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Abstract

As language models (LMs) demonstrate their
capabilities in various fields, their applica-
tion to tasks requiring multi-round interac-
tions has become increasingly popular. These
tasks usually have complex dynamics, so su-
pervised fine-tuning (SFT) on a limited of-
fline dataset does not yield good perfor-
mance. However, only a few works at-
tempted to directly train the LMs within in-
teractive decision-making environments. We
aim to create an effective approach to fine-
tune LMs with online reinforcement learn-
ing (RL) in these environments. We propose
Reflect-RL, a two-player system to fine-tune
an LM using SFT and online RL, where a
frozen reflection model (player) assists the
policy model (player). To generate data for the
warm-up SFT stage, we use negative exam-
ple generation to enhance the error-correction
ability of the reflection model. Furthermore,
we designed single-prompt action enumera-
tion and applied curriculum learning to al-
low the policy model to learn more efficiently.
Empirically, we verify that Reflect-RL out-
performs SFT and online RL without re-
flection. Testing results indicate GPT-2 XL
1.56B fine-tuned with Reflect-RL outper-
forms larger open-source LMs, such as Mis-
tral 7B. The benchmarks, dataset, and code in-
volved in this work are publicly available.'

1 Introduction

Large language models (LLMs) have shown promising
results in problem-solving, coding, and document re-
trieval (Mialon et al., 2023). While performing these
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tasks, LLMs exhibit considerable reasoning, planning,
and reflection skills, enabled by prompting techniques
like ReAct (Yao et al., 2022), Reflexion (Shinn et al.,
2023), Chain of Thought (CoT, Wei et al. (2023)), Tree
of Thoughts (ToT, Yao et al. (2023a)), and reasoning
via planning (Hao et al., 2023). Some recent studies
(Magister et al., 2023; Mukherjee et al., 2023; Mitra
et al., 2023) also try to improve reasoning capabilities
of smaller models to match those of advanced LLMs.

The reasoning and reflection skills enable LLMs to
act as agents and interact with real-world environments
(Durante et al., 2024; Cheng et al., 2023), including
code interpreters, embodied robotics (Shridhar et al.,
2021; Ahn et al., 2022; Tan et al., 2024), games (Park
et al., 2023), and many other spaces (Vezhnevets et al.,
2023). This interaction ability is closely tied to rein-
forcement learning (RL), where agents can learn opti-
mal behaviors through trial and error within an envi-
ronment.

1.1 Motivations

This research is motivated by three distinct application
domains within the same system, which include: doc-
ument querying (Izacard et al., 2022), database search-
ing (Floratou et al., 2024), and coding (Chen et al.,
2021). In these applications, a chatbot needs to nav-
igate in a file system to read documents, modify files,
and execute code to answer users’ questions. Central
to these tasks is the chatbot’s ability to autonomously
explore within a repository using system commands,
such as, 1s, cd src/, cat main.py, similar to the
paradigm in Yang et al. (2023).

Interactive chatbot for file systems (NVIDIA, 2024),
multi-agent frameworks (Wu et al., 2023), tool se-
lection (Karpas et al., 2022; Patil et al., 2023), and
many other industrial applications require interactive
decision-making capabilities. Even if LLMs can per-
form these tasks, they are usually trained heavily
with offline supervised learning rather than with on-
line training within complex environments. Moreover,
some recent studies have found that LLMs might not
be able to correct themselves without external feedback
during interactions (Huang et al., 2023). On the other
hand, online RL training could enable LMs to dynami-
cally adapt and make informed decisions beyond static
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Figure 1: Reflect-RL Pipeline. Solid lines represent the forward pass for both data generation and inference.
Agents (in circular nodes) are language models capable of generating reflections and making decisions. Red
dashed lines represent the loss and gradient calculation during the training periods: the reflection agent is trained
with SFT, while the policy agent is trained first with SFT and then with online RLFT. Detailed illustrations for

each stage can be found in Appendix B.

datasets.

Some recent studies have incorporated RL to align
LMs with human preference and to prompt LM for
problem-solving (see Table 1 for details). Szot et al.
(2023) and Tan et al. (2024) have started contemporary
explorations to integrate LMs within interactive RL en-
vironments, but these pioneering studies have not fully
utilized the LMs’ reasoning capabilities. Motivated by
the strength of RL and expansiveness of LLMs, our
work aims to fine-tune smaller, faster, and more se-
cure locally-operated LMs that are capable of decision-
making and adaptation through reflection, which are
essential for domain-specific interactive tasks.

1.2 Contributions

In this work, we introduce Reflect-RL, a novel ap-
proach to dynamically improve LMs with online RL
(Figure 1), applied with Markov decision processes
(MDPs) for multi-step decision making. Most of the
previous RL-LM works can be categorized into three
classes (Table 1): @ treating token-generation as RL,
rather than considering embodied tasks, games, or in-
teractive decision making within environments; @ us-
ing LMs as agents to augment policy generation with
additional textual information, without directly learn-
ing from the environment (gradient-free); ® engaging
primarily with single-step bandits rather than multi-
step MDPs. Our method seeks to improve multi-step
decision making in textual environments by integrating
techniques from RL and LMs, enabling LMs to adapt
more efficiently to complex environments. We summa-

rize our key technigues below.

Key Techniques:

e Reflection (Section 4.1.3). We distill reflection abil-
ities for our domain-specific environment from GPT-
4 (OpenAl, 2023) through supervised learning. The
distilled small LM is frozen and deployed as a re-
flection model (player) to assist the trainable policy
model (player) in decision-making. Reflection accel-
erates training convergence and improves test perfor-
mance.

e Negative example generation (Section 4.2). The re-
flection data gathered from GPT-4 is unbalanced, with
the majority consisting of positive (near-optimal) deci-
sions. To balance the dataset, we generate negative ex-
amples by perturbing the GPT-4 trajectories and opti-
mal trajectories. Negative examples enhance the qual-
ity of reflection, ultimately leading to better success
rates in the benchmarks.

e Single-prompt action enumeration (Section 4.3).
We incorporate all possible valid actions into a single
prompt, allowing the LM to select the appropriate op-
tion using only one token. This approach improves
upon the normalization techniques in previous works
to generate valid actions and also reduces time com-
plexity.

e Task-specific curriculum learning (Section 4.4).
The core challenges of RL include planning for a long
horizon and sparse reward signals. Vanilla policy opti-
mization methods often fail to obtain sufficient useful
trajectories efficiently. We incorporate the idea of cur-
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riculum learning into our pipeline, designing a specific
curriculum to guide training by giving extra rewards or
scheduling the data order.

New Benchmark for Online RL Fine-Tuning. Ad-
ditionally, we introduce AutoExplore, a benchmark
inspired by industrial applications, along with other
benchmarks adapted from previous works. These
benchmarks are suitable for both research and appli-
cation purposes. They can be integrated with either
local LMs for training or remote LLMs for in-context
inference. Our demonstrations show positive results of
LLMs on industrial applications. Both RL training and
data generation are made easy by their use.

Paper Overview. This paper begins by discussing
LLMs in Section 2 and RL preliminaries in Section 3.
Then, we introduce our proposed Reflect-RL in Sec-
tion 4 and benchmarks in Section 5. The results are
presented in Section 6. Finally, we discuss the findings
and future directions in Section 7.

2 Related Works

Language models (LMs). LM:s play a pivotal role in
tasks such as sentiment analysis (Zhong et al., 2023;
Wang et al., 2023b), machine translation (Gulcehre
et al., 2017; Lample and Conneau, 2019), and auto-
mated text generation (Chen et al., 2020; Dathathri
et al., 2020), showcasing their versatility and capability
in handling complex linguistic structures.

LM agents and multi-agent collaborations. Au-
tonomous LM agents (Bran et al., 2023; Park et al.,
2023; Wu et al., 2023; Wang et al., 2023a) under-
score LMs’ capabilities of autonomous and collabo-
rative problem-solving. Such agent collaboration can
achieve a level of sophistication and efficiency that is
difficult to obtain through solo efforts.

Fine-tuning of LMs. Supervised fine-tuning (SFT,
Howard and Ruder (2018); Radford et al. (2019)) and
reinforcement learning from human feedback (RLHF)
are the most commonly used alignment methods for
adapting pre-trained LMs to specific tasks. Addi-
tionally, LoRA (Hu et al., 2021), QLoRA (Dettmers
et al., 2023), and other parameter-efficient fine-tuning
(PEFT) algorithms can facilitate this process.

LMs for interactive decision-making. As summa-
rized in Table 1 and discussed in Section 1.2, only a
few studies have applied online RL to LMs for making
multi-step decisions. Szot et al. (2023) and Tan et al.
(2024) are the two most relevant studies.

3 Preliminaries

Notations. For any set X', we use A(X) to denote
the probability simplex over X. Let the tokenizer be

fixed throughout the paper. For a string s, we use |s| to
denote the number of tokens in s after using this fixed
tokenizer.

Markov decision processes (MDPs). Reinforce-
ment learning (RL, Sutton and Barto (1998)) prob-
lems are usually formulated as MDPs. They enable
agents to learn optimal behaviors through interacting
with the environment, without human intervention or
labeling. A (finite-horizon) MDP can be described as
M = (H, S, A pn, T, r), where H is the plan-
ning horizon, S is the state space, and .A is the action
space. p € A(S) is the initial state distribution, which
can represent a distribution over tasks. We study deter-
ministic environments in this work as the tasks in our
motivations are deterministic. The transition function
maps a state-action pair to a state 7 : S x A — S,
and the reward function immediately yields a reward
r: S8 x A — [-1,1]. Given a (Markovian) policy
m: S — A(A), we define its value function and Q-
function as
Sp = 8] s

H
Vir(s) == E, lZ Ty
t=h
(sn,an) = (s,a)] i

H
Qr(s,a) :=E, [Z Ty
t=h

The expected return of a policy 7 is J™ :=
Es, ~u[Vi"(s1)], and the goal of RL is to find the opti-
mal policy maximizing J™.

When modeling an application as an MDP, we
may encounter the fact that each state s has a sepa-
rate “valid” action space A(s). Though we can de-
fine A = Uges.A(s), the union could be intractably
large. A viable workaround is to define a map-
ping function f, at each state, such that A(s) <
{fs(a) | a € A}. This formulation works smoothly
with our approach named “single-prompt action enu-
meration” (Section 4.3) where A consists of choices
such as 0, 1, 2, ..., and fs(a) maps them to detailed
actions.

Policy optimization for MDPs. Policy optimization
is an approach to solve MDPs using parameterized
policies. Policy optimization techniques for MDPs
surround the class of policy gradient (PG, or RE-
INFORCE algorithm, Sutton et al. (1999)) methods,
which directly adjust the parameters of the policy in a
way that maximizes J™. Let 7y be a policy parameter-
ized by 6, then the policy gradient is computed as

H
VoJ™ = Z E a~are (@17 (s,a)Velnmg(als)].
h=1
Here d};’ is the distribution of (s, a) pairs at step / un-

der policy mp. An update step using policy gradient is
0t+1 = et + UVQJTFG‘ .
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Category Works | intormetion | ordpp | Reflecion | TR
Token-
. Lu et al. (2022), Ramamurthy et al. (2023),
gez:rla;}ion Luong et al. (2024), Yuan et al. (2024) Yes MDP No RL
Park et al. (2023), Zhang et al. (2023),
. Yes
LMs as Shinn et al. (2023) Yes
avents Huang et al. (2022), Yao et al. (2022), MDP None
& Yao et al. (2023b), Du et al. (2023) No
Ahn et al. (2022) No
Ziegler et al. (2020), Stiennon et al. (2022), .
RLHF Bai et al. (2022), Ouyang et al. (2022) Yes | Bandit | No RL
SFT Shridhar et al. (2021) Yes MDP No Supervised
' RL ' Szot et al. (202.3), Tan et al. (2024) Yes MDP No RL
Fine-tuning This work Yes

Table 1: Comparison between works involving LMs and RL. “Direct interaction” indicates whether the LM plays
the role as the policy model directly interacting with the environment, so a “No” means it plays indirectly by
assisting another non-language policy model. “Bandit or MDP” indicates whether the environment is a single-step
bandit or a multi-step MDP. “Reflection” indicates whether this work elicits the reasoning ability of the language
model to generate reflections and help with planning in RL. “Training method” indicates whether the LM is being

trained and if yes, the method.

Proximal Policy Optimization (PPO, Schulman et al.
(2017)) is another exemplary method applied in this
field, whose details are deferred to Appendix A.

4 Methodology

4.1 Reflect-RL

Here, we propose Reflect-RL, an online reinforce-
ment learning fine-tuning method for LMs in MDPs.

4.1.1 LM as an RL policy

We use a language model as an RL policy 7y(als)
where s = (s1,82,...,51) € S is the current state
(represented by tokens) and a = (ay,as,...,aK) €
A(s) is the generated token sequence (also repre-
sented by tokens). Let a.; denote the subsequence
(a1,as,...,a). We apply policy model to multi-step
RL tasks, where the language model reads s in the in-
put prompt, and then generate a in the completion.

In environments where states are not represented in
natural languages, we need a function p(s) to convert
the original state s to make it a legal input for an LM.
For instance, p can be a ViT (Dosovitskiy et al., 2020)
for images, as used in LLaVA (Liu et al., 2023)); or, p
can be a text representation for simple graphs. Natu-
rally, for s1 # s, we require p(sy1) # p(s2). With a
little bit abuse of notations, prompt p(s) and state s are
equivalent throughout our paper.

4.1.2 Training stages of Reflect-RL

We propose a two-stage training pipeline for the above-
mentioned language model policy. An illustration is
shown in Figure 1.

Stage 1. Supervised fine-tuning (SFT). The tasks
included in this work all require the instruction-
following capability to a certain degree: for any valid
state s, the generated action a should follow an in-
structed format. For example, the model should out-
put a paragraph reflecting on previous decisions before
making the next action, with two parts separated by a
special token. For these tasks, we fine-tune LMs with
a dataset D comprised of strings which follow the in-
struction. This process only calculates losses on the
completion part.

Stage 2. Reinforcement learning fine-tuning
(RLFT). We use reinforcement learning to fine-tune
a pretrained language model mg,, which can either be a
publicly available LM or the one after SFT. This stage
proceeds in T update steps. Instep ¢ € {0,1,...,T —
1}, we use g, to sample a batch of B trajectories from
the environment, estimate ()-functions for each step,
then perform updates using the policy optimization al-
gorithm.

4.1.3 Training details

Reflection-aided decision-making. As demon-
strated in previous works (Yao et al., 2022, 2023b;
Shinn et al., 2023), generating reflection is helpful
for improving the decision-making performance,
which inspires us to incorporate reflection in RL.
We combine the idea of reflection with both SFT
and RLFT. Specifically, we first assume access to an
independent reflection model R to generate reflections
before the policy model 7y makes decisions. Upon
observing state s, R generates the reflection R = R(s)
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which possibly includes analyses of current situation
and plans of future steps. Then, the policy model
generates the action after taking both s and R as
inputs. The reflection model R is independent of 7:
it can be either a local, pretrained language model,
or a publicly-hosted LLM such as GPT-4 or Gemini
(Gemini Team, 2023). One illustration can be found in
Appendix F.1.

In our work, we train local LMs in SFT stage us-
ing data collected from Azure OpenAl GPT-4 (details
in Appendix C.3) to serve as the reflection model R4
(Line 21 of Algorithm 1). §¢ is frozen (denoted as
]?i) throughout the RLFT stage. The policy model is
SFTed using data containing the reflection (Line 22 of
Algorithm 1). Formally, let D = {(s;, R;, o;, a;)

1 < i < N} be the dataset (Line 20 of Algorithm 1),
with |R;| = L; and |a;| = K;, then the loss functions

are
| N L R
Lretiea(0) = & >0 >, —log Ry(Rijlsi, Ri 1),
im1j=1
| N K
Loolicy () = v Z —logmg(as ;|si, Ri, o, @i j—1).
io1j=1

Here o; = a(A(s;)) and « is the action enumeration
function defined in Section 4.3.

In RLFT stage, we first query R for the reflection,
then incorporate this reflection into the policy model’s
input (Lines 28 and 29 of Algorithm 1). The probabil-
ity of the action is

K
mo, (als) = H mo, (aj|s, R, o, a.j—1).

Jj=1

Two-player design simplifies the training process.
Splitting responsibilities to two players (reflection and
policy) can simplify the RLFT stage because the gra-
dients of the policy model do not affect the reflection
model. We experimented using the same model for re-
flection and policy, while computing gradients only on
the policy part. Observations (in Appendix F.2) show
that such implementation greatly degraded the reflec-
tion ability. An alternative single-player approach is to
perform RL and SFT concurrently so that the reflection
ability can be retained, but this strategy would compli-
cate the training process.

4.2

Two components are essential in reflection generation:
¢ Logical consistency. We want a trajectory to be logi-
cally consistent, in that the action ay, at step h logically
follows the reflection Ry, at step k. This requirement
is critical for the policy model 7y to derive the correct
action from the reflection.

Generating Reflection for Training

Algorithm 1 Training with Reflect-RL

1: Input and initialize: Environment F, batch size B,
prompting function p, action enumeration function «,
SFT data size N, pretrained LM M, LLM to generate
reflection data M r, number of updates 7T'.

2: Drefiect < I, Dnegalive — J.

3: forn=1,2,...,Ndo

4: FE.reset(), h — 1

5: while —F.done do

6: sp < FE.observation()

7: Ry MR(p(Sh)vpreﬁect)

8 an < Mg(p(sn), Rn, a(A(sh)))

9: Dreﬂect <~ Dreﬁect U {(S}H Rha a(A(S}L))y ah)}

10: ay, ~ Uniform(A(sp)\an)

// random action
11: E, E' < E.step(ay), E.step(a},)
12: h—h+1
13: /I Look ahead: reflect after the “wrong” action
14: s}, < E’.observation()
15: R;.L <« MR(p(SIh)ypncgalivc)
16: a/h HMR(p(Sh),Rh,Oé(A(S;L)))
17: Dnegative «— Dnegalive U {(S/h7 R;—” Q(A(S/h))v a/h)}
18: end while
19: end for

20: D « Dreflect U Dnegative

21: R« SFT(M, {(R | p(s)) € D})

22: mp, «— SFT(M, {(a | p(s), R, a(A(s))) € D})
23: fort =0,1,...,7 —1do

24: forb=1,2,...,Bdo

25: FE.reset(),h «— 1

26: while —F.done do

27: Sp «— EA.observation()

28: Ry ~ R(p(sh))

29: an ~ 7o, (p(sn), Rn, A(sn))
30: E « Estep(an), h — h+1
31: end while

32: Tb<—(51,R1,A(81),a1;...)
33: end for

34: 641 <Policy_Gradient(6:, {71,...,78})
35: end for

e Negative examples. Using optimal or oracle ac-
tions to train policy models is a well-established strat-
egy in RL. However, employing this strategy to gen-
erate training data with LLM may introduce a bias to-
wards producing predominantly affirmative reflections
on previous actions. If such data are exclusively used
for training, the reflection model might merely flatter
the decisions made by the policy model, without pro-
viding substantive self-reflections. Consequently, the
model’s ability to generalize to new or sub-optimal ac-
tions could be significantly limited. To mitigate this,
incorporating negative examples (sub-optimal actions)
can help balance the dataset and enhance the error-
correcting capabilities of the reflection model.

Accordingly, we use two methods to generate the
SFT dataset, with two types of special prompts Prefiect
and Pregative -

At step h, we get the state s;, from the environment
and send (Sp, Prefiect) to GPT-4. Here piefiect tells GPT-
4 to first analyze current situation, plan for the next
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steps, then generate the action. GPT-4 will generate
a response, from which we can easily extract out re-
flection RYPT and action aj, because of GPT-4’s high-
level instruction-following capability. Next we send
ap, to the environment and increment A until termina-
tion. The above procedure generates a logically consis-
tent trajectory 7. The illustration can be found between
Lines 7 and 9 of Algorithm 1 and Figure 1.

To get negative examples, we start from 7 or an op-
timal trajectory 7* by perturbing each step. For any
step h, we first restore the environment to state sp_1,
then we randomly pick an action aj,_, from the set
A(sp—1)\{an—1}. This perturbed action will lead us
into another state s},. We send (},, Pnegative) to GPT-4,
where ppegaiive tells GPT-4 that the last action a’h_1 is
sub-optimal, and lets it to find out the reason of sub-
optimality, plan for the next steps to correct the mis-
take, then generate the action aj,. The reflection gener-
ated at this step is (RSPT)’. We halt at this step, using
only (s}, (RSFTY, aj)) as a negative example.

4.3 Single-Prompt Action Enumeration

The action spaces in the benchmarks are extremely
large and state-dependent. Moreover, a valid action
spans over several tokens, and has constraints on the
token combination. For instance, in ALFWorld, the
action spaces can differ across tasks or locations, due
to variations in the objects that can be interacted with.
A typical valid action is “go to cabinet 10” which
contains 4 tokens, while “take cabinet 10” is in-
valid. However, this valid action may become invalid
when presented in another task where “cabinet 10”
does not exist. As stated in various works (Ahn et al.,
2022; Tan et al., 2024), it is highly possible for the lan-
guage model to generate a long token sequence that
does not meet the constraints.

The remedies proposed by these works share the
same spirit. SayCan (Ahn et al., 2022) and Ac-
tion prompt normalization (Tan et al., 2024) are sim-
ilar approaches enumerating all the valid actions a €
A(s), calculating the probability 7y (a|s), and normal-
izing over A(s). Calculating my(als) using a Trans-
former model takes ©((|s| + |a|)?) time. This ap-
proach takes O3, () (|5 +[a])?) = O(A(s)| s+
DacA(s) |a|?) time, which is intractable when | A(s)| is
large. Here we assume |s| > |a| as in almost all of the
benchmarks. For two benchmarks (AutoExplore and
ALFWorld) considered in our work, we have | A(s)| ~
20, |s| ~ 500, and |a| ~ 5 for almost all the states. As
aresult, action prompt normalization cannot be applied
to our benchmarks.

We propose single-prompt action enumeration
which shares spirit with many language classification
tasks (Zellers et al., 2018; Bisk et al., 2019; Hendrycks
et al., 2021) to reduce time complexity while enforc-

ing valid actions. This method works on two sides.
On the environment side, we introduce an extra com-
ponent: the action enumeration function . Suppose
a1, as, ... is an order of actions in .A(s), then we com-
pose a(A(s)) = (1,a1;2,ag;...) by explicitly writ-
ing down the choice letter ¢ and action a;. « is sent
to the policy model as additional input, together with
state s and reflection R. On the model side, we restrict
the policy model to output exactly one token, repre-
senting the choice in «. We also mask out rows of
1m_head (neurons of the final output layer) that does
not decode into a choice letter. With these combined,
we are ensured that the generated action is valid. As a
comparison with action prompt normalization, the run-
ning time of our approach is ©(([s|+ X, 4 () la])?) =
o(ls|”> + DacAs) |la|?), which is strictly better. Here
reflection R is considered as part of s without loss of
generality.

4.4 Curriculum Learning

Curriculum learning (Elman, 1993; Bengio et al.,
2009) is a paradigm in machine learning using a topo-
logical ordering of tasks to help with training. Starting
with easy tasks, the model can have a faster conver-
gence on hard tasks compared with directly training on
them. In this work, we experiment on a curriculum de-
sign called “extra reward signal”. For tasks with long
horizons and sparse rewards, it is nearly impossible for
a policy to sample a trajectory with a meaningful re-
ward signal, thus policy gradient methods will make
slow progress. We design the curriculum by manually
adding rewards to some “milestones”. In experiments
of DangerousTaxi (see Section 5), which requires to
first pick up then drop off a passenger while only giv-
ing reward after a successful dropoff, we design the
curriculum to give a reward after a successful pickup.

5 Benchmarks

Motivated by the LLF-Bench (Cheng et al., 2023),
we have created a natural language environment base
class (NatLangEnv) that is compatible with the Ope-
nAl Gym framework, characterized by its unique ap-
proach of utilizing textual representations for both ob-
servations and actions. This adjustment allows us to
effectively train and test language models.

AutoExplore. To verify our methodology of
Reflect-RL on the exploration example mentioned
in Section 1.1, we built a complete benchmark for au-
tonomous exploration. This benchmark contains three
components: a AutoExploreSandbox for file pro-
tection, a multi-agent system AutoExploreCopilot
for interactive decision-making, and a labeled dataset
for performance assessment. The AutoExplore
environment enables LMs to interact with the file
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Model Depth 1 Depth2 | Pickup - +Dropoir® | ALFHorLe
Mistral 7B 34% 3% 7% 0% 0%
Open Source Llama2 7B-chat 2% 1% 3% 0% 0%
Orca-2 7B 6% 1% 1% 0% 0%
SFT Only GPT-2XL 1.56B | 4% 9% 7% 0% 0%
RLFT Only | GPT-2XL 1.56B | 12% 3% 2% 0% 0%
SFT+RLFT (w/o reflection) | GPT-2 XL 1.56B | 20% 4% | 6% 0% | 66%
SFT+RLFT (w/o negative) | GPT-2 XL 1.56B 33% 12% - - -
Reflect-RL (Ours) GPT-2XL 1.56B | 36% 17% | 58% 29% 74%

Table 2: Testing performance (average success rate) of open source models (Jiang et al., 2023; Touvron et al.,
2023; Mitra et al., 2023), GPT-2 XL fine-tuned with baselines, and with Ref1ect-RL. ReAct and memory mech-
anism, as shown in Figure 1, have been incorporated to improve performance. For conciseness, we have not
performed prompt optimization for the open-source models, and their performance could potentially be improved
with different prompting techniques in the future. Explanation for baselines: “SFT+RL (w/o reflection)” means
the policy model is the only model involved, and the reflection field is removed from SFT data. “SFT+RL (w/o
negative)” means there are no negative examples in SFT data, so both the reflection model and the policy model
are trained on expert demonstrations. We only ran this ablation on AutoExplore. Explanation for tasks: For
AutoExplore, we tested on 44 user queries, each with 10 runs. “Depth ¢ includes the tasks with target file depth
exactly 4. For DangerousTaxi, we ran on 100 random maps. “Pickup” computes the success rate of picking up
the passenger, and “+Dropoff” computes the overall success rate. For ALFWorld, we tested on 4 tasks, each with
25 runs.

system safely, with the ultimate goal of answering
a natural language question specified by users. The
labeled dataset is composed of several real-world and
synthesized repositories, with over 2500 trajectories.
See Appendix C for more details.

This exploration task draws inspiration from Re-
trieval Augmented Generation (RAG) (Lewis et al.,
2020) and InterCode (Yang et al., 2023). RAG’s per-
formance is linearly dependent on the amount of con-
tent (e.g., number of files) in the search space, present-
ing scalability challenges. In contrast, InterCode uti-
lizes a tree-structured search methodology, requiring
merely logarithmic space and time. This approach is
notably beneficial for expansive search spaces or envi-
ronments prone to frequent updates (e.g., Docker envi-
ronments, customized systems). By integrating online
RL training into InterCode, our proof-of-concept en-
vironment aims to create code interpreter designed for
large code repositories.

During interaction with AutoExploreCopilot,
each step the agent receives —1 reward as the cost of
time. After 15 steps or the agent explicitly terminates,
if the correct file is identified, a +15 reward is given;
otherwise a —15 reward is given.

DangerousTaxi. We extended the OpenAl Gym’s
Taxi environment to introduce a higher level of chal-
lenge, thereby creating the “DangerousTaxi ” en-
vironment. This game concludes prematurely if the

player commits any invalid action, such as colliding
with a wall, or incorrectly picking up or dropping off
passengers at unauthorized locations. This modifica-
tion crucially elevates the task’s difficulty by eliminat-
ing the opportunity for the model to correct its mis-
takes after a wrong decision—a common allowance in
the standard environment.

We applied curriculum learning to DangerousTaxi.
In the designed pickup curriculum, we assign a pos-
itive reward 20 and terminate the environment after
the driver successfully pickup the passenger. In the
dropoff stage, the pickup reward is retained, but the
driver needs to further dropoff the passenger at desti-
nation to receive the full reward.

ALFWorld. Our study leverages ALFWorld (Coté
et al., 2019; Shridhar et al., 2020), a multi-turn plat-
form tailored for simulating household tasks by con-
verting the graphical representation of a house into de-
scriptive language. A robot in is required to complete
certain tasks based on the descriptions. This bench-
mark has gained recognition to evaluate LLM agents,
with studies like Arabzadeh et al. (2024) demonstrat-
ing its efficacy. Our focus on the tomato picking task
stems from its optimal mix of simplicity and represen-
tativeness.
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Figure 2: Training success rates of different training
methods with GPT-2 XL in the pickup curriculum of
the DangerousTaxi environment. We compared dif-
ferent RL methods for 5000 iterations during RLFT.
SFT with 5000 iterations would only achieve 7% suc-
cess rate, hence only RL methods are shown.

6 Experimental Results

To verify our approach, we apply Reflect-RL on
GPT-2 XL (Radford et al., 2019). Table 2 presents a
comprehensive evaluation of various models’ perfor-
mance across different environments. LMs still face
challenges in multi-step decision-making in interactive
environments, and Reflect-RL has significantly im-
proved their decision-making capabilities in complex
environments. This method not only utilizes the in-
herent strengths of LMs in reflection but also closely
aligns with the multi-step decision-making process in-
trinsic to RL. Our findings highlight the potential of
merging advanced prompting techniques with LMs to
address complex RL tasks, establishing a new bench-
mark for future research in this field.

Open source models and commercial GPT models.
We evaluated three open-source 7B models with nec-
essary prompt engineering such as ReAct and mem-
ory mechanism included. These models all perform
poorly on the three tasks, except for Mistral 7B on
AutoExplore depth 1. We also examined GPT-3.5-
turbo and GPT-4 (version 1106) through Azure Ope-
nAl API. GPT-4 can achieve a success rate of 71%
in AutoExplore depth 1, 81% in depth 2, and 84%
in ALFWorld; meanwhile, GPT-3.5-turbo achieves a
success rate of 31% in AutoExplore depth 1, 8% in
depth 2, and 6% in ALFWorld. During the evaluation,
we noticed potential data contamination of these two
models: GPT-4 can sometimes identify near-optimal
actions without extensive exploration of the space. In
the DangerousTaxi environment, the success rates of
the dropoff curriculum for GPT-4 and GPT-3.5-turbo
are both 0%. Even though GPT-4 has 70% chance ex-
ecuting a valid action in each step, it is prone to fail-
ure upon committing minor errors along the long nav-
igation path during multi-turn interactions. These ob-
servations suggest that even powerful LLMs may still
need online RL training for multi-turn interactions.

SFT is not enough. Supervised fine-tuning (SFT)
has been widely used offline to improve LMs’ perfor-
mance on specific tasks. However, our results (Table 2)
indicate that SFT alone is not sufficient for complex
RL tasks requiring multi-step decision-making. While
SFT enhances task-specific knowledge, it fails to solve
problems requiring deep reasoning, planning, and re-
flection.

Reflection helps learning. Incorporating reflective
processes into LLMs significantly enhances decision-
making and learning from past actions. Our compara-
tive analysis between models with and without reflec-
tion capabilities highlights the importance of reflec-
tion for advanced understanding and adaptability in RL
tasks. As shown in Figure 2, the curves representing
online RL without reflection are constantly below the
curve of Reflect-RL. Figure 4 shows a similar result.

Reflecting from mistakes is beneficial. The philos-
ophy of “learning from mistakes” plays a meaningful
role in Reflect-RL. Without negative reflection sam-
ples, the model’s performance would be worse (in ab-
solute difference) than the model trained with both pos-
itive and negative data. For AutoExplore, the test ac-
curacies without negative examples are 33% and 12%
for each curriculum, compared with 36% and 17% with
negative examples. As shown in Figure 3, the solid
curve represents the integration of negative examples
into the SFT dataset, and we observed a faster conver-
gence during RLFT.

Positive + Negative Examples

S

\; 60 Positive Examples Only

5

~

2 40

0]

3!

> 20

v 0 1,000 2,000 3,000 4,000 5,000
Iters

Figure 3: Training success rate with and without neg-
ative examples in the AutoExplore setting, each as-
sessed in a single run. When negative examples are ex-
cluded, the training process exhibits decreased speed
and lacks smoothness.

Curriculum learning (CL) accelerates learning.
As shown in the top two curves in Figure 4, CL ac-
celerates the learning curve for complex RL tasks by
structuring the training process with challenging tasks.
To ensure a fair evaluation, both learning approaches
(Reflect-RL with and without CL) are pre-trained
with the same reflection dataset during the SFT phase.
The curriculum learning approach begins with an ini-
tial RL training phase focused on the pickup curricu-
lum, followed by the dropoff curriculum. Without cur-
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riculum learning, the model is trained directly using the
dropoff curriculum, resulting in slightly inferior per-
formance.

g Reflect-RL (W/CL) = = = Reflect-RL (w/o CL)

o 40 RL + SFT -—— RL
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%)

%]
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Figure 4: Comparison of training success rates in the
drop-off curriculum in the DangerousTaxi environ-
ment. The top two curves represent Reflect-RL;
“w/ CL” means the experiment incorporates curricu-
lum learning (CL) and is trained with the pickup cur-
riculum. The bottom two dashed curves represent on-
line RL without reflection. All single run.

Sensitivity of the policy model with respect to the
reflection model. For DangerousTaxi pickup sub-
task, using the same policy model after Reflect-RL,
we switch the reflection model to GPT-2 Small 0.12B
and Mistral 7B SFTed with the reflection data. The
results for GPT-2 Small 0.12B, GPT-2 XL 1.56B, and
Mistral 7B are 55%, 58% (as in Table 2), and 64%.
This phenomenon indicates that the policy model is not
extremely sensitive to the robustness/accuracy of the
reflection model as the policy model can easily adapt.
Additionally, using a more capable reflection model
can improve the performance.

7 Discussion and Conclusion

Risk, impact, and responsible AIL. In this study, we
adhere to principles of Responsible Al by ensuring
transparency, efficiency, and security in both the train-
ing and evaluation stages. An exemplar of our commit-
ment is the development of AutoExploreSandbox,
designed to reduce the risk of security issues in the file
system. Recognizing the importance of ethical consid-
erations and the social impact of our work, we pledge
to engage in continuous evaluation of LMs’s perfor-
mance in multi-step environment.

Limitations. Our study, while comprehensive, ac-
knowledges certain limitations. Although ALFWorld
benchmark is multimodal, this study primarily focued
on the text representation, leaving the examination of
multimodal models and cross-attention encoding of
other modalities (such as images and audio) for fu-
ture work. Comparisons with commercial models is
discussed in Section 6, but the proprietary nature and
potential biases (e.g., unknown training data) limit a
fair comparison with open-source models. Standard-

ized benchmarks in the field are needed for further
evaluation. Lastly, the reflection data utilized in our
study is generated by GPT-4, which may not fully cap-
ture the distribution of real human data. This indicates
the importance of integrating more authentic human-
generated data in future evaluations.

Future direction. The primary goal of this study is
to create an efficient online RL pipeline for LMs to
perform multi-step problem solving. Building on this
foundation, future research directions may explore the
scalability of Reflect-RL to develop larger founda-
tion models, enabling them to adapt to previously un-
seen environments with out-of-domain generalization
capabilities. The two-player design in our framework
may naturally be extended to other multi-agent settings
where language models can show their strengths. An-
other future direction is to train the reflection model
in RLFT stage as we freeze it because of the interfer-
ence with the policy model (Appendix F.2), which will
improve the reasoning ability of language models for
decision-making tasks.
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A Discussion on PPO

Proximal policy optimization (PPO) is an advanced
policy gradient method, which aims to take the largest
possible improvement step on a policy while ensuring
the deviation from the previous policy is reasonably
small. The update step is

mo(als)

0,1 = arg méiXEs,a [ min{ AT (s, a),

o, (als)
mo(als)

clip (W’l 61+ 6) AT (s,a) } } ’

where € usually takes small values such as 0.1 or 0.2.

In practice, we found that PPO did not work well.
For tasks with a large state space, action space, and
a long horizon, the training processes were constantly
unstable, with sudden drops of the expected total re-
ward. Such tasks pose high difficulty for the value
function estimator to learn the value functions when
the policy network changes. Most importantly, inher-
ent randomness (including dropout, padding length in
different batches, top_p and top_k) of LMs results in
high sensitivity for the terms of ¢ (&"SS)). Though we
want the policy to sample actions with small possibili-
ties (e.g., mp, (als) < €) to encourage exploration, high
sensitivity will result in such values becoming to 0 in
almost all the future re-evaluations.

B Illustrations of Pipeline

In this section we present detailed versions of Figure 1.
Figure 5 is the illustration for data generation. Figure 6
is the illustration for SFT stage. Figure 7 is the illus-
tration for RLFT stage.
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C Autonomous Exploration Details

Autonomous exploration in a well-organized reposi-
tory can reduce the number of reads of files to a large
extent. Ideally, if the repository has n files and is or-
ganized as a k-ary tree, the best language model only
takes O(k + log, n) (compared to O(n) using exhaus-
tive enumeration) commands to identify the correct
file, then proceed with the specific needs of reading,
editing, and executing. This serves as an motivation of
autonomous exploration benchmark.

C.1 Autonomous Exploration Sandbox

AutoExploreSandbox is a sandbox protecting the
original repository from modification. An instance of
AutoExploreSandbox could be initialized with the
path to the original repository, then this instance will
create a temporary directory in a specified location
(could possibly be a ram disk) and make a duplication
of the original repository. AutoExploreSandbox sup-
ports two main functions:

1. Executing system commands: For the purpose
of our work, commands such as “cd”, “ls”,
“cat”, “head”, “tail”, “echo”, “python” and
“pip” are supported to enable document retrieval
and coding.

Tracking changed files: The wuser of
AutoExploreSandbox could call a function
to get the list of the changed files and their
contents compared to the original status when
creating the sandbox.

C.2 Autonomous Exploration Copilot

AutoExploreCopilot is an agent medi-
ating  between language  models, humans,
and AutoExploreSandbox. An instance of

AutoExploreCopilot could be initialized with
a natural language question and the correspond-
ing repository to work in. The main function of
AutoExploreCopilot is to give natural language
descriptions of the current autonomous exploration
task for either human or language models to make
decisions. The interaction proceeds in loops (k starts
from 0):

e Step 3k +1: Prompting. AutoExploreCopilot
compiles a prompt pj given the current status of
AutoExploreSandbox, which includes the ques-
tion, current working directory (cwd) in the repos-
itory, files and folders under cwd (optional, can be
used to replace 1s and reduce interaction), histor-
ical commands cg,c1,...,Cr_1 from the human
or language model, and execution result of the last
command cj_1.

15

» Step 3k + 2: Querying. AutoExploreCopilot
sends the prompt pj to human or LM and gets
the response. This response may contain exces-
sive information such as analysis of the current
situation (which is a typical behavior of GPT-4),
so AutoExploreCopilot needs to extract sys-
tem command ¢ from the response.

* Step 3k + 3: Executing. AutoExploreCopilot
sends the system command «¢; to
AutoExploreSandbox and gets the execu-
tion results. The results contain standard output
and standard error, such as the file content after
“cat” and runtime error of “python”.

The interaction ends when the response in step 3k + 2
contains an exit signal stipulated in the prompt.

AutoExploreCopilot is capable of prompting
GPT-4 to do the entire task, while for the smaller mod-
els in this work we only set the goal to be a subtask
(file identification).

C.3 Labeled Dataset

The licenses are bounded by each open-source reposi-
tory used in this dataset.

Using GPT-4 from Azure OpenAl service, we
constructed a synthetic repository called “Coffee
Company”, which contains documents (in .md for-
mat), codes (in various programming languages), and
database files (in .csv format). This repository con-
tains around 12 million tokens. In addition, we down-
loaded 12 open-source repositories containing codes
and documentations from GitHub.

After collecting the repositories, we built a labeled
dataset regarding autonomous exploration. Each da-
tum in the dataset contains the following fields: the
name of the repository n, a natural language question
q, an answer to this question a, the related file f, and
the shortest system command path to reach this file
¢t = (¢§,c1,...,¢5_1). As a start point, this work
focus on an important step in autonomous exploration:
find the correct file f given the natural language ques-
tion g, so the answer a is for future work.

This dataset is generated in a “reverse question gen-
eration” manner. We first enumerate the pair (n, f),
then send the content of f to GPT-4 to let it generate
several pairs of (¢, a). We prompt GPT-4 to ask ques-
tions on the functionality of the file by requiring it to
analyze the file’s role in the whole repository.

This dataset contains 1764 training data (292 user
queries), 505 validation data (86 user queries), and 252
test data (44 user queries).

Here is the prompt template for AutoExplore label
generation:

Below is a text file {NAME} from a
repository. This repository is deployed
as a backend service, providing users
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with certain services. Users want to use
specific functionality or ask questions
about the services, such as "tell me the
business philosophy of this company" or
"what is the high-level architecture of
the proposed model". These inquiries are
guaranteed to be answered by reading some
text files.

Your task is to first analyze its
content. Then, come up with some user
queries which involves this text file,
along with the answers to them. Use the
following format:

# ANALYSIS

QUERY1:
ANSWER1:
QUERY2:
ANSWER2:

Text
{CONTENT}

C.4 Reflection Generation

Here is the system message for AutoExplore reflec-
tion generation:

You are a helpful assistant to explore
a file system. Given a natural language
task, you need to generate a sequence
of system commands to identify the
correct file. During interaction, you
can only output a single choice number
as response, which comes from a list
of commands given to you. For example,
the possible commands are: ["A. cat
test.py", "c. cd progs", "9. cd .."].
Your answer should be "A", "c", or "9",
not the entire command.

A special command ‘id X‘ is introduced

to this task, which means to identify

the file X as the final answer. Once

you are sure X is the answer, use ‘id°¢

to explicitly identify it, then the
interaction terminates. Remember, simply
‘cat‘ a file does not identify it.

Here is prefiect: Now analyze the current
situation and plan what to do next using
50 words. Don’t give the choice yet. If
you have identified the correct file in
previous steps, you should exit at this
step.

Here is Dnegative - The last command opens
a wrong folder or file, which is a
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suboptimal move. Give reasons why the
folder or file is incorrect and plan what
to do next using 50 words. Don’t give
the choice yet.

D Other Benchmark Details

D.1 Dangerous Taxi

OpenAl Gym uses MIT License.

Here is the system message for DangerousTaxi re-
flection generation:

Given a problem state, the actions you
have taken, and the observations you
have.

You need to give reflection on your
actions, such as:

- What is the consequence of your
previous action?

- How is your previous action?
bad? Why?

- What is the next action you want to
take if possible? Why?

Good or

I might give you some spoiler information
and optimal action for cheating, but you
should not mention that you have seen any
spoilers, optimal actions, or any other
information that you should not know.
Pretend you are smart and just know these
information.

Don’t use any words related to "optimal"
in your reflection.

Keep your reflection concise within 100
words.

For instance,

Because ..., so I ...
The task is to,... I
I found ... So...
etc.

Here iS ppegaiive: The previous actions might
contain some mistakes. Ppegaive 1S directly ap-
pended to the observation prompt p(s).

D.2 ALFWorld

ALFWorld and TextWorld use MIT License, Fast
Downward uses GNU General Public License (GPL)
v3.0.

ALFWorld shares the same system message and
Dnegative With DangerousTaxi
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Hyperparameter Value
Train batch size 1 on 4090
2 on A6000 and A40
Evaluate / Sample trajectory batch size | 4
Gradient accumulation steps 1
Learning rate 2x107%
Gradient clipping norm 0.3
Weight decay 1x1073
Precision bf16
LoRA quantization 8bit
LoRA « 16
LoRA rank 64
Maximum token length 1024
Temperature 1
Top p 1
Top k 99999

Table 3: Hyperparameters of experiments

E Experiment Details

1. Pickup the passenger.
2. Dropoff the passenger at
the destination.

(a) AutoExplore (b) DangerousTaxi (C) ALFWorld

Figure 8: Illustration of our environment

We use NVIDIA RTX 4090, RTX A6000, and Tesla
A40 for the training and evaluation of our proposed
Reflect-RL method. Python, PyTorch, HuggingFace
PEFT, and AutoGen are used throughout the project.

All the experiments share the set of hyperparameters
in Table 3.

For AutoExplore, it takes around 30 sec per it-
eration under the setting of horizon H 15. For
DangerousTaxi, it takes 30 sec per iteration under
the setting of horizon H = 15 in pickup, and 60 sec
per iteration under the the setting of horizon I = 30
in dropoff. For ALFWorld, it takes 90 sec per iteration
under the setting of horizon H = 15.

F Qualitative Observations

F.1 [Illustration of Reflection-Aided
Decision-Making

Figures 9 to 14 show an entire trajectory of our
reflection-aided decision-making method. Irrelevant
observations and actions are omitted by “...”
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F.2 Same Model for Reflection and Policy

Figures 15 and 16 are two log scripts in an experiment.
In this experiment, the reflection model R and policy
model 7y, are the same. Thus, the gradients computed
on the action part will be influence the reflection part.
The reflect quality degraded drastically after 1194 iter-
ations of updates.
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Observation:
You are in the middle of a room.
Looking quickly around you, you see a
cabinet 20, ..., a fridge 1,
Your task is to: put a tomato in
microwave.
Reflection:
Observation:
You are in the middle of a room.
Looking quickly around you, you see a
Action List: cabinet 20,
Action 0: go to cabinet 1 Your task is to: put a tomato in
Action 1: go to cabinet 10 microwave.
- Here is the previous path:
Action 27: go to fridge 1 --- Step: 0 ---
Action: -—— Step: 1 ---
27 Action: open fridge 1

Observation: You open the fridge 1.
The fridge 1 is open. In it, you see

Figure 9: Step 1 of a reflection-aided decision-making
aegg 1, a pot 2, a pot 1, a tomato

example.
2, and a tomato 1.
Reflection:
Observation:
You are in the middle of a room.
Looking quickly around you, you see a
cabinet 20,
Your task is to: put a tomato in
microwave.
Here is the previous path:
-—= Step: 0 --- Action List:
Action: go to fridge 1 Action 0: close fridge 1
Observation: You arrive at loc 24.
The fridge 1 is closed. Action 46: take tomato 2 from fridge
Reflection: 1
Action:
46
Figure 11: Step 3 of a reflection-aided decision-
making example.
Action List:
Action 0: examine fridge 1
Action 1: go to cabinet 1
Action 41: open fridge 1
Action:
41

Figure 10: Step 2 of a reflection-aided decision-
making example.

18

1012



Observation:
You are in the middle of a room.
Looking quickly around you, you see a

Observation:
You are in the middle of a room.

cabinet 20, ..., a microwave 1, . X
. . Looking quickly around you, you see a
Your task is to: put a tomato in .
. cabinet 20,
microwave. . .
. . Your task is to: put a tomato in
Here is the previous path: .
microwave.
--- Step: 0 -—- . .
Here is the previous path:
T --- Step: 0 -—-
--- Step: 2 --—- P
Action: take tomato 2 from fridge 1
--- Step: 3 ---

Observation: You pick up the tomato

2 from the fridge 1. Action: go to microwave 1

Observation: You arrive at loc 22.

Reflection:

eflection The microwave 1 is closed.
Reflection:

Action List: Action List:

Action 0: examine microwave 1
Action 0: <close fridge 1
Action 43: open microwave 1
Action:

43

Action 32: go to microwave 1

Action:

32

Figure 13: Step 5 of a reflection-aided decision-

Figure 12: Step 4 of a reflection-aided decision- making example.

making example.
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Observation:

You are in the middle of a room.
Looking quickly around you, you see a
cabinet 20,

Your task is to: put a tomato in
microwave.

Here is the previous path:

--- Step: 0 ---

--- Step: 4 --—-

Action: open microwave 1
Observation: You open the microwave
1. The microwave 1 is open. Imn it,
you see a mug 1.

Reflection:

Action List:
Action 0: close microwave 1
Action 44: put tomato 2 in/on
microwave 1

Action:

44

Observation:

# Task

What is the reason for the planned
domain name change for the website?
# Current working directory

# Files under current working
directory

README .md

# Command history

# Execution result of your last
command

Reflection:

Action List:

t. exit

103. cat README.md
110. id README.md
Action:

103

Figure 14: Step 6 of a reflection-aided decision-

making example.
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Figure 15: A log script from iteration #10.




Observation:

# Task

What is the reason for the planned
domain name change for the website?
# Current working directory

# Files under current working
directory

README.md

# Command history

# Execution result of your last
command

Reflection:

Action List:

166. id README.md
T. exit

g. cat README.md

Action:
g

Figure 16: A log script from iteration #1204.
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