIP is shown with a black dot and constantly
reaches the worst results. Continued pretraining
on COCO massively increases the general retrieval
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Figure 4: Fine-grained Concept Understanding vs. General Image Retrieval: Results for four different concepts
trained on corresponding dataset subsets. Checkpoints are evaluated after every 10% of the data (circles); checkpoints
at epoch ends are marked with the respective numbers. The results are also in a table form in Table 7 in the Appendix.

performance for all concepts, showing the success-
ful domain adaptation regarding this dataset. It
also improves the concept understanding for all
concepts except for location. We are especially
interested in the trade-off between general retrieval
and concept understanding for the different types
of further pretrained models. The following values
are based on model checkpoints at the end of the
epoch.

For objects, we observe a performance increase
regarding the fine-grained comprehension from
0.56 for the original OpenAI CLIP models to 0.76
when further pretraining on COCO. Using the hard
negatives approach, performance increases by 7
to 10 percentage points, depending on the hard
negative proportion and training duration. Here,
the general retrieval performance only drops by 1
to 2 percentage points in relation to the classical
approach.

We observe a similar pattern can be seen for the
concept color. Understanding of the concept im-

proved by 11 to 15 percentage points compared to
the original training process. On the other hand, the
general comprehension pattern loses 3 to 4 percent-
age points with HN1 and slightly more with hard
negative values. In this case, one hard example
seems sufficient to learn concepts.

A single hard negative sample per batch is
enough to enhance spatial understanding (loca-
tion). Here, concept comprehension improves by
29 or 30 percentage points (depending on the dura-
tion of training) to around 90%. Both the original
CLIP model and the further pretrained model only
achieved around 60%. The general understanding
decreases by 1 percentage point only or by 2 per-
centage points with long training. A substantial im-
provement in location comprehension is achieved
with negligible loss in overall understanding

We observe a similar pattern for the size con-
cept. Further pretraining on COCO improves con-
cept understanding by 5 to 8 percentage points
to around 75%. On the other hand, if the new
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Epoch Orig. Clas. HN1 HN2 HN3

1 0.78 0.85 0.88 0.88 0.88
2 0.78 0.84 0.86 0.88 0.88
3 0.78 0.87 0.88 0.89 0.90

(a) Object

Epoch Orig. Clas. HN1 HN2 HN3

1 0.62 0.83 0.89 0.89 0.89
2 0.62 0.83 0.90 0.90 0.91
3 0.62 0.83 0.90 0.91 0.92

(b) Color

Epoch Orig. Clas. HN1

1 0.26 0.27 0.55
2 0.26 0.28 0.57
3 0.26 0.30 0.60

(c) Size

Table 1: Accuracy for fine-grained understanding from
the visual perspective following Equation (1) for In-
paintCOCO dataset.

learning concept is used, the result is 90%, which
corresponds to an additional improvement of 15
percentage points. Depending on training time, the
general image retrieval capabilities lose no or only
3 percentage points. As with location, an almost
continuous improvement can be observed.

Across all concepts, hard negative contrastive
learning can significantly increase concept under-
standing. This also applies to settings with just
one hard example. It is shown that with a small
adjustment in the objective, the models can learn a
much more complex understanding of image and
text. Meanwhile, the general ability to represent
images and texts is hardly affected.

5.2 Challenge Set Results

The ranking-based evaluation in the previous sec-
tion only assessed the model capabilities from the
language perspective in a very similar setup to how
the model was trained. This section assesses the
model from the vision perspective using our In-
paintCOCO challenge set.

We consider an image pair from the Inpaint-
COCO dataset correctly classified if the correct
images would be more likely to be retrieved based
on the original caption and the newly created cap-
tion. This leads to the formula,

sim(iCOCO, tCOCO) > sim(iinp, tCOCO) ∧
sim(iinp, tinp) > sim(iCOCO, tinp)

(1)

with image i and text t, originating from the orig-
inal COCO and InpaintCOCO dataset. The corre-
sponding results for each concept are displayed in
Table 1.

The results show that continued pretraining im-
proves understanding of all three concepts (object,
color, size). The improvements between the origi-
nal OpenAI CLIP model and the further pretrained
model are 6 to 9 percentage points for the object
and 21 for the color concept. The improvements are
less distinct for size, with a 1 to 4 percentage point
gain, which aligns with the textual comprehension
results displayed in Figure 4d.

For the object concept, hard negative training
brought a 7 to 10 percentage point improvement
for the textual viewpoint (see Table 7). For the eval-
uation from the visual perspective, improvements
are 2 to 4 percentage points. This relatively smaller
improvement is likely because each object could
be replaced with the 79 other object names during
training. Still in this evaluation, a replacement was
only executed within the COCO super-category
(5 to 10 object names per super-category). The
differences in performance between the three mod-
els using hard negative training is ≤ 2 percentage
points.

The evaluation of the color concept shows an
improvement of 6 to 9 percentage points for the
visual perspective. From the textual perspective
(Table 7), the improvement was at over 11 percent-
age points. As before, using more hard negative
samples during training does not further improve
the performance systematically (≤ 2 percentage
point).

For the size concept, we see a big improvement
for both perspectives when using hard negative
models. From the visual perspective, there is an im-
provement of over 28 percentage points (Table 1c),
and from the textual perspective, 13 to 16 percent-
age points.

The results show that training for just one epoch
is sufficient for learning the concepts object, color,
and size, and further training does not continue
improving the results systematically. Additionally,
using a single hard negative is sufficient to improve
understanding of the concepts.
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Dataset Concept Count Orig. Clas. HN1 HN2 HN3

Flickr30k object 30,926 .48 .66 .75 .77 .79
color 45,003 .50 .64 .72 .73 .74
location 20,097 .62 .64 .89
size 14,853 .75 .79 .92

SBU object 200,310 .33 .41 .48 .49 .50
color 162,652 .51 .54 .61 .62 .62
location 159,673 .61 .60 .79
size 47,069 .63 .65 .73

Fashion200K object 3,628 .24 .25 .35 .38 .39
color 141,413 .68 .68 .69 .69 .70

NASA Earth Instagram color 132 .43 .48 .55 .55 .58

Old Book Illustrations object 124 .27 .35 .38 .35 .31
location 95 .61 .50 .77
size 82 .61 .63 .79

Table 2: Fine-grained concept understanding results (accuracy) for a diverse selection of datasets where the sample
size is larger 50. Evaluated on dataset subsets where corresponding keywords are present.

5.3 Evaluations on other Datasets

We further investigate the performance of our
model using more VL datasets. First, we evalu-
ate the models using general VL datasets. The
investigated concepts occur with different frequen-
cies, and for high-quality results, it is important
that these concepts are understood to increase the
overall performance. Therefore, we further inves-
tigate fine-grained concept understanding on the
Flickr30k (Young et al., 2014) and SBU Captioned
Photo (Ordonez et al., 2011) datasets.

Fine-grained concept understanding is also im-
portant in specific domains. For example, in fash-
ion, a correct assignment of garments and colors is
important, not the mere presence of colors in the
image. For this analysis, we evaluated our models
on the very specific datasets Fashion200K (Han
et al., 2017), NASA Earth Instagram,5 and Old
Book Illustrations.6 These datasets are very hetero-
geneous in their appearance.

All models achieve good results except the color
concept on the Fashion200k dataset and object con-
cept on Old Book Illustrations. For the former, this
is because images usually show garments with a
distinct color. Yet, there is little background noise
or noise from irrelevant items, which can confuse
the color alignment of the model in this dataset.
The latter shows old-fashioned drawings with ob-
jects very dissimilar to those in the COCO dataset.
Our approach to learn concepts works very well for
the remaining evaluations.

5https://huggingface.co/datasets/nkasmanoff/nasa_earth_
instagram

6https://huggingface.co/datasets/gigant/oldbookillustrations

6 Conclusion

We introduce a robust method for enhancing fine-
grained concept understanding with minimal im-
pact on general retrieval capabilities using hard
negative sampling in contrastive learning. We show
that various concepts can be learned efficiently with
minor text input adjustments. Moreover, improve-
ments in concept understanding are observable af-
ter continued pretraining on only 10% of our data.
Furthermore, one hard negative sample per image
in a batch of 64 proves sufficient to incorporate the
concept of interest into the model.

We comprehensively evaluate our method on sev-
eral datasets, including our new challenge set. Our
method outperforms classical contrastive learning
on all investigated concepts. Existing datasets often
focus on linguistic perturbations or use dissimilar
images, precluding a structured evaluation of per-
muted visual concepts in isolation. To address this
gap, InpaintCOCO represents the first dataset ad-
justing minor image parts in a controlled setting,
facilitating cross-model fine-grained understanding.
This ensures that the model’s output is influenced
only by one object and not the rest of the scene.

The results show that fine-grained concept un-
derstanding also generalizes to images of differ-
ent styles when using InpaintCOCO and domain-
specific datasets. Our method is data-efficient and
requires only a little domain knowledge to design
the hard negatives. This makes it particularly suit-
able for domain adaptation in image retrieval, as
well as for developing new CLIP-based models,
e.g., for object detection (Minderer et al., 2023).
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Limitations and Risks

Our research introduces a novel method for training
CLIP aimed at incorporating concepts and represen-
tations that are challenging to learn using current
approaches. In our experiments, we only used one
specific CLIP model; however, we believe there
is no reason why the method should not work or
work systematically differently for smaller or larger
CLIP models.

We conducted training with the well-studied
COCO captioning dataset, which is standard in
multimodal research. The proposed method is ex-
pected to show consistent performance also using
other multimodal training datasets. Notably, evalu-
ations on out-of-domain datasets, where the model
was not trained, emphasize the robustness of our ap-
proach. One essential prerequisite for our method-
ology to work is the presence of keywords of inter-
est in the training corpus and language and domain
knowledge to decide how the keywords should be
replaced. The keyword substitution will be more
difficult in languages with more complex morphol-
ogy than in English. Experiments involved using
four concepts with a carefully chosen set of key-
words. Depending on domain-specific tasks, other
keywords might be of interest (e.g., a large list of
garments for the fashion domain).

COCO is a dataset with image-text pairs where
the captions are proper sentences, displaying a spe-
cific level of detail, and are carefully created by
annotators. The images in the COCO dataset come
from Flickr from 2014; therefore, they reflect the
Flickr user structure at that time, i.e., the images
mostly show the Western world and/or other coun-
tries from the Western perspective. The captions
are in English. Thus, the model we developed
does not generalize well beyond the Western world.
However, we believe that is the limitation of the
dataset, and the presented method itself is dataset
agnostic.

The primary application goal of the models we
worked with is to make image collections better
accessible. Similar to other work on this VL mod-
eling that enables better image understanding at

scale, there is a risk of using technology based on
the models for activities such as large-scale video
surveillance.
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A Appendix

Creating Hard Negative Samples In Table 3,
we specify all used substitution keywords for the
concepts object, color, location, and size.

Table 4 lists text samples for the fine-grained
concept understanding task, which is used in § 5.1
for each concept.

Concept Keywords

object [person, bicycle, car, motorbike, aeroplane,
bus, train, truck, boat, traffic light, fire hydrant,
stop sign, parking meter, bench, bird, cat, dog,
horse, sheep, cow, elephant, bear, zebra, gi-
raffe, backpack, umbrella, handbag, tie, suit-
case, frisbee, skis, snowboard, sports ball, kite,
baseball bat, baseball glove, skateboard, surf-
board, tennis racket, bottle, wine glass, cup,
fork, knife, spoon, bowl, banana, apple, sand-
wich, orange, broccoli, carrot, hot dog, pizza,
donut, cake, chair, sofa, potted plant, bed, din-
ing table, toilet, tv monitor, laptop, mouse, re-
mote, keyboard, cell phone, microwave, oven,
toaster, sink, refrigerator, book, clock, vase,
scissors, teddy bear, hair drier, toothbrush]

color [blue, red, green, yellow, black, white, brown,
gray, orange]

location left ↔ right, above ↔ below, under ↔ over,
foreground ↔ background, in front of ↔ be-
hind, back ↔ front

size large ↔ small, little ↔ big, tall ↔ short, long
→ short, thin ↔ fat, huge ↔ tiny, giant →
tiny

Table 3: All keywords that can be replaced for the four
concepts. That are 80 for object, 9 for color, 12 for
location and 11 for size. In lists, each word can be
replaced by any other word. “↔” and “→” denote
words that can be replaced in both and one direction,
respectively.

COCO training and evaluation data. Table 5
shows the size of the training datasets and fine-
grained concept understanding evaluation datasets.
The images predominantly depict scenes from the
USA and Western countries, and all captions are
exclusively in English.

There are many large-scale VL datasets available
to pretrain or further pretrain models (e.g., Concep-
tual Caption (Sharma et al., 2018) or LAION-5B
(Schuhmann et al., 2022) with 3.3 million and 5
billion image-text pairs respectively). Yet, results
in Figure 4 indicate that training on a small-sized
COCO dataset (even for just one epoch) is suffi-
cient to learn the concepts of interest.

Fine-grained VL Benchmarks. In Table 6, we
list different benchmark datasets for fine-grained
understanding in VL. Some image-text samples for

✗ A small yellow person on a branch of a tree.
✗ A small yellow bicycle on a branch of a tree.
✗ ...
✓ A small yellow bird on a branch of a tree.
✗ A small yellow cat on a branch of a tree.
✗ ...

(a) Object (for all 80 object names)

✗ a blue cat sits under a black open umbrella.
✗ a red cat sits under a black open umbrella.
✗ a green cat sits under a black open umbrella.
✗ a yellow cat sits under a black open umbrella.
✗ a black cat sits under a black open umbrella.
✓ a white cat sits under a black open umbrella.
✗ a brown cat sits under a black open umbrella.
✗ a gray cat sits under a black open umbrella.
✗ a orange cat sits under a black open umbrella.

(b) Color

✓ a white cat sits under a black open umbrella.
✗ a white cat sits over a black open umbrella.

(c) Location

✓ A small yellow bird on a branch of a tree.
✗ A large yellow bird on a branch of a tree.

(d) Size

Table 4: Exemplary image descriptions that are used as
text samples in the fine-grained concept understanding
task (see § 5.1) for the example images displayed in
Figure 1 or Figure 3.

Concept Further pretraining Evaluation
dataset size dataset size

object 305,056 12,907
color 92,006 3,907
location 58,156 2,527
size 60,626 2,601

Table 5: COCO dataset size for all concepts used for
further pretraining CLIP and evaluation.

ARO and Winoground are displayed in Figure 5
since these datasets provide two images per sample
– similar to InpaintCOCO. However, unlike Inpaint-
COCO, the visual representations are very different
regarding the scenes presented in these datasets.

Challenge Set Creation. Undergraduate student
workers created the challenge set. They were pro-
vided with an interactive Python environment with
which they interacted via various prompts and in-
puts. The description of the task and the problem of
the research question was made available to them
(see Figure 6). In addition to a detailed written
explanation of how the tool works, they were also
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Dataset Size Perspective Samples Tasks

ARO 77k Linguistic 1 image ↔ 2 texts Attributes, Relations, Order understanding
VL-CheckList 410k Linguistic 1 image ↔ 2 texts Attributes, Relations, Object understanding
SVO-Probs 48k Visual 2 images ↔ 1 text Relations (Verb Understanding)
Winoground 400 Cross-modal 2 images ↔ 2 texts Relations
InpaintCOCO 1,260 Cross-modal 2 images ↔ 2 texts Attributes, Object understanding

Table 6: Datasets for fine-grained understanding in VL.

A dog is sitting on the
floor.

A boat can moor while
at sea.

(a) SVO-Probes

a big cat is next to a
small dog

a small cat is next to a
big dog

the businessperson’s
down fall

the businessperson’s fall
down

(b) Winoground

Figure 5: Samples from visual and cross-model datasets.

given “best practices,” which were created by one
student and reviewed by the authors.

For color, any other color and for size, the oppo-
site statement can be chosen. Yet, within objects,
the students were asked to replace with objects
from the same COCO super-category (to ensure
that no “plain” needs to be inpainted in an indoor
scene). There are 12 super categories for the 80
object names: person, vehicle, outdoor, animal, ac-
cessory, sports, kitchen, food, furniture, electronic,

appliance, and indoor.
The workflow comprises these steps:
1. A random COCO (2017 validation) image is

shown with all its captions containing a con-
cept keyword.

2. The annotator enters a masking prompt for
the segmentation task based on the object of
interest (e.g., “fire hydrant” in Figure 3). They
can also enlarge the mask within the x and y
dimensions by passing additional parameters.
This is useful if a larger object is to be inserted
into the image. Several attempts can be made
until the mask meets the requirements. Only
then the next step is carried out.

3. Then, the annotator enters an inpainting
prompt (the image generation takes roughly 1
minute). They are provided with three differ-
ent inpainted images. They proceed if at least
one high-quality image has been generated.

4. The best image is chosen from the three pro-
posals.

5. Based on the selection before, they rate the
pictures as “very good” or “okay”.

6. Finally, a new, correct caption is added based
on one of the original COCO captions.

A subset of students had pre-existing roles
within the university, while others were purpose-
fully recruited for the designated task. The com-
pensation for student assistants adhered to the
legally stipulated wages in their respective coun-
tries, amounting to CZK 300.00 per hour in the
Czech Republic and EUR 12.00 per hour in Ger-
many.

Challenge Set Details. Our InpaintCOCO chal-
lenge set is based on the famous COCO
dataset. All captions follow “Creative Com-
mons Attribution 4.0 License” and hence can
be changed. Images originate from Flickr,
and have diverse licenses (“Attribution Li-
cense”, “Attribution-NonCommercial-ShareAlike
License”, “Attribution-NonCommercial License”,
“Attribution-ShareAlike License”) which all allow
scientific usage and modification (like inpaining).
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COCO Inpainting Tool

Idea

Replace things in images, so that the image description does not fit anymore. Replace only "color" names, only "size"

names or only "object" names according to the task.

Workflow

Details:

• We have a dataset with images and image descriptions.

• For specific keywords (either "color", "object" or "size" names), we want to change the appearance of the image so that

the image description does not match the initial description anymore.

◦ For the "color" task: We have the caption A woman in a red jacket skiing down a slope  for the following image:

◦ The "color" keyword is red , so we want to change the color of the corresponding object, which is jacket .

◦ Our object segmentation model detects the region-of-interest, here jacket  so that a new object can be inserted into

the detected region.

◦ Now we want to insert the same object but with another color. For example, we can use the inpaint prompt yellow

jacket .

◦ As last step we add a new caption which correctly describe the image based on the original sentence A woman

in a yellow jacket skiing down a slope . You have to use the original sentence as a basis.

What to do first (and only once)?

• Download data according to: https://huggingface.co/datasets/XXXXXX/coco2017#usage

• Set your initals in USER_INITALS .

• Adjust PATH_TO_IMAGE_FOLDER  environment variable. Path to coco2017 data, e.g. "/home/XXXXXX/Data/coco2017"`

• Set KEYWORD_TYPE  environment variable to "color", "object", or "size" according to your task.

What to do?

• Run interactive()  and follow the instructions

• Enter masking resp. inpainting prompts, or shortcuts to reach setting [A], [B], [C], or [D].

• Enter [OK] (or shortcut [O] or [K]) if results are fine and if you want to proceed.

• Restart the kernel if you switch between keyword tasks.

Best practices

For the example "An old yellow plane is flying in the sky." you want to replace the color of the plane:

• Inpaint prompt : If you get bad results try to be more precise!

◦ Give context: Better "old green plane in the sky" or even "old green single-motor plane in the sky" than "green

plane"

◦ Enforce change details: Better "completely green plane" or "completely green painted plane" instead of "green

plane".

◦ Sometimes short, sometimes long descriptions work better!

• New caption : Try to stick as close as possible to one of the original captions.

More best practices see here.

Figure 6: Instructions of inpainting tool provided to
student workers.

Individual licenses are listed in each sample of the
dataset.

Experiment Results. For numeric results from
Figure 4 see Table 7. In this Table fine-grained con-
cept understanding results (Accuracy) and COCO
text-to-image retrieval results (T2I R@5) are pre-
sented. “Orig.”, “Clas.”, “HN1”, “HN2”, and
“HN3” indicate the original OpenAI CLIP model,
the classical further pretrained model, and models
trained with 1, 2, or 3 hard negative samples.

A bird is standing
on top of a car.

A cat is standing on
top of a car.

(a) Object

A couple of white
bathroom sinks sit-
ting next to a toilet.

A couple of black
bathroom sinks sit-
ting next to a toilet.

(b) Color

A living room with
white furniture and
a small wooden ta-
ble.

A living room with
white furniture and
a huge wooden ta-
ble.

(c) Size

Figure 7: InpaintCOCO samples for all concepts.
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Accuracy T2I R@5
Concept Epoch Orig. Clas. HN1 HN2 HN3 Orig. Clas. HN1 HN2 HN3

object 1 .56 .76 .83 .84 .86 .53 .68 .67 .67 .66
2 .56 .76 .84 .85 .85 .53 .68 .67 .67 .67
3 .56 .76 .83 .85 .86 .53 .69 .68 .68 .68

color 1 .48 .69 .81 .82 .83 .53 .64 .61 .60 .59
2 .48 .71 .82 .83 .84 .53 .64 .61 .61 .59
3 .48 .69 .82 .83 .84 .53 .64 .60 .59 .57

location 1 .58 .59 .89 .53 .65 .64
2 .58 .61 .90 .53 .65 .64
3 .58 .62 .91 .53 .65 .63

size 1 .69 .74 .90 .53 .64 .64
2 .69 .75 .90 .53 .65 .63
3 .69 .77 .90 .53 .65 .62

Table 7: Accuracy of fine-grained concept understanding (evaluated on dataset subsets) and COCO text-to-image
Recall@5 for general image retrieval (evaluated on whole dataset) for models trained on respectively concepts.
Checkpoints for epochs 1 to 3.
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Abstract
This paper explores capabilities of Vision Lan-
guage Models on spreadsheet comprehension.
We propose three self-supervised challenges
with corresponding evaluation metrics to com-
prehensively evaluate VLMs on Optical Char-
acter Recognition (OCR), spatial perception,
and visual format recognition. Additionally,
we utilize the spreadsheet table detection task
to assess the overall performance of VLMs by
integrating these challenges. To probe VLMs
more finely, we propose three spreadsheet-to-
image settings: column width adjustment, style
change, and address augmentation.

We propose variants of prompts to address
the above tasks in different settings. Notably,
to leverage the strengths of VLMs in under-
standing text rather than two-dimensional po-
sitioning, we propose to decode cell values
on the four boundaries of the table in spread-
sheet boundary detection. Our findings reveal
that VLMs demonstrate promising OCR capa-
bilities but produce unsatisfactory results due
to cell omission and misalignment, and they
notably exhibit insufficient spatial and format
recognition skills, motivating future work to
enhance VLMs’ spreadsheet data comprehen-
sion capabilities using our methods to generate
extensive spreadsheet-image pairs in various
settings.

1 Introduction

Spreadsheets are widely-used for data management
and analysis (Birch et al., 2018; Wu et al., 2023).
However, they are designed to be "human-friendly,
not "machine-friendly" 1. Cells are arranged on the
grid and illustrated by various visual formats like
borders, colors, and bold fonts. Unlike machines,
humans naturally leverage these visual cues to un-
derstand the layouts and structures of spreadsheets,

* Equal contribution.
† Work during internship at Microsoft.
‡ Corresponding author.

such as the location of the table (e.g., "A2:N32")
using borders, the headers (e.g., "A2:N3") using
bold fonts, and aggregated rows and columns (e.g.,
rows 17, 19, and 20) using fill colors.

While LLMs have shown promising perfor-
mance in serializing spreadsheets as text se-
quences (Chen et al., 2024; Li et al., 2024), repre-
senting spreadsheets in this manner loses critical
visual signals. With the recent surge in Vision Lan-
guage Models (VLMs) (Laurençon et al., 2024),
we propose studying the capability of language
models to leverage visual signals for spreadsheet
understanding. Fortunately, a spreadsheet can be
straightforwardly processed using third-party tools
like Interop and converted into an image. This
motivates us to construct spreadsheet-image pair-
wise data for self-supervised tasks. To this end,
we propose three self-supervised tasks to compre-
hensively examine critical abilities of VLMs sep-
arately: Optical Character Recognition (OCR) of
cells, two-dimensional spatial position perception,
and visual format recognition. Finally, we use
spreadsheet table detection (Dong et al., 2019), a
fundamental and enabling task in Microsoft Excel
and Google Sheets, to jointly examine the effective-
ness of VLMs, as this task combines the challenges
of all three self-supervised tasks.

Specifically, as shown in Figure. 1, spreadsheet
images present the following challenges: 1) The
rows and columns are very compact, even overlap-
ping, which makes the OCR task difficult. Specifi-
cally, VLMs sometimes struggle to split multiple
cells and mistakenly treat them as a single cell. 2)
The absence of explicit cell addresses and clear
boundaries between rows and columns makes it
difficult to perceive spatial locations. 3) Spread-
sheets often contain a variety of formats, making it
hard to recognize all formats precisely at the pixel
level. To address these issues, we propose three dif-
ferent spreadsheet-to-image settings to probe the
VLMs’ performance: column width adjustment,
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Figure 1: A sample spreadsheet showing various challenging points in spreadsheet understanding task.

style change, and address augmentation respec-
tively, as shown in Figure. 2.

We explore variants of prompts to address the
above tasks in different settings. Notably, to lever-
age the strengths of VLMs in understanding text
rather than two-dimensional positioning, we pro-
pose to decode cell values on the four boundaries of
the table rather than decoding regions like "A2:E5"
directly in the task of spreadsheet boundary detec-
tion. By analyzing the experiment results, we draw
the following conclusions: Firstly, VLMs possess
strong OCR capabilities, yet they often encounter
issues of cell omission and prediction misalignment
when dealing with spreadsheet images. Secondly,
VLMs lack robust spatial perception in images be-
cause they need to infer the number of rows and
columns implicitly on a large two-dimensional cell
grid rather than reading it directly. It is highly
noteworthy that their performance on recognizing
visual formats on a cell grid is far from satisfactory;
they are far from human-level in comprehending
spreadsheet formats. Lastly, in the task of spread-
sheet table detection, VLMs do not perform as well
as the existing CNN-based TableSense (Dong et al.,
2019), which is well-trained using a human-labeled
dataset, indicating that there is still a long way to
go in understanding spreadsheet images for VLMs.

2 Related Work

2.1 Table Representation

The advent of Large Language Models (LLMs)
has significantly spotlighted the task of processing
structured data (Jiang et al., 2023; Tang et al., 2023;
Guo et al., 2023), particularly tabular data. In the
quest to effectively communicate tabular data to
LLMs, researchers have devised numerous formats,
including HTML, JSON, Markdown, and XML, to
represent such data. Studies by Sui et al. (Sui et al.,
2023a) and Singha et al. (Singha et al., 2023) have
underscored the efficacy of using Markdown and
HTML for tabular data representation. However,
these methods do not apply to spreadsheets since
they have a single table assumption with an ex-
plicit region. Moreover, they do not leverage visual
formats. (Deng et al., 2024) explored the usage
of LLMs to evaluate representations of tables in
image form, and Singh et al. (Singh et al., 2023)
examined the capability of GPT-4 with vision(GPT-
4V) (Achiam et al., 2023) on structured data, but
they also focus on table-based input but not spread-
sheet input that can include multiple tables and
scattered notes. In contrast, there’s a growing in-
terest in exploring the vision perspective of spread-
sheets to leverage the visual cues and take the
whole spreadsheet rather than a single table as in-
put. For instance, Dong et al. (Dong et al., 2019)
uses CNN to capture spatial layouts of spreadsheet.
However, our research diverges by focusing on ex-
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ploring LLMs’ ability to understand spreadsheet
images. (Huang et al., 2023) proposed to model
table boundaries as language sequences and use
sequence decoder for table recognition.

2.2 Table-Related Tasks

Previous research has extensively explored tasks
related to tables, encompassing table QA, table fact-
checking, table-to-text, table manipulation, and ta-
ble interpretation, etc (Pasupat and Liang, 2015;
Novikova et al., 2017; Chen et al., 2020; Sui et al.,
2023b; Li et al., 2023; Zhang et al., 2023). How-
ever, many of these tasks primarily revolve around
understanding tables at the textual level. In reality,
tables are often embedded within documents, im-
ages, and web pages, necessitating the exploration
of related tasks such as table header detection, table
structure recognition, and table recognition.

In recent studies, Fang et al. (Fang et al., 2012)
identified tables within PDF documents using ex-
isting table extraction tools and employed machine
learning algorithms to construct classifiers for iden-
tifying and categorizing table headers. Nassar et
al. (Nassar et al.) introduced a novel table unit
object detection decoder based on Transformer ar-
chitecture to comprehend table structures. Ly et
al. (Ly and Takasu, 2023) decomposed the table
recognition task into two subtasks: table structure
recognition and cell content recognition. They pro-
posed an end-to-end multi-task learning model to
address these subtasks.

However, our current study focuses more on the
understanding of spreadsheet images by VLMs.
This involves investigating the OCR capabilities
of VLMs, their aptitude in capturing formatting
information, their perception of spatial positioning,
and their efficacy in detecting tables from spread-
sheets (Dong et al., 2019).

3 Preliminary

3.1 Probing tasks

We design the following three probing tasks to eval-
uate the performance of VLMs on spreadsheet un-
derstanding.

Optical Character Recognition (OCR): A
spreadsheet is a two-dimensional cell grid that dif-
fers from plain text. In OCR tasks for text, the
output simply sequences the characters. However,
OCR for spreadsheets not only involves recogniz-
ing characters but also requires organizing them

in units of distinct cells as shown in Task1 of Fig-
ure. 1.

Understanding spatial position: The ability of
VLMs to perceive the spatial position of images has
been a long-standing challenge. Unlike ordinary
images, spreadsheet images employ a precise two-
dimensional coordinate system, where misalign-
ment of rows and columns severely disrupts the
understanding of information. Each cell’s address
corresponds to exact row and column coordinates,
however, the images don’t explicitly indicate the
coordinate positions, so we define the top row in
the image as the first row and the leftmost column
as the first column. Consequently, the address of
the cell located at the intersection of the first row
and first column is defined as "1,1". Cell numbers
increase from left to right and from top to bottom.
As shown in Task2 of Figure. 1, the address for
"Other People" is "B26." But for spreadsheet im-
ages without given coordinate positions, it should
be recognized as "26,2".

Understanding visual format information:
Spreadsheets contain rich formatting details that
enhance comprehension and processing. If VLMs
could "read" format information in images, it
would perceive the images much like human do.
Although spreadsheets contains a variety of format,
we primarily focus on top border, bottom border,
left border, right border, bold font, and fill color as
shown in Task3 of Figure. 1.

3.2 Spreadsheet Table Detection Task

Spreadsheet table detection (Dong et al., 2019),
involves identifying all tables within a given spread-
sheet and determining their respective ranges. The
spreadsheet will feature a visually rich design con-
taining several tables scattered throughout, each po-
tentially featuring a unique structure. Variability in
the layout and structure of multiple tables contains
rich visual information greatly complicating the
task by obscuring table boundaries. Spreadsheet
table detection is a horizontal and enabling task
benefiting various intelligent features in spread-
sheet softwares. Therefore, We employ this critical
task in our work to assess the extent to how vi-
sual information influences the ability of VLMs to
comprehend spreadsheets.
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Figure 2: Illustration of spreadsheet-to-image settings.

4 Methodology

4.1 Dataset Construction

In order to study the spreadsheet understanding
capabilities of VLMs such as GPT-4V and Gem-
ini (Team et al., 2023), we convert the spreadsheet
dataset (Dong et al., 2019) into images using the
Microsoft Office Interop Excel library 1 without
any human labeling efforts. Then we can simply
reverse the dataset to get image-spreadsheet pairs.

Next, to probe the differences for VLMs to un-
derstand image spreadsheets under various image
settings, we propose three processing methods on
the input spreadsheet shown as Figure. 2. They
are column width adjustment, style change, and
address augment, respectively.

Column Width Adjustment: Since the column
width effect the maximum number of characters
displayed in each cell, if the column width is too
small, the content between multiple cells will be
very compact, making it difficult for the model
(or even humans) to distinguish it. If the column
width is too large, space will be wasted. Therefore,
we come up with a setting that adjusts the column
width based on the text length, but if the text length
is too long, we limit it to the first 15 characters.

Style Change: Spreadsheet style attributes
mainly include background color and various font
properties such as bold, italic, fill color, and size.
These styling elements serve specific functions, for
instance, background color often groups similar
data, while font color and bolding emphasize im-
portant details. These styles provide distinct vi-
sual cues within the spreadsheet. To minimize the
influence of these stylistic elements on the under-

1https://github.com/microsoft/Windows-Packaging-
Samples/tree/master/OfficeInterop/Excel.Interop

Figure 3: The prompt of OCR task.

standing of VLMs, it’s necessary to standardize
these attributes: removing background colors and
bold formatting from each cell, setting font color
to black, and using a consistent font type and size,
such as Calibri at 12pt, etc.

Address Augment: In spreadsheets, cell con-
tents typically serve the sole purpose of storing
data. However, a comprehensive understanding
of the spreadsheet requires grasping the spatial re-
lationships and format correspondences between
cells. Existing VLMs may struggle to robustly cap-
ture these precise spatial relationships. To address
this, we propose a new setting that incorporates
cell address information alongside the cell content.
That is, we explicitly concatenate the cell address
(e.g., "A1") with its value (e.g., "day"), using a
comma to separate them. This results in a fashion
like "A1, day."

4.2 Optical Character Recognition

We instruct the VLM to sequentially decode the
text of each cell in the spreadsheet image, moving
from top to bottom and left to right, while omitting
cells that contain null values. Figure. 3 provides a
prompt example.

Evaluation Method: We adopt two kinds of
evaluation method, Strict and longest common sub-
string (LCS). As shown in Figure. 4, the LCS ar-
gorithm is uesd to find the longest common sub-
sequence between the predicted sequence and the
ground truth sequence. It helps to effectively alle-
viate the problem of poor performance caused by
missing some cells in the output and can test the
OCR ability of the VLMs to the greatest extent.

Figure 4: The difference between LCS matching and
Strict matching.
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Figure 5: The prompt for vanilla experiment of spatial
position perception task.

4.3 Spatial Position Perception

We prompt the VLMs to recognize the spatial po-
sitions of specified cells ensuring that each cell
value and its address correspond uniquely. Fig-
ure. 5 provides a prompt for vanilla experiment,
other prompts see Appendix A.

Specifically, we input a spreadsheet image along
with a list of randomly shuffled cell values into the
VLMs. Then, we prompt the VLMs to output the
address corresponding to each value. It is important
to note that for the vanilla, colwidth adjust, and
style change experiments, the input image does not
contain cell addresses. Therefore, the addresses
output by the VLMs should be composed of the
row and column indices of the cell, in the form
"2,3". In contrast, the address augment experiment
outputs addresses in the form "C2".

4.4 Visual Format Recognition

We have defined six specific cell formats: top bor-
der, bottom border, left border, right border, bold
font, and fill color. For each format, we instruct
the VLMs to identify and output the addresses of
all cells that exhibit the specified format. Figure. 6
provides a prompt for vanilla experiment, other
prompts see Appendix A.

This experiment is similar to the spatial position
perception experiment. The addresses output by
the vanilla and colwidth adjust experiments should
be composed of the row and column indices of the
cell in the form "1,2", while the address augment
experiment outputs addresses in the form "B1".

4.5 Spreadsheet Table Detection

We instruct VLMs to detect all table ranges from
spreadsheet images. Figure. 7 provides a prompt
for vanilla experiment, other prompts see Ap-
pendix A.

By convention, contiguous cell ranges are repre-
sented by the addresses of the upper left and lower

Figure 6: The prompt for vanilla experiment of visual
format recognition task.

right cells, separated by ":", and cells are referenced
by their column and row indices, e.g., "A4:D120".
However, when presenting a spreadsheet as an im-
age input to the VLMs, the image may lack the
ability to deduce the cell addresses. To address
this challenge, we propose a novel approach where
the VLMs directly decode the contents of the four
boundaries of the table. Subsequently, these de-
coded contents are mapped to a conventional ad-
dresses using our proposed method as introduced
in the follow paragraph.

Specifically, except for the address augment ex-
periment, which can directly output a range in the
form "A4:D120," the other experiments output the
result by decoding the four boundaries.

Mapping Algorithm: Consider a spreadsheet
S comprising m rows and n columns, where each
cell is represented by ci,j , with i and j denoting
its row and column index, respectively, within the
spreadsheet.

S =




c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n

...
...

. . .
...

cm,1 cm,2 · · · cm,n


 (1)

By allowing the model to decode the four bound-
aries of all tables, we obtain the model’s prediction
result denoted as Predict = [T1, T2, ...]. Among
them, Ti means the predicted four boundaries of
the i-th table, that is,

Ti =





Bt : [c1, c2, . . . , ct],
Bb : [c1, c2, . . . , cb],
Bl : [c1, c2, . . . , cl],
Br : [c1, c2, . . . , cr]





(2)

Among them, Bt, Bb, Bl and Br repre-
sent the contents of top_border, bottom_border,
left_border and right_border respectively. For
top_border and bottom_border, we can map it to the
most likely row index in the spreadsheet through

120



algorithm 1. For left_border and right_border, we
only need to transpose them and do the same. Fi-
nally, after we obtain the row/column index corre-
sponding to each predicted border, we process it
into a region such as “A1:D9”.

Algorithm 1: Map the content of a specific
row to the corresponding row index.
Input :The border content B predicted by

the model and the contents S of
the spreadsheet.

Initialize the origin confidence Conf to
0.8.;

Initial the result index res to −1.;
for i = 1 to |S| do

if |S[i]| ≥ |B| then
tList← S[i];
sList← B;

end
else

tList← B;
sList← S[i];

end
sCnt← |sList|;
tCnt← |tList|;
for j = 1 to tCnt do

if j + shortCnt > tCnt then
Break;

end

cConf ←
∑sCnt

k=1 (sList[k]==tList[k])
sCnt ;

if cConf ≥ Conf then
res← i;
Conf ← cConf ;

end
end

end
Output : the result index res.

5 Experiment Setting

We conducted experiments using GPT-4V (2024-
02-15 preview) (Achiam et al., 2023) and Gem-
ini (1.5-pro lateset until 2024-05-16) (Team et al.,
2023). To ensure consistent experimental param-
eters, we set the generation temperature for both
GPT-4V and Gemini-pro to 0.7, top_p to 0.95, and
max_output_token to 4096.

Due to GPT-4V’s input image restric-
tions—specifically, that the image file size
must be less than 4MB and the resolution must

Figure 7: Zero-shot prompt for vanilla images decoding
four boundaries on spreadsheet table detection task.

be between 50 × 50 and 10, 000 × 10, 000
pixels—we filtered 76 images from the test dataset
of TableSense (Dong et al., 2019) to meet these
criteria. For each experiment, we evaluate the
models using precision, recall, and F1, repeating
each experiment three times and taking the average
results.

6 Experiment Result

6.1 Performance of Optical Character
Recognition

Table. 1 presents the OCR task results of GPT-4V
and Gemini-pro, calculated using both Strict and
LCS matching methods. From the table, we can
observe:

1) Both GPT-4V and Gemini-pro are generally
capable of accurately recognizing the content in
spreadsheet images. Specifically, the best perfor-
mance of GPT-4V and Gemini-pro can reach F1
scores of 79.59% and 81.85%, respectively, demon-
strating their strong ability to recognize content in
a two-dimensional grid.

2) For both GPT-4V and Gemini-pro, the per-
formance of LCS matching far exceeds that of
Strict matching, indicating that they tend to miss
some cells or predict misalignments during per-
forming OCR task, causing almost all predictions
to be incorrect from the first missed cell in Strict
matching. Specifically, GPT-4V’s F1 scores under
LCS matching are higher than Strict matching by
54.98%, 62.63%, and 52.98% and Gemini-pro’s F1
scores under LCS matching are higher by 66.51%,
65.16%, and 66.9% for the three different inputs,
respectively.

3) Preprocessing spreadsheets by adjusting col-
umn width significantly enhances the OCR capabil-
ities of VLMs on spreadsheet images, but further
preprocessing with style change does not improve

121



%
Strict match LCS match

Precision Recall F1 Precision Recall F1

GPT-4V
Vanilla 14.78 12.68 13.65 74.32 63.74 68.63
ColWidth Adjust 17.87 15.24 16.96 83.87 75.74 79.59
Style Change 27.44 25.54 26.46 82.40 76.69 79.44

Gemini-pro
Vanilla 9.26 8.08 8.63 80.61 70.39 75.14
ColWidth Adjust 16.13 13.03 14.42 89.03 71.94 79.58
Style Change 16.40 13.74 14.95 89.80 75.20 81.85

Table 1: Precision, recall and F1 results of GPT-4V and Gemini-pro on OCR task. Among them, colwidth adjust is
the processing operation of column width adjustment.

the OCR performance of VLMs. Specifically, ad-
justing column width can increase GPT-4V’s F1
scores by 3.31% and 10.96% in the Strict match
and LCS match methods, respectively, and increase
Gemini-pro’s F1 scores by 5.79% and 4.44% in the
Strict match and LCS match methods, respectively.

4) Gemini-pro’s OCR capability on spreadsheet
images is slightly stronger than that of GPT-4V.
Specifically, in the vanilla and style change ex-
periments, Gemini-pro’s F1 scores are 6.51% and
2.41% higher than those of GPT-4V, respectively.

Finally, we analyze the results of GPT4-V on a
case in detail in Appendix B.1.

% Precision Recall F1

GPT-4V

Vanilla number 12.44 12.37 12.41
ColWidth Adjust number 13.45 13.35 13.39
Style Change number 12.16 12.14 12.15
Address Augment address 48.87 49.09 48.97

Gemini-pro

Vanilla number 16.72 18.00 17.33
ColWidth Adjust number 14.29 15.40 14.82
Style Change number 16.75 18.13 17.41
Address Augment address 83.66 87.53 85.55

Table 2: Precision, recall and F1 results of GPT-4V and
Gemini-pro on spatial position perception task.

% Precision Recall F1

GPT-4V Vanilla number 24.97 11.69 15.79
ColWidth Adjust number 24.31 11.07 14.77
Address Augment address 28.88 13.28 17.83

Gemini-pro Vanilla number 35.27 13.28 17.53
ColWidth Adjust number 35.09 12.69 16.93
Address Augment address 41.93 16.78 22.19

Table 3: Precision, recall and F1 results of GPT-4V and
Gemini-pro on visual format recognition task.

6.2 Performance of Spatial Position
Perception

Table 2 shows the results of GPT-4V and Gemini-
pro in performing spatial position perception tasks.
Analyzing the results in Table 2, we first observe
that GPT-4V and Gemini-pro perform poorly in
the vanilla, colwidth adjust, and style change ex-
periments. This underperformance is attributed
to the three types of experiments demanding that
the VLMs count the rows and columns in the
spreadsheet. However, the boundaries of rows and
columns in the spreadsheet are often unclear due to
the lack of borders or the presence of line breaks
that cause content overlap (e.g., "A5", "C3", etc. in
Figure. 1).

Secondly, we noted that although preprocess-
ing spreadsheets with address augment can sig-
nificantly enhance the performance of both GPT-
4V and Gemini-pro, since address augment allows
VLMs to fully utilize their OCR capabilities, GPT-
4V does not achieve the same level of OCR perfor-
mance as Gemini-pro. This suggests that GPT-4V
may not understand the task prompts as thoroughly
as Gemini-pro.

In addition, we observe that in the four types of
experiments, Gemini-pro outperform GPT-4V in
F1 scores by 4.92%, 1.43%, 5.26%, and 36.58%,
respectively, indicating that Gemini-pro has a
stronger spatial position perception capability in
spreadsheet image tasks.

Finally, we analyze the results of GPT4-V on a
case in detail in Appendix B.2.

6.3 Performance of Visual Format
Recognition

Table 3 presents the results of GPT-4V and Gemini-
pro in testing their ability to recognition the visual
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%
Zero-Shot One-Shot Trained

Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4V
Vanilla four 52.38 10.23 17.11 49.29 8.66 14.68 - - -
ColWidth Adjust four 49.43 17.49 25.79 48.72 15.10 23.05 - - -
Address Augment range 9.26 14.85 11.41 14.60 13.86 14.22 - - -

Gemini-pro
Vanilla four 25.96 18.40 21.53 35.82 6.98 11.67 - - -
ColWidth Adjust four 26.66 22.40 24.33 26.93 7.03 11.15 - - -
Address Augment range 9.08 19.94 12.47 7.62 15.55 10.00 - - -

TableSense Text Input - - - - - - 80.21 76.24 78.17

Table 4: Precision, recall and F1 results of GPT-4V, Gemini-pro and TableSense (Dong et al., 2019) on spreadsheet
table detection task.

format information in spreadsheet images. The
results indicate that the best F1 scores for GPT-
4V and Gemini-pro across multiple experiments
are only 17.83% and 22.19%, respectively. This
demonstrates that their ability to comprehend for-
mat information in images is quite poor and that
they cannot deeply understand images by combin-
ing format information as humans do. Therefore,
this is an area where VLMs need improvement in
the future. Additionally, in two types of exper-
iments, Gemini-pro’s F1 scores are higher than
GPT-4V’s by 1.74%, 2.16% and 4.36%, respec-
tively, indicating that Gemini-pro again has a slight
edge over GPT-4V in this aspect.

Then, we analyze the results of GPT4-V on a
case in detail in Appendix B.3.

6.4 Performance of Spreadsheet Table
Detection

The results of GPT-4V and Gemini-pro for the
spreadsheet table detection task are shown in Ta-
ble 4. Firstly, we can see that the F1 scores ob-
tained by having the VLMs decode the four bound-
aries and then applying our proposed mapping
algorithm are significantly higher than those ob-
tained by directly outputting the address range (e.g.,
"A1:C10"). Specifically, GPT-4V’s zero-shot per-
formance is 5.7% and 14.38% higher, and Gemini-
pro’s is 9.06% and 11,86% higher,respectively,
which can be attributed to their excellent OCR ca-
pabilities.

Secondly, both GPT-4V and Gemini-pro fall sig-
nificantly short when compared to TableSense, with
the closest F1 result still being 52.38% lower. How-
ever, it is worth noting that TableSense inputs in-
puts serialized text from the spreadsheet, whereas
the VLMs we are exploring take images as input.
This indicates that there is a long way to go in

continuously improving VLMs to achieve results
comparable to text input.

Moreover, we observed an anomalous result: the
one-shot results of GPT-4V and Gemini-pro are
generally worse than their zero-shot results. This
might be due to the complex structure of spread-
sheets, where providing an example can lead VLMs
to favor outputs with structures similar to the ex-
ample, resulting in misjudgments.

Finally, we analyze the results of GPT4-V on a
case in detail in Appendix B.4.

7 Conclusion and Future Work

In this paper, we develop a suite of probing tasks
aimed at evaluating the critical capabilities of
VLMs in OCR, comprehension of formatting de-
tails, and recognition of spatial positioning within
spreadsheet images. Our findings demonstrate that
while VLMs possess strong OCR capabilities, they
are prone to cell omission and prediction misalign-
ment during OCR tasks on spreadsheet images.
Furthermore, their spatial perception is insufficient,
as they struggle to accurately determine the row
and column numbers of cells in a two-dimensional
spreadsheet grid. Surprisingly, VLMs cannot com-
prehend visual formats well like humans. Addi-
tionally, we introduce a spreadsheet table detection
task designed to thoroughly assess the ability of
VLMs to interpret spreadsheet images effectively.
However, the performance of this task falls short of
that achieved by existing SOTA method, indicating
that processing and comprehending spreadsheets
remains a significant challenge.

Future research could focus on handling larger
spreadsheet images and segmenting these spread-
sheets without compromising the integrity of their
format and spatial relationships. Despite these chal-
lenges, the potential benefits of treating spread-
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sheets as images are substantial. In this paper, we
have proposed methods that can massively generate
spreadsheet-image pairs, and under our proposed
settings, we can control various challenges. Uti-
lizing these methods to generate large amounts of
data, we train open-source large models to enhance
their understanding of structured data on grids, fur-
ther advancing the comprehensive capabilities of
large models towards AGI.
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A Prompt Examples

Figure. 8 shows the prompt for address augment
experiment in spatial position perception task; Fig-
ure. 9 shows the prompt for address augment exper-
iment in visual format recognition task; Figure. 10
shows the prompt for spreadsheet table detection
task under different experiment setting and output
format.

Figure 8: The prompt for address augment experiments
of spatial position perception task.

Figure 9: The prompt for address augment experiments
of visual format recognition task.

B Case Study

B.1 A case of OCR task

In order to deeply explore the impact of different re-
constructed spreadsheet images on GPT-4V’s OCR
capabilities, we will analyze the case shown in Fig-
ure. 12 in detail.

First, by comparing the results of Figure. 12a
and Figure. 12b, we can clearly find that not ad-
justing the column width in the spreadsheet will
cause the OCR capability of GPT-4V to drop signif-
icantly. This is due to the fact that the cell content
in many spreadsheets will not be fully displayed
when the column width is not adjusted, and there
may be overlap or coverage between adjacent cells,
as shown in Figure. 12a.

Secondly, by observing these three pictures, we
will find that GPT-4V has insufficient positioning
capabilities when performing OCR, resulting in

(a) The zero-shot prompt for outputting ranges in vanilla ex-
periments.

(b) The zero-shot prompt for outputting ranges in address
augment experiments.

(c) The one-shot prompt for decoding four boundaries in
vanilla experiments

(d) The one-shot prompt for outputting ranges in address
augment experiments.

Figure 10: The prompt of spreadsheet table detection
task.

some cells being missed or misplaced during the
prediction process. For example, GPT-4V’s pre-
diction results for the three pictures in Figure. 12
ignore the first two lines of the spreadsheet, and in
both Figure. 12b and Figure. 12c, GPT-4V predicts
"Aronowitz, Alan" to "713-858-7795" After, but
actually it should be in front.

B.2 A case of spatial position perception task

Figure. 11 presents a tangible example evaluating
GPT-4V’s proficiency in spatial position awareness
within spreadsheet environments. Upon scrutiny,
it’s apparent that even in relatively straightforward
scenarios, both vanilla and style change experi-

126



(a) Vanilla

(b) Style Change

(c) Address Augment

Figure 11: An example of GPT-4V on spatial position
perception task. The content marked in red indicates the
LCS match error prediction

ments reveal GPT-4V’s inadequate performance in
accurately predicting position. While GPT-4V ef-
fectively forecasts column positions for most cells,
it consistently struggles with row positions, con-
sistently displaying an offset. This issue becomes
more pronounced in the presence of empty rows,
leading to inaccuracies in subsequent cell position
predictions.

In contrast, the address augment experiment
showcases a comparatively better performance by
GPT-4V. This improvement can be attributed to
its impressive OCR capabilities, allowing it to ac-
curately identify and pair cell addresses with their
corresponding values within a single cell.

B.3 A case of visual format recognition task

The case depicted in Figure. 14 presents the out-
comes of GPT-4V’s analysis under vanilla and ad-
dress augment experiments. Examination of these
results reveals GPT-4V’s limited grasp of format in-
formation in both scenarios, indicating its potential
inability to comprehend spreadsheet format details

akin to humans, likely due to image encoding con-
straints. Upon meticulous scrutiny of GPT-4V’s
outputs, a discernible trend emerges: it tends to fol-
low imaginary rules to identify locations featuring
specific formats. For instance, under the vanilla ex-
periment, GPT-4V consistently identifies the three-
line area spanning from "1,1: 1,6", "2,1:2,6", and
"6,1:6,6" for bottom borders. Similarly, under the
address agument condition, it consistently outputs
areas such as "A1:F1", "A5:F5", and "A7:F7" rep-
resenting top borders.

B.4 A case of spreadsheet table detection task
In order to explore the performance of GPT-4V
on the spreadsheet table detection task, We will
analyze the case in detail.

First, by analyzing Figure. 14a, we can find that
the reason why one-shot effect is worse than zero-
shot effect is that the example we give always have
inevitable biases, which will induce the VLMs
to make wrong judgments, even worse than the
VLMs’ own judgment under zero-shot setting. Fur-
thermore, VLMs have serious hallucination prob-
lems so in one-shot experiments settings, there is
always a tendency to output example answers as
part of the results.

Second, by comparing predictions in Figure. 14b,
we can find that the GPT-4V makes an error to
directly output the address of the table range, while
GPT-4V correctly output the values on the four
boundaries of the table. According to the previous
experiment results, we learn that the VLMs has
poor spatial perception of spreadsheet images, so
it’s hard for them to infer the address of table ranges
accurately. In contrast, VLMs has quite strong
OCR capabilities, which allow to decode the cell
values on the table boundaries.
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(a) Vanilla

(b) ColWidth Adjust

(c) Style Change

Figure 12: An example of GPT-4V on OCR task. Due
to space limitations, only the contents of the first 15
cells are shown. The content marked in red indicates
the LCS match error prediction.

(a) Vanilla

(b) Address Augment

Figure 13: An example of GPT-4V on visual format
recognition task. The content marked in red indicates
the wrong predictions.

(a) zeroshot vs. oneshot

(b) four vs. range

Figure 14: An example of GPT-4V on spreadsheet table
detection task. The red color represents the wrong pre-
dictions.
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Abstract

Audio-visual speech recognition (AVSR) is
a multimodal extension of automatic speech
recognition (ASR), using video as a comple-
ment to audio. In AVSR, considerable efforts
have been directed at datasets for facial features
such as lip-readings, while they often fall short
in evaluating the image comprehension capa-
bilities in broader contexts. In this paper, we
construct SlideAVSR, an AVSR dataset using
scientific paper explanation videos. SlideAVSR
provides a new benchmark where models tran-
scribe speech utterances with texts on the slides
on the presentation recordings. As technical ter-
minologies that are frequent in paper explana-
tions are notoriously challenging to transcribe
without reference texts, our SlideAVSR dataset
spotlights a new aspect of AVSR problems. As
a simple yet effective baseline, we propose
DocWhisper, an AVSR model that can refer
to textual information from slides, and confirm
its effectiveness on SlideAVSR.

1 Introduction
Research on multimodal models capable of han-
dling multiple types of data, such as language, im-
ages, videos, and audio simultaneously, has gar-
nered significant attention. An example is audio-
visual speech recognition (AVSR), a multimodal
extension of automatic speech recognition (ASR),
using video as a complement to audio. Most
previous studies in AVSR have been conducted
with the aim of improving accuracy on lip reading
datasets (Afouras et al., 2018a,b). While models
built in these studies (Shi et al., 2022; Pan et al.,
2022; Haliassos et al., 2023) demonstrate high per-
formance on lip reading data, their applicability to
other types of videos remains limited.

In this paper, we aim to evaluate the image com-
prehension capabilities of AVSR models across a
broader spectrum of visual contents than facial fea-
tures. To achieve this, we construct SlideAVSR,
an AVSR dataset that contains various technical

terms that are notoriously challenging to transcribe
without referring to textual information on slides.
Specifically, we collect scientific paper explanation
videos from YouTube, apply data refinement proce-
dures with several custom filters, and perform data
partitioning considering the speakers’ accents.

Furthermore, we propose DocWhisper, a sim-
ple yet effective AVSR baseline that can efficiently
refer to the content of slides using optical char-
acter recognition (OCR). In experiments utilizing
SlideAVSR, DocWhisper demonstrated a perfor-
mance improvement of up to 14.3% compared
to Whisper (Radford et al., 2022), which relies
solely on audio input. Additionally, to address the
long-tail problem in OCR results, we introduce FQ
Ranker, which calculates word ranks based on the
frequency of word occurrences, and we evaluate its
effectiveness integrated with DocWhisper.

2 Related Work
Compared to the efforts that have been made on
lip reading datasets (Chung et al., 2017; Chung
and Zisserman, 2017a,b; Afouras et al., 2018a,b;
Shillingford et al., 2019), AVSR datasets in other
types of videos remain scarce. VisSpeech (Gabeur
et al., 2022) is constructed from a subset of the
instructional video dataset HowTo100M (Miech
et al., 2019) where the visual stream and speech
audio are semantically related. The audiovisual di-
arization benchmark in the Ego4D challenge (Jain
et al., 2023) consists of 585 egocentric video
clips. In terms of utilizing textual information
extracted from videos, SlideSpeech (Wang et al.,
2023) builds an AVSR dataset on online confer-
ence videos enriched with slides. However, the
filtering process of SlideSpeech relies heavily on
human annotators. In this work, we exclude videos
and utterances that do not correspond to slides by
utilizing a vision language model. This approach
reduces annotation costs and enhances the purity
and quality of our dataset within the slide domain.
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In the context of extending Whisper to an AVSR
model, Peng et al. (2023) employed CLIP (Radford
et al., 2021) to transform the input visual stream
into word sequences, which were then utilized as
prompts for Whisper. They reported that this ap-
proach enhances the zero-shot performance on Vis-
Speech. In this study, we employ OCR to create
prompts and implement fine-tuning to improve per-
formance rather than using zero-shot prompting.

3 SlideAVSR: Dataset Construction

In this study, we construct SlideAVSR, an AVSR
dataset based on scientific paper explanation videos
incorporating various technical terms, making accu-
rate transcription difficult without referring to the
slides. Based on JTubeSpeech (Takamichi et al.,
2021), a framework for building audio corpora
from YouTube videos, we implement several cus-
tom filters to target videos, thereby applying high-
precision data refinement. This section describes
the construction flow of SlideAVSR. Figure 1 illus-
trates the flow.

3.1 Data Collection
Creating search queries. We first collect videos
with search queries that are related to top con-
ferences in the field of artificial intelligence.
We create queries in the format {Conference}
{Year} {Form} . The list of target conferences is

provided in Appendix A. Considering the increased
prevalence of online conferences since COVID-19,
we focus on the years 2020 to 2023. The forms
include “paper”, “workshop”, and “talk”. An ex-
ample search query is “ACL 2023 paper”.

Obtaining videos with subtitles. Using the
search queries, we retrieve video IDs with sub-
titles and download them.1 To ensure data quality,
only videos with manual subtitles are considered.
Additionally, we set the following criteria:

• Duration between 5 and 20 minutes (videos
that are too short or too long are less likely to
be paper explanation videos).

• Video format: MP4, 720P, H264.
• Audio format: single-channel, 16bit, 16kHz.

A total of 636 videos were downloaded.

3.2 Filtering
We curate several filters to remove videos that are
not paper explanations or do not include slides.

1https://github.com/yt-dlp/yt-dlp

Figure 1: Construction flow of SlideAVSR.

ChatGPT filter. We provide the videos’ descrip-
tion for ChatGPT2 to confirm the following:

• This video is an explanation of a paper.
• The description is written in English.

We perform three times of generation, and if “Yes”
is outputted at least once, we adopt the video; oth-
erwise, we discard it. We show the details of the
model and prompt in Appendix B. A total of 342
videos were excluded, leaving 294 videos for sub-
sequent processes.

BLIP-2 filter for videos. We capture screenshots
at the beginning, end, and three quartile points in
the timeline for each video, and then present these
screenshots to the vision language model BLIP-
2 (Li et al., 2023) to verify the following:

• This image is a screenshot, not a photo.
• This image is a part of slides.

We perform generation for each screenshot, and if
“Yes” is outputted at least once, we adopt the video;
otherwise, we discard it. We show the details of
the model and prompt in Appendix B. A total of
6 videos were excluded, leaving 288 videos for
subsequent processes.

Manual filter. We conduct manual checks to re-
move inappropriate videos that are not excluded by
the automatic filters, including:

• Videos rarely showing slides.
• Videos unrelated to paper explanations, such

as conference openings.

A total of 38 videos were excluded, leaving 250
videos for subsequent processes.

3.3 Cleansing

We implement audio-subtitle alignment, exclude
utterances that do not correspond to slides, and
merge short utterances for data cleansing.

2https://openai.com/product
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CTC alignment. Due to the inaccuracy in the
timing of subtitles, we implement audio-subtitle
alignment and scoring using CTC segmenta-
tion (Kürzinger et al., 2020). We set the thresh-
old to -7 and exclude utterances with lower scores.
The details of the model are shown in Appendix B.
Approximately 2.5% of utterances were excluded
through this process.

BLIP-2 filter for utterances. We capture screen-
shots at the midpoint of each utterance, followed
by filtering using BLIP-2. Three generations are
conducted for each screenshot, and if “Yes” is out-
putted at least once, we adopt the utterance; other-
wise, we discard it. The employed prompt is iden-
tical to the BLIP-2 filter in Section 3.2. Approxi-
mately 1.0% of utterances were excluded through
this process.

Merging utterances. Subtitles created by video
authors occasionally exhibit unnatural segmenta-
tion, resulting in exceedingly brief spans. Utilizing
the audio segments obtained through CTC segmen-
tation, we implement a merging process, combin-
ing two consecutive utterances into a single entity
if the end time of the preceding utterance aligns
with the start time of the subsequent one and their
cumulative duration does not exceed 15 seconds.
This procedure significantly enhanced Whisper’s
ASR performance by approximately 20%.

3.4 Data Partitioning
Previous studies (Meyer et al., 2020; Javed et al.,
2023; DiChristofano et al., 2023) have suggested
that the performance of ASR systems significantly
varies depending on the speaker’s accent3. Based
on the hypothesis that visual information con-
tributes to the recognition of challenging accents,
we ask native English speakers to classify the speak-
ers’ accents in SlideAVSR and perform dataset par-
titioning. We partition the dataset into Train, Dev,
and TestA, reserving a smaller yet significant TestB
subset for South Asian English (SAE) accents. Dur-
ing partitioning, we have ensured that the same
speaker did not belong to multiple partitions. Ad-
ditionally, 5 videos with machine-generated audio
were manually excluded by the annotators.

Through the construction flow, we produced an
AVSR dataset of around 36 hours from 245 videos.
We show the statistics of the dataset in Table 1.

3The term “accent” in this paper refers to comprehensive
prosodic information, including accent, intonation, tone, etc.

#videos #speakers #utterances #hours
Train 195 172 15,803 29.26
Dev 20 20 1,515 3.08
TestA 15 15 1,034 2.21
TestB 15 13 1,111 1.90
Total 245 220 19,463 36.45

Table 1: Statistics of SlideAVSR.

Figure 2: Frequency distribution of the number of words
in OCR results. While samples with over 500 words are
present, they are omitted for brevity.

4 Experiments

4.1 Approaches

DocWhisper processes the input video stream
through an OCR module, extracting textual infor-
mation into word sequences, which are then pro-
vided to Whisper as prompts for fine-tuning and
inference. While Peng et al. (2023) employed
prompts derived from CLIP in zero-shot learn-
ing, our preliminary experiments did not reveal
a performance improvement in zero-shot learn-
ing on SlideAVSR. Given that Whisper’s pre-
training (Radford et al., 2022) did not use prompts,
we speculate that Whisper loses robustness when it
faces diverse prompts.

We show the frequency distribution of the num-
ber of words in OCR results in Figure 2. The
distribution is long-tail, which means that only
70% of the samples can be covered even if we
include 100 words in the prompts4. To address
this issue, we propose FQ Ranker, which calcu-
lates word ranks based on the frequency of word
occurrences. Given the demonstrated high corre-
lation between word frequency and familiarity as
shown in previous studies (Coltheart, 1981; Tanaka-
Ishii, 2021), increasing the rank of less frequent
and more challenging words is expected to enhance
the information content of prompts.

4Whisper typically assigns a maximum length of 224 to
prompts, making inputs with over 100 words challenging.
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Type Example
Technical term W Hyp: we select quantum adhering 2 and nxt as representative of pos protocols
(41%) D Hyp: we select quantum ethereum 2 and nxt as representative of pos protocols
Inflection W Hyp: manual transcript we call this setting supervised things we have paired data
(28%) D Hyp: manual transcripts we call this setting supervised things we have paired data
Mishearing W Hyp: we can also perform other tasks like normal view synthesis
(24%) D Hyp: we can also perform other tasks like novel view synthesis
Name W Hyp: this is a work done at ibm research with gilmoseci chileo and irina rich
(7%) D Hyp: this is a work done at ibm research with guillermo cecchi and irina rish

Table 2: Error types and examples that are substitution errors in Whisper (W) but correct in DocWhisper (D).

Model Modality Fine-tune Ka TestA TestB

Whisper A
%

0
8.23 11.18

" 8.07 11.25

DocWhisper
A + V " 25

7.35 10.82
+ FQ Ranker 7.42 10.59

DocWhisper
A + V " 50

7.08 10.43
+ FQ Ranker 7.26 10.35

DocWhisper
A + V " 75

7.02 10.04
+ FQ Ranker 7.26 10.29

DocWhisper
A + V " 100

6.91 10.01
+ FQ Ranker 7.04 10.22

aIndicating maximum word counts for prompts.

Table 3: Quantitative evaluation (WER) on SlideAVSR.

4.2 Implement Details

We used Whisper large-v35 as a base model and
Word Error Rate (WER) for evaluation. In the
case of DocWhisper, we captured screenshots at
the midpoint of each utterance, fed them into the
OCR module, and used the recognized text as the
prompts to Whisper. In this case, multiple utter-
ances might share the same slide. We use Google
Cloud Vision API6 for OCR. The prompts were
presented to the model as word sequences, such as
“word 1, word 2, ..., word n”. FQ Ranker utilized
word frequency counts obtained from the English
Wikipedia and sorted the OCR results in ascend-
ing order based on word frequency. We conducted
experiments with different maximum word counts
for prompts (K ∈ {25, 50, 75, 100}) and with or
without FQ Ranker. More implementation details
are provided in Appendix C.

4.3 Results

We show the results of quantitative evaluations for
Whisper and DocWhisper in Table 3. In both mod-
els, the scores of the TestB set, consisting of videos
with SAE accents, were inferior to the scores of the
TestA set, indicating that Whisper struggles with
rare accents. With fine-tuning, Whisper demon-
strated a 1.9% improvement on the TestA set. How-
ever, no notable improvement was observed for the

5https://huggingface.co/openai/whisper-large-v3
6https://cloud.google.com/vision

TestB set. Despite the presence of videos with SAE
accents in the training data, their limited quantity
was deemed insufficient to address the challenges
posed by difficult accents.

Compared to the fine-tuned Whisper, DocWhis-
per exhibited a maximum improvement of 14.3%
on TestA and 11% on TestB. We gather that re-
ferring to textual information on slides can signifi-
cantly improve speech recognition performance on
SlideAVSR. We also found that as the maximum
word count of prompts increased, the performance
improved, indicating that maximizing information
content contributes to performance enhancement.

FQ Ranker improved the scores on TestB when
the maximum word count of prompts was set to
25; however, this advantage was reversed when
the maximum word count exceeded 50. Details
provided in Section 4.4 indicate that transcriptions
corrected by DocWhisper do not exclusively con-
sist of technical terms, which suggests the potential
for misinterpretation even in words with high famil-
iarity. We also speculate that sorting words based
on word frequency disrupts the ordered contextual
information, thus increasing the difficulty of Whis-
per’s decoder, which is a language model, to refer
to the textual information on the slides.

4.4 Analysis of Specific Examples

Among Whisper’s errors (deletions, substitutions,
and insertions), DocWhisper corrected substitution
errors the most. To delve into the details, we col-
lected 100 instances that are substitution errors in
Whisper but correct in DocWhisper and categorized
them into four groups: technical term, inflection,
mishearing, and name. While the anticipated large
proportion (41%) of technical terms was observed,
noteworthy percentages were also found for inflec-
tion (28%) and mishearing (24%). Many words
with high familiarity could result in lower ranks
when sorting based on word frequency, potentially
causing a decline in the performance of FQ Ranker.
We show the error types and specific examples in
Table 2 and more details in Appendix D.

132



5 Conclusion and Future Work

We constructed an AVSR dataset, SlideAVSR, by
utilizing paper explanation videos. We proposed
DocWhisper, which leverages OCR to refer to slide
content. We verified the effectiveness of DocWhis-
per on SlideAVSR and conducted a detailed analy-
sis. Additionally, we introduced FQ Ranker, which
calculates word ranks based on word frequency,
and evaluated its performance on DocWhisper.

In the future, we plan to continually refine OCR-
based methods and aim to construct an end-to-end
AVSR model that is not dependent on OCR. Fur-
thermore, we intend to build a benchmark that
allows a comprehensive evaluation of the image
comprehension capabilities of AVSR models by in-
corporating diverse types of videos, such as sports
commentary, gaming commentary, cooking videos,
and more. Ultimately, we aim to construct a foun-
dation model for AVSR that exhibits high perfor-
mance across diverse video inputs.

Limitations

In comparison to mainstream AVSR datasets,
SlideAVSR exhibits a notably limited number of
videos and speakers. This may lead to data imbal-
ance and create obstacles to the model’s training
process. In addition, due to our focused collection
of scientific paper explanation videos related to ar-
tificial intelligence, imbalances may have emerged
in terms of speaker nationality, age, and gender.

Compared to SlideSpeech (Wang et al., 2023),
we introduced a vision-language model to filter
videos and utterances that do not correspond to
the slides, thereby reducing annotation costs and
improving the quality of the dataset. However, our
dataset construction process still relies on manual
annotation. Fully automating this process will be a
major challenge for the future.

In Section 3.4, we attempted to classify speakers’
accents by collaborating with native English speak-
ers. However, the task of assigning precise labels to
every video was impeded by the complexity of dis-
tinguishing certain speakers’ accents. As a result,
we selectively picked out videos with South Asian
English accents, leaving the remainder unlabeled.
Ideally, each data split should exhibit a comparable
distribution of accents, but this was unattainable
due to the aforementioned challenges.

Ethical Considerations

In adherence to the terms of use and copyright poli-
cies governing the YouTube platform, we collected
data exclusively from publicly available videos. We
acknowledge the potential presence of sensitive in-
formation in our dataset, such as personal names
and portraits. To prioritize privacy and responsible
data sharing, we plan to release OCR results and
public video URLs instead of raw video files. Fur-
thermore, the release of our dataset will be strictly
limited to research purposes.
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A The list of target conferences used in data collection

We show our target conferences in Table 4.

Topic Conference
NLP ACL, NAACL, EMNLP
CV CVPR, ICCV, ECCV
Speech INTERSPEECH, ICASSP
AI AAAI, IJCAI
ML ICLR, ICML, NeurIPS
Data Mining KDD, WSDM, WWW
Database SIGMOD, VLDB, ICDE
IR SIGIR
HCI CHI

Table 4: Target conferences.

B Models and prompts used in data filtering and cleansing

We introduce the details of the models and prompts employed in the ChatGPT filter, BLIP-2 filter, and
CTC alignment as described in Section 3.2 and 3.3.

ChatGPT filter. We used gpt-3.5-turbo. The prompt we used is shown in Table 5.

Here is a description of a YouTube video:
{DESCRIPTION}
Using the description, check whether the video meets the following criteria.
- This video is a presentation video of a research paper.
- The description is written in English.
Attention, you can only answer ’Yes’ or ’No’ and you can only answer one time.

Table 5: Prompt for ChatGPT filter.

BLIP-2 filter. We used blip2-flan-t5-xl7. The prompt we used is shown in Table 6.

Question: This image is a screenshot of a video,
check whether the image meets the following criteria.
- It is a screen-sharing, not a photo shoot.
- It is a part of a slide for a research presentation.
Attention, you can only answer ’Yes’ or ’No’ and you can only answer one time.
Answer:

Table 6: Prompt for BLIP-2 filter.

CTC alignment. We used kamo-naoyuki_wsj8 and ESPnet implemenations9.

7https://huggingface.co/Salesforce/blip2-flan-t5-xl
8https://huggingface.co/espnet/kamo-naoyuki_wsj
9https://github.com/espnet/espnet
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C Implement details

We fine-tuned both Whisper and DocWhisper using AdamW (Loshchilov and Hutter, 2019) with a learning
rate of 2e-5, and we linearly warmed up the learning rate over 1,000 steps. The batch size was set to 16.
Training was conducted for 10 epochs, and the checkpoint with the best performance on the Dev set was
used for evaluation. Additionally, training was performed with three different seed values, and the average
was computed. We performed text normalization10 for evaluation. All experiments were conducted on a
single NVIDIA A100 (40G) GPU.

D Specific examples

The corresponding screenshots to Table 2 are shown below, and the parts referred to in the correction are
circled in red.

All the variations from the same lexical element, such as plural nouns, conjugated verbs, and third-
person singular verbs, were classified as inflection. If the label and prediction are not from the same
lexical element, we classified the error as technical terms, mishearing, and names, respectively.

https://www.youtube.com/watch?v=eepUV9NJxFs

https://www.youtube.com/watch?v=dvUutyo72R4

10https://github.com/openai/whisper
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https://www.youtube.com/watch?v=0VGKPmomrR8

https://www.youtube.com/watch?v=CQBdQz1bmls
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Abstract

Visual Question Generation is a task at
the crossroads of visual and language learn-
ing, impacting broad domains like education,
medicine, and social media. While existing
pre-trained models excel in fact-based queries
with image pairs, they fall short of captur-
ing human-like inference, particularly in un-
derstanding causal and temporal relation-
ships within videos. Additionally, the computa-
tional demands of prevalent pre-training meth-
ods pose challenges. In response, our study
introduces a framework that leverages vision-
text matching pre-trained models to guide lan-
guage models in recognizing event-entity rela-
tionships within videos and generating inferen-
tial questions. Demonstrating efficacy on the
NExT-QA dataset, which is designed for causal
and temporal inference in visual question an-
swering, our method successfully guides pre-
trained language models in recognizing video
content. We present methodologies for abstract-
ing causal and temporal relationships between
events and entities, pointing out the importance
of consistent relationships among input frames
during training and inference phases and sug-
gesting an avenue for future exploration1.

1 Introduction

Visual Question Generation (VQG) is an emerg-
ing task of multi-modal learning, integrating vision
and language. Since its inception (Lin and Parikh,
2016), VQG has influenced diverse domains like
education (Zhao et al., 2022), social media (Yeh
et al., 2022), and human-computer interaction (Lee
et al., 2018). Existing datasets primarily cater to
factoid question answering, extracting direct an-
swers from visual content (Yeh et al., 2022). How-
ever, factoid question answering lacks inherent
depth in human thinking, exemplified by the dispar-
ity between a fact-based query like "Was anyone
injured in the crash?" and a more insightful, causal

1The code is available at this address.

question "Why do these drivers have accidents in
the middle of intersections?" or a temporal question
"What will the police do after the crash?"

This research addresses a critical gap in the VQG
landscape: the absence of studies exploring infer-
ence aligned with human thinking. Moreover, un-
like singular images, videos offer richer details of
relationships between events and entities, prompt-
ing our focus on two fundamental types of rea-
soning—causal inference and temporal inference.
Through this approach, we aim to introduce a new
challenge of inferential question generation origi-
nating from videos and auxiliary text and advance
the field of VQG.

Meanwhile, despite advancements in VQG, the
computational demands (Radford et al., 2021) of
pre-training models, particularly visual transform-
ers (Dosovitskiy et al., 2020), pose challenges.
Our work distinguishes itself by harnessing pre-
trained vision-to-text matching models instead of
embarking on resource-intensive model training
from scratch. Inspired by prior successes (Mokady
et al., 2021), our approach expedites question gen-
eration by leveraging the knowledge embedded in
existing models, thereby enhancing the quality and
efficiency of the process.

The contributions of this paper are as follows:

1. As far as we know, we are the first to explore
the task of causal and temporal video question
generation. We propose a framework (figure
1) and establish a baseline step by step by com-
paring video encoders, language model sizes,
and stage fine-tuning strategies. Additionally,
we propose an evaluation metric to enhance
VQG grounding assessment.

2. Experiments on the NExT-QA dataset display
the efficacy of our methods in combining vi-
sion and language. We highlight the impor-
tance of consistent frame relationships dur-
ing training and inference for deriving event-
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Figure 1: The overall framework for visual question generation. It comprises four essential components: a visual
encoder, an auxiliary text encoder (T5), multi-modal interaction, and an output question decoder (T5). Videos and
auxiliary text are respectively encoded into embeddings and be concatenated through multilayer perception (MLP)
layers. Temporal and causal questions will be generated by the question decoder.

entity relationships within videos. This re-
search suggests the direction of enhancing
frame-based consistency in causal and tem-
poral video inference for future work.

2 Background and Related Work

Visual Question Generation: The field of VQG
has seen notable progress since its introduction
(Mostafazadeh et al., 2016). Existing research
has extensively explored single-image VQG (Vedd
et al., 2021; Krishna et al., 2019), while multiple-
image VQG (Chan et al., 2022) and video VQG
(Khurana and Deshpande, 2021), which present
promising avenues for inferring causality and tem-
poral relationships between visual elements, re-
main unexplored. To the best of our knowledge, no
prior research has specifically focused on the chal-
lenges of generating questions that involve causal
and temporal inference in VQG tasks. This repre-
sents a critical research gap, as inferential questions
have the potential to unlock deeper insights of vi-
sual content, going beyond mere factual queries.
Multi-modal Generative Task with Pre-trained
Models: Existing research in visual question gener-
ation adopts large pre-trained models for tasks like
image captioning (Li et al., 2022), visual question
answering (Khan et al., 2023), and visual ground-
ing (Peng et al., 2023), showcasing impressive re-
sults but facing high computational costs (Doso-

vitskiy et al., 2020). An alternative, leveraging
vision-text matching pre-trained models like CLIP
(Radford et al., 2021), BLIP (Li et al., 2022), and
BLIP2 (Li et al., 2023), efficiently bridges vision
and language domains. Despite success in vari-
ous generative tasks, no prior research explores
these models for vision-based question generation,
particularly those involving causal and temporal
inference. This research aims to utilize various
vision-text matching pre-trained models in captur-
ing causal and temporal relationships.

3 Methods

The overall framework for VQG is displayed in Fig-
ure 1. This section introduces our training strate-
gies and inferential relationship abstraction meth-
ods.

3.1 Multi-modal Fusion

Visual information and textual context are often
complementary in nature. The visual content pro-
vides rich details and cues that are not present in
the text, and vice versa. The core issues are how to
unify the multi-modal embedding space between vi-
sion and language, and how to effectively guide the
language model in recognizing visual information
and generating temporal and causal questions.

Concatenate Vision and Language: Inspired
by one of the latest methods (Liu et al., 2023b,a),
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we propose a direct but powerful technique to con-
nect vision and language spaces. Specifically, given
auxiliary text input words which are "Text Infor-
mation" shown in Figure 1 w1

V , w
2
V , ..., w

p
V , for a

video V , we process them by language models
and get a series of word embeddings t1V , t

2
V , ..., t

i
V .

Given a video V , we first divide the video V as sep-
arate frames x1V , x

2
V , ..., x

m
V . Next, after processing

the frames by visual encoders, we employ a light
mapping network (multilayer perceptron), denoted
by F , to map the visual embedding to k embedding
vectors (we set the k as 5 in our experiments):

p1V , p
2
V , ...p

k
V = F (visual_encoder(x1V , ..., x

m
V )).

(1)
where each vector pkV has the same dimension as
the word embedding of language models. We then
concatenate the obtained visual embedding to the
auxiliary input text embeddings:

ZV = p1V , ..., p
k
V , t

1
V , ..., t

i
V . (2)

During fine-tuning, we feed the language models
with the prefix-text concatenation {Zi}Ni=1, where
N is the number of videos. Our training objective
is to predict the temporal and causal question to-
kens conditioned on the prefix in an auto-regressive
fashion. To this purpose, we train the mapping
component F using the simple, yet effective, cross-
entropy loss:

L =

N∑

i=1

ℓ∑

j=1

log pθ(q
i
j |ZV , q

i
1, ...q

i
j−1), (3)

where ℓ is the length of the predicted questions, pθ
is the probability of ground-truth tokens,.

Two Stage Fine Tuning: Inspired by prior re-
search (Liu et al., 2023b,a), a two-stage fine-tuning
methodology is introduced to tackle the challenge
of multi-modal fusion in visual question generation
by effectively aligning visual and textual informa-
tion. In the first stage, we prioritize feature align-
ment fine-tuning, aligning the visual encoder with
the language model through a parameter mapping
network F . This ensures alignment between video
features and language model word embeddings,
streamlining visual tokenizers. In the second stage,
a fine-tuning end-to-end strategy takes place after
the convergence of the first stage. Visual encoder
weights are frozen, and both pre-trained weights
of the projection layer and the language model are
updated. This two-stage process, acting on the
"Fusion model" shown in Figure 1, optimizes the
language model’s performance.

3.2 Causal and Temporal Inference
Abstraction Methods

This section introduces two methods which aim
to enhance the abstraction of causal and temporal
inference from events and entities within a video.

Vision Projection Matrix Choice: An intu-
itively straightforward approach is taken by cre-
ating distinct MLP layers for individual frames
similar to equation 1 (In this experiment we set the
number of the MLP layers as 16), aiming to capture
nuanced characteristics. Each frame’s embeddings
are projected onto a linguistic embedding using an
additional MLP with a prefix length of 5.

Contradictory Frame Comparison aims to
abstract causal and temporal relationships in a
video by exploiting differences between consec-
utive frames. Two strategies are employed using
the CLIP vision encoders. (1) Global Frame Com-
parison: 16 frames at uniform intervals are trans-
formed into vision embeddings through the CLIP
encoder. Pairs of frames with the lowest cosine
similarity represent the most contradictory frames,
projected onto the language embedding through an
MLP layer. (2) Local Frame Comparison: Once
again, we select pairs of frames and calculate their
cosine similarity. But during training, firstly the
CLIP model is invoked to determine the most rel-
evant frame in relation to the given question and
answer since at training time we have all relevant in-
puts. Then, we select the rest frame which displays
the lowest cosine similarity with the contextually
chosen frame. Again, an MLP layer projects the
selected frame pair onto the language embedding.

4 Experiment

4.1 Data and Evaluation
Existing video question-answering datasets primar-
ily address factoid questions with direct visual an-
swers (Xu et al., 2016; Jang et al., 2017) but lack
inference questions. To fill this gap and integrate
causal and temporal inference, this study opts for
the NExT-QA dataset (Xiao et al., 2021), which is
designed for inferential visual-question-answering,
offering about 52K diverse questions (48% causal,
29% temporal, 23% descriptive).

The assessment of visual question generation
(VQG) systems traditionally relies on language
metrics like BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), ROUGE (Lin,
2004), and CIDEr (Vedantam et al., 2015), de-
signed for machine translation, lacking inference
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evaluation. To address this gap, our study intro-
duces new metrics—precision, recall, and F1-score
grounding—examining word overlap between pre-
dicted and ground-truth questions. The ground-
ing metrics consider matching overlaps of content-
bearing words and exclude irrelevant words2. We
define the formula of the grounding metrics:

PG =Nmatching overlap/Npredicted question tokens

RG =Nmatching overlap/Nground truth question tokens

FG =
2 ∗ PG ∗RG

PG+RG
,

(4)
Where PG means Precision Grounding, RG

means Recall Grounding, FG means F1 score
Grounding, Nmatching overlap counts matching over-
laps between predicted and ground truth questions.
Npredicted question tokens and Nground truth question tokens
represent the respective token counts.

4.2 Experiment Setup

Baseline Models: In establishing baseline models
for a fair comparison on the NExT-QA datasets,
we employ the Heterogeneous Graph Attention
(HGA) model (Jiang and Han, 2020) and a pre-
trained language model with text-only input: (1)
The HGA model utilizes 3D motion and 2D appear-
ance vectors, abstracted from ResNet (He et al.,
2016) and ResNeXt-101 (Xie et al., 2017).(2) The
pre-trained language model T5 (Radford et al.,
2021) is explored with text-only input as a baseline,
to assess its ability to recognize visual content in
videos in the following experiments.

Video Encoder: To enhance visual question
generation for temporal and causal inference, tradi-
tional 2D and 3D convolutional networks face limi-
tations in generative tasks. Leveraging pre-trained
vision-text matching models like CLIP (Radford
et al., 2021), BLIP (Li et al., 2022) and BLIP2 (Li
et al., 2023), we conduct a comprehensive perfor-
mance comparison against convolutional networks.

Language Model Size Selection: To explore
the impact of language model size on recognizing
relationships in videos, we employ T5 Small and
T5 Large. In addition, we adopt two tuning strate-
gies. "One Stage" in Table 4 and Table 5 means
we directly train the mapping network F in section
3.1 from scratch and "Two Stage" represents the
fine-tuning strategy explained in section 3.1.

2We exclude the words of POS types “CC", “DT", “IN",
“TO" and “UH" in our experiments.

4.3 Experiment Results

4.3.1 Baseline
We evaluated our baseline models with results sum-
marized in Table 1. The HGA model, incorporating
video and text input, achieves the highest ground-
ing score but exhibits lower question quality due to
stop-word repetition and shorter length generation
(Figure 2). Although BLEU has a brevity penalty
and METEOR and ROUGEL consider the recall
evaluation metrics, with higher precision, the eval-
uation performance of the HGA model still gets
close to that of the T5 model. In addition, as shown
in Table 2, since our grounding metric ignores stop-
words and considers only relevant words to the
vision content such as nouns and verbs, precision
will have an advantage in the evaluation compared
to recall, thus the HGA model achieves a significant
improvement compared to the T5 model. However,
HGA has comparatively lower recall than those
of T5 in causal and temporal question generation
(Table 2). In conclusion, HGA exhibits higher pre-
cision and F1-score in the grounding metric but
lower performance in BLEU, METEOR, CIDEr,
and recall in the grounding metric of causal and
temporal questions. This leads us to choose T5 as
the foundation for subsequent experiments.

Model B RL M C Grounding
HGA 0.1248 0.4128 0.3101 0.8271 0.3248

T5 Small 0.1269 0.3857 0.3276 0.8480 0.2957
Text Only
T5 Large

0.1239 0.3851 0.3237 0.8353 0.2987
Text Only

Table 1: Baseline Model Evaluation Performance. B is
BLEU, RL is ROUGEL, M is METEOR, C is CIDEr,
and Grounding is the F1-score grounding metric.

Model C G-Pre C G-Re C G-F1 T G-Pre T G-Re T G-F1
HGA 0.3378 0.2357 0.2776 0.4126 0.2763 0.3310

T5 Small
0.2527 0.2541 0.2534 0.3096 0.2943 0.3018

Text Only
T5 Large

0.2736 0.2650 0.2692 0.2998 0.2786 0.2888
Text Only

Table 2: Baseline Model Grounding Performance in
Causal and Temporal Inference. C G represents the
grounding metric of causal questions. T G represents
the grounding metric of temporal questions. "Pre" repre-
sents precision. "Re" represents recall. "F1" represents
the F1 score.

4.3.2 Multi-modal Concatenation
Video Encoder Comparison: We assess the per-
formance of different vision video encoders, and
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Video:

Ground Truth Question:
1:how did the girl react when she saw that the ball was running 
at the beginning?
2: why was the girl on the floor in the middle of the video?
3: why does the dog chase the ball?
4: why did the girl run down the slope?
5: why does the child run after the ball?
6: what did the dog do after the girl approached the adult and 
stood beside him?
7: where is this video taken?
8: what did the girl do after she fell on the ground?
9: what did the girl do after she finished playing with the ball at 
the end of the video?
10: what did the girl do to the dog when the dog stood beside 
the man?
11: what did the girl do after the dog took the ball away?
12: why does the child run down the slope after the ball rolls 
away from him?

HGA: 42 matching overlap
“1": "what did the boy do after the girl ran away",        
“2": "why did the girl in after the girl in the",        
“3": "why did the dog run towards the ball",        
“4": "why did the boy run to the ball after the ball",        
“5": "why did the boy run down the ball",        
“6": "what did the boy do after the ball ball",        
“7": "where is this video taken",        
“8": "what did the dog do after the the ball",        
“9": "what did the girl do after the the ball",        
"10": "what did the boy do after the dog ran away",        
“11": "what did the girl do after the dog ran away",        
"12": "what did the dog do after the ball ball"

T5-small text only:      27 matching overlap
“1": "what did the boy do after he walked away from the ball",        
“2": "why did the girl in pink hold onto the girl in pink when she is 
squatting down",        
“3": "why did the baby put his hand on the toy in the middle of the 
video",        
“4": "why did the man in black bend down at the start of the 
video",        
“5": "why did the man in black bend down at the start of the 
video",        
“6": "what does the man in black do after the man in black starts 
talking",        
“7": "where is this video taken",        
“8": "what did the boy do after he walked to the other side of the 
room",        
“9": "what does the girl do after the girl in pink starts dancing",        
"10": "what does the man do after the dog starts running",        
“11": "what does the dog do after the dog starts running",        
"12": "what does the man in black do after the man in black starts 
playing the drums"

Figure 2: Baseline Performance. Yellow markup shows the matching overlap compared with the ground truth
questions. Red markup shows the repetitive words.

the results are summarized in Table 3. CLIP and
BLIP2 stand out, with CLIP excelling in ROUGEL,
and Grounding metrics, showcasing good visual
content recognition. In contrast, BLIP2 performs
well in BLEU, METEOR, and CIDEr, generating
detailed questions. Despite BLIP2’s detailed ques-
tions, CLIP’s higher matching overlap with ground
truth and its balanced performance led to the selec-
tion of CLIP as the video encoder for subsequent
experiments (Figure 3).

Model B RL M C Grounding
None

0.1269 0.3857 0.3276 0.8480 0.2957
Text Only
App&Mot 0.1348 0.3958 0.3353 0.8816 0.3092

CLIP 0.1564 0.4216 0.3594 1.0366 0.3505
BLIP 0.1562 0.4179 0.3584 1.0205 0.3425
BLIP2 0.1583 0.4210 0.3599 1.0488 0.3455

Table 3: Visual encoders performance with T5-small
following Section 3.1 fusion method. App&Mot means
2D appearance vectors and 3D motion vectors ab-
stracted from convolution networks. B is BLEU, RL is
ROUGEL, M is METEOR, C is CIDEr, and Grounding
is the F1-score grounding metric.

Language Model Size Comparison: We evalu-

ate T5’s performance across various sizes, present-
ing results in Table 4. T5 large outperforms T5
small, aligning with expectations due to its larger
parameter count. In addition, our observations
yield two primary findings that emerge through two-
stage tuning: (1) Two-stage tuning enhances T5
large’s performance, particularly improving token-
level matching overlap such as nouns and verbs
(Table 5). This improvement, consistent across T5
sizes, suggests enhanced visual content recognition,
attributed to weight initialization and warming-up
of the projection matrix. (2) Despite the close to-
tal performance,T5 large outperforms T5 small in
causal questions by 2%-3% (Table 6), hinting at
the potential for guiding language models in recog-
nizing causal relationships.

4.3.3 Causal and Temporal Inference
Abstraction

In this section, we present the outcomes of our
two methods employed to abstract the causal and
temporal relationships embedded within the events
and entities within a video, with the ultimate aim
of generating inferential questions.
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Video:

CLIP: （52 matching overlap）
“1": "how did the girl kept her hair out of her face?",        
“2": "what does the girl do after the man puts her back on the sofa?",        
“3": "where is this video taken?",        
“4": "how does the man hold the child s hand?",        
“5": "why did the man in red hold the girl s hand?",        
“6": "what does the man do after the girl sits on the sofa?",        
“7": "what did the girl do after looking at the man?",        
“8": "why did the girl bend down when she is standing?",        
“9": "why did the man point to the table at the end of the video?",        
"10": "what did the man do after he looked at the girl?",        
"11": "how did the man see the girl clearly?",        
“12": "why did the man laugh at the girl?",        
“13": "why did the man pull the girl s back?"

BLIP2: （48 matching overlap）
“1": "how did the girl kept her hair out of her face?",        
“2": "what does the girl do after the man touches her at the end?",        
“3": "where is this video taken?",        
“4": "how does the man in white hold the child s hand?",        
“5": "why did the man in white squat down in the middle of the video?",        
“6": "what does the man in white do after the girl sits down?",        
“7": "what does the girl do after looking at the man for a while at the 
end?",        
“8": "why did the girl put her leg on the table in the middle of the video?"         
“9": "why did the man in black stretch his hand out at the end of the 
video?",        
"10": "what did the man do after he looked at the girl?",        
"11": "how did the man in white ensured he can see the girl clearly?",        
“12": "why did the man laugh at the girl?",        
“13": "how did the man in black react when the girl s hands were pushed 
to him?"

Ground Truth Questions:
1: how did the girl keep her hair away from her face?
2: what did the girl do after she stood up at the beginning of 
the video?
3: where is this video taken?
4: what did the man gestured to the girl near the start of the 
video?
5: what did the girl do after the man pat the pillow?
6: why was the man looking left and right at the beginning of 
the video?
7: what did the girl do after she sat down?
8: why did the man touch the girl s leg when she sit beside 
him?
9: why did the man pat the pillow?
10: what did the man do after he adjusted the girl s leg?
11: how did the man see clearly?
12: why is the lady in green smiling?
13: why did the man lie backwards at the end of the video?

Figure 3: Visual encoder CLIP and BLIP2 performance. Yellow scopes represent matching overlap with ground
truth questions. Red scopes represent the more details recognized by the BLIP model compared with the CLIP
model.

model B RL M C Grounding
T5 Small

0.1564 0.4216 0.3594 1.0366 0.3505
One Stage
T5 Small

0.1559 0.4181 0.3594 1.002 0.3453
Two Stage
T5 Large

0.1459 0.4025 0.3459 0.9449 0.3249
One Stage
T5 Large 0.1572 0.4281 0.3634 1.0657 0.3573

Two Stage

Table 4: Difference Language Size Performance. T5
small has 60M parameters, with total 135M parameters
for a whole framework, T5 large has 770M parameters,
with total 917M parameters for a whole framework. B
is BLEU, RL is ROUGEL, M is METEOR, C is CIDEr,
and Grounding is the F1-score grounding metric.

Vision Projection Matrix Comparison ex-
plores projection matrix techniques, revealing un-
expected trends shown in Table 7. Contrary to
expectations, the method directly concatenating
CLIP encoder and language embeddings ("Video
MLP" in Table 7) outperforms that employing the
addition of MLP layers to each frame before con-
catenating with the language embedding ("Video
16to5 MLP" in Table 7), including grounding met-
rics on causal and temporal questions (Table 8).
Findings underscore that the blind proliferation of
MLP layers, even on individual frames, fails to

model NN WRB VBZ VBD VB JJ VBG WP PRP
T5 Small

4199 2692 1121 1154 713 504 248 1038 220
One Stage
T5 Small

4287 2640 1268 1184 643 533 228 1091 221
Two Stage
T5 Large

3927 2664 1429 947 719 467 227 1048 187
One Stage
T5 Large 4478 2655 1379 1078 777 517 277 1024 207

Two Stage

Table 5: Number of matching overlaps for various word
types based on Spacy about the difference language
model sizes. NN means noun, singular or mass, WRB
means wh-adverb, VBZ means verb, 3rd person singular
present, VBD means verb, past tense, VB means verb,
base form, JJ means adjective, VBG means verb, gerund
or present participle, WP means wh-pronoun, personal,
PRP means pronoun, personal.

Model C G-Pre C G-Re C G-F1 T G-Pre T G-Re T G-F1
T5 Small

0.3096 0.3078 0.3087 0.3625 0.3357 0.3486
two stage
T5 large 0.3333 0.3115 0.3221 0.3767 0.3374 0.3560
two stage

Table 6: Grounding evaluation performance of different
sizes of T5 models with the two-stage tuning method
in causal and temporal inference. C G represents the
grounding metric of causal questions. T G represents
the grounding metric of temporal questions. "Pre" repre-
sents precision. "Re" represents recall. "F1" represents
the F1 score.

143



capture inferential relationships in visual content.

Model B RL M C Grounding
Video MLP 0.1564 0.4216 0.3594 1.0366 0.3505
Video 16to5

0.1549 0.4170 0.3574 0.9722 0.3415
MLP

Table 7: Vision Projection Matrix Performance. Both
experiments are conducted with a CLIP image encoder
and T5-small. Video MLP means the vision embedding
would be processed by a MLP layer and video 16to5
MLP means we add 16 fine-grained MLP for the frames
of the video input. B is BLEU, RL is ROUGEL, M
is METEOR, C is CIDEr, Grounding is the F1-score
grounding metric.

Model C G-Pre C G-Re C G-F1 T G-Pre T G-Re T G-F1
Video MLP 0.3204 0.3072 0.3137 0.3695 0.3331 0.3503
Video 16to5

0.3028 0.3014 0.3021 0.3589 0.3316 0.3447
MLP

Table 8: Vision Projection Matrix Grounding Perfor-
mance in Causal and Temporal Inference. C G repre-
sents the causal grounding metric. T G represents the
temporal grounding metric. "Pre" represents precision.
"Re" represents recall. "F1" represents the F1 score.

Frame Comparison Based on CLIP evaluates
two frame comparison methods using the CLIP-
based approach. The summarized evaluations are
presented in Table 9 along with an illustrative exam-
ple shown in Appendix Figure A1, yielding several
noteworthy findings:

1. While slightly behind direct vision embedding
concatenation (Video MLP) across all eval-
uation metrics in Table 9, the global frame
method with only 73M parameters is less than
the direct concatenation approach (135M). In
addition, the global frame comparison method
outperforms the baseline (Random Select) on
all metrics in Table 9 and has a substantial
20% boost compared to its baseline in causal
and temporal questions (Table 10). Moreover,
the global frame method excels in the direct
concatenation approach in the grounding met-
rics of temporal questions within videos.

2. The local frame comparison method yields
inferior results compared to its global coun-
terpart across all evaluation metrics in Table
9. Aligning these findings with the perfor-
mance of random selection, we argue that
maintaining a consistent relationship be-
tween input frames during both training
and inference phases is pivotal for enabling

the language model to deduce relationships
between events and entities within videos
effectively. The method of random selection
introduces the highest level of inconsistency
compared to global and local frame compari-
son methods between training and inference
due to its reliance on random frame selec-
tion throughout both phases. Additionally, an
examination of CLIP frame selection based
on questions and answers in the local frame
comparison method reveals certain limitations.
While instances of accurate frame selection
aligned with questions and answers are ob-
served, inherent challenges persist (Challenge
examples are provided in Figure 4): (1) De-
scriptive questions such as "Where is this
video happening?" often fail to pinpoint a spe-
cific frame, leading to varied frame selections
by the CLIP model for identical questions. (2)
Given that some videos within the NExT-QA
dataset (Xiao et al., 2021) last 1 to 2 minutes,
with only 16 available frames for video input,
the CLIP model tends to select frames with
similar content regardless of chronological
time order if the event described in the ques-
tion has not been captured by the 16 frames.
These issues exacerbate inconsistencies and
disorderliness in input frames between train-
ing and inference, resulting in comparatively
poorer performance of local frame compar-
ison method compared to the global frame
comparison method. In conclusion, the global
frame method introduces the least inconsis-
tency, consistently measuring cosine similar-
ity and selecting the least similar frame pair
for language model input.

3. To further support our argument, we conduct
an additional experiment where the initial and
final (1&16) frames are consistently selected
as the video input for the language model, as
outlined in the fifth row of Table 9. Remark-
ably, the performance of this fixed selection
method, while slightly distinct, consistently
trails behind that of the global frame selec-
tion across all evaluation metrics except causal
grounding metrics. This observation lends ad-
ditional support to our argument, reinforcing
the validity of our premise. Moreover, it opens
a promising avenue for future exploration —
seeking methods that improve consistent
relationships with frame-based techniques.
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model B RL M C Grounding
All 16 frames (Video MLP) 0.1564 0.4216 0.3594 1.0366 0.3505

Two frames (Random Select) 0.0796 0.3128 0.2173 0.2520 0.2082
Two frames

0.1538 0.4165 0.3578 1.007 0.3417
(Global Frame Comparison)

Two frames
0.1315 0.3946 0.3316 0.8576 0.3095

(Local Frame Comparison)
Two frames (Fixed Selection)

0.1526 0.4161 0.3549 0.9745 0.3407
Frame 1&16

Table 9: Frame Comparison Performance. "Video MLP" means the vision embedding would be processed by a
MLP layer; "Random Select" means we randomly select two frames embedding within a video as the vision input.
B is BLEU, RL is ROUGEL, M is METEOR, C is CIDEr, and Grounding is the F1-score grounding metric.

Video:

Question: where is this video happening?
Answer: Kitchen.
CLIP Selection: frame 3

Question: what does the boy do after immersing the sponge for 
a while at the start?
Answer: Open the tap.
CLIP Selection: frame 6. 

(Actually it happens 
between frame 1 and 
2. The CLIP model
fails to select since no 
frame capture the 
event of the question)

Negative Examples:

Positive Examples:
Question: what does the boy do after the man takes his hands 
out from the water in the middle?
Answer: Put the man’s other hand in.
Frame: 13.

Figure 4: CLIP Selection Performance. The negative example on the left explains the inherent Challenge 1 and
another negative example on the right explains the inherent Challenge 2. The positive example displays the correct
frame selection.

Model C G-Pre C G-Re C G-F1 T G-Pre T G-Re T G-F1
Video MLP 0.3204 0.3072 0.3137 0.3695 0.3331 0.3503

Random Select 0.3121 0.2340 0.2674 0.2191 0.1375 0.1689
Global Frame

0.3089 0.3074 0.3081 0.3817 0.3509 0.3656
Comparison

Table 10: Global Frame Comparison Grounding Performance
in Causal and Temporal Inference. C G represents the ground-
ing metric of causal questions. T G represents the grounding
metric of temporal questions. "Pre" represents precision. "Re"
represents recall. "F1" represents the F1 score.

5 Conclusion

This paper bridges the gap in aligning machine-
generated visual questions, focusing on inferential
questions in video VQG. Our framework utilizes
pre-trained models to enhance event-entity infer-
ential relationships and question generation. We
additionally introduce a grounding metric and pro-

pose techniques for causal and temporal abstraction.
Through extensive experiments, we achieve signifi-
cant improvement across all metrics, highlighting
our framework’s efficacy in promoting visual con-
tent recognition. We underscore the importance
of consistent relationships between input frames
during training and inference for event-entity rela-
tionship inference. This research opens a promis-
ing avenue for future work, focusing on methods
to enhance consistent frame-based relationships in
causal and temporal video inference.
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Limitation

We employ the T5 encoder-decoder language
model because of its excellent performance within
the 500M to 1B parameter scope and limited GPUs.
Future research could lie in exploring the inferen-
tial video VQG task with larger parameters and
decoder-only language model structures. In ad-
dition, future research could separately research
causal and temporal relationships between entities
within videos. We attempted some methods that
had negative effects on our framework and experi-
ments. These include applying contrastive learning
and visual-semantic arithmetic inferential relations.
Details and results of these methods are provided
in the Appendix, offering references for future re-
search.
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A Appendix

A.1 Causal and Temporal Inference Abstraction

Videos:

Video MLP: （39 matching overlap）
 “1": "why did the man in black hold onto the man in red s hand when 
he walks?",        
“2": "what did the man in black do after he pointed at the grass at the 
start?",        
“3": "why did the man in black look at the man in black after he stops 
walking?",        
"4": "why did the man in black bend down at the start?",        
“5": "why did the man in black hold the stick in his hand?",        
“6": "why did the man in black point to the man in black when he is 
talking?",        
“7": "why did the man in black bend down at the start?",        
“8": "how does the man in black look while talking?",        
“9": "why is the man in black holding the stick?",        
“10": "why did the man in black walk towards the man in green after 
he finished talking?",        
“11": "why did the man in black move backwards after he has finished 
talking?"

Global Frame Comparison: （42 matching overlap）
 “1": "why did the man in black hold onto the man in black s hand when 
he walks ?",        
“2": "how did the man in black show that he wants to cut the glass?",        
“3": "why did the man in black look at the man in black when he walks 
to the man in black ?",        
"4": "why did the man in black bend down at the start ?",        
“5": "why did the man in black put his hand on the glass in the middle 
of the video?",        
“6": "why did the man in black point to the man in black when he is 
speaking?",        
“7": "what did the man in black do after he walked to the man in black 
?",        
“8": "how does the man in black look while talking ?",        
“9": "why did the man in black hold onto the bottle when he walks?",        
“10": "why did the man in black walk back to the man in black after he 
finished talking?",        
“11": "why did the man in black change his position after` he sat down"

Ground Truth Questions:
1: why is the man in green holding onto the shoe as the 
man in white is cutting it?
2: what does the man in white do after holding the shoe 
stably?
3: why did the man in green point his hand at the man in 
white while he is talking?
4: why did the man in white pick up a knife after changing 
place with the man in green?
5: why does the man in green hold a shoes in his hand at 
the start?
6: what does the man in white do after cutting the shoes 
for a while?
7: why did the man in green hold up the shoe as he is 
speaking?
8: how do the men appear while cutting the shoes?
9: why are the men looking down at the shoe while the 
man in white is cutting it?
10: why did the man in white stand beside the man in 
green while he is speaking?
11: why did the man in white move behind after the man 
in green put down the shoe on the table?

Figure A1: Frame Comparison Performance. Yellow scopes represent matching overlap with ground truth questions.
Red scopes represent more details recognized by the frame comparison method compared with the Video MLP
method.

148



A.2 Negative Methods for Causal and
Temporal Inference Abstraction

A.2.1 Contrastive Learning Based on Frame
Comparison

Contrastive Learning on Unifying Vision and Lan-
guage Embedding aims to leverage the nuanced
interplay between video frames using contrastive
learning. The infoNCE loss function (Oord et al.,
2018) is employed for contrastive learning (Wu
et al., 2021), maximizing the lower bound of mu-
tual information between pairs of variables. The
core framework encompasses a relevance function
such as cosine similarity, represented as f(·, ·),
where each positive sample (x+, c) is linked with a
set of k randomly chosen negative samples denoted
as (x−1 , c), (x

−
2 , c), ..., (x

−
k , c). Then, the InfoNCE

loss function Lk is formulated as follows:

Lk = − log(
ef(x

+,c)

ef(x+,c) +
∑k

i=1 e
f(x−

i ,c)
) (5)

Positive samples are derived from two frame pairs:
the global contradictory frame pair and the local
contradictory frame pair, similar to the methods in
the Contradictory Frame Comparison Section. The
remaining frames, paired with the second frame
from each contradictory set, serve as negative sam-
ples. These positive and negative samples, along
with the second frame’s embedding, are used in
the infoNCE loss formula. The contrastive learn-
ing loss is integrated with the pre-trained language
model loss, defining the total loss function. For-
mally, the total loss function was defined as:

LTotal = Llanguage model + Lk (6)

A.2.2 Visual-Semantic Arithmetic Inferential
Relation

Visual-Semantic Arithmetic Inferential Relation
Abstraction aims to capture relationships between
frames within a video by subtracting frame embed-
dings. Drawing inspiration from recent findings
(Tewel et al., 2022; Goh et al., 2021) on the CLIP
multi-modal representation, we develop a loss func-
tion which is adapted to guide the language model
in recognizing relationships, especially causal and
temporal ones. Specifically, we first compute the
relevance of frames for potential tokens at length
i. Top K token candidates are selected, while the
remaining tokens are assigned zero potential to
enhance computational efficiency. These candi-
date sentences, denoted as ski = (x1, ..., xi−1, x

k
i ),

correspond to the k-th candidate token and are
matched against the frame I . It is pertinent to
highlight that the context tokens x1, ..., xi−1 are
constant for the current token xki . Subsequently,
the frame potential of the k-th token is computed
as:

Dk
i ∝ exp

(
Fcos(EText(s

k
i ), Eframe(I))

τc

)
,

(7)
Here, Fcos represents the cosine distance between
CLIP’s embeddings of the text (EText) and the
frame (EImage). The hyperparameter τc > 0 is a
temperature parameter that adjusts the sharpness
of the target distribution. In our experiments, it
was set to 0.05. Notably, the frame embedding
EImage emerges from subtracting the CLIP image
embeddings of two frames. Subsequently, the CLIP
loss materializes as the cross-entropy loss between
the frame potential distribution and the target dis-
tribution of the next token xi+1 derived from the
language model:

LCLIP = CE(Di, xi+1). (8)

This loss encourages the language model to dis-
cern relationships between frames, fostering causal
and temporal inferences. The total loss function
combines the language model loss and the CLIP
loss:

LTotal = Llanguage model + LCLIP (9)

A.3 Experiment Results on Negative Methods
for Causal and Temporal Inference
Abstraction

model B RL M C Grounding
Global Frame

0.1538 0.4165 0.3578 1.007 0.3417
Comparison baseline

Global Frame 0.1555 0.4164 0.3601 1.010 0.3383
Comparison Contrast

Local Frame
0.1531 0.4165 0.3555 1.001 0.3426

Comparison Contrast

Table A1: Contrasting Learning Performance. The base-
line is the "Global Frame Comparison" shown in Table
5. B is BLEU, RL is ROUGEL, M is METEOR, C is
CIDEr, and Grounding is the F1-score grounding met-
ric.

A.3.1 Experiment Results on Contrastive
Learning Based on Frame Comparison

Contrastive Learning Based on Frame Comparison
evaluates two contrasting learning methods rooted
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in global frame comparisons, summarized in Ap-
pendix Table A1. Surprisingly, both global frame
contrast and local frame contrast methods outper-
form the baseline in specific metrics, showcasing
the potential of contrastive learning in enhancing
the language model’s ability to discern nuanced
details within videos, such as characters, colours,
verbs, and tense, as illustrated within Appendix
Figure A2’s red scope. Despite the marginal over-
all performance difference, contrasting learning
proves beneficial for the language model in under-
standing video content and generating inferential
questions, particularly concerning temporal rela-
tionships, shown in Appendix Table A2 and Ap-
pendix Table A3. However, the similarity in per-
formance raises considerations about the limited
negative sample pool and the constrained parame-
ters of the T5 small model, affecting the model’s
ability to differentiate between positive and neg-
ative samples during contrastive learning. This
observation highlights the need for a more exten-
sive negative sample pool and suggests potential
limitations in the model’s capacity to encompass
comprehensive knowledge for effective contrastive
learning in continuous video data.

A.3.2 Experient results on Visual-Semantic
Arithmetic Inferential Relation

Visual-Semantic Arithmetic Inferential Relation re-
veals that the visual-semantic arithmetic method’s
performance closely resembles the baseline ap-
proach of directly concatenating vision embed-
dings, detailed in Table A4. This suggests that
supplementing the visual-semantic arithmetic with
CLIP loss may not significantly enhance perfor-
mance. A comparison of questions generated by
two frame selection techniques indicates similar-
ities and disparities, with examples presented in
Appendix Figure A3. Examination of generated
questions in causal and temporal types, along with
matching overlap levels with the baseline, is de-
tailed in Appendix Table A5. However, the visual-
semantic arithmetic method outperforms in tem-
poral questions, exhibiting a 1-2% increase com-
pared to direct vision concatenation, particularly
excelling in recognizing time adverbs. Despite
its effectiveness, the method’s reliance on multi-
model concatenation may fall short in enabling the
language model to comprehensively discern the
complete spectrum of visual relationships within
contrasting frame pairs in a video, as suggested by
examples in Appendix Figure A4.
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model NN WRB VBD VBZ VB JJ VBG WP PRP
Global Frame

4166 2571 981 1489 776 503 345 1131 247
Comparison baseline

Global Frame 4222 2553 1157 1332 592 558 224 1155 233
Comparison Contrast

Local Frame
4196 2588 1122 1310 823 530 225 1136 244

Comparison Contrast

Table A2: Number of matching overlap for various word types based on Spacy about the frame contrasting methods.
NN means noun, singular or mass, WRB means wh-adverb, VBZ means verb, 3rd person singular present, VBD
means verb, past tense, VB means verb, base form, JJ means adjective, VBG means verb, gerund or present
participle, WP means wh-pronoun, personal, PRP means pronoun, personal.

model C G precision C G recall C G F1-score T G precision T G recall T G F1-score
Global Frame

0.3089 0.3074 0.3081 0.3817 0.3509 0.3656
Comparison

Global Frame 0.3138 0.2960 0.3046 0.3562 0.3383 0.3470
Comparison Contrast

Local Frame
0.3010 0.2939 0.2974 0.3972 0.3599 0.3776

Comparison Contrast

Table A3: Contrasting Learning Methods Evaluation Performance in Causal and Temporal Inference. C G represents
the causal grounding metric. T G represents the Temporal causal grounding metric.

model B RL M C Grounding
Video MLP 0.1564 0.4216 0.3594 1.0366 0.3505
CLIPloss 0.1568 0.4184 0.3602 1.0359 0.3460

top word 100

Table A4: Visual-semantic arithmetic inferential performance. Video MLP represents the direct vision concatenation
method. CLIPloss represents the visual-semantic arithmetic method. B is BLEU, RL is ROUGEL, M is METEOR,
C is CIDEr, and Grounding is the grounding metric.

model C G precision C G recall C G F1-score T G precision T G recall T G F1-score
Video MLP 0.3204 0.3072 0.3137 0.3695 0.3331 0.3503
CLIPloss

0.3107 0.3061 0.3084 0.3828 0.3433 0.3620
top word 100

Table A5: Visual-semantic Arithmetic Evaluation Performance in Causal and Temporal Inference. C G represents
the causal grounding metric. T G represents the Temporal causal grounding metric.
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Videos:

Global Frame Baseline: （ 40 matching overlap）
“1": "what does the man in blue do after the man in blue points at him 
at the start?",        
“2": "what does the man in blue do after he finishes talking?",        
“3": "what did the man in blue do after he walked away from the man 
in blue?",        
“4": "why did the man in blue walk away after he walked away?",        
“5": "why did the man in blue move his hand towards the lady in blue 
at the end of the video?",        
“6": "what did the man in black do after he finished talking?",        
“7": "what did the man in black do after the man in grey walked away 
at the end of the video?",        
“8": "why did the man in blue walk towards the man in blue?",        
“9": "why did the man in black move his hands as he speaks?",        
“10": "what did the man in blue do after he pointed at the man in 
blue?"

Local Frame Contrast Learning: （47  matching overlap）
 “1": "what does the man in black do after the man in black starts 
speaking?",        
“2": "what did the man in black do after he took the photo?",        
“3": "what does the man in black do as the man in black was talking?",        
“4": "why did the man in black walk away after he talked to the man in 
black?",        
“5": "why did the man in black move his hand towards the lady in 
black?",        
“6": "what did the man in black do after he finished singing?",        
“7": "what did the man in black do after the man in grey walked 
away?",    
“8": "why did the man in black walk towards the man in black?",        
“9": "why did the man in black move his hands as he speaks?",        
“10": "what did the man in black do after he walked to the man in 
black?"

Global Frame Contrast Learning: （ 58 matching overlap）
 “1": "what does the lady in black do after the man in black points at 
her at the start?",        
“2": "how did the man in black react when the man in black was 
talking?",        
“3": "what did the man in black do as the man in white was talking?",        
“4": "why did the man in black walk away after he finished talking?",        
“5": "why did the man in black move his hands away from the lady in 
white?",        
“6": "what did the man in black do after he finished speaking?",        
“7": "what did the man in black do after the man in grey walked 
away?",        
“8": "why did the man in black walk towards the man in black?",        
“9": "why did the man in black raise his hands in the air at the end of 
the video?",        
“10": "what did the lady in black do after she turned to face the man 
in black?" 

Ground Truth Questions:
1: what did the lady in black do after the man next to her gave 
her a microphone?
2: how did the lady in black reacted when the man in black beside 
her passed her the microphone?
3: what is the man with white tag on shirt do while man in stripes 
speaking?
4: why did the man in black with tied up hair turned backwards 
after he received the microphone?
5: what is the lady in black doing with her hands as she spoke into 
the microphone at the end of the video?
6: what did the man in grey do after he finished his speech?
7: what did the man in black in front of the man in grey do before 
the man in grey passed him the microphone?
8: why did the man in black with tied up hair walked towards the 
man in grey in the middle of the video?
9: why is the lady in black moving her hands at the end of video?
10: why did the lady in black face the man in black beside her 
before she started talking into the microphone?

Figure A2: Contrast Learning Performance. Yellow scopes represent matching overlap with ground truth questions.
Red scopes represent more details recognized by the frame contrasting methods compared to the global frame
comparison method.
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Videos:

VideoMLP Baseline: （44 matching overlap）
“1": "where is this place?",        
“2": "how does the girl react after the horse jumps up?",        
“3": "what does the girl do after the man approaches her at the end?",        
“4": "how does the girl react after the horse jumps up?",        
“5": "how does the dog show affection towards the girl?",        
“6": "how does the girl react after the horse jumps up?",        
“7": "why did the girl start jumping when the horse approached her?",        
“8": "why did the girl put her hand on the horse after the horse jumps 
up?",        
“9": "why did the girl run towards the horse after the horse jumped 
up?",        
“10": "how does the man ensure the girl does not fall?",        
“11": "what animal is shown in the video?",        
“12": "what does the girl do after the man starts to approach her at 
the start?"

Visual-semantic Arithmetic Method: （51 matching overlap）
"1": "where is this video taken?",        
“2": "how does the girl react when the man is playing with her?",        
“3": "what did the girl do after the man walked away?",        
“4": "how does the girl react when the man is playing with her?",        
“5": "what does the girl do after the horse approaches her at the 
end?",        
“6": "how does the girl react when the man is playing with her?",        
“7": "why did the girl start jumping when the horse is near her?",        
“8": "why did the girl put her hand on her face when the horse 
approached her?",        
“9": "why did the girl bend down at the end of the video?",        
“10": "how does the man support the girl as she stands on the 
horse?",        
“11": "what is the animal shown in the video?",        
“12": "what does the girl do after the man puts her down?"

Ground Truth Questions:
1: where is the man and the girl?
2: how does the man react when the horse plays with the girl?
3: what does the girl do after patting the horse?
4: how does the girl in pink react when the horse licks her?
5: what does the horse do after the girl pats it in the middle of 
the video?
6: how does the girl react when the horse turns towards her 
the first time?
7: does the girl seem more scared or excited to play with the 
horse?
8: what does the horse do after it turns back to the girl the 
second time?
9: why does the girl move her head away from the horse at the 
end of the video?
10; what does the man do when the horse plays with the girl?
11: what is the animal show in the video?
12: what does the girl do after tucking her hair behind her ear?

Figure A3: Visual-semantic arithmetic method performance. Yellow scopes represent matching overlaps with
ground truth questions. Red scopes represent more details recognized by the visual-semantic arithmetic method.
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Positive Sample:
Global Frame Selection:

Subtraction

Ground Truth Question:
why did the lady put her hand closer to the baby s mouth?

Video MLP Baseline Predicted Question:
why is the woman holding the spoon?

Visual-semantic Arithmetic Method Predicted Question:
why is the lady holding on to a pair of ice cream on her hands?

Negative Sample:
Global Frame Selection:

Subtraction

Ice cream is the main difference! 

Carrot is the main difference! 

Ground Truth Question:
why does the girl lean forwards while the adult picks up the 
carrot near the beginning?

Video MLP Baseline Predicted Question:
why did the girl in pink look at the girl in pink when she tries to 
cut the hammer?

Visual-semantic Arithmetic Method Predicted Question:
why did the girl in pink look at the girl in pink when she is 
preparing to spin the balloon?

Figure A4: The effectiveness of the Visual-semantic arithmetic method: check if the language model could recognize
the difference between two frames.
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Abstract

Large-scale pretraining of vision-language
(VL) models brought dramatic improvements
across numerous tasks, from visual question-
answering to cross-modal retrieval but these
gains are mostly limited to English. Massively
multilingual VL encoder models (mVLMs)
hold promise for other languages: after fine-
tuning on only English task data, they can
perform the task in other languages in what
is termed zero-shot cross-lingual transfer (ZS-
XLT). Still, ZS-XLT sees a large performance
gap to English, especially for low-resource
languages. In this work, we reduce this gap
with a fine-tuning strategy known as Sched-
uled Unfreezing (SUF): instead of updating all
parameters from the start, we begin with the
top layer(s) of the vision-language encoder and
gradually unfreeze (i.e., update) its layers top
to bottom. SUF forces reliance on encoder’s
representations from higher layers: the fact
that in multilingual models these representa-
tions encode higher-level semantics rather than
low-level language-specific idiosyncrasies, we
hypothesize, should render SUF beneficial for
ZS-XLT. Experiments with two mVLMs (UC2
& CCLM) on three downstream tasks (xGQA,
XVNLI, xFlickrCo) show that SUF brings con-
sistent gains in ZS-XLT, especially for visual
Q&A (xGQA) by up to 10 points.

1 Introduction

Recent vision-language (VL) models (Zhou et al.,
2021; Zeng et al., 2022; Li et al., 2023a; Liu et al.,
2023c; Geigle et al., 2023, inter alia), trained on
massive amounts of image-text data, led to dra-
matic improvements on virtually all VL tasks (e.g.,
image-text retrieval or visual Q&A). This progress,
however, benefits primarily English. Large Vision-
Language models (LVLMs) (Li et al., 2023a; Liu
et al., 2023c,b; Dai et al., 2023; Bai et al., 2023)—
which align an image encoder to a Large Language
Model (LLM)—excel in generalizing zero-shot to
new tasks (without task-specific fine-tuning). Most

LVLMs use English LLMs and are not highly mul-
tilingual; they fail to follow instructions in other
languages or produce English output (Geigle et al.,
2023; Kew et al., 2023; Holtermann et al., 2024;
Shaham et al., 2024). Multilingual LVLMs are
much less available1 and generally underperform
their English counterparts (Geigle et al., 2023).

The alternative is task-specific fine-tuning of
smaller, but massively multilingually pretrained VL
encoder models (mVLMs) (Ni et al., 2021; Zhou
et al., 2021; Zeng et al., 2022). Here, however,
task-specific training data exists predominantly in
English which forces us to rely on zero-shot cross-
lingual transfer (ZS-XLT) (Conneau et al., 2020b;
Lauscher et al., 2020): due to the massively mul-
tilingual pretraining, the encoders fine-tuned on
English task data can be used for inference in other
languages. Still, ZS-XLT results in substantial
performance drops in other languages compared
to English, especially for less represented target
languages in m(V)LM’s pretraining. While few-
shot training for specific target languages can re-
duce this performance gap (Lauscher et al., 2020;
Schmidt et al., 2022), annotating sufficient data
(for training and model validation) is expensive
and does not scale to hundreds of languages.

In this work, we improve ZS-XLT with mVLMs
using a training method known as scheduled un-
freezing (SUF) (Howard and Ruder, 2018a; Liu
et al., 2024). SUF, which we apply in task-specific
fine-tuning of an mVLM on English data, grad-
ually increases the set of encoder’s (i.e., Trans-
former’s) parameters that are being fine-tuned
(i.e., updated), starting from the last layer(s) and
gradually adding lower layers of the Transformer
stack as the training progresses. Multilingual
language-only encoders have been shown to en-
code language-agnostic high-level semantic knowl-
edge in higher layers and language-specific idiosyn-

1Powerful multilingual LVLMs such as Google’s PaLI
models (Chen et al., 2023) are, unfortunately, not public.
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crasies in lower layers (Libovický et al., 2020; Hu
et al., 2020). If the same holds for mVLMs, then
SUF—by enforcing stronger reliance on represen-
tations from higher layers of an mVLM—should
facilitate ZS-XLT for VL tasks. Put differently,
with SUF fine-tuning on English-only data, idiosyn-
cratic English-specific knowledge from lower lay-
ers of the encoder is less available, forcing the
model to rely on more language-agnostic knowl-
edge from higher layers of the encoder.

We evaluate the effects of SUF fine-tuning on ZS-
XLT for two multilingual vision-language encoders:
UC2 (Zhou et al., 2021) and CCLM (Zeng et al.,
2022); and on three distinct downstream tasks: vi-
sual QA (xGQA (Pfeiffer et al., 2022)), image-
text retrieval (xFlickrCo (Bugliarello et al., 2022)),
and visual entailment (XVNLI (Bugliarello et al.,
2022)). We find that SUF consistently improves
performance compared to standard fine-tuning: by
up to 3 points in retrieval and entailment and by a
massive 10 points for visual QA.

Our further fine-grained analysis of model be-
havior on xGQA reveals that: (1) in standard fine-
tuning the performance for most target languages
stagnates or degrades over the course of (English)
training, while the English performance steadily
improves. (2) in SUF fine-tuning, in contrast, tra-
jectory of target language performance longer mir-
rors that of English performance, suggesting that
the model relies on more language-agnostic repre-
sentations; this results in massive improvements
especially for some languages distant from English,
such as Korean and Bengali. Using parallel data,
we show that SUF fine-tuning indeed leads to cross-
lingually more aligned representations of the se-
quence start token ([CLS]), which is input to the
classifier. Finally, we compare SUF against two
other strategies that similarly reduce reliance on
lower layers of the encoder: (1) layer-wise learning
rate decay and (2) fixed training of only the top
layers. While both these also yield some perfor-
mance gains, they underperform SUF. SUF-based
fine-tuning not only improves ZS-XLT of mVLMs
but is also computationally more efficient than stan-
dard fine-tuning: we thus hope that our work moti-
vates broader investigation of SUF strategies in the
context of multilingual VL models.

2 Related Work

Cross-lingual Transfer with Vision-Language
Models. Bugliarello et al. (2022) created the

IGLUE benchmark, which has become the de facto
benchmark for evaluating cross-lingual transfer
abilities of mVLMs. IGLUE comprises four VL
tasks: visual QA (xGQA (Pfeiffer et al., 2022)), vi-
sual entailment (XVNLI (Xie et al., 2019)), multi-
image reasoning (MaRVL) (Suhr et al., 2019; Liu
et al., 2021a), and image-text retrieval (Lin et al.,
2014; Plummer et al., 2015). Being designed
specifically for ZS-XLT, each dataset in IGLUE
comes with a training portion in English and test
portions in different target languages.

Bugliarello et al. (2022) compare several mul-
tilingual VL encoder models on IGLUE, namely:
M3P (Ni et al., 2021), x/mUNITER (Liu et al.,
2021a), and UC2 (Zhou et al., 2021)), primarily in
ZS-XLT, but also in few-shot cross-lingual transfer
(FS-XLT) in which few training instances in tar-
get languages are assumed to exist. Crucially, in
both setups they demonstrate significant gaps be-
tween models’ English performance and their per-
formance for other languages. Subsequent models
such as CCLM (Zeng et al., 2022), Li et al. (2023b),
and Ernie-UniX2 (Shan et al., 2022) improved
target-language performance, but since their En-
glish performance improved as well, this resulted
overall in similar ZS-XLT performance gaps.

For visual question answering in particular, there
has been work dedicated to reducing the cross-
lingual performance gap. Nooralahzadeh and Sen-
nrich (2023) assessed that a high ambiguity in
the label space makes learning more difficult, at-
tempting to remedy for this with several strate-
gies, including addition of a similarity-based loss
to standard classification cross-entropy loss, code-
switching at the instance level and a sparse fine-
tuning approach. Liu et al. (2023a) reduce the
ZS-XLT performance gap by replacing the stan-
dard single-layer classifier with a deeper two-layer
architecture. Observing stark performance differ-
ences across different question types, they also in-
troduced a special question-type token.

Finally, Geigle et al. (2023) find that fine-tuning
a multilingual LVLM that relies on mT0 (Xue et al.,
2021; Muennighoff et al., 2022) as the LLM back-
bone nearly closes the ZS-XLT gap. Training and
fine-tuning billion-parameter LVLMs is, however,
much more computationally expensive; crucially,
the same is true for inference, which hinders model
application for most users. Moreover, Geigle et al.
(2023) show that the cross-lingual performance
gap is highly dependent on the backbone LLM, ob-
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Figure 1: Illustration of Scheduled Unfreezing; each
rectangle shows one Transformer layer, green rectan-
gles denote unfrozen layers whereas gray ones indicate
frozen layers. The embedding layer (orange) is kept
unfrozen along with the task-specific classification head
(purple). In every epoch, we unfreeze a fixed number of
layers from top to bottom.

serving larger ZS-XLT gaps with BLOOMZ (Scao
et al., 2022; Muennighoff et al., 2022).

In this work, we focus on encoder mVLMs, due
to their smaller computational footprint and thus
broader applicability. To the best of our knowledge,
our SUF is the first strategy shown to substantially
reduce the ZS-XLT gap for VL encoders.

Unfreezing training strategies. Various strate-
gies for (un)freezing model parts have been pro-
posed in transfer learning scenarios. Howard and
Ruder (2018b) introduce Gradual Unfreezing for
fine-tuning a pretrained recurrent LM, to avoid
catastrophic forgetting across different text classi-
fication tasks; in each epoch, starting from the top
layer, they unfreeze one layer of the pretrained LM.
However, Raffel et al. (2020) find that this underper-
forms full model fine-tuning for Transformer-based
LMs. In the context of XLT with multilingual LMs,
in concurrent work Liu et al. (2024) propose a scor-
ing function that dynamically decides when and
which layers to unfreeze. In this work, in contrast,
we investigate a simpler fixed unfreezing sched-
ule and focus on bimodal vision-language models
rather than unimodal language-only models.

3 Scheduled Unfreezing

The exact setup on which we focus in this work
is zero-shot cross-lingual transfer (ZS-XLT) for
downstream vision-language tasks (e.g., visual QA)
with massively multilingual vision-language en-
coder models (mVLMs) as vehicles of the trans-
fer. In this setup, we fine-tune the mVLM on task-

specific data in English only and evaluate its per-
formance on task-specific data in other languages.

Based on the observation (from multilingual
language-only encoders) that multilingual encoders
encode more language-agnostic higher-order se-
mantics in their upper Transformer layers and
language-specific information in their lower lay-
ers (Libovický et al., 2020; Hu et al., 2020), we
propose fine-tuning based on top-to-bottom sched-
uled unfreezing (SUF) as a method to facilitate
cross-lingual transfer with mVLMs. The motiva-
tion for SUF in this context is as follows: by (ini-
tially) freezing lower Transformer layers, the clas-
sification head is forced to solve the task by tuning
language-agnostic knowledge from higher Trans-
former layers of the mVLM first. Contrary, in full
fine-tuning, the classifier can additionally leverage
language-specific knowledge from lower layers—
when fine-tuned on English tasks data only. This
means that the classifier is more likely to overfit to
English-specific features, harming the effectiveness
of cross-lingual transfer to other languages.

To test this hypothesis, we use a fixed-schedule
unfreezing in this work, illustrated in Figure 1. The
general idea is not to train the full model from the
start, but freeze (i.e., not update) all but the top k
layers at the beginning and then gradually unfreeze
k layers top-to-bottom in every epoch.

Architecture-specific Implementation. Com-
pared to unimodal language-only encoders (De-
vlin et al., 2019; Conneau et al., 2020b), mVLMs
additionally contain components for encoding the
visual modality (i.e., images). Moreover, mVLMs
come with different architectures, differing primar-
ily w.r.t. where cross-modal information aggrega-
tion occurs. As such, we introduce architecture-
specific unfreezing schedules for the two mVLMs
with which we experiment in this work: UC2 (Zhou
et al., 2021) and CCLM (Zeng et al., 2022).

UC2 is an encoder Transformer model, architec-
turally identical to the language-only XLM-R en-
coder (Conneau et al., 2020a). UC2 encodes an
image offline, relying on an object detection model
(Ren et al., 2015)2; the features for image regions
given by this model are linearly projected and then
concatenated with the text embeddings as input to
the model. The image region vectors are treated
by the Transformer like any other text token. As a
result, we can use general SUF without any adjust-

2All images are processed prior to training and the detec-
tion model is not used during training of UC2.
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ments: UC2, using a base-size XLM-R architec-
ture, has 12 Transformer layers. In the first epoch,
the task-specific classification head, the embedding
layer3, and the top k = 3 Transformer layers re-
main unfrozen. After every training epoch, we
unfreeze 3 additional layers, top to bottom.

CCLM, also a Transformer-based encoder, com-
prises n layers for processing only the text input,
followed by m more cross-modal layers, which
additionally have a cross-attention component.
Through this cross-attention, the model attends to
the image features extracted by a separate Vision
Transformer (ViT) (Dosovitskiy et al., 2020). For
CCLMbase, which we use in our experiments, there
are n=12 layers for pure text encoding (initialized
from XLM-R), followed by m=6 cross-modal lay-
ers (initialized from X2-VLM (Zeng et al., 2023)).
We keep the ViT fully unfrozen during training.
The motivation for this is twofold: (i) the resolu-
tion of images in fine-tuning is larger (384x384)
than in its pretraining (224x224), requiring ViT
to adapt; and (ii) we employ SUF to reduce the
impact of language-specific (i.e., English) overfit-
ting in fine-tuning and image encoding with ViT
is inherently language-agnostic. We thus keep the
ViT, task-specific classification head, and embed-
ding layer unfrozen throughout training. In the first
epoch, we additionally start with the top k = 3
Transformer layers (out of m + n=18) unfrozen
and then unfreeze 3 more layers after each epoch.

4 Evaluation

We provide details of our experimental setup and
then consider results over three downstream tasks
with the two architectures (UC2 & CCLM).

4.1 Experimental Setup

Datasets. We evaluate SUF on the multilingual
IGLUE benchmark (Bugliarello et al., 2022) for
ZS-XLT. IGLUE spans 4 different tasks: vi-
sual QA (xGQA (Pfeiffer et al., 2022; Hud-
son and Manning, 2019)), image-text retrieval
(xFlickrCo (Bugliarello et al., 2022)), visual entail-
ment (XVNLI) (Xie et al., 2019; Bugliarello et al.,
2022), and multi-image reasoning (MaRVL (Liu
et al., 2021b)). We exclude MaRVL, because it
requires changes to the model architecture in order
to support multi-image input.

3Initial experiments showed that keeping the embedding
layer unfrozen was critical for good performance.

xGQA contains diverse questions over multiple
question types – Verify (yes/no), Query (open),
Choose (one of two options), Logical (true or false),
Compare (across multiple objects) – with nearly
2000 unique labels. This dataset is obtained by ex-
tending the monolingual GQA (Hudson and Man-
ning, 2019) with human translations in 7 languages.
The English training portion contains 943K exam-
ples. We report classification accuracy.

For image-text retrieval, the task is to retrieve
the best caption for an image (Text Retrieval, TR)
or the corresponding image given a caption (Image
Retrieval, IR). We use xFlickrCo which couples 1K
images from Flickr30K (Plummer et al., 2015) test
portion with 1K images from the COCO (Lin et al.,
2014) test portion with human-written captions in
7 languages (plus the original English Flickr30k
and MSCOCO captions). For training, we use the
Flickr30k training split with 145K examples. As
metric, we report recall@1 (R@1)—the proportion
of images (in TR) or captions (in IR) for which
the matching caption (in TR) or image (in IR) is
positioned at the very top of the ranking.

For visual entailment on XVNLI, a model must
predict if a statement (i.e., a hypothesis), is en-
tailed, contradicts, or is neutral to an image (as
the “premise”). The training portion of the dataset
consists of 541K English examples and the test
portion covers 4 other languages (Arabic, Spanish,
French, and Russian). We report results in terms of
classification accuracy.

Training Setup. We mirror the training proce-
dures from IGLUE and (Zeng et al., 2022) for task-
specific fine-tuning of of UC2 and CCLM. For
xGQA with UC2, we add a 2-layer classification
head (with∼ 2000 classes, i.e., valid answers from
the training data). CCLM casts VQA as a gen-
eration task, adding a full-blown 6-layer decoder
Transformer (the input to which is the representa-
tion of the [CLS] token, output of the last layer of
the CCLM’s cross-encoder). The decoder Trans-
former is trained on the task and as such not frozen.

Hyperparameters: We train for the same number of
epochs for each task as in IGLUE: 5/10/10 epochs,
for xGQA, XVNLI, and xFlickrCo, respectively.
Regarding other hyperparameter values, we follow
IGLUE for training UC2, using the learning rate
of 4 · 10−5 for xGQA and 2 · 10−5 for XVNLI
and xFlickrCo. We train in batches of size 256
for xGQA, 64 for xFlickrCo, and 128 for XVNLI.
For CCLM (the original work did not report fine-
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tuning hyperparameter values), we use a learning
rate of 2·10−5 for the image encoder (i.e., ViT) and
3 · 10−5 for the rest of the model. We use an effec-
tive batch size of 256/128/144 for xGQA, xFlick-
rCo, and XVNLI, respectively, resorting to gradient
accumulation, due to limited GPU VRAM4. For
both models and in all fine-tuning procedures, we
use AdamW (Loshchilov and Hutter, 2019) opti-
mizer, with linear warm-up for 10% of steps and
weight decay of 0.01. We use exactly the same
hyperparameters for standard and SUF fine-tuning.

Evaluation Setup. We compare SUF fine-tuning
against standard full fine-tuning for ZS-XLT. In
other words, we fine-tune the model on the task-
specific English training split and then evaluate its
performance on the same task on the test splits
in English and other languages. We evaluate all
models, with and without SUF, after the last train-
ing epoch. For xFlickrCo, with CCLM, we first
pre-filter 128 best image (in IR) or captions (in
TR) matches based on the cosine similarity of their
image and text representations (computed indepen-
dently from the other modality using the image
encoder and the text-only layers), and then re-rank
the candidates by jointly scoring all candidates.
With UC2, we directly compute the pairwise simi-
larity of all possible image-text pairs. For xGQA
with CCLM, we perform constrained generation to
the set of task-specific class labels.

4.2 Results

The overview of the ZS-XLT results (together with
English performance), aggregated over all target
languages for each task, is given in Table 1. Sched-
uled unfreezing (SUF) yields consistent ZS-XLT
performance gains over standard fine-tuning for all
three tasks and both UC2 and CCLM. At the same
time, the English performance in SUF is compa-
rable to that of standard fine-tuning. This means
that not only does (1) SUF fine-tuning truly reduce
the cross-lingual performance gap for mVLMs, but
(2) freezing of lower layers does not seem to hurt
the source language performance. While SUF fine-
tuning of CCLM brings moderate 2-3 point im-
provements on XVNLI and xFlickrCo, on xGQA
we observe a massive 10-point average gain over
the 7 target languages. We next investigate the
xQGA performance in more detail.

4For xFlickrCo, where we use in-batch negatives, this
yields lower scores than reported in Zeng et al. (2022).
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Figure 2: Results on xGQA for CCLMbase after each
epoch for each language. We compare the standard
finetuning (left) with scheduled unfreezing (SUF) fine-
tuning (right).

In-Depth Analysis for xGQA. Motivated by
the large performance gains that SUF fine-tuning
brings in ZS-XLT for xGQA, we next inspect
model behavior on this task in more detail, across
two performance dimensions: (i) individual target
languages and (ii) different question types, aim-
ing to unravel factors that specifically contribute to
good ZS-XLT performance.

Per-Language Performance. We first analyze how
training on English data affects the transfer to other
languages for different training duration. In Fig-
ure 2, we show the per-epoch accuracy of CCLM
for all target languages (and EN as the source lan-
guage. With standard fine-tuning, English perfor-
mance improves throughout the training; the per-
formance for most other languages, however, ei-
ther stagnate or decreases. The only exception to
this pattern is German (DE), which is not only a
high-resource language but also linguistically clos-
est to English. For languages most distant from
English, Korean and Bengali, we observe largest
performance drops with prolonged English training.
Scheduled unfreezing, on the other hand, prevents
this performance decay and most languages ben-
efit from longer English training under SUF fine-
tuning. Additionally, we see that most languages
also start at a higher accuracy with scheduled un-
freezing. This suggests that the freezing of lower
layers at the start forces the model to rely on more
language-agnostic features that transfer better.

Per-Question Type Performance. GQA is con-
structed around 5 question types: Verify (yes/no),
Query (open), Choose (one out of two options),
Logical (true or false), and Compare (across mul-
tiple objects). Figure 3 summarizes the ZS-XLT
performance for different question types across the
training epochs. We see that SUF fine-tuning pre-
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Setup xGQA XVNLI xFlickrCo
TR IR

EN ZS-XLT EN ZS-XLT EN ZS-XLT EN ZS-XLT

UC2 57.1 31.9 77.1 61.7 36.8 18.0 43.0 20.0
UC2+SUF 57.1 41.3 77.2 61.2 36.4 20.0 41.8 22.3

CCLM 62.0 42.8 81.2 68.6 77.7 63.4 78.0 64.2
CCLM+SUF 62.8 51.5 80.6 70.6 78.5 66.7 78.6 67.1

Table 1: Evaluation of SUF on UC2 and CCLMbase across multiple V&L tasks. We report results for English (en)
and averaged (avg) across all non-English languages. We bold the best results. We report accuracy for xGQA and
XVNLI, and recall@1 for xFlickrCo for both Text Retrieval (TR) and Image Retrieval (IR).
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Figure 3: Accuracy every epoch for each question type in xGQA for SUF and standard fine-tuning with CCLMbase.

vents language-specific overfitting to English in
particular for Compare, Logical, and Verify ques-
tions. It is worth noting that all three question types
effectively have only ‘yes’ and ‘no’ as answer la-
bels. This means that SUF is not improving ZS-
XLT by reducing label space ambiguity (like, e.g.,
Nooralahzadeh and Sennrich (2023)), but rather
by preventing early overfitting to English-specific
idiosyncrasies in the questions.

Expectedly, all models generally exhibit the low-
est performance on the open-ended Query ques-
tions, which account for the largest portion of the
xQGA data. For both Query and Choose ques-
tions, English training with both standard and SUF
fine-tuning generally increases the performance for
target languages throughout the training; for SUF
fine-tuning, however, the starting accuracy scores
are higher than for standard fine-tuning, resulting

in overall better scores at the end of training.

5 Further Analysis

We further analyze SUF fine-tuning through the
lens of cross-language similarity of [CLS] tokens
for parallel data. We then compare SUF with con-
ceptually similar alternatives: (i) layer-wise learn-
ing rate decay and (ii) updating only the top layers
Transformer layers throughout the whole training.
Finally, we report the results of few-shot cross-
lingual transfer (FS-XLT).

5.1 Cross-Lingual Semantic Alignment
Our previous findings suggest that SUF can retain
the cross-lingual transfer abilities of the mVLM
better than standard finetuning. We thus further
test cross-lingual semantic alignment for both fine-
tuning regimes (with UC2), using parallel data.
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SF bn de en id ko pt ru zh
bn 100 45 33 48 58 47 55 48
de 45 100 61 58 48 55 60 57
en 33 61 100 53 39 49 52 56
id 48 58 53 100 50 57 60 60
ko 58 48 39 50 100 54 57 56
pt 47 55 49 57 54 100 58 56
ru 55 60 52 60 57 58 100 60
zh 48 57 56 60 56 56 60 100

(a) xGQA: Standard Finetuning (Unpaired similarity: 20)
SUF bn de en id ko pt ru zh
bn 100 50 43 54 61 54 55 52
de 50 100 78 71 65 71 74 70
en 43 78 100 69 59 68 70 70
id 54 71 69 100 68 71 72 67
ko 61 65 59 68 100 67 67 66
pt 54 71 68 71 67 100 72 67
ru 55 74 70 72 67 72 100 70
zh 52 70 70 67 66 67 70 100

(b) xGQA: Scheduled Unfreezing (Unpaired similarity: 22)
SF ar en es fr ru
ar 100 41 48 47 48
en 41 100 48 70 56
es 48 48 100 49 49
fr 47 70 49 100 58
ru 48 56 49 58 100

(c) XVNLI: Standard Finetuning (Unpaired similarity: 17)
SUF ar en es fr ru

ar 100 76 83 79 83
en 76 100 79 89 84
es 83 79 100 82 83
fr 79 89 82 100 85
ru 83 84 83 85 100

(d) XVNLI: Scheduled Unfreezing (Unpaired similarity: 62)

Figure 4: Average pairwise CLS-similarity (in percent-
age points) between the translation-parallel examples
of xGQA and XVNLI, compared between scheduled
unfreezing (SUF) and standard fine-tuning (SF), evalu-
ated on the last epoch of fine-tuning with UC2. For a
baseline of similarity between unpaired examples, we
report the average similarity between all examples over
all languages (unpaired similarity).

With UC2, the predictions are made from the
transformed vector of the sequence start token
[CLS]. We thus analyze how similar representa-
tions of the [CLS] token are for parallel sentences
(same meaning, but in different languages): The
more language-agnostic the representations are, the
more aligned should the [CLS] token vectors of
parallel sentences be.

For this analysis, we leverage the multi-parallel
instances of xGQA and XVNLI. We use simple co-
sine similarity to quantify the similarity of [CLS]
vectors of mutual translations. Given that it is pos-
sible that a fine-tuning procedure can make inputs
appear generally more similar, we also measure
“baseline” average similarity between non-parallel
sentences (randomly sampled).

Figure 4 displays the results of this analysis on
the multi-parallel xGQA and XVNLI test data. We
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Figure 5: Result of different values for the decay factor
d for layer-wise learning rate decay on zero-shot perfor-
mance for xGQA compared to standard fine-tuning and
scheduled unfreezing (SUF). Note that the y-axis starts
at 40 to better show performance differences.

make two observations. First, the average similar-
ity with English is highly correlated with the rela-
tive zero-shot performance between the languages
with a Pearson correlation of over 0.9. This, unsur-
prisingly, means that there are higher cross-lingual
similarities between instances, e.g., for English-
German in xGQA or English-French for XVNLI,
which also means better transfer results. This con-
firms the common assumption that good semantic
alignment between representations of different lan-
guages is key for successful cross-lingual transfer:
we show that the same is true for mVLMs. Second,
we see that for xGQA, the pairwise similarity be-
tween the languages increases substantially more
for SUF fine-tuning than for standard fine-tuning
(also relatively, compared to the baseline similar-
ity). This suggests that scheduled unfreezing yields
more language-agnostic final representations for
this task. For XVNLI, where SUF yielded no gains
for UC2, the pairwise similarity also increases but
so does the baseline similarity, suggesting no im-
provement in cross-lingual semantic alignment.

5.2 Layer-wise Learning Rate Decay

Our experiments suggest that ZS-XLT, especially
with xGQA, profits when the lower layers are
trained less. As an alternative to SUF, where a
layer is either trained or not (with the same learning
rate for all layers), we consider layer-wise learning
rate decay. Here, the model is fully trained but
we decay the learning rate exponentially between
the layers, with a decay factor d, so that parame-
ters of lower layers are trained with much smaller
learning rates: For N layers and learning rate l, the
actual learning rate l(i) for layer i (counted bottom
to top) is: l(i) = ldN−i. This means that the top
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Setup en avg

Standard 62.0 42.8
SUF 62.8 51.5
CM only 61.9 49.7

Table 2: Results with CCLM on xGQA comparing stan-
dard finetuning, scheduled unfreezing (SUF) , and cross-
modal layers only (CM only), where we only train the
top 6 cross-modal layers and freeze the rest.

layers are trained throughout with the same learn-
ing rate as in SUF, but the lower layers, instead of
being “flicked-on”, after some number of epochs,
are instead trained from the start but with a much
smaller learning rate. This, in principle, should also
limit the overfitting to language-specific knowledge
from lower layers.

To evaluate a reasonable range for the decay,
we train CCLMbase on xGQA and choose: d ∈
{0.98, 0.95, 0.88, 0.75} with otherwise the same
hyperparameters. As a result, the learning rate of
the bottom layer (of 18) is 70% to 0.5% of the
learning rate for the top layer.

We present the results in Figure 5. For d =
0.98, which decays the least, we see results close
to the standard fine-tune setup. For d = 0.75,
which effectively does not train the lowest layers,
performance decreases. We see the best results for
d = 0.88. While it achieves better results than
the standard setup, it underperforms compared to
scheduled unfreezing. Looking at per-language
results here, we again observe that accuracy for
languages like Bengali and Korean, which drop
during standard training, are better retained with
layer-wise decay.

5.3 Training Top-Layers Only

In Table 2, we test for CCLM, which has 12 XLM-
R-initialized text-only layers and 6 cross-modal
layers, a setup where we only train the upper 6
cross-modal layers (CM only in Table 2). While
results are notably better compared to standard fine-
tuning for zero-shot transfer, they are slightly worse
than with SUF. Allowing the model to adapt the full
model, albeit not fully from the start, is important
for best performance though results on English are
close to standard finetuning.

5.4 SUF in Few-Shot Training

While the focus of this work is on zero-shot cross-
lingual transfer, we want to briefly explore if SUF

Setup Zero-Shot Few-Shot

Standard 31.9 44.3
SUF 41.3 46.7

Table 3: Results for UC2 on xGQA for zero-shot and
few-shot when trained with and without SUF on the
English train split (not for few-shot step).

can also further improve results in a few-shot setup.
In a few-shot setup, the model is first trained on the
large English train split (as in zero-shot) but then
also trained on a few dozen to hundred examples in
the target language. This can help reduce the perfor-
mance gap for multiple IGLUE tasks (Bugliarello
et al., 2022; Zeng et al., 2022).

Following the few-shot setup in IGLUE for
xGQA with UC2 (with the maximum 48 shots), we
compare a model trained on the English data with
and without scheduled unfreezing. During the few-
shot training, both setups are trained identically,
that is, scheduled unfreezing is not used. As shown
in Table 3, SUF is only around 2 points better af-
ter few-shot training. While the more language-
agnostic representations learned with SUF might be
a slightly better starting point for few-shot training,
we also see that with a few examples, the model can
‘rectify’ the performance drop seen during training
on English for most languages.

6 Conclusion

Cross-lingual zero-shot allows us to train massively
multilingual vision-language models on English
task-specific data and then use them for other lan-
guages without additional target language training
data. Still, there is a large performance gap to
English. In this work, we leverage scheduled un-
freezing – a finetuning strategy where we initially
keep all but the upper model layers frozen and grad-
ually unfreeze the model top-down during training
– as a method for reducing the transfer gap.

Experiments with two different models on three
downstream vision-language tasks show that sched-
uled unfreezing can help improve non-English per-
formance; results in visual question answering are
especially promising with massive gains in accu-
racy. Subsequent analysis suggests that scheduled
unfreezing can help the zero-shot transfer by forc-
ing the model to learn more language-agnostic fea-
tures and overfit less on English-specific idiosyn-
crasies in the training data.
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A Per-Language Results

We report the per-language results for all our mod-
els and tasks.

Zero-Shot en ar es fr ru Ø

UC2 77.1 56.6 58.1 68.1 64.9 61.9
UC2 + SUF 77.2 55.6 58.5 69.2 63.7 61.7
CCLM 81.2 60.9 69.6 75.6 68.5 68.6
CCLM + SUF 80.6 63.6 70.9 77.6 70.4 70.6

Table 4: Accuracy of SUF compared with our baseline
on XVNLI on CCLMbase and UC2.

Zero-Shot en de bn id ko pt ru zh Ø

UC2 57.1 44.4 20.8 30.7 25.3 34.1 35.4 32.8 31.9
UC2 + SUF 57.1 51.6 26.5 40.5 38.6 41.2 43.8 47.0 41.3
CCLM 62.0 57.2 33.7 49.8 29.1 46.4 39.9 43.3 42.8
CCLM + SUF 62.8 59.0 49.5 52.5 42.2 51.7 48.2 57.5 51.5

Table 5: Zero-shot evaluation of scheduled unfreezing
on CCLM and UC2.

Zero-Shot en de es id ja ru tr zh Ø

Text Retrieval

UC2 36.8 25.8 16.0 12.8 21.6 16.9 7.3 25.8 18.0
UC2 + SUF 36.4 26.0 17.8 16.3 23.5 19.7 8.2 29.0 20.0
CCLM 77.7 68.8 66.4 55.3 69.6 64.5 45.6 73.6 63.4
CCLM + SUF 78.5 71.0 69.5 58.1 71.1 68.9 50.7 73.2 66.1

Image Retrieval

UC2 43.0 39.3 15.9 12.7 26.3 19.7 6.4 33.4 20.0
UC2 + SUF 41.8 30.2 18.7 15.1 28.1 22.8 8.0 33.5 22.3
CCLM 78.0 69.2 68.6 54.8 72.7 64.8 45.7 73.7 64.2
CCLM + SUF 78.6 70.5 70.9 60.0 74.3 68.7 50.4 74.6 67.1

Table 6: Results of SUF compared with our baseline on
text and image retrieval (r@1, xFlickrCo) on CCLMbase
and UC2.
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Abstract
Recent advancements in instruction-following
models have made user interactions with mod-
els more user-friendly and efficient, broaden-
ing their applicability. In graphic design, non-
professional users often struggle to create visu-
ally appealing layouts due to limited skills and
resources. In this work, we introduce a novel
multimodal instruction-following framework
for layout planning, allowing users to easily
arrange visual elements into tailored layouts
by specifying canvas size and design purpose,
such as for book covers, posters, brochures,
or menus. We developed three layout rea-
soning tasks to train the model in understand-
ing and executing layout instructions. Ex-
periments on two benchmarks show that our
method not only simplifies the design process
for non-professionals but also surpasses the per-
formance of few-shot GPT-4V models, with
mIoU higher by 12% on Crello (Yamaguchi,
2021). This progress highlights the potential of
multimodal instruction-following models to au-
tomate and simplify the design process, provid-
ing an approachable solution for a wide range
of design tasks on visually-rich documents.

1 Introduction

The creation of visually-rich documents (e.g.,
posters, brochures, book covers, digital advertise-
ments, etc) using available visual components,
poses a significant challenge for both profession-
als and amateurs in the design field. Central to
this challenge is the task of arranging these com-
ponents in an efficient and aesthetically pleasing
manner, a process known to be both tedious and
time-consuming. Existing toolkits such as Adobe
Express1, Canva2, and PicsArt3, usually provide
fixed templates to users. These templates, while
useful, often fail to fully accommodate the var-
ied and evolving design needs of users, thereby

1https://www.adobe.com/express/
2https://www.canva.com/
3https://picsart.com/

How can I design a flyer with the following components? 
The flyer should have a width of 128 and a height of 128.

You can arrange the components like this:
component#0 {left: 0; top: 0; width: 128; height: 128; layer: 0;}
component#1 {left: 22; top: 8; width: 84; height: 84; layer: 2;}
component#2 {left: 20; top: 96; width: 88; height: 30; layer: 1;}
component#3 {left: 0; top: 0; width: 128; height: 128; layer: 3;}

Figure 1: An example of a model conducting automatic
layout planning following human-provided instructions
and arranging visual contents for design purpose.

potentially limiting creative expression. Existing
research on automatic layout planning (Hsu et al.,
2023; Yamaguchi, 2021; Inoue et al., 2023) often
requires detailed annotations and poses addition
constraints on fixed canvas ratios, thereby dimin-
ishing user-friendliness and adaptability.

Recent advancements in large language models
(LLMs) have showcased their remarkable ability
to follow human instructions and execute specified
tasks (Brown et al., 2020; Ouyang et al., 2022; Ope-
nAI, 2023a), introducing a new level of flexibility
and control in human-computer interaction. Along-
side these developments, we have witnessed the
emergence of instruction-tuned multimodal mod-
els (Ye et al., 2023; Li et al., 2023a,b; Awadalla
et al., 2023; OpenAI, 2023b), extending the capabil-
ities of LLMs to understand and process informa-
tion across both textual and visual domains. This
progression naturally raises the question of the po-
tential application of instruction-following models
in the complex domain of multimodal layout plan-
ning. However, employing these models for layout
planning presents significant challenges, as the task
requires intricate reasoning abilities, including but
not limited to, cross-referencing multiple images
and performing numerical calculations.
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Coordinates Predicting Layout Recovering Layout Planning
The first figure is the background canvas of a design 
poster with a width of 128 and a height of 128. The 
following images are a few text components or logos 
to be added to the poster. Predict the bounding box 
coordinates of each component so that it would not 
occlude the main object. 

The first figure is a Facebook AD with a width of 128 
and a height of 128; and it composes of various 
components as listed in the following images. Predict 
the bounding box coordinates of each component.

The first figure is a design template with a width of 128 
and a height of 128; and it composes of various 
components. Predict the bounding box coordinates of 
the component as specified in the second image.

(a) (b) (c)

Multimodal Instruction-Following Model

component#0 {left: 4; top: 17; width: 79; height: 12;} 
component#1 {left: 26; top: 31; width: 34; height: 7;} 
component#2 {left: 29; top: 7; width: 27; height: 7;} 

rendered result ➡

Prediction:Prediction:Prediction:
component#0 {left: 10; top: 84; width: 81; height: 18; layer: 3;}
component#1 {left: 0; top: 0; width: 128; height: 77; layer: 0;}
component#2 {left: 0; top: 77; width: 96; height: 50; layer: 1;}
component#3 {left: 96; top: 77; width: 31; height: 50; layer: 2;}

component#0 {left: 0; top: 14; width: 25; height: 90; layer: 0;}

Figure 2: Example inputs and outputs of the three layout reasoning tasks. (a) and (b) are examples from Crello (Ya-
maguchi, 2021), while (c) is an example from PosterLayout (Hsu et al., 2023).

In this study, we propose DocLap, aiming to
address the challenge of visually-rich document
layout planning using instruction-following mod-
els. To equip these models with the necessary
knowledge beyond their primary focus on natu-
ral language processing, we have devised three
instruction-following tasks focusing on layout rea-
soning. We evaluated our instruction-tuned Do-
cLap model across two benchmark datasets, and
the findings reveal that our approach not only suc-
ceeds in this novel application but also outperforms
the baseline established by few-shot GPT-4(V). Our
main contributions are:
• We propose a novel method for solving the layout

planning task using instruction-following mod-
els, opening new avenues for research in design
automation.

• We develop an instruction dataset featuring three
layout reasoning tasks, aiming to enrich the re-
sources available for future research.

• Through experiments on two benchmark datasets,
we validate the feasibility of our approach and
demonstrate its competitive performance against
few-shot GPT-4(V) models.

2 Instruction-Guided Layout Planning
for Visually-Rich Documents

Task Definition Visually-rich documents consist
of diverse design elements distributed across a can-
vas. To maintain the integrity of original text de-
signs, text content is converted into images in our
setup. The layout planning task involves arranging
these design components, provided as a sequence
of images i1, i2, ...in, where n represents the com-
ponent count, onto a canvas for specific application

scenarios a (e.g., posters, Instagram posts, book
covers) with defined dimensions w (width) and h
(height). The canvas may either be blank or have a
predefined background.

Instruction-Following Format To offer a more
adaptable solution and enhance user experience,
we approach this visually-rich layout planning task
in an instruction-following manner (Ye et al., 2023;
Li et al., 2023a,b; Awadalla et al., 2023; OpenAI,
2023b). The model, in addition to receiving the se-
quence of design components i1, i2, ...in, will also
be given instructions I detailing the application
scenarios a and the canvas size pw,hq. It is tasked
with predicting the layout of each component in
a structured format (Feng et al., 2023; Lin et al.,
2023). We adopt CSS to encapsulate layout proper-
ties including top, left, width, height, and
another property layer that manages the stacking
order of potentially overlapping elements.

Instruction-Following Format The task of lay-
out planning encompasses challenges such as fol-
lowing instructions, cross-modal understanding,
and numerical reasoning. To equip the model with
essential knowledge, we designed three interrelated
tasks, as illustrated in Figure 2: (a) Coordinates
Predicting, where the model predicts the coordi-
nates of a specific component within a given design
template; (b) Layout Recovering, which involves
predicting the coordinates of each component in
a template given a sequence of components; and
(c) Layout Planning, where the model arranges a
sequence of components on a canvas by predicting
their coordinates. During preprocessing, compo-
nents smaller than 5% of the canvas size are ex-
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Express Crello PosterLayout

Train
Coordinates Predicting 581k 57k 26k
Layout Recovering 160k 18k 9k
Layout Planning 160k 18k 9k

Val Design Layout - 1493 591

Table 1: Number of examples contained in each training
or validation tasks for the datasets used in this study.

cluded, and all templates are resized to ensure the
longest edge does not exceed 128. While all three
tasks contribute to model training, only the Layout
Planning task is evaluated during inference.

Model DocLap extends mPLUG-Owl (Ye et al.,
2023), a multimodal framework integrating an
LLM, a visual encoder, and a visual abstractor mod-
ule. Specifically, it employs Llama-7b v1 (Touvron
et al., 2023) as the LLM and CLIP ViT-L/14 (Rad-
ford et al., 2021) as the visual encoder. The visual
abstractor module converts CLIP’s visual features
into 64 tokens that match the dimensionality of text
embeddings, allowing for the simultaneous pro-
cessing of multiple visual inputs. We extended the
Llama v1 vocabulary with numerical tokens rang-
ing from 0 to 128. The embeddings of the extended
tokens are randomly initialized, and then tuned in
further instruction tuning.

3 Experimental Setup

Datasets We conduct experiments on layout plan-
ning for visually-rich documents with the following
two benchmarks: (1) Crello (Yamaguchi, 2021) is
built upon design templates collected from online
service. This task begins with an empty canvas,
challenging the model to organize the layouts of
the provided visual components. (2) PosterLay-
out (Hsu et al., 2023) starts from non-empty canvas
(background image for posters), and requires the
model to strategically place text, labels, and lo-
gos. Our training data is supplemented with design
templates from Adobe Express. Detailed dataset
statistics are available in Table 1. To ensure fair
comparison, validation examples are limited to no
more than 4 images, aligning with the input con-
straints of GPT-4V at the time of our submission.
Illustrative examples from both datasets are pre-
sented in Figure 2.

Baselines For Crello, we compare with Canvas-
VAE (Yamaguchi, 2021) and FlexDM (Inoue et al.,
2023). For PosterLayout, we compare with DS-
GAN (Hsu et al., 2023). Additionally, we include

Model mIoU Left Top Width Height

#1 CanvasVAE 42.39 29.31 30.97 27.58 29.99
#2 FlexDM 50.08 34.98 34.03 30.04 33.08

#3 GPT-4 0-shot 30.75 24.36 24.07 13.63 15.11
#4 GPT-4 1-shot 29.97 26.09 23.71 13.94 13.33
#5 GPT-4V 0-shot 28.81 19.96 18.09 10.45 10.08
#6 GPT-4V 1-shot 35.17 22.77 20.90 13.16 14.11

#7 DocLap (Ours) 43.75 33.46 35.61 19.18 22.79

Table 2: Automatic evaluation results on Crello showing
mIoU and the accuracy for left, top, width and height.

Model Occ.Ó Uti.Ò Rea.Ó
#1 DS-GAN 21.57 23.92 20.16

#2 GPT-4 0-shot 50.61 43.09 25.87
#3 GPT-4 1-shot 47.92 38.00 25.34
#4 GPT-4V 0-shot 36.67 33.26 24.39
#5 GPT-4V 1-shot 36.39 20.24 26.03

#6 DocLap (Ours) 23.01 22.46 21.00

Table 3: Evaluation results on PosterLayout. Occ.: oc-
clusion rate; Uti.: utility rate; Rea.: unreadability.

comparative evaluations with text-only versions of
GPT-4 and GPT-4V (OpenAI, 2023a,b,c; gpt, 2023)
across both tasks. For the text-only GPT-4 evalua-
tions, visual components are not directly supplied.
Instead, we employ BLIP-2 (Li et al., 2023c) to
generate textual descriptions of each component.

Metrics For Crello evaluation, we measure mean
Intersection-over-Union (mIoU) between predicted
and actual bounding boxes, along with accuracy in
width, height, left, and top dimensions following
FlexDM (Inoue et al., 2023). Accuracy is quan-
tified by assigning a score of 1 if the predicted
value falls into the same 64-bin quantized range as
the ground truth; otherwise, it scores 0. In assess-
ing PosterLayout, we follow DS-GAN (Hsu et al.,
2023) and employ content-aware metrics, includ-
ing (1) occlusion rateÓ, indicating the percentage
of primary objects obscured by design elements;
(2) utility rateÒ, reflecting the extent to which de-
sign components cover non-primary object areas;
and (3) unreadabilityÓ, measuring the uniformity
of areas where text-containing elements are placed.

4 Results & Analysis

Quantitative Results Table 2 shows the auto-
matic evaluation results on Crello dataset. The first
two lines are results from models that are trained
with supervised learning. Line #3-#6 show few-
shot GPT-4(V) results, in which we notice that GPT-
4V surpasses text-only GPT-4, and that providing
demonstrative examples leads to better results com-
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(a)

(b)

Figure 3: (a) mIoU variation with the number of visual
components in design templates. (b) IoU correlation
with the relative size of a single visual component. Both
plots pertain to Crello.

pared to zero-shot prompting. Our DocLap’s per-
formance (#7) surpass the few-shot GPT-4(V) on
both mIoU and aspect accuracies, but still falls
behind a bit compared to FlexDM (#2).

Table 3 presents the PosterLayout evaluation re-
sults, which reveals a trade-off between occlusion
rate and utility rate across models. GPT-4(V) mod-
els (#2-#5) exhibit high occlusion and utility rates,
indicating a propensity for predicting larger bound-
ing boxes. Our DocLap shows a reduced occlusion
rate, accompanied by a decrease in utility rate. Re-
garding unreadability, DocLap outperforms GPT-
4(V), though DS-GAN (#1) achieves the highest
performance, underscoring the efficacy of super-
vised models in this context.

Effects of #Component Figure 3(a) reveals that
all listed models exhibit high mIoU for templates
with a single component. FlexDM’s mIoU shows
slight fluctuations, stabilizing around 50%. In con-
trast, mIoU for DocLap and GPT-4(V) decreases
as the number of components increases, indicating
that more complex scenarios involving more vi-
sual components might pose challenges to current
instruction-following models.

Effects of Component Size Figure 3(b) demon-
strates a linear correlation between the relative size
of a single visual component and the IoU of the
model prediction with the ground truth for all mod-
els assessed. This suggests that smaller visual com-
ponents pose a greater challenge for precise place-
ment in accordance with the ground truth during
layout planning. Typically, these small compo-
nents, such as logos, small text boxes, or decora-

Ground-truthOursGPT4VFlexDM Ground-truthOursGPT4VDS-GAN

Figure 4: Qualitative comparisons for layout planning
results on Crello. GPT-4V w/ 1-shot learning.

Ground-truthOursGPT4VFlexDM

Ground-truthOursGPT4VDS-GAN

Figure 5: Qualitative comparisons for layout planning
results on PosterLayout. GPT-4V w/ 1-shot learning.

tive elements, have a degree of positional flexibility,
allowing for multiple valid placements.

Demonstrative Examples Figure 4 shows exam-
ples from Crello while Figure 5 shows examples
from PosterLayout.

5 Conclusion

This study demonstrates the potential of instruction-
following models in addressing the intricate task of
layout planning for visually rich documents. The
positive outcomes observed from our experiments
on two distinct benchmarks affirm the viability and
effectiveness of our methodology. This research
paves the way for future explorations into the ap-
plication of instruction-following models across
various domains, highlighting their potential to rev-
olutionize tasks that require a nuanced understand-
ing of both language and visual elements.
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Limitations

This study, while pioneering in its approach to
simplifying the graphic design process through
instruction-following models, acknowledges sev-
eral limitations. First, the performance of our
model, DocLap, and GPT-4(V) diminishes as the
complexity of the layout increases, particularly
with the addition of more visual components. This
suggests a need for improved model robustness and
adaptability in handling more intricate design sce-
narios. Additionally, the evaluation metrics, such
as mIoU and the binary accuracy measurement
for layout attributes, may not fully capture the nu-
ances of aesthetic and functional design quality.
The reliance on these metrics might overlook the
subjective and context-specific nature of effective
design, indicating a potential area for developing
more comprehensive evaluation frameworks.

Ethics Statement

Our work on instruction-following models for lay-
out planning, while innovative, introduces potential
risks including over-reliance on automation, which
may impede the development of design skills and
creativity. Importantly, our model does not gener-
ate new visual content; all predictions are based on
existing components provided by users. The out-
puts are solely layouts in text formats, mitigating
risks related to copyright infringement and original-
ity. However, the reliance on automated tools could
lead to a homogenization of design aesthetics and
potentially amplify biases present in the input data.
Addressing these challenges requires careful con-
sideration of the ethical implications of automated
design tools and the promotion of responsible us-
age to complement human creativity. Noted here
that we utilize ChatGPT to polish the writing and
ensure clarity and conciseness in the presentation
of our research, without altering the fundamental
nature of the work or its implications.
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Abstract

Visual Question Answering (VQA) is a critical
task requiring the simultaneous understanding
of visual and textual information. While sig-
nificant advancements have been made with
multilingual datasets, these often lack cultural
specificity, especially in the context of South-
east Asia (SEA). In this paper, we introduce
SEA-VQA, aiming to highlight the challenges
and gaps in existing VQA models when con-
fronted with culturally specific content. Our
dataset includes images from eight SEA coun-
tries, curated from the UNESCO Cultural Her-
itage collection. Our evaluation, comparing
GPT-4 and GEMINI models, demonstrates sub-
stantial performance drops on culture-centric
questions compared to the A-OKVQA dataset,
a commonsense and world-knowledge VQA
benchmark comprising approximately 25,000
questions. Our findings underscore the impor-
tance of cultural diversity in VQA datasets and
reveal substantial gaps in the ability of cur-
rent VQA models to handle culturally rich con-
texts. SEA-VQA serves as a crucial bench-
mark for identifying these gaps and guiding fu-
ture improvements in VQA systems. Our code
and dataset are publicly available at https:
//wit543.github.io/sea-vqa

1 Introduction

Visual question answering (VQA) is the task of an-
swering questions based on an image. As exempli-
fied in Figure 1, one may ask a question involving
an object or an action in an image. The VQA sys-
tem accepts the question and picture as input and
answers the questions based on the image’s con-
tents. Therefore, the performance of VQA depends
on the ability of the model to understand textual
and visual information simultaneously. Given its
applications in various domains, such as health-
care, autonomous driving, and assistive technolo-
gies, VQA is pivotal in advancing human-computer
interaction by enabling machines to comprehend

and respond to complex visual content and textual
queries.

Past efforts in VQA evaluation datasets have gen-
erally focused on measuring the reasoning, com-
mon knowledge, and image understanding of mod-
els. Initially, these datasets (Agrawal et al., 2016)
used real-world images paired with straightfor-
ward questions, requiring direct answers based
on visible elements. Over time, the emphasis
shifted towards complex reasoning with datasets
like CLEVR (Johnson et al., 2017) and GQA (Hud-
son and Manning, 2019), which present questions
that demand comprehension of relationships, quan-
tities, and spatial awareness. More recent datasets
focus on improving generalization across various
visual data types and question formats, testing the
capabilities of VQA models from multiple perspec-
tives and reasoning tasks (Lu et al., 2022; Yue et al.,
2023; Liu et al., 2023; Li et al., 2023; Yu et al.,
2023; Wu et al., 2024; Fu et al., 2024).

Although these datasets have been instrumen-
tal in advancing VQA, they often lack multicul-
tural aspects. Multilingualism is typically achieved
by translating existing queries into multiple lan-
guages, which does not fully capture cultural speci-
ficities (Gao et al., 2015; Raj Khan et al., 2021;
Pfeiffer et al., 2022; Tran et al., 2023). This
approach overlooks the nuances and contextual
knowledge unique to different cultures, limiting
the robustness of VQA systems in diverse settings.
For instance, xGQA (Pfeiffer et al., 2022) intro-
duces cross-lingual VQA but focuses more on lan-
guage translation rather than cultural context. Vi-
CLEVR (Tran et al., 2023) explores visual reason-
ing in Vietnamese, but it is limited to a single cul-
ture and language. Table 1 provides a comprehen-
sive comparison of existing VQA datasets by coun-
try, highlighting the diversity in answer types, im-
age sources, languages, and question types across
different datasets.

To address this gap, we propose developing a
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Dataset Answer Type Image Source Coverage Question Types

Languages Countries in SEA General Reasoning Culture-centric
General VQA dataset
A-OKVQA mc COCO 1 0 ✓ × ×
Multilingual VQA dataset
xGQA y/n, open GQA 8 1 ✓ × ×
MaXM y/n, open cross3600 7 1 ✓ × ×
EVJVQA open Self-sourced 3 1 ✓ × ×
Our dataset
SEA-VQA mc UNESCO 1 8 × ✓ ✓

Table 1: Comparison of existing VQA dataset. Given ‘y/n’ represents yes/no answer types, ‘Open’ denotes free-form
answer types, and ‘mc’ indicates multiple-choice questions.

Laos
Q) What does the presence of various 
crafting stages in one setting suggest 
about the production scale?

A) Industrial scale production
B) Prototype development
C) Small batch production
D) Single-piece custom orders

Thailand
Q) What is the main purpose of bringing 
sand to temples during this festival?

A) To create artworks as offerings.
B) To donate for temple restoration or 
public works.
C) To use in religious rituals.
D) To prepare for religious festivities.

Indonesia
Q) What is likely the purpose of the 
headgear placed in front of each 
performer?

A) Marks individual starting positions
B) Serves decorative purposes
C) Indicates different levels of expertise
D) Acts as a personal identifier

Vietnam
Q) Observing the community 
engagement, this festival’s primary 
purpose is to?

A) Showcase individual talents
B) Celebrate a historical event
C) Promote local businesses
D) Initiate youngsters into adulthood

GPT-4 GEMINI

B A

GPT-4 GEMINI

D A

GPT-4 GEMINI

C A

GPT-4 GEMINI

C D

Figure 1: Examples of questions from the SEA-VQA dataset that require an understanding of cultural context. Each
question is paired with an image from a specific Southeast Asian country (Thailand, Indonesia, Laos, Vietnam).

VQA dataset that challenges models in compre-
hending three distinct levels of concepts:
• General world knowledge, e.g., recognizing

common entities such as people and animals.
• Specific cultural knowledge unique to each

country.
• Understanding the contents of the image itself.

In particular, we develop a culturally specific
dataset tailored to the region depicted in the im-
age, incorporating a wider range of languages, in-
cluding low-resource languages, particularly from
Southeast Asia. This approach aims to improve
the generalizability of VQA systems and address
the current limitations in evaluating VQAs on SEA
languages, which remains an open question in the
field.

Our approach involves designing a data-
gathering pipeline based on the utilization of large
language models, such as GPT-4, to formulate
questions and answers based on culturally spe-
cific images. To ensure quality in question gen-
eration, we leverage metadata for cultural ques-
tions, including cultural names, countries, and im-

age descriptions, to assist the multi-modal large
language model (MLLM) system in generating ac-
curate questions. Additionally, human oversight in
the quality-checking process ensures the integrity
of the data. Our dataset comprises 515 images,
1,999 questions, and 53 cultures from 8 countries,
focusing on the traditions of each culture and the
reasoning behind each answer. This culturally spe-
cific approach aims to improve the generalizability
of VQA systems and address the current limitations
in evaluating VQAs on SEA languages, thereby
ensuring robustness across diverse cultural and lin-
guistic contexts.

2 Methodology

To formulate our dataset, the data creation pipeline
consists of four steps: (i) image curation, (ii) at-
tribute extraction, (iii) QA generation, and (iv) data
quality assurance.

2.1 Image Curation
To obtain images from SEA cultures, we curate
images from the UNESCO Cultural Heritage col-
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lection1. This collection is ideal for our purpose as
it encompasses a diverse range of culturally signifi-
cant sites and practices, ensuring that our dataset
reflects Southeast Asia’s cultural heritage and diver-
sity. Our dataset includes images from 8 countries,
totaling 515 images: Cambodia (55 images), In-
donesia (139 images), Laos (18 images), Malaysia
64 images), the Philippines (69 images), Singapore
(8 images), Thailand (40 images), and Vietnam
(122 images). For more information about cultures
in each country, please refer to Appendix A.1. We
base the number of cultures on those recognized
and registered by UNESCO. This approach ensures
that the selected cultures are officially recognized.
To address the imbalance, we identify the culture
each question pertains to and treat the set of ques-
tions about a particular culture as a single unit.
This method helps avoid cultural imbalance in our
dataset.

2.2 Attribute Extraction

The purpose of this step is to enhance the qual-
ity and relevance of the QA generation process
by providing rich contextual information. Instead
of using the image alone to generate questions as
proposed by Agrawal et al. (2016); Schwenk et al.
(2022), we found that adding more attributes ex-
tracted from images is more beneficial. To achieve
this, we utilize each image’s description, cultural
name, and country. These attributes are generated
and verified by humans in the next step, ensuring
that the information provided contains insightful
context for each image. This comprehensive at-
tribute extraction process significantly improves
the effectiveness of the QA generation.

2.3 QA Generation

One straightforward method to compose these pairs
is by utilizing human annotators (Agrawal et al.,
2016; Schwenk et al., 2022; Nguyen et al., 2023).
While the human method demonstrates the best
data quality, it poses challenges in terms of scala-
bility and broader applicability. Given our goal of
introducing a dataset with cultural diversity, it is
crucial to develop a repeatable and economically vi-
able approach. Our objective is to balance cost and
quality in generating question-answer pairs. There-
fore, in our work, we have employed a machine-
human collaborative approach in which QA pairs
are generated by GPT-4, while humans are em-

1https://whc.unesco.org/en/list/

ployed for quality assurance (see Section 2.4).
We composed a specific instruction prompt for

GPT-4 to generate questions that require under-
standing the depicted culture and reasoning based
on detailed descriptions of the image, including
cultural and geographical context. To perform an
assessment of an MLLM on our dataset, we opted
for a multiple-choice format comprising four op-
tions: one correct answer and three plausible but
incorrect alternatives. Furthermore, to minimize
the occurrence of redundant questions, we gener-
ate batches of 20 questions simultaneously. We
experimented with generating between 1 and 30
questions and found that 20 questions resulted in
a diverse set that remained on the topic of culture.
Our goal was to determine the maximum number of
questions that could still stay relevant to the topic,
and we concluded that 20 questions provided the
best outcome. Additionally, we instruct GPT-4 to
create a question that involves reasoning, and the
answers require thought rather than simple obser-
vation 1. This strategy significantly improves the
diversity and complexity of the dataset. For QA
generation analysis, please refer to Appendix A.2.

An example prompt: “Create 20 challeng-
ing multiple-choice questions based on this image
that require multi-step reasoning. These questions
should be culturally relevant but not explicitly men-
tion the culture in the questions themselves. Each
question should have four options: one correct
answer and three nearly correct alternatives. High-
light the correct answer in each set with a ’<’ at
the end of the correct answer. Use the descrip-
tive context provided to enhance the complexity of
each question. The culture and country depicted
in the image are provided below. culture:{culture}
Description: {description} country: {country}”

2.4 Data Quality Assurance

To ensure the quality and validity of our questions,
we employ human reviewers to assess and filter
out those that are nonsensical, unanswerable, or
incorrect. This approach keeps humans in the loop,
ensuring that the questions are coherent and appro-
priate at a reduced cost. Using GPT-4, the total
cost for question generation is less than $15, which
averages out to about $0.008 per question. This is
significantly cheaper compared to a local labeling
platform, charging more than $0.28 per question,
and even Amazon Mechanical Turk, where the fee
starts at $0.01, excluding the reward per question.
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We provide reviewers with detailed guidelines to
evaluate the choices and answers in relation to the
image, its cultural context, and its description. If re-
viewers are uncertain about an answer, they are per-
mitted to access external knowledge sources such
as a search engine to ascertain the correct response.
This process requires the reviewers to consider gen-
eral world knowledge, the cultural significance of
the image, and its content, ensuring that the dataset
maintains high standards of accuracy and cultural
relevance. To ensure accuracy, we provide images,
country names, culture names, and descriptions. If
this information is insufficient, reviewers can use
additional resources to verify each question. We
also provide examples of acceptable and unaccept-
able questions. Reviewers are graduate students
specializing in computer vision (CV) and natural
language processing (NLP) from Southeast Asia to
ensure familiarity with regional cultures. Table 2
provides a comprehensive overview of the dataset
statistics and comparisons.

3 Experimental Results

3.1 Evaluation Setting

Test Models. We use GPT-4-TURBO and
GEMINI-PRO-VISION for testing. We use the
same prompt for both models. The prompt: “An-
swer the following question and provide only the
letter output, for example: a, b, c, d. Choose
only one option, output only the choice. ques-
tion:{question} choice: a) {a} b) {b} c) {c} d) {d}”

We evaluate each question individually by in-
putting the prompt and image one at a time. In
addition, we evaluate MLLMs on the A-OKVQA
dataset (Schwenk et al., 2022) to observe the per-
formance changes compared to our VQA dataset.
Evaluation Metrics. We use accuracy scores as the
primary metric. In addition, we also demonstrate
the performance of each language separately.

3.2 Main Results

Table 3 shows the performance of the two mod-
els on two datasets: A-OKVQA (Schwenk et al.,
2022), a VQA dataset that requires commonsense
reasoning and world knowledge to answer and our
proposed dataset, SEA-VQA. We can see that with
SEA-VQA, the performance of both models dras-
tically drops compared to A-OKVQA. The results
also show that GPT-4 outperforms GEMINI in both
datasets, and the gap is larger for SEA-VQA. The
table also provides a breakdown in terms of coun-

tries. Indonesia is the only dataset portion where
GEMINI performs better than GPT-4. Another
interesting point to note is that the performance
of GPT-4 on the Singapore portion of the dataset
(0.688) is substantially higher than the second-
highest one, i.e., the Philippines (0.523). One possi-
ble explanation is due to the urbanized nature of the
city-state. In the big picture, our findings demon-
strate the need for improvement and adaptation in
VQA systems to handle broader cultural contexts
from diverse sources.

3.3 Error Analysis

We organize the error analysis into two parts: er-
rors made by both models and errors made by only
one of the models. Both models perform poorly on
questions requiring the ability to differentiate sub-
tle variations of cultures originating from the same
region or cultures that exist across multiple SEA na-
tions with local variations. Such questions require
the knowledge and understanding of differences
in attires, musical instruments, and cultural perfor-
mances that look similar even for humans who are
not from this region. For example, the Thai cultural
performances of Nora and Khon may look similar
to those unfamiliar with the SEA cultural context.
Additionally, cultural diffusion across the South-
east Asian region historically means that similar
cultures can exist in different countries. This is
evident in the Royal Ballet of Cambodia and Thai
Khon, which may seem similar to outsiders, but
locals can distinguish them by their costumes and
dance patterns.

Furthermore, the models struggle particularly
with questions that require recognizing specific cul-
tural elements in an image to determine the rea-
soning behind the action or role of the subjects
depicted. Neither model performs well on ques-
tions involving musical performance, requiring the
ability to recognize musical instruments. For ex-
ample, consider this question: "This instrument
is a part of which traditional performance art?"
When shown a canang, which is typically used in
Mak Yong theatre, both models incorrectly answer
"Wayang Kulit."

In addition to commonly occurring errors found
in GEMINI and GPT-4, there are also error patterns
specific to either model.
• GEMINI often fails to adhere to instructions to

select one answer, frequently outputting multi-
ple choices, e.g., (a, b), or (a, b, c).

• GPT-4 struggles with the determination of a per-
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Country Total Images/Culture Questions/Culture Questions/Image

Cultures Images Questions Avg. Std. Avg. Std. Avg. Std.

Cambodia 6 55 304 9.17 1.17 50.67 3.56 5.53 2.85
Indonesia 12 139 752 11.58 7.12 62.67 40.22 5.41 3.92
Laos 2 18 72 9.00 1.41 36.00 15.56 4.00 4.24
Malaysia 7 64 189 9.14 1.57 27.00 5.86 2.95 1.46
Philippines 6 69 153 11.50 4.14 25.50 6.72 2.22 1.33
Singapore 1 8 32 8.00 0.00 32.00 0.00 4.00 1.69
Thailand 4 40 184 10.00 0.00 46.00 13.04 4.60 3.12
Vietnam 15 122 313 8.13 3.23 20.87 9.71 2.57 0.73

Over All 53 515 1999 9.57 2.33 37.59 11.83 3.91 2.42

Table 2: The dataset statistics on the number of cultures, images, and associated questions. The table provides
metrics on the average number of images per culture and questions per culture and image, complete with standard
deviations.

Language GEMINI GPT-4
Proposed Dataset, SEA-VQA
Cambodia 0.257 0.467
Indonesia 0.453 0.336
Laos 0.278 0.375
Malaysia 0.360 0.492
Philippines 0.307 0.523
Singapore 0.219 0.688
Thailand 0.348 0.478
Vietnam 0.176 0.495

Average (Macro) 0.300 0.482
Average (Micro) 0.275 0.365
Existing VQA Benchmark
A-OKVQA (Micro) 0.760 0.822

Table 3: Accuracy of GEMINI and GPT-4 on culture-
specific questions from the SEA-VQA dataset and the
general knowledge-based A-OKVQA dataset. The table
presents model performance across various Southeast
Asian countries.

son’s age, the length of objects, and actions
within a cultural context. For instance, when
asked about the typical range of diameters for
instruments shown in an image (an image of a
gong in Vietnam), the model incorrectly sug-
gested 15 to 35 centimeters, whereas the correct
answer is 25 to 80 centimeters. In response to a
question about an image showing a traditional
ensemble, the correct label should have been
"A khene orchestra concert." However, due to a
focus only on visible actions and objects, GPT-4
answer was "A bamboo dance."

These examples highlight areas where the model’s
accuracy can be improved.

4 Conclusion and Future Work

In conclusion, we propose a VQA dataset for the
Southeast Asian cultural context called SEA-VQA.
Our dataset is generated from MLLM while using
humans in the data quality assurance process. Us-
ing this approach, we are able to generate 1,999
questions from 8 countries and 53 cultures with
limited human efforts. Results from assessments
using our SEA-VQA dataset reveal that, although
MLLMs demonstrate reasonable performances in
standard VQA benchmarks, there is a gap in under-
standing local cultural knowledge.

In future work, we aim to apply this process to
other underrepresented languages and dialects from
the region. We plan to explore more languages
and images from open-source projects in SEA, i.e.,
SEACrowd (Lovenia et al., 2024), to extend from
monolingual to multilingual VQAs. Additionally,
we will explore generating VQAs using multiple
models to improve accuracy and robustness. We
also plan to add more attribute extraction methods
to create more variation in VQAs. In addition, we
also plan to explore the integration of virtual reality
technology to enhance the richness of the dataset.

5 Limitations

One limitation is the quality of image data and de-
scription. Expanding the dataset size requires a
greater source of image data; however, ensuring
that these images accurately represent the relevant
cultures is challenging, thus limiting the number
of usable images. For the selection of cultures,
we rely on those officially recognized and regis-
tered with UNESCO. This approach may restrict
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the scope of represented cultures, as many local cul-
tures that are not registered or are in the process of
registration are excluded. Despite these limitations,
using UNESCO as a source allows us to extend
our research beyond Southeast Asia, incorporating
cultures from around the globe.
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A Appendix

A.1 Cultures List
Table 4 catalogs diverse cultural practices across
Southeast Asia and adjacent regions. Organized
by country, the table highlights traditional cultural
heritage, such as Cambodia’s Kun Lbokator and
Indonesia’s Wayang puppet theatre, demonstrating
each nation’s commitment to preserving its cultural
identity. Noteworthy, entries like Tugging rituals
and games are shared between countries, indicating
cultural ties that transcend national borders.

A.2 QA Generation Analysis
We can use a language model like GPT-4 to au-
tomate the generation of questions, choices, and
answers. However, the generated contents may
contain inaccuracy, irrelevant information, and for-
matting inconsistencies. To combat these issues,
human involvement is still necessary to ensure the
dataset quality.

We observe that nearly 15% of all questions
generated from GPT-4 cannot be used for VQA
purposes. These are questions lacking definitive
answers, e.g., the determination of the time of day
the image was captured (e.g., morning, evening,
noon, night), the emotion of a person depicted in
the image (e.g., happy, excited, stressed, sad). This
observation indicates that a significant portion of
these questions require further refinement and hu-
man oversight to ensure they are appropriate and
useful for VQA tasks.
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Country Culture
Cambodia Kun Lbokator, traditional martial arts in Cambodia
Cambodia Lkhon Khol Wat Svay Andet
Cambodia Chapei Dang Veng
Cambodia Royal ballet of Cambodia
Cambodia Sbek Thom, Khmer shadow theatre
Cambodia, Philippines,
Republic of Korea, Viet
Nam

Tugging rituals and games

Indonesia Jamu wellness culture
Indonesia Gamelan
Indonesia Traditions of Pencak Silat
Indonesia Pinisi, art of boatbuilding in South Sulawesi
Indonesia Three genres of traditional dance in Bali
Indonesia Noken multifunctional knotted or woven bag, handcraft of the people of

Papua
Indonesia Saman dance
Indonesia Indonesian Angklung
Indonesia Indonesian Batik
Indonesia Education and training in Indonesian Batik intangible cultural heritage for

elementary, junior, senior, vocational school and polytechnic students, in
collaboration with the Batik Museum in Pekalongan

Indonesia Indonesian Kris
Indonesia Wayang puppet theatre
Indonesia, Malaysia Pantun
Laos Traditional craft of Naga motif weaving in Lao communities
Laos Khaen music of the Lao people
Malaysia Mek Mulung
Malaysia Songket
Malaysia Silat
Malaysia Dondang Sayang
Malaysia Mak Yong theatre
Malaysia, China Ong Chun/Wangchuan/Wangkang ceremony, rituals and related practices

for maintaining the sustainable connection between man and the ocean
Philippines Aklan piña handloom weaving
Philippines The School of Living Traditions (SLT)
Philippines Buklog, thanksgiving ritual system of the Subanen
Philippines Darangen epic of the Maranao people of Lake Lanao
Philippines Hudhud chants of the Ifugao
Singapore Hawker culture in Singapore, community dining and culinary practices in a

multicultural urban context
Thailand Songkran in Thailand, traditional Thai New Year festival
Thailand Nora, dance drama in southern Thailand
Thailand Nuad Thai, traditional Thai massage
Thailand Khon, masked dance drama in Thailand
Viet Nam Art of pottery-making of Chăm people
Viet Nam Art of Xòe dance of the Tai people in Viet Nam
Viet Nam Practices of Then by Tày, Nùng and Thái ethnic groups in Viet Nam
Viet Nam The art of Bài Chòi in Central Viet Nam
Viet Nam Xoan singing of Phú Tho, province, Viet Nam

Continued on next page
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Country Culture
Viet Nam Practices related to the Viet beliefs in the Mother Goddesses of Three

Realms
Viet Nam Ví and Gim folk songs of Ngh Tı̃nh
Viet Nam Art of Ðn ca tài t music and song in southern Viet Nam
Viet Nam Worship of Hùng kings in Phú Th
Viet Nam Gióng festival of Phù Ðông and Sóc temples
Viet Nam Ca trù singing
Viet Nam Quan H Bc Ninh folk songs
Viet Nam Nha Nhac, Vietnamese court music
Viet Nam Space of gong culture

Table 4: Table of Cultures: The table organizes the cultures used in the dataset by country, providing a comprehen-
sive overview of diverse cultural elements across different nations.
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A.3 More Culture Examples

We provided more examples of challenging cultural elements to elevate the visual question-answering
(VQA) capabilities of our dataset. The text highlighted in green represents the correct answer, while the
responses from GPT-4 and GEMENI are displayed in the box below.

These examples feature Khaen music of the Lao people, a traditional form of music recognized by
UNESCO for its unique use of bamboo pipes; Songket weaving from Malaysia, a luxurious fabric
interwoven with gold and silver threads; Aklan piña handloom weaving from the Philippines, known for
its intricate process of weaving pineapple leaf fibers; and children playing the Suling, a key instrument
in the Gamelan ensemble of Indonesia. Each example has been carefully selected to challenge the
understanding and appreciation of these unique cultural expressions.

Example: Laos

Figure 2: Culture: Khaen music of the Lao people

What type of traditional ensemble performance is shown in the image?
A. A choir concert
B. A bamboo dance
C. A khene orchestra concert
D. A traditional puppet show

GPT4

B

GEMINI

C
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Example: Malaysia

Figure 3: Culture: Songket

What is the name of the fabric pattern used in this headgear?
A. Batik
B. Pua Kumbu
C. Songket
D. Tenun

GPT4

B

GEMINI

A
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Example: the Philippines

Figure 4: Culture: Aklan piña handloom weaving

What characteristic makes the tool in the image appropriate for fiber extraction?
A. Flexibility
B. Sharpness
C. Weight
D. Porosity

GPT4

B

GEMINI

A
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Example: Indonesia

Figure 5: Culture: Gamelan

Which musical instrument is predominantly played by the children in the image?
A. Angklung
B. Kendang
C. Suling
D. Bonang

GPT4

C

GEMINI

A
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Abstract

Describing images using structured data en-
ables a wide range of automation tasks, such as
search and organization, as well as downstream
tasks, such as labeling images or training ma-
chine learning models. However, there is cur-
rently a lack of structured data labels for large
image repositories such as Wikimedia Com-
mons. To close this gap, we propose the task
of Visual Entity Linking (VEL) for Wikimedia
Commons, which involves predicting labels for
Wikimedia Commons images based on Wiki-
data items as the label inventory. We create
a novel dataset leveraging community-created
structured data on Wikimedia Commons. Addi-
tionally, we fine-tune pre-trained models based
on the CLIP architecture using this dataset.
Although the best-performing models show
promising results, the study also identifies key
challenges of the data and the task.

1 Introduction

Wikimedia Commons is a service that hosts around
100 million community-contributed, openly li-
censed images and media files, including metadata,
multilingual textual descriptions, and categories
similar to Wikipedia categories. At the same time,
Wikimedia’s Knowledge Graph (KG), Wikidata, of-
fers detailed structured knowledge descriptions of
over 100 million entities. In 2017, the Commons:
Structured Data project was initiated to organize
and search images by better connecting the two
efforts. Community members tag relevant Wiki-
data items in images, adding them to Commons
as structured data via new depict statements, en-
abling machine-friendly association of images with
universal, language-independent concepts. In Wiki-
media Commons, structured data unlocks the full
potential of its image repository, providing users
with a more enriching and productive experience.

*In alphabetical order, as these authors contributed equally
to this work.

Yet, as of November 2023, only 15% of Wikimedia
Commons images are accompanied by structured
data, suggesting that a considerable portion of this
vast resource remains unexplored. This lack of
structured data poses a challenge for users seek-
ing to extract meaningful information from the ex-
tensive collection. Structured data is crucial for
modern information retrieval systems, providing a
systematic framework for describing entities and
their attributes, and enhancing discoverability and
interoperability across platforms and applications.

This gap in the coverage of Commons image
annotations can be addressed by automatically sug-
gesting depicted items using Visual Entity Linking
(VEL), a multi-modal task of linking visual items
in an image with corresponding entities in a KG.

This paper proposes the Wiki-VEL framework,
applying the task of VEL to Wikimedia Commons
using the structured data of Wikidata. This allows
users to perform targeted searches and explore im-
ages based on specific topics, events, or attributes,
enhancing the usability and utility of Wikimedia
Commons. Further, integrating VEL on Wikimedia
Commons opens opportunities for automation and
innovation in content management and analysis.
Images annotated with structured data can be used
for visual question answering, search algorithms,
image classification, object detection, semantic seg-
mentation, and recommender systems (de Melo and
Tandon, 2016; Shutova et al., 2015; Li et al., 2017).
Our contributions are as follows:

• A novel image dataset1 for Visual Entity Link-
ing extracted from Wikimedia Commons.

• A framework for Visual Entity Linking (Wiki-
VEL) connecting entities in the images of Wiki-
media Commons with the KG, Wikidata.

• Human evaluation of Wiki-VEL annotations.

1https://huggingface.co/datasets/
aiintelligentsystems/vel_commons_wikidata
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Figure 1: Overview of the Wiki-VEL framework.

2 Related Work

2.1 Visual Entity Linking

Visual Entity Linking (VEL; Weegar et al., 2014;
Tilak et al., 2017) is the task of linking entities de-
tected in images to their corresponding entities in
a KG. VEL works across different modalities: the
images that entities are detected in, the labels of
entities in a KG, and the KG entities themselves.
Some studies (Müller-Budack et al., 2021; Gan
et al., 2021; Dost et al., 2020) focus on coarse-
grained entity linking of items in the images to a
KG by leveraging the entity mentions in the corre-
sponding textual information. Recent years have
also witnessed entity linking models that use vi-
sual information to identify entity mentions in so-
cial media texts (Moon et al., 2018; Adjali et al.,
2020; Zhang et al., 2021; Lu et al., 2018; Biten
et al., 2019). Wang et al. (2022) propose a multi-
modal entity linking dataset based on Wikipedia,
emphasizing text input as the primary component,
complemented by visual input. However, the entity
types are limited to only persons and organisations.

Sun et al. (2022) aim to link the visual mention in
the image with the entire image as the context to the
corresponding named entity in KGs without textual
descriptions. This model focuses mostly on images
of persons. For this, they create a human-annotated
dataset and then finetune a variety of models that
are partly based on CLIP, adding output heads on
top of pre-trained models such as CLIP to obtain
more task-specific features.

In their OVEN task, Hu et al. (2023) aim to
link over 6 million open domain images to (En-
glish) Wikipedia, given also a natural language
question as input. They, too, finetune composed

models with CLIP as a backbone along with an-
other much larger multimodal model named PaLI
(Chen et al., 2023), and achieve state-of-the-art re-
sults on visually-situated text understanding and
object localization tasks.

The contributions of this paper close a gap in the
aforementioned efforts: Given our goal of applying
the VEL process on Wikimedia Commons, we do
not provide additional textual queries as input, as
we would not have a source for them on Commons.
Instead, we aim to predict the depicted items only
from the image itself, which gives rise to a multi-
label problem, i.e., multiple entities depicted in
one image. Additionally, we are not limited to a
certain group of items but seek to provide a domain-
independent solution. This combination makes it a
very difficult problem worth exploring.

2.2 Pre-trained CLIP

Modern deep learning models, such as ResNet-
50 (He et al., 2015), excel in computer vision
tasks such as image classification, achieving an
accuracy of around 80% across the 1,000 differ-
ent pre-defined candidate classes of the ImageNet
dataset. OpenAI introduced Contrastive Language-
Image Pre-training (CLIP; Radford et al., 2021) to
address the limitation of being confined to prede-
fined classes. CLIP is a multimodal model trained
to map images and natural language text to high-
dimensional embeddings close to each other based
on cosine similarity. It uses two separate encoders
for image and text input, allowing for inference
comparing image embeddings against text embed-
dings of freely chosen labels. Different experimen-
tal settings for CLIP are investigated in depth by
Shen et al. (2021) and Gao et al. (2024).
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3 Dataset

On Wikimedia Commons, the community con-
tributes meta-data for the uploaded images. This
includes descriptions and licensing information as
well as structured data in the form of Wikidata
items. In our work, we focus on the structured data
describing entities in the images. To express this re-
lation, the property depicts is used on Wikimedia
Commons.

3.1 Collection

Wikimedia regularly publishes database dumps of
its projects2, including Commons structured data
and Wikidata entities. These dumps3 are used in
this project, providing basic information on all
Commons images, descriptions and categories, and
labels for all current Wikidata items. The advan-
tage of using dumps is that they only need to be
downloaded once, and all processing can be done
offline afterwards. The following initial data pre-
processing is employed to extract relevant informa-
tion for the dataset:

• For Commons images, we only retain the
unique image ID (Commons page ID), descrip-
tion, categories, and list of depicted items. Im-
ages without any annotated depicted item are
discarded completely at this stage. Also, we
only consider images with the (case-insensitive)
file name extensions .jpg, .jpeg, .png, and .svg.

• For Wikidata, we only keep the unique item ID
(known as QID), label (short descriptive name),
and description. Along with these, the ID of the
first linked image from the image property (if
any) is saved. Items that are never annotated as
depicted across the entire Commons dump are
discarded completely at this stage.

We employ a heuristic filtering strategy to retain
only commonly depictable items in the Wikidata
dumps, removing other items such as scholarly
articles or metadata items. This further ensures that
all textual input is in English. Commons categories
are assumed to be in English but are filtered to
only include categories descriptive of the image.
For example, categories merely relating to specific
users or upload dates are eliminated via simple
pattern matching, using patterns such as User: or
Photographs by:.

2https://dumps.wikimedia.org/commonswiki/
3extracted as of November 7, 2023

Additional information on the depicts state-
ments such as the prominence flag or item qualifiers
(e.g., "color: blue") is omitted.

A data structure is built while parsing Wikidata
to capture the item hierarchy according to Wiki-
data’s subclass of and instance of properties. This
allows for the association of items of differing gran-
ularity, as subclassed or instantiated items can also
be considered as their respective superclass(es).
The data structure is a mapping of an item’s QID to
all QIDs of its superclasses, for different numbers
of hops (for up to three hops).

3.2 Hierarchy-Aware Item Filtering
The distribution of depicts annotations across all
2.3 million items is severely skewed, as shown in
Figure 3a, with around 50% occurring merely once
as ground-truth, and 90% occurring fewer than ten
times. This suggests poor model performance on
rare items among the large pool of candidates. To
mitigate this, we promote the long-tail items to
more frequent and generic Wikidata items using
Wikidata’s class hierarchy and a threshold f . This
filtering removes items depicted fewer than f times
in the training split generated from the intermedi-
ate data. However, item appearances accumulate
across three hops in the Wikidata hierarchy, poten-
tially affecting generic items. This accumulation
is relevant for more generic Wikidata items such
as human, for which specific people are often an-
notated using the depicts statement, but rarely
annotated as human.

To adjust the images’ ground-truth, we check if
every original ground-truth item fulfils the thresh-
old. If so, it is kept, otherwise, we probe the KG
hierarchy for more generic substitute items. Once
one or more items fulfil f , they are taken as replace-
ments for the original ground-truth item. To retain
as many images as possible and their distribution,
an image is only discarded if no replacement item
can be found within three hops.

3.3 Experimental Dataset
In the following experiments, we use a dataset con-
sisting of 1 million Commons images. It is created
by randomly shuffling the order of the intermedi-
ate file to eliminate biases such as by upload date
or batch uploads. The dataset is split into 80%
training, 10% validation, and 10% testing splits, as
shown in Table 1. It also illustrates that the number
of rows for train and validation splits is higher than
the number of images, as many images have multi-
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f = 0 f = 10
#images train
(#rows)
(#gt_items)

800,000
(1,377,684)
(490,876)

800,000
(1,498,026)
(17,287)

#images validation
(#rows)
(#gt_items)

100,000
(195,535)
(72,055)

100,000
(212,885)
(14,253)

#images test
(#rows)
(#gt_items)

100,000
(100,000)
(72,271)

100,000
(100,000)
(14,351)

#Wikidata items 2,305,611 18,522

Table 1: Statistics of the Experimental Dataset. #rows
= no. of labels available for the images, #gt_items = no.
of unique Wikidata items as ground-truth labels.

ple ground-truth labels, which are used in the ex-
periments for training and validation mini-batches.
Most experiments use an item frequency of f = 10.
Figure 2 and Table 2 show the item super-category
distributions and most frequent items in the entire
dataset for f = 0 and f = 10.

The super-categories are arbitrary selections of
generic classes an item can belong to, inferred from
the Wikidata dump by certain properties. Figure 2
shows many items that depict humans, animals,
plants, or natural objects. Following the skewed
distribution as illustrated in Figure 3a, the most
frequent items in the train split without applying
a threshold are highly overrepresented and fairly
generic, as shown in Table 2.

With a threshold of f = 10, we have 18,522
items left that are depicted often enough in the train
split. Still, only 6,034 images were discarded be-
cause of lacking suitable ground-truth items, show-
ing that the KG hierarchy helps in retaining most
images. Overall, with one ground-truth item per
datapoint, there are about 1.5 million train data-
points and 213,000 validation datapoints, averaging
roughly two ground-truth items per image.

This also causes the super-category distribution
in the dataset to change, with human becoming the
most frequent item and painting or taxon being as-
signed to specific paintings or species. As shown in
Figure 3b, every remaining item occurs ten times
or more (across three hops) in the training dataset.
This implies that a few items are highly overrepre-
sented among candidates (see Table 2). Instead of
balancing the frequencies in the dataset, this work
intends to produce a dataset that is a reasonably rep-
resentative sample of all Commons images. This

f=0 f=10
Label Freq. Label Freq.

road 34,615 human 119,233
village 16,186 painting 55,213

agriculture 16,117 taxon 44,461
path 15,601 village 37,040

house 14,943 road 36,159

Table 2: Most frequent items in the training split.

approach allows fine-tuned models to work well
on the generality of Commons images, rather than
ensuring similar performance across all depictable
items, many of which are very rare. Therefore,
the experiments conducted in this work are on an
imbalanced real-world dataset.

3.4 Challenges

While preparing the dataset, we identified the fol-
lowing challenges:
Depicts statements. The guidelines for the
depicts statement, as many community guide-
lines, vary across the project, e.g., sometimes sug-
gesting not to add generic items if more specific
ones are already marked4, while with others the
recommendation is to add both generic and specific
items.5 Therefore, different images with similar
content might be annotated differently.
Depicted items. The number of items marked in
images on Commons varies considerably, as shown
in Figure 4a, due to differing understanding of the
guidelines on adding depicts statements. Fig-
ure 4b contrasts two images that both have tree
marked, while the red house in the background is
very prominent. This inconsistency in ground-truth
data can lead to inconsistencies in the diversity of
images, making it difficult for models to predict
the correct items accurately.
Specific items. Even after filtering with our thresh-
old of 10, there are items that appear overly spe-
cific. For example, the item Flintenweg 8, Orvelte
(Q17447776) is still present in the dataset, as rel-
atively many images are annotated with this item
despite it not even having a description on Wiki-
data.
Similar and Dissimilar Items. The KG hierar-

4https://commons.wikimedia.org/wiki/Commons:
Depicts#What_items_not_to_add

5https://commons.wikimedia.org/wiki/Commons:
Depiction_guidelines#Depicts_level_of_detail
(marked as disputed)
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(a) f = 0: 2.3 million items (b) f = 10: 18,522 items

Figure 2: Distribution of inferred item super-categories.

(a) f = 0: 2.3 million items (no hops) (b) f = 10: 18,522 items (over three hops)

Figure 3: Number of depicts mentions across items.

QID Label

Q466066 BMW Series 3
Q608824 BMW Series 3
Q730915 BMW Series 3
Q756792 BMW Series 3 (E46)
Q838837 BMW Series 3

Table 3: Excerpt of highly similar items.

chy captures candidate items of varying granular-
ity, while multiple items with QIDs and statements
share labels and descriptions. For example, Table 3
lists an excerpt of Wikidata items related to the
same car model series. However, there are many
near-identical items, describing similar concepts
with different labels.

4 Experimental Setup

In the following, we describe the CLIP variants
used in the proposed Wiki-VEL framework to link

the WikiCommons images to Wikidata entities.

4.1 Naive CLIP

Our Naive CLIP model (see Figure 5) is a multi-
modal approach to the VEL task, leveraging the
CLIP’s image encoder for the Wikimedia Com-
mons images and each item’s label concatenated
with its description is passed through CLIP’s text
encoder. The resulting image and text embeddings
are then normalized and compared by their co-
sine similarity to determine a relevance score. Ad-
ditional multi-layer perceptron (MLP) heads are
added to the image and text encoders to adjust the
semantically rich CLIP features to the task. Each
MLP head consists of a linear layer of double the
input dimensionality, followed by a ReLU activa-
tion function, a dropout layer with probability 0.5,
and a final linear layer mapping back to the input di-
mensionality. A residual connection is added to the
CLIP embeddings to facilitate training. This model
is named Naive CLIP because it does not utilize all
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(a) Greatly varying number of depicts statements. (b) Contrary ways on how to add depicts statements.

Figure 5: Architecture of the Naive CLIP model.

available information, such as image descriptions
and categories.

4.2 CLIP Fusion

The CLIP Fusion architecture (Hu et al., 2023)
uses two separate encoders for the query and the
entity, each relying on a CLIP backbone for image
and text embeddings. A transformer-model head
outputs a single embedding per encoder, which
can be matched against each other. We adopt this
architecture, with the CLIP backbone shared by
both encoders, referred to as Commons encoder
and Wikidata encoder, as shown in Figure 6. For
the Commons encoder, the Wikimedia Commons
image description and categories are concatenated
to form the textual input. In the Wikidata encoder,
in addition to the Wikidata labels, we use their item
images. Since Wikidata item images also come
from Commons, there is a risk that item images

Figure 6: Architecture of the CLIP Fusion model.

could be part of the test dataset. To avoid leaking
test data, we removed these images from the test
dataset, which was the case for 74 items in the
f = 10 dataset.

4.3 Loss Targets

The in-batch contrastive loss function of CLIP’s
pre-training assumes all matching pairs (the loss
targets) of images and texts to lie on the diagonal
of the input matrix. The composed loss function is:
0.5× (image_to_text_loss + text_to_image_loss),
where both the individual loss functions are the
cross-entropy loss. We aim to relax the diagonal re-
quirement by allowing all combinations of images
to be set as loss targets. This means that the same
Wikidata item can be depicted in multiple images
and potentially multiple ground-truth items. This
means that each batch must determine the corre-
sponding matches before setting them as equally
weighted loss targets. Our method also allows the
loss targets to be dependent on the number of hops
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between a ground-truth item and another item in
the batch, using the Wikidata item hierarchy. This
is to force the model to move embeddings of related
specific and generic items closer together.

4.4 Experimental Details

The models described in Section 4 are trained with
two validation loops per epoch and early stopping
before evaluation on the test split. The optimal hy-
perparameters for our model include a learning rate
of 0.001, a batch size of 1,024, and AdamW opti-
mization. We also rescale item gradients by inverse
batch frequency and set one loss target hops. The
inverse batch frequency accounts for the fact that
Wikidata items like human occur frequently. The
train split contains 800,000 small images, which
creates a massive IO overhead during finetuning.
However, at the cost of increased memory usage,
latency is reduced, speeding up finetuning. Due to
resource limitations, the experiments use ViT-B/32
as CLIP’s image encoder, limiting the batch size
to 256, despite a larger batch size being preferable
in contrastive learning (Chen et al., 2022) for fine-
tuning experiments. The study focuses on testing
common learning rates and optimizer values with-
out sophisticated hyperparameter tuning, retaining
those that initially yielded good results. We use the
following evaluation metrics to analyse the mod-
els. Recall@k measures the proportion of relevant
items retrieved within the top-k results. Diversity
Recall@k measures the percentage of the relevant
items matched by the top-k predictions. Mean
Average Precision@k (mAP) measures the per-
centage of predictions matching any relevant item
for every rank up to k, considering their order.

5 Results

5.1 Empirical Evaluation

Zero-shot model & baseline algorithms. The
zero-shot CLIP model, without output head, per-
forms poorly on the test split, but achieves a recall
score of over 15 at the tenth rank. In a qualita-
tive analysis, we find that the model predicts more
specific items, e.g., people in an image often get
predicted with their specific names. We believe
this results from CLIP’s pre-training, where the
ground-truth texts were more specific to the im-
age compared to our dataset’s labels. The random
baseline algorithm randomly picks items from the
candidate pool with a probability equal to their fre-
quency in the train split, but results are comparably

poor compared to the zero-shot model. The top-k
baseline algorithm predicts the same ten items for
every image, namely the most frequent ones in the
train split, which performs well based on metrics.
However, no rare item is predicted correctly, which
is the main shortcoming of this baseline.
MLP Naive CLIP model. The Naive CLIP model
with both CLIP encoders frozen and a simple MLP
head performs well with a recall score of over 50 at
rank ten. It suggests a correct item on every second
image, making it the best Naive CLIP model. How-
ever, the precision is lower at the top rank. The
recall scores at ranks 20, 50, and 100 increased,
with rank 100 still being among the first 0.5% of
all candidate items. The actual prediction scores
are close to each other, with an average of 0.29 at
rank one and 0.25 at rank 100. The model achieves
a good balance between more specific and generic
items, considering image content instead of out-
putting specific persons’ names. This makes it a
good choice for predicting diverse kinds of items.
For example, it accurately predicts presenters, mi-
crophones, awards, and human6 instead of suggest-
ing specific names of people.
CLIP Fusion model. The CLIP Fusion model out-
performs all tested models, with double precision
and recall and a recall value of 92.4 at rank 100.
We found that this is due to the Commons category
input often revealing the correct answer, especially
for infrequent items. The corresponding image cat-
egory in some cases may be named almost or even
exactly the same as the name of the item, such as
“London Victoria station”7.

However, the effectiveness of the model drops
when no descriptive text input is available for the
existing Wikicommons images or when a new
image is uploaded. Combining categories and a
threshold dataset can make tasks harder when spe-
cific categories are provided but mapped to generic
items with little in common in textual representa-
tion. While fitting the model on the full pool of
candidate items might be promising, it does not
address the issue of input dependency.

5.2 Human Evaluation

We evaluated the model performance of the Naive
CLIP model with a human evaluation study. The
simplicity of the Naive CLIP model, and its re-
duced reliance on large amounts of training data,

6https://commons.wikimedia.org/?curid=28127864
7https://commons.wikimedia.org/?curid=12289864
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Model Recall Div. Recall mAP
@1 @5 @10 @1 @5 @10 @1 @5 @10

Zero-shot 4.7 11.5 15.9 4.7 7.5 10.3 4.7 4.7 5.1
Random baseline 2.1 9.6 17.2 2.1 6.5 11.5 2.1 3.1 3.7
Top-k baseline 12.4 29.8 40.8 12.4 20.5 29.8 12.4 14.3 15.9
MLP Naive CLIP 16.2 40.5 51.8 16.2 27.5 37.2 16.2 17.1 18.7
TE Naive CLIP BS 256 20.6 37.5 45.0 20.6 26.0 31.8 20.6 19.0 20.0
MLP Naive CLIP BS 256 14.2 38.8 49.8 14.2 26.3 35.6 14.2 15.7 17.3

CLIP Fusion 36.4 62.4 71.8 36.4 45.5 56.3 36.4 32.3 34.3

Table 4: Comparison of the performance of various model setups on our test split (zero hops in the metrics).
Default batch size is 1,024. "MLP" = CLIP encoders frozen, "TE" = finetuned text encoder, "BS" = batch size.

CC TG OR CI IDK

k=1 43.1 5.2 20.7 24.8 6.2
k=5 34.3 6.6 28.0 24.4 6.7
k=10 29.8 6.8 28.7 26.4 8.3

Table 5: Human Evaluation Results in %. CC = com-
pletely correct, TG = too general, OR = only related, CI
= completely incorrect, IDK = I don’t know.

make it more realistic for this model to be deployed
on Wikimedia Commons.

With this study, we aim to understand to what
extent a model genuinely predicts reasonable items.
Given the large variety in data, and the data chal-
lenges enumerated in Section 3, we believe the
actual model output may be more useful than is ev-
ident from the metrics relying on the ground-truth
data. To this end, we set up a website using a subset
of test split images, their ground-truth items, and
the top 10 model predictions. For each prediction,
participants choose between four qualitative rat-
ings (“completely correct”, “too generic”, “only
related”, or “completely incorrect”), as well as an
alternative “I don’t know” option. In our human
evaluation study, 100 random images from the test
split were annotated, each image by three people.

Our study focuses on quantifying the inter-
annotator agreement in image evaluations using
Fleiss’ Kappa measure (Fleiss, 1971). The average
agreement across all images for rank one is 0.54.
To estimate model performance, the chosen options
are aggregated over all users and images. We cal-
culate distributions across ranks k = 1, k = 5,
and k = 10 to compare previous metric-based eval-
uation results. The results illustrated in Table 5
show a value of 43.1 for the top prediction being
completely correct, which is over 2.5 times the pre-
cision/recall value of 16.2 (cf. Table 4) with MLP
Naive CLIP, indicating better model performance
than the metric-based evaluation results.

The value for “completely correct” decreases
for later ranks, as only a few completely correct
answers per image are predicted for later ranks.
The option with the highest percentage is “only
related”, as it is the model’s best next guess. “Too
general” predictions occur in certain model setups,
and completely incorrect and obscure predictions
are observed at rank ten.

6 Conclusion

In this paper, we propose the Wiki-VEL framework,
linking the items portrayed in images with struc-
tured knowledge stemming from Wikidata. We
create a dataset from community-contributed, open-
licensed Wikimedia Commons images labeled with
the depicted entities in the form of Wikidata enti-
ties. In our VEL experiments, we show that the
Naive CLIP model shows promising performance
by outperforming the zero-shot model and simple
baselines. The performance of the CLIP Fusion
model also improved with more input data. How-
ever, all setups reached a plateau in learning due
to the noisy real-world data. In our human eval-
uation, we show that the data quality also affects
the metrics to evaluate model performance – hu-
mans perceive the model to be correct more than
the automated metrics.

Looking towards the future, our results are
promising for automatically providing structured
labels for Wikimedia Commons images. To realise
this vision, the Wikimedia community could par-
ticipate in a large-scale human evaluation to assess
the integration of the model into Commons to sup-
port contributors on image uploads and achieve the
desired benefits from the structured data project.
Further, the dataset can easily be extended to a
multilingual dataset by extracting the image de-
scription and item names in different languages
from structured data.
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Abstract

Verbs describe the dynamics of interactions be-
tween people, objects, and their environments.
They play a crucial role in language forma-
tion and understanding. Nonetheless, recent
vision-language models like CLIP predomi-
nantly rely on nouns and have a limited ac-
count of verbs. This limitation affects their
performance in tasks requiring action recog-
nition and scene understanding. In this work,
we introduce VerbCLIP, a verb-centric vision-
language model which learns meanings of
verbs based on a compositional approach to
statistical machine learning. Our methods sig-
nificantly outperform CLIP in zero-shot perfor-
mance on the VALSE, VL-Checklist, and SVO-
Probes datasets, with improvements of +2.38%,
+3.14%, and +1.47%, without fine-tuning. Fine-
tuning resulted in further improvements, with
gains of +2.85% and +9.2% on the VALSE and
VL-Checklist datasets.

1 Introduction

Trained on extensive datasets of image-caption
pairs, current vision-and-language models (VLMs)
excel in various applications, yet stall in tasks that
require structural knowledge and compositional
reasoning (Thrush et al., 2022; Liu et al., 2023).
Research by (Yuksekgonul et al., 2023; Lin et al.,
2024) demonstrates some of the difficulties they
face in understanding attributes, relationships, and
order information. More specifically, (Hendricks
and Nematzadeh, 2021) points out that VLMs often
fail to distinguish between different verbs, instead
relying predominantly on noun understanding. One
possible reason for this issue is the inherent biases
within the training datasets. These datasets host a
limited number of examples where captions share
similar contexts but differ in verbs. As a result, they
focus on specific objects and subjects, with mini-
mal emphasis on verbs. This tendency is a form
of shortcut learning, a phenomenon in deep neural

networks where models opt for simpler, superfi-
cial solutions over a deeper understanding (Geirhos
et al., 2020).

Conversely, Compositional Distributional Se-
mantic models (CDSMs) (Erk and Padó, 2008;
Mitchell and Lapata, 2008; Baroni and Zamparelli,
2010; Coecke et al., 2010) learn meaning represen-
tations of sentences by considering their composi-
tional linguistic structures, such as the relationships
between verbs and their subjects and objects. In the
model proposed by (Baroni et al., 2014), verbs are
represented as tensors that take lower-order word
representations, typically vectors, as arguments.
This means that intransitive verbs are represented
as matrices, transitive verbs as cubes, and ditransi-
tive verbs as hypercubes. These tensor-based rep-
resentations have shown promising results in tasks
such as verb disambiguation and sentence similar-
ity (Kartsaklis and Sadrzadeh, 2013; Grefenstette
et al., 2013). CDSMs have primarily been applied
to text-only data and tasks, and have recently been
used as text encoders for CLIP (Lewis et al., 2023).

The novel contribution of this paper lies in in-
tegrating VLMs with CDSMs within a framework
called VerbCLIP to enhance verb understanding.
We implement various methods for learning verb
tensors on an image-caption matching task and
evaluate these methods on VALSE, VL-Checklist,
and SVO-Probes datasets. Our best tensor learn-
ing method achieves improvements of +2.38%,
+3.14%, and +1.47% over CLIP. Beyond these
quantitative improvements, a significant advantage
of VerbCLIP is that it does not require training
from scratch. Our code and data are available at
https://github.com/lanlos-lab/verbclip.

2 Methodology

We present an overview of our framework, illus-
trated in Figure 1. It utilises frozen CLIP as the
backbone. Initially, we input the original sentence
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and image into CLIP’s encoders to obtain a similar-
ity score, reflecting the overall alignment between
the general semantics of the text and the image.
Simultaneously, we extract the subject-verb-object
triplet from the sentence. These components are en-
coded separately: the subject and object as vectors,
and the verb as matrices, forming a compositional
text embedding that captures the detailed seman-
tic relationships. We then calculate a similarity
score between the compositional text embedding
and the image embedding. We add the two scores
to produce the final matching score.

2.1 Compositional Distributional Semantics
Models (CDSMs)

We consider a number of compositional distribu-
tional semantics models, which have been proposed
in past work but have not been applied to a visually
grounded language setting. Table 1 represents the
algebraic formulas used in our experiments.

Vector-based Models Following the work of
(Mitchell and Lapata, 2008), vector-based mod-
els compute a sentence vector as a mixture of the
original word vectors, using simple operations such
as element-wise multiplication and addition. Mul-
tiplication can be seen as the intersection of fea-
tures, while addition resembles the union. The
main characteristic of these models is that they do
not distinguish between the type-logical identities
of different words. For example, an intransitive
verb is considered of the same order as its subject
(a noun), and both will contribute equally to the
composite sentence vector.

Tensor-based Models Following the work of
(Baroni and Zamparelli, 2010) and (Coecke et al.,
2010), relational words such as verbs and adjec-
tives are represented by multilinear maps (tensors).
Meanings of words are composed through the ap-
plication of these maps to vectors representing the
arguments (usually nouns). These models offer a
more linguistically motivated solution to the prob-
lem of composition, effectively addressing the ‘bag
of words’ issue. However, a practical difficulty is
that the creation and usage of third-order tensors
can be computationally expensive. One solution
is to first create a matrix presentation of the verb,
which is then expanded to a tensor by applying
the Frobenius coproduct (copying) map to either
the left or right axis, resulting in the Copy-Subject
and Copy-Object methods (Kartsaklis et al., 2012;
Kartsaklis and Sadrzadeh, 2014). This map can

be visualised as placing a matrix along a specific
diagonal of a tensor. In this work, we propose a
new method: Copy-Add.

Image 
Encoder

Text 
Encoder

A girl crosses the road

Image Embedding

Text Embedding

Compositional Text 
Embedding

Subject: girl Object: road

Image

Caption Matching 
Score

ComposerVerb: crossesSV
O

 T
ri
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et

❆
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Figure 1: The VerbCLIP framework makes use of two
types of text embeddings: the Text Embedding, which
captures the meaning of the entire caption; and the Com-
positional Text Embedding, which captures the syntac-
tically sensitive meaning by combining word-level em-
beddings of the subject, verb, and object.

Copy-Subject The semantic interpretation of a
transitive sentence involves a two-step composi-
tional process. Initially, the verb’s meaning is ap-
plied to the object, creating an intermediate rep-
resentation that highlights how the verb’s action
targets the object. This result is then applied to the
subject, integrating the roles of both subject and
object with the verb’s action to construct the over-
all sentence meaning. This approach effectively
combines the individual meanings to reflect the
sentence’s complete semantic structure.

−−−−−−−−−→
subj verb obj =

−−→
subj ⊙

(
verb×−→obj

)

Copy-Object The meaning of a transitive sen-
tence is derived by first applying the verb’s mean-
ing to the subject, and then combining the result
with the meaning of the object. Similarly, this
process helps form a coherent semantic output by
sequentially engaging the subject and object with
the verb.

−−−−−−−−−→
subj verb obj =

(−−→
subj × verb

)
⊙−→obj

Copy-Add Combining the Copy-Subject and
Copy-Object methods provides a more comprehen-
sive representation of the verb and enhances the
sentence meaning. Here the parameters α and β
can be trained to balance and optimise the com-
bination, reducing biases and improving overall
semantic interpretation.
−−−−−−−−−→
subj verb obj = α

[−−→
subj ⊙

(
verb×−→obj

)]
+

β
[(−−→
subj × verb

)
⊙−→obj

]
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Method Algebric Formula

Add −−→
Tsent · −−→Iimg + (−→s +−→v +−→o ) · −−→Iimg

Mult −−→
Tsent · −−→Iimg + (−→s ⊙−→v ⊙−→o ) · −−→Iimg

Copy-Subject −−→
Tsent · −−→Iimg + (−→s ⊙ (V ×−→o )) · −−→Iimg

Copy-Object −−→
Tsent · −−→Iimg + ((−→s ×V)⊙−→o ) · −−→Iimg

Copy-Add −−→
Tsent · −−→Iimg + (α[−→s ⊙ (V ×−→o )] + β[(−→s ×V)⊙−→o ]) · −−→Iimg

Table 1: Compositional methods used in this study with their corresponding algebraic formulas. We make use of
element-wise product ⊙, matrix multiplication ×, and · dot product. The vectors −→s , −→v , and −→o are text embeddings
for the subject, verb, and object entities respectively. −−−→Tsent and −−→Iimg are holistic embeddings for the input text and
image. By default, we let α, β = 1.

2.2 Creating verb tensors
We review several proposals for constructing ten-
sors for verbs and opt to use matrices in our work.
Matrices often perform as well as, or even better
than, full tensors, thereby reducing the number
of parameters needed in our framework (Polajnar
et al., 2014).

Kronecker In work of (Grefenstette and
Sadrzadeh, 2011b), the verb matrix is created as
the outer product1 of the verb vector with itself:

verb =
−−→
verb⊗−−→verb

Relational Following ideas from the set-
theoretic view of formal semantics, (Grefenstette
and Sadrzadeh, 2011a) suggest that the meaning
of a verb is the sum of the outer product of its
arguments (subject, object) over all occurrences of
the verb in a corpus. This is represented as:

verb =
1

N

N∑

i=1

−−→
subji ⊗

−→
obji

where N is the number of examples. The intuition
is that the matrix encodes higher weights to the
contextual features of subjects and objects that are
frequently observed together.

Linear Regression Building on the concept in-
troduced by (Baroni and Zamparelli, 2010) of creat-
ing adjective matrices, we propose a verb matrix A,
when applied to the vector representation of a noun
(as either a subject or object), yields a vector that
effectively captures the distributional semantics of
the combined subject-verb or verb-object phrase.
For example, for the verb-object compound “eat

1It is the tradition in the literature to use the Kronecker
product to form a vector in a tensor-product space. In this
work we use the outer product to obtain a matrix instead.

food”, we compute the verb matrix Aeat, such that
−→y = Aeat × −−→food, where

−−→
food represents the

distributional vector of “food” and −→y reflects the
semantic composition of “eat food”. To find matrix
A, we minimise the discrepancy between the pre-
dicted vectors and the actual distributional vectors.
This optimisation can be achieved through gradient
descent or analytically2, AT

eat = (XTX)−1XTY ,
where the rows of matrix X are vectors of objects
found in the corpus as arguments of the verb, and
the rows of Y are the vectors of the corresponding
verb-object phrases. A similar procedure is used to
create matrices for subject-verb phrases.

3 Experiment

We focus on the task of matching images with cor-
rect captions. An image is described by both a
positive and a negative caption; the negative cap-
tion differs from the positive only by a verb. Our
aim is to achieve a higher matching score between
the image and the positive caption compared to the
negative one.

Evaluation Datasets We test our methods on
VALSE (Parcalabescu et al., 2022), VL-Checklist
(Zhao et al., 2023), and SVO-Probes (Hendricks
and Nematzadeh, 2021). Detailed descriptions of
the datasets are in the above papers; however, for
this study, we selected only those entries where the
verb differs between the positive and negative cap-
tions, while the subjects and objects are the same.
For the SVO-Probes, we create negative captions
by substituting the verb in the positive caption with
its corresponding negative form from the given neg-
ative (SVO) triplet. For example, given a positive
caption ‘a woman is running in the field’ and a

2The analytical formula fails when X is not full rank. In
such cases, the Moore-Penrose pseudoinverse shall be used.
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VALSE VL-Checklist SVO-Probes

Method Kron Rel Reg Kron Rel Reg Kron Rel Reg

Copy-Subject 74.76 74.29 74.29 59.53 58.80 58.49 78.74 78.90 69.28
Copy-Object 72.86 72.86 73.33 58.53 56.62 52.56 78.35 78.85 70.63
Copy-Add 75.24 72.86 75.24 60.41 57.85 59.53 77.30 78.44 69.27

Copy-Add FT 75.71 74.29 77.62 66.47 65.47 62.90 77.30 78.49 69.28

Table 2: Comparison of accuracy (%) across three datasets using tensor-based methods. Verb matrices are built with
Kronecker (Kron), Relational (Rel), and Regression (Reg) methods using the ViT-B/32 variant of CLIP.

Method VALSE VL-Checklist SVO-Probes

Add 74.76 60.00 77.64
Mult 73.33 57.83 78.68

CLIP 72.86 57.27 77.43

Table 3: The accuracies (%) of vector-based methods
using ViT-B/32. For CLIP, image embeddings are gen-
erated by CLIP’s vision encoder (ViT-B/32); and text
embeddings are generated by CLIP’s text encoder. We
compute the dot product between the image and the text
embeddings to obtain the matching score.

negative verb ‘walk’, the resulting negative caption
would be ‘a woman is walking in the field’. Out
of the 14,097 images in the SVO-Probes dataset,
11,769 images were accessible from the internet in
February 2024.

Data We extracted all subject-verb-object (SVO)
triplets associated with each verb in the three
datasets from the March 2022 English Wikipedia
dump, using the dependency parser in spaCy. Then,
we removed entries with pronouns, stop-words, and
tokens that were less than three characters long. We
prioritised the triplets, selecting only the top 2,000
subject-object pairs based on the frequency of oc-
currence. We ensured that for each verb, there
were sufficient corresponding entries to build high-
quality representation matrices. Verbs that failed
to meet all the criteria were dropped. We ended
up experimenting with 100 unique verbs in 210
entries from VALSE, 274 unique verbs in 9,407
entries from VL-Checklist, and 290 unique verbs
in 14,544 entries from SVO-Probes.

4 Results and Discussion

The compositional tensor-based methods signif-
icantly outperform CLIP and vector-based mod-
els, with Copy-Add showing the highest perfor-

mance in most cases. Copy-Add appears capable
of utilising information from the combination of
subject-verb and verb-object, and incorporating fur-
ther information from the object and subject. This
highlights the importance of ordering and syntactic
information in the compositional methods. Upon
fine-tuning the weights, α and β, we noticed further
improvement (+2.85% and +9.2% on the VALSE
and VL-Checklist datasets respectively).

We noticed lower performance improvements on
the SVO-Probes dataset compared to VALSE and
VL-Checklist. This discrepancy is likely due to the
nature of the SVO-Probes dataset, which contains
sketchy samples and tends to be noisy, with signifi-
cant issues such as object mismatches, as detailed
in (Castro et al., 2023; Jiang et al., 2024).

In terms of learning verb matrices, regression
methods demonstrated lower accuracies, whereas
the Kronecker (Kron) and Relational (Rel) meth-
ods performed better. The fact that Kron requires
no training data makes it an effortless choice for
constructing verb matrices, while still providing
competitive performance.

In terms of verb-type performance, the Copy-
Add model significantly improved accuracy for
interaction-based verbs such as “hang” (+12.5%),
“hold” (+11.6%), “attached” (+3.7%), and “take”
(+29.62%). However, while it struggled with some
visually static verbs like “stand” (-5.8%) and “sit”
(-6.0%), it showed improvement in others such as
“observe” (+50%) and “look” (+10.87%). Further-
more, we tested sentence pairs where the subject
and object nouns are swapped, such as “A man lies
on the sofa” vs “A sofa lies on the man”. CLIP of-
ten misinterprets these as equally plausible, reflect-
ing its approach of processing text as independent
words, similar to a bag-of-words approach. In con-
trast, Copy-Add model correctly identifies “A man
lies on the sofa” as the correct caption by capturing
structured detailed semantics. Overall, VerbCLIP
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A baby speaks on the telephone.

A baby sits on the telephone.

A person holding ski-poles.

A person crossing ski-poles.

The goat stands in the grass.

The goat lies in the grass.

CLIP 28.71 28.73

VerbCLIP 37.28 37.12

CLIP 28.01 28.11

VerbCLIP 36.51 36.06

CLIP 28.65 28.68

VerbCLIP 35.16 34.87✔

❌ ❌ ❌

✔ ✔

Positive Positive PositiveNegative Negative Negative

A man threw the ball.

A man holding the ball.

CLIP 18.50 19.54

VerbCLIP 5.095 4.759

❌

✔

Positive Negative

Figure 2: Examples where CLIP pairs images with incorrect text captions, as indicated by higher similarity scores
for negative captions. In contrast, our framework achieves more accurate matching. The positive captions (marked
in green) and negative captions (marked in red) are semantically very close, with the verb being different.

incorporates syntactic and semantic structures, al-
lowing it to better understand context and dynamic
actions.

5 Limitations

Creating verb matrices or tensors is computation-
ally intensive, which poses a significant challenge
when scaling to very large pretraining datasets. Ad-
ditionally, our approach assumes a fixed linguis-
tic structure, typically the subject-verb-object for-
mat, which does not account for the varied and
flexible ways verbs are used in natural language.
However, tensors are natural components of quan-
tum systems, and quantum computing resources
can efficiently learn them. The Quantum Natural
Language Processing (QNLP) framework (Lorenz
et al., 2023; Wazni and Sadrzadeh, 2023), inspired
by categorical quantum mechanics and the Dis-
CoCat (Distributional Compositional Categorical)
framework, uses string diagrams to translate gram-
matical structures into quantum processes. This
advanced option could offer a promising solution.

6 Conclusion

The CLIP model is noted for its limited ability to
understand verbs, often relying heavily on nouns.
Our approach seeks to mitigate this issue by in-
troducing verb-focused compositional methods,
which have demonstrated enhanced performance
across the SVO-Probes, VL-Checklist and VALSE
datasets. Our framework can boost the zero-shot
inference capability of other models, such as SLIP
(Mu et al., 2021) and BLIP (Li et al., 2022), without
the need for further training or fine-tuning. Scal-
ing to longer and more complicated sentences with
varied grammatical structures is a work in progress.
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Abstract

Designing reward functions is a pivotal yet
challenging task for Reinforcement Learning
(RL) practices, often demanding domain ex-
pertise and substantial effort. Recent studies
have explored the utilization of Large Language
Models (LLMs) to generate reward functions
via evolutionary search techniques (Ma et al.,
2023). However, these approaches overlook the
potential of multimodal information, such as
images and videos. In particular, prior meth-
ods predominantly rely on numerical feedback
from the RL environment for doing evolution,
neglecting the incorporation of visual data ob-
tained during training. This study introduces
a novel approach by employing Multimodal
Large Language Models (MLLMs) to craft re-
ward functions tailored for various RL tasks.
The methodology involves providing MLLM
with the RL environment’s code alongside its
image as context and task information to gener-
ate reward candidates. Then, the chosen agent
undergoes training, and the numerical feedback
from the environment, along with the recorded
video of the top-performing policy, is provided
as feedback to the MLLM. By employing an
iterative feedback mechanism through evolu-
tionary search, MLLM consistently refines the
reward function to maximize accuracy. Testing
on two different agents points to the preemi-
nence of our approach over previous methodol-
ogy, which themselves outperformed 83% (Ma
et al., 2023) of reward functions designed by
human experts.

1 Introduction

Large Language Models (LLMs) have shown re-
markable success in distinct tasks. State-of-the-art
models such as Gemini (Anil et al., 2023), Palm
(Chowdhery et al., 2023), and GPT-4 (OpenAI
et al., 2023) have achieved results comparable to hu-
man experts on different benchmarks. In this paper,
we are specifically interested in their capabilities
in designing Reward functions for Reinforcement

Learning practices. Recent studies have shown that
GPT-4 can autonomously generate reward func-
tions for multiple agents in IsaacGYM by taking
the environment code as context and employing
evolutionary search (Ma et al., 2023). Impressively,
it achieved results similar to and sometimes even
better than those of human experts.

This result is very important for two reasons:
firstly, the task of designing effective reward
functions is notoriously challenging and time-
consuming, and this approach streamlines the pro-
cess by creating an end-to-end pipeline; secondly,
by requiring no additional task-specific modifica-
tions, it showcases the generalization capabilities
of evolutionary search on reward design.

However, a significant shortcoming of this ap-
proach, and LLMs in general, is that they can only
operate on textual and numerical data. In contrast,
when designing reinforcement learning strategies,
human experts often leverage visual data to gain a
deeper understanding of the problems that can be
solved and improvements that can be made. It is
our hypothesis that incorporating visual data could
provide the model with enhanced comprehension,
thus leading to improved accuracy.

We introduce EROM: "Evolutionary Reward De-
sign and Optimization with Multimodal Large Lan-
guage Models (MLLMs)" method as a novel way to
generate reward functions. In the EROM method,
we utilize MLLMs’ zero-shot coding abilities to
generate reward functions. First, we provide the
MLLM with the environment as context by provid-
ing the source code; then, we give it the description
of the task, guidelines for reward function gen-
eration, and an image of the idle agent. After it
generates the first iteration of the reward function,
we provide feedback from the environment both
numerically and visually by providing the video of
the agent . Using evolutionary search, it generates
a better set of reward functions, and this process
iteratively continues.
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Our contributions with the EROM method are as
follows:

1. To the best of our knowledge, this is the first
work that tests the MLLMs’ abilities on re-
ward function generation using evolutionary
search.

2. We show that capturing the video (or image
of an idle agent) of the top-performing policy
and providing it to the MLLMs as feedback
helps the performance, compared to just pro-
viding textual reflection.

3. By enhancing the qualities of an autonomous
method that outperformed 83% human ex-
perts, we contribute to the advancement of
autonomous reward design techniques with-
out introducing significant computational cost
or expenses.

Due to budget limitations, we mostly aimed to
show a proof-of-concept of our approach. All the
contributions listed above held true for our tests,
but without more experiments, the (2) and (3)’ rd
contributions above should be approached tenta-
tively.

2 Background

2.1 Reward Design
Reward design plays a pivotal role in reinforcement
learning, where a well-crafted reward function is
instrumental in achieving optimal outcomes. It
guides agents toward actions aligned with the de-
sired outcomes. Specifically, they provide positive
feedback for actions conducive to achieving spe-
cific goals, while also providing negative feedback
for actions that lack purpose or have a detrimental
impact on the situation.

2.2 Evolutionary Search with LLMs
Evolutionary search algorithms, drawing inspira-
tion from biological evolution, involve the gener-
ation of outputs by a generator, such as a LLM
(Lehman et al., 2024). The generated outputs un-
dergo evaluation, leading to feedback that informs
subsequent iterations of output generation. This
iterative process includes the generation of outliers,
thereby mitigating the risk of the algorithm con-
verging to a local optimum.

A recent study demonstrated notable success in
leveraging Evolution with LLMs for the design of
reward functions, incorporating textual feedback

and information from the environment (Ma et al.,
2023). In the present research, we extend this ap-
proach by introducing an additional modality of
feedback—visual feedback—into the evolutionary
process.

3 Methods

3.1 Environment as Context

The model needs to have a comprehensive under-
standing of the environment to generate a task-
specific reward design for that environment. To
achieve this, we give the environment source code
as context to the model (Ma et al., 2023). This helps
because providing the environment code gives the
MLLM essential information about the variables
used in the environment code and in what format
we expect an output. Additionally, we augment the
contextual information by presenting the MLLM
with visual representations of the environment and
agent. We believe this helps MLLM better un-
derstand the environment’s visual cues and agent
characteristics.

3.2 Evolutionary Search

We employ Evolutionary search for the iterative
refinement of reward design. Initially, the model
generates random samples of reward candidates,
which are then evaluated on the task, and the top
performer is selected. Subsequently, both reward
feedback and the top performers are collected and
fed back into the model for further enhancement.
This iterative process is crucial, as evidenced by
studies on LLMs demonstrating their capacity for
self-improvement over time (Madaan et al., 2023).
Moreover, this approach aligns with human intu-
ition, as trial-and-error is a common strategy em-
ployed in the design of reward functions (Booth
et al., 2023).

3.3 Reward Reflection

Previous studies utilizing LLMs to generate re-
ward samples have primarily relied on textual feed-
back provided by the environment for evolutionary
search (Ma et al., 2023). However, capturing the
visual behavior of an agent can also yield valuable
insights into necessary adaptations. For instance,
visual feedback can aid in identifying instances
of reward hacking or pinpointing areas where the
agent is not performing as intended. To address
this, following the initial iteration of reward sam-
pling, each reward function is individually tested,
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and both textual feedback from the environment
and video recordings of the agent’s performance
are collected. Subsequently, for the subsequent it-
eration of evolution, the MLLM is provided with
the code of the best-performing reward function,
along with its numerical and video feedback gath-
ered during training. The MLLM then reasons over
this information to iteratively design improved re-
ward functions. Through this process of reward
reflection, the accuracy of designed rewards con-
sistently improves, leading to notable outcomes in
our experiments.

4 Experiments

4.1 Baselines

4.1.1 Environment

IsaacGYM (Makoviychuk et al., 2021) is a GPU-
Accelerated Physics Simulation for robotics tasks.
It enables hundreds of trainings to run at the same
time, thus making it faster to conduct experiments.
Also, we can capture videos during training, which
is a prerequisite for our experiment. We picked
humanoid and ant agents on two different tasks for
our experiments on this simulator. The reason for
selecting these agents was the GPU memory limit
of our hardware.

4.1.2 Multimodal Large Language Model

GPT-4V(Vision) (OpenAI et al., 2023) is a MLLM
that can take both visual and textual input. Its
multimodal capabilities will allow it to reason over
videos and images, and its natural language and pro-
gramming capabilities will allow it to understand
tasks and generate reward functions as Python
codes, making it suitable to use in our experiments.

4.1.3 Eureka Method

Evolution-driven Universal Reward Kit for Agents
(Eureka) (Ma et al., 2023) is a method that inspired
us and the method that we built upon. The Eu-
reka method involves providing the environment
source code as context, evolutionary search to im-
prove rewards, and using reward reflection. The
only difference we made in our method is that we
added visuals to the feedback loop and the environ-
ment as context part. We used very similar prompts
to those of Eureka, with only minor changes indi-
cating to the MLMM that we have added visuals.
Also, Eureka has been shown to outperform 83%
of human-expert-designed reward functions, which

makes being able to outperform it a remarkable
achievement.

4.2 Experimental Setup
We conducted three different tests to evaluate the
effectiveness of our approach. Following the exper-
iments originally described in the Eureka paper, we
ran both EROM and Eureka for five iterations, gen-
erating 8 samples of reward function codes in each
iteration. Due to the stochastic nature of MLLMs,
when none of the codes worked in the first iteration,
we reran it until at least one worked, resulting in
guaranteed four rounds of feedback. We refer to
this as "general testing" in the results subsection of
our research.

We separately assessed the importance of provid-
ing an image of an agent in the first generation. We
ran EROM and Eureka for one iteration, generating
32 samples. We have increased the sample size to
have more examples to lower the chance factors
that could effect results. We refer to this as "Image
Testing" in the results subsection of our research.

We also separately assessed the importance of
providing video during the feedback loop by pro-
viding the MLLM with the same reward codes gen-
erated in another iteration: one with only numerical
feedback and the other with video feedback along-
side numerical feedback. We generated 32 samples
for both methods and compared them. We refer to
this as "Video Testing" in the results subsection of
our research.

Unless otherwise specified, when making ex-
periments with EROM method, we provided the
MLLM with a one-minute video of the agents train-
ing on the best policy generated during the training
process (divided into 200 frames due to the context
length of GPT-4V). In the reward sampling process,
we trained the ant agent for 1500 epochs and the
humanoid agent for 1000 epochs. In each training,
the environment size was set to default for both
agents. Each reward that achieved the best success
rate in the initial training process was chosen to
seed the next generation. We refer to the success
rate obtained by reward functions in the initial itera-
tion as "training-success" in the rest of the research.
We evaluated the final best reward by retraining it
over 5 different seeds and taking the average. We
refer to this average as "average success."

4.3 Results
All the "average-success" results can be found in
Table 1. Firstly, we observed that our method per-
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Table 1: Average Success Rates

Test Type Ant-EROM Ant-Eureka Humanoid-
EROM

Humanoid-
Eureka

General Testing 7.27|0.36σ 3.68|0.71σ 5.26|0.29σ 4.21|0.53σ
Video Testing 6.13|0.95σ 3.38|0.39σ 5.42|0.27σ 4.81|0.70σ
Image Testing 6.38|1.89σ 1.76|0.87σ 3.17|0.30σ 5.33|0.39σ
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Figure 1: Comparison of success rates in General Test-
ing on Ant agent.

formed better on general testing, where we ran
both codes for 5 iterations with 8 samples gen-
erated in each iteration. On ant and humanoid
agents, EROM achieved an average-success rate of
7.27 and 5.26, while Eureka achieved an average-
success rate of 3.68 and 4.21, respectively. We have
also plotted the difference between EROM and Eu-
reka over the "training-success" of each iteration
on Fig. 1, 2. These graphs effectively demonstrate
the effectiveness of evolutionary search for both
methods, as well as the value of video feedback
and providing the image of the agent.

Secondly, to test the importance of providing the
image of an agent in the first generation, we gen-
erated 32 samples using each method to increase
the sample size and obtain a better average. As
shown in Table 1, providing an image has shown to
increase the average success rate for the ant agent,
but not for the humanoid agent.

Lastly, by seeding the MLLM with the same
reward functions and reward reflection, one with
video and the other with only numerical feedback,
we generated 32 samples with each method. We
observed that providing the video also improved
the average success for both of the agents.
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Figure 2: Comparison of success rates in General Test-
ing on Humanoid agent.

5 Conclusion and Discussion

Designing effective reward functions is a labori-
ous task that requires expertise and time. Recent
researchers have sought to address this problem
by utilizing Large Language Models (LLMs) to
generate reward functions by taking the environ-
ment as context, employing evolutionary search,
and utilizing reward reflection (Ma et al., 2023).
However, they have only used numerical feedback
and textual information for reward sampling and
the reward reflection process. In this work, we
address this limitation by incorporating videos of
agents in training and their idle images into the
evolutionary process with the help of Multimodal
Large Language Models (MLLMs). Our aim is to
enhance the success rate of previous methodology,
which have already outperformed 83% (Ma et al.,
2023) of human experts in their focused tasks. Ex-
periments conducted with two agents across two
distinct tasks have indicated that our approach is
more effective than solely utilizing textual informa-
tion.
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Limitations

Since we utilized GPT-4V (OpenAI et al., 2023)
in our experiments, results largely depend on its
capabilities. Alongside that, the real-life applica-
tions of our method might not be as successful as
in online simulation environments because of the
complexity of the real world that is superficially
present in simulations.

Another limitation of our work was that, due to
the lack of GPU memory, we could only make tests
on two agents in IsaacGYM. An experiment on
more agents and different environments would bet-
ter show our approach’s generalization capabilities
and effectiveness.
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A Prompts

In this subsection, we provide the prompts used
in our research. We have used the same prompts
used in (Ma et al., 2023), with marginal changes
regarding visuals.

The Python environment is
{task_obs_code_string}. Write a
reward function for the following
task: {task_description}.

↪→

↪→

↪→

Here is an image of the agent.
Carefully analyze it for better
understanding.

↪→

↪→

<img src="{image_src}"
alt="{image_alt}">↪→

Figure 3: User Prompt

You are a reward engineer trying to
write reward functions to solve
reinforcement learning tasks as
effective as possible.

↪→

↪→

↪→

Your goal is to write a reward function
for the environment that will help
the agent learn the task described
in text.

↪→

↪→

↪→

Your reward function should use useful
variables from the environment as
inputs. As an example,

↪→

↪→

the reward function signature can be:
{task_reward_signature_string}↪→

Since the reward function will be
decorated with @torch.jit.script,↪→

please make sure that the code is
compatible with TorchScript (e.g.,
use torch tensor instead of numpy
array).

↪→

↪→

↪→

Make sure any new tensor or variable
you introduce is on the same device
as the input tensors.

↪→

↪→

Figure 4: System Prompt

We trained a RL policy using the
provided reward function code
and tracked the values of the
individual components in the
reward function as well as
global policy metrics such as
success rates and episode
lengths after every
{epoch_freq} epochs and the
maximum, mean, minimum values
encountered:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

{Reward Reflection}
Please carefully analyze the policy

feedback and provide a new,
improved reward function that
can better solve the task. Some
helpful tips for analyzing the
policy feedback:

↪→

↪→

↪→

↪→

↪→

(1) If the success rates are
always near zero, then you
must rewrite the entire
reward function

↪→

↪→

↪→

(2) If the values for a certain
reward component are near
identical throughout, then
this means RL is not able to
optimize this component as
it is written. You may
consider

↪→

↪→

↪→

↪→

↪→

↪→

(a) Changing its scale or
the value of its
temperature parameter

↪→

↪→

(b) Re-writing the reward
component↪→

(c) Discarding the reward
component↪→

(3) If some reward components'
magnitude is significantly
larger, then you must
re-scale its value to a
proper range

↪→

↪→

↪→

↪→

Please analyze each existing reward
component in the suggested
manner above first, and then
write the reward function code.

↪→

↪→

↪→

Figure 5: Feedback Prompt
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B Computational Resources and
Additional Expenses

We utilized an RTX 2060 6GB graphics card to
execute all experiments. None of the experiments
exceeded a runtime of 16 hours. We could only
train one policy at a time for the humanoid agent,
while two for the ant agent. The total cost of GPT-
4V(ision) API calls, to run all the experiments,
amounted to approximately $40.

C Task Details

In this section, we provide task details. For task
details, we follow the structure from (Ma et al.,
2023). We provide the task description, environ-
ment, observation and action dimensions, and the
task fitness function F .

Table 2: Task Details and Descriptions

Environment Obs.
Dim.

Act
Dim.

Task Descrip-
tion

Ant 60 8 To make the
ant run for-
ward as fast as
possible
(Fitness
Function:
cur_dist −
prev_dist)

Humanoid 108 21 To make the
humanoid run
as fast as pos-
sible
(Fitness
Function:
cur_dist −
prev_dist)
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