Reflect-RL: Two-Player Online RL Fine-Tuning for LMs

Runlong Zhou* and Simon S. Du’ and Beibin Li

Abstract

As language models (LMs) demonstrate their
capabilities in various fields, their applica-
tion to tasks requiring multi-round interac-
tions has become increasingly popular. These
tasks usually have complex dynamics, so su-
pervised fine-tuning (SFT) on a limited of-
fline dataset does not yield good perfor-
mance. However, only a few works at-
tempted to directly train the LMs within in-
teractive decision-making environments. We
aim to create an effective approach to fine-
tune LMs with online reinforcement learn-
ing (RL) in these environments. We propose
Reflect-RL, a two-player system to fine-tune
an LM using SFT and online RL, where a
frozen reflection model (player) assists the
policy model (player). To generate data for the
warm-up SFT stage, we use negative exam-
ple generation to enhance the error-correction
ability of the reflection model. Furthermore,
we designed single-prompt action enumera-
tion and applied curriculum learning to al-
low the policy model to learn more efficiently.
Empirically, we verify that Reflect-RL out-
performs SFT and online RL without re-
flection. Testing results indicate GPT-2 XL
1.56B fine-tuned with Reflect-RL outper-
forms larger open-source LMs, such as Mis-
tral 7B. The benchmarks, dataset, and code in-
volved in this work are publicly available.'

1 Introduction

Large language models (LLMs) have shown promising
results in problem-solving, coding, and document re-
trieval (Mialon et al., 2023). While performing these

*University of Washington. Part of this work done when
Runlong was an intern at Microsoft Research, Redmond.
Email: vectorzh@cs.washington.edu

University of Washington. Email:
ssdu@cs.washington.edu
fMicrosoft Research, Redmond. Email:

beibin.li@microsoft.com
"https://github.com/zhourunlong/Reflect-RL

tasks, LLMs exhibit considerable reasoning, planning,
and reflection skills, enabled by prompting techniques
like ReAct (Yao et al., 2022), Reflexion (Shinn et al.,
2023), Chain of Thought (CoT, Wei et al. (2023)), Tree
of Thoughts (ToT, Yao et al. (2023a)), and reasoning
via planning (Hao et al., 2023). Some recent studies
(Magister et al., 2023; Mukherjee et al., 2023; Mitra
et al., 2023) also try to improve reasoning capabilities
of smaller models to match those of advanced LLMs.

The reasoning and reflection skills enable LLMs to
act as agents and interact with real-world environments
(Durante et al., 2024; Cheng et al., 2023), including
code interpreters, embodied robotics (Shridhar et al.,
2021; Ahn et al., 2022; Tan et al., 2024), games (Park
et al., 2023), and many other spaces (Vezhnevets et al.,
2023). This interaction ability is closely tied to rein-
forcement learning (RL), where agents can learn opti-
mal behaviors through trial and error within an envi-
ronment.

1.1 Motivations

This research is motivated by three distinct application
domains within the same system, which include: doc-
ument querying (Izacard et al., 2022), database search-
ing (Floratou et al., 2024), and coding (Chen et al.,
2021). In these applications, a chatbot needs to nav-
igate in a file system to read documents, modify files,
and execute code to answer users’ questions. Central
to these tasks is the chatbot’s ability to autonomously
explore within a repository using system commands,
such as, 1s, cd src/, cat main.py, similar to the
paradigm in Yang et al. (2023).

Interactive chatbot for file systems (NVIDIA, 2024),
multi-agent frameworks (Wu et al., 2023), tool se-
lection (Karpas et al., 2022; Patil et al., 2023), and
many other industrial applications require interactive
decision-making capabilities. Even if LLMs can per-
form these tasks, they are usually trained heavily
with offline supervised learning rather than with on-
line training within complex environments. Moreover,
some recent studies have found that LLMs might not
be able to correct themselves without external feedback
during interactions (Huang et al., 2023). On the other
hand, online RL training could enable LMs to dynami-
cally adapt and make informed decisions beyond static

995

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 995-1015
August 11-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/zhourunlong/Reflect-RL

Observation

You are in the

|

, I

Reflection I

Taking the tomato to the -

microwave is correct. - -|
Next step is to place the

tomato ... -

~. | Possible Actions

1. Close microwave

middle of a room. > ﬂ
You see a cabinet 18, Re ect
_r acabinet 3, a ... Agent
N) Database
e R

Memory

Task: Cook Tomato
Act0: Go to fridge

2. Puttomato in Q@isr 1 @l Policy -
microwave
Act4: Open microwave Ageﬂt 1 SFT
Obs 4: You see amug ...
. J

|
|
i 3. Go to cabinet
|
|

[Reward: +1] |

Figure 1: Reflect-RL Pipeline. Solid lines represent the forward pass for both data generation and inference.
Agents (in circular nodes) are language models capable of generating reflections and making decisions. Red
dashed lines represent the loss and gradient calculation during the training periods: the reflection agent is trained
with SFT, while the policy agent is trained first with SFT and then with online RLFT. Detailed illustrations for

each stage can be found in Appendix B.

datasets.

Some recent studies have incorporated RL to align
LMs with human preference and to prompt LM for
problem-solving (see Table 1 for details). Szot et al.
(2023) and Tan et al. (2024) have started contemporary
explorations to integrate LMs within interactive RL en-
vironments, but these pioneering studies have not fully
utilized the LMs’ reasoning capabilities. Motivated by
the strength of RL and expansiveness of LLMs, our
work aims to fine-tune smaller, faster, and more se-
cure locally-operated LMs that are capable of decision-
making and adaptation through reflection, which are
essential for domain-specific interactive tasks.

1.2 Contributions

In this work, we introduce Reflect-RL, a novel ap-
proach to dynamically improve LMs with online RL
(Figure 1), applied with Markov decision processes
(MDPs) for multi-step decision making. Most of the
previous RL-LM works can be categorized into three
classes (Table 1): @ treating token-generation as RL,
rather than considering embodied tasks, games, or in-
teractive decision making within environments; @ us-
ing LMs as agents to augment policy generation with
additional textual information, without directly learn-
ing from the environment (gradient-free); ® engaging
primarily with single-step bandits rather than multi-
step MDPs. Our method seeks to improve multi-step
decision making in textual environments by integrating
techniques from RL and LMs, enabling LMs to adapt
more efficiently to complex environments. We summa-

rize our key technigues below.

Key Techniques:

e Reflection (Section 4.1.3). We distill reflection abil-
ities for our domain-specific environment from GPT-
4 (OpenAl, 2023) through supervised learning. The
distilled small LM is frozen and deployed as a re-
flection model (player) to assist the trainable policy
model (player) in decision-making. Reflection accel-
erates training convergence and improves test perfor-
mance.

e Negative example generation (Section 4.2). The re-
flection data gathered from GPT-4 is unbalanced, with
the majority consisting of positive (near-optimal) deci-
sions. To balance the dataset, we generate negative ex-
amples by perturbing the GPT-4 trajectories and opti-
mal trajectories. Negative examples enhance the qual-
ity of reflection, ultimately leading to better success
rates in the benchmarks.

e Single-prompt action enumeration (Section 4.3).
We incorporate all possible valid actions into a single
prompt, allowing the LM to select the appropriate op-
tion using only one token. This approach improves
upon the normalization techniques in previous works
to generate valid actions and also reduces time com-
plexity.

e Task-specific curriculum learning (Section 4.4).
The core challenges of RL include planning for a long
horizon and sparse reward signals. Vanilla policy opti-
mization methods often fail to obtain sufficient useful
trajectories efficiently. We incorporate the idea of cur-

996

riculum learning into our pipeline, designing a specific
curriculum to guide training by giving extra rewards or
scheduling the data order.

New Benchmark for Online RL Fine-Tuning. Ad-
ditionally, we introduce AutoExplore, a benchmark
inspired by industrial applications, along with other
benchmarks adapted from previous works. These
benchmarks are suitable for both research and appli-
cation purposes. They can be integrated with either
local LMs for training or remote LLMs for in-context
inference. Our demonstrations show positive results of
LLMs on industrial applications. Both RL training and
data generation are made easy by their use.

Paper Overview. This paper begins by discussing
LLMs in Section 2 and RL preliminaries in Section 3.
Then, we introduce our proposed Reflect-RL in Sec-
tion 4 and benchmarks in Section 5. The results are
presented in Section 6. Finally, we discuss the findings
and future directions in Section 7.

2 Related Works

Language models (LMs). LM:s play a pivotal role in
tasks such as sentiment analysis (Zhong et al., 2023;
Wang et al., 2023b), machine translation (Gulcehre
et al., 2017; Lample and Conneau, 2019), and auto-
mated text generation (Chen et al., 2020; Dathathri
et al., 2020), showcasing their versatility and capability
in handling complex linguistic structures.

LM agents and multi-agent collaborations. Au-
tonomous LM agents (Bran et al., 2023; Park et al.,
2023; Wu et al., 2023; Wang et al., 2023a) under-
score LMs’ capabilities of autonomous and collabo-
rative problem-solving. Such agent collaboration can
achieve a level of sophistication and efficiency that is
difficult to obtain through solo efforts.

Fine-tuning of LMs. Supervised fine-tuning (SFT,
Howard and Ruder (2018); Radford et al. (2019)) and
reinforcement learning from human feedback (RLHF)
are the most commonly used alignment methods for
adapting pre-trained LMs to specific tasks. Addi-
tionally, LoRA (Hu et al., 2021), QLoRA (Dettmers
et al., 2023), and other parameter-efficient fine-tuning
(PEFT) algorithms can facilitate this process.

LMs for interactive decision-making. As summa-
rized in Table 1 and discussed in Section 1.2, only a
few studies have applied online RL to LMs for making
multi-step decisions. Szot et al. (2023) and Tan et al.
(2024) are the two most relevant studies.

3 Preliminaries

Notations. For any set X', we use A(X) to denote
the probability simplex over X. Let the tokenizer be

fixed throughout the paper. For a string s, we use |s| to
denote the number of tokens in s after using this fixed
tokenizer.

Markov decision processes (MDPs). Reinforce-
ment learning (RL, Sutton and Barto (1998)) prob-
lems are usually formulated as MDPs. They enable
agents to learn optimal behaviors through interacting
with the environment, without human intervention or
labeling. A (finite-horizon) MDP can be described as
M = (H, S, A pn, T, r), where H is the plan-
ning horizon, S is the state space, and .A is the action
space. p € A(S) is the initial state distribution, which
can represent a distribution over tasks. We study deter-
ministic environments in this work as the tasks in our
motivations are deterministic. The transition function
maps a state-action pair to a state 7 : S x A — S,
and the reward function immediately yields a reward
r: S8 x A — [-1,1]. Given a (Markovian) policy
m: S — A(A), we define its value function and Q-
function as
Sp = 8] s

H
Vir(s) == E, lZ Ty
t=h
(sn,an) = (s,a)] i

H
Qr(s,a) :=E, [Z Ty
t=h

The expected return of a policy 7 is J™ :=
Es, ~u[Vi"(s1)], and the goal of RL is to find the opti-
mal policy maximizing J™.

When modeling an application as an MDP, we
may encounter the fact that each state s has a sepa-
rate “valid” action space A(s). Though we can de-
fine A = Uges.A(s), the union could be intractably
large. A viable workaround is to define a map-
ping function f, at each state, such that A(s) <
{fs(a) | a € A}. This formulation works smoothly
with our approach named “single-prompt action enu-
meration” (Section 4.3) where A consists of choices
such as 0, 1, 2, ..., and fs(a) maps them to detailed
actions.

Policy optimization for MDPs. Policy optimization
is an approach to solve MDPs using parameterized
policies. Policy optimization techniques for MDPs
surround the class of policy gradient (PG, or RE-
INFORCE algorithm, Sutton et al. (1999)) methods,
which directly adjust the parameters of the policy in a
way that maximizes J™. Let 7y be a policy parameter-
ized by 6, then the policy gradient is computed as

H
VoJ™ = Z E a~are (@17 (s,a)Velnmg(als)].
h=1
Here d};’ is the distribution of (s, a) pairs at step / un-

der policy mp. An update step using policy gradient is
0t+1 = et + UVQJTFG‘ .

997

Category Works | intormetion | ordpp | Reflecion | TR
Token-
. Lu et al. (2022), Ramamurthy et al. (2023),
gez:rla;}ion Luong et al. (2024), Yuan et al. (2024) Yes MDP No RL
Park et al. (2023), Zhang et al. (2023),
. Yes
LMs as Shinn et al. (2023) Yes
avents Huang et al. (2022), Yao et al. (2022), MDP None
& Yao et al. (2023b), Du et al. (2023) No
Ahn et al. (2022) No
Ziegler et al. (2020), Stiennon et al. (2022), .
RLHF Bai et al. (2022), Ouyang et al. (2022) Yes | Bandit | No RL
SFT Shridhar et al. (2021) Yes MDP No Supervised
' RL ' Szot et al. (202.3), Tan et al. (2024) Yes MDP No RL
Fine-tuning This work Yes

Table 1: Comparison between works involving LMs and RL. “Direct interaction” indicates whether the LM plays
the role as the policy model directly interacting with the environment, so a “No” means it plays indirectly by
assisting another non-language policy model. “Bandit or MDP” indicates whether the environment is a single-step
bandit or a multi-step MDP. “Reflection” indicates whether this work elicits the reasoning ability of the language
model to generate reflections and help with planning in RL. “Training method” indicates whether the LM is being

trained and if yes, the method.

Proximal Policy Optimization (PPO, Schulman et al.
(2017)) is another exemplary method applied in this
field, whose details are deferred to Appendix A.

4 Methodology

4.1 Reflect-RL

Here, we propose Reflect-RL, an online reinforce-
ment learning fine-tuning method for LMs in MDPs.

4.1.1 LM as an RL policy

We use a language model as an RL policy 7y(als)
where s = (s1,82,...,51) € S is the current state
(represented by tokens) and a = (ay,as,...,aK) €
A(s) is the generated token sequence (also repre-
sented by tokens). Let a.; denote the subsequence
(a1,as,...,a). We apply policy model to multi-step
RL tasks, where the language model reads s in the in-
put prompt, and then generate a in the completion.

In environments where states are not represented in
natural languages, we need a function p(s) to convert
the original state s to make it a legal input for an LM.
For instance, p can be a ViT (Dosovitskiy et al., 2020)
for images, as used in LLaVA (Liu et al., 2023)); or, p
can be a text representation for simple graphs. Natu-
rally, for s1 # s, we require p(sy1) # p(s2). With a
little bit abuse of notations, prompt p(s) and state s are
equivalent throughout our paper.

4.1.2 Training stages of Reflect-RL

We propose a two-stage training pipeline for the above-
mentioned language model policy. An illustration is
shown in Figure 1.

Stage 1. Supervised fine-tuning (SFT). The tasks
included in this work all require the instruction-
following capability to a certain degree: for any valid
state s, the generated action a should follow an in-
structed format. For example, the model should out-
put a paragraph reflecting on previous decisions before
making the next action, with two parts separated by a
special token. For these tasks, we fine-tune LMs with
a dataset D comprised of strings which follow the in-
struction. This process only calculates losses on the
completion part.

Stage 2. Reinforcement learning fine-tuning
(RLFT). We use reinforcement learning to fine-tune
a pretrained language model mg,, which can either be a
publicly available LM or the one after SFT. This stage
proceeds in T update steps. Instep ¢ € {0,1,...,T —
1}, we use g, to sample a batch of B trajectories from
the environment, estimate ()-functions for each step,
then perform updates using the policy optimization al-
gorithm.

4.1.3 Training details

Reflection-aided decision-making. As demon-
strated in previous works (Yao et al., 2022, 2023b;
Shinn et al., 2023), generating reflection is helpful
for improving the decision-making performance,
which inspires us to incorporate reflection in RL.
We combine the idea of reflection with both SFT
and RLFT. Specifically, we first assume access to an
independent reflection model R to generate reflections
before the policy model 7y makes decisions. Upon
observing state s, R generates the reflection R = R(s)

998

which possibly includes analyses of current situation
and plans of future steps. Then, the policy model
generates the action after taking both s and R as
inputs. The reflection model R is independent of 7:
it can be either a local, pretrained language model,
or a publicly-hosted LLM such as GPT-4 or Gemini
(Gemini Team, 2023). One illustration can be found in
Appendix F.1.

In our work, we train local LMs in SFT stage us-
ing data collected from Azure OpenAl GPT-4 (details
in Appendix C.3) to serve as the reflection model R4
(Line 21 of Algorithm 1). §¢ is frozen (denoted as
]?i) throughout the RLFT stage. The policy model is
SFTed using data containing the reflection (Line 22 of
Algorithm 1). Formally, let D = {(s;, R;, o;, a;)

1 < i < N} be the dataset (Line 20 of Algorithm 1),
with |R;| = L; and |a;| = K;, then the loss functions

are
| N L R
Lretiea(0) = & >0 >, —log Ry(Rijlsi, Ri 1),
im1j=1
| N K
Loolicy () = v Z —logmg(as ;|si, Ri, o, @i j—1).
io1j=1

Here o; = a(A(s;)) and « is the action enumeration
function defined in Section 4.3.

In RLFT stage, we first query R for the reflection,
then incorporate this reflection into the policy model’s
input (Lines 28 and 29 of Algorithm 1). The probabil-
ity of the action is

K
mo, (als) = H mo, (aj|s, R, o, a.j—1).

Jj=1

Two-player design simplifies the training process.
Splitting responsibilities to two players (reflection and
policy) can simplify the RLFT stage because the gra-
dients of the policy model do not affect the reflection
model. We experimented using the same model for re-
flection and policy, while computing gradients only on
the policy part. Observations (in Appendix F.2) show
that such implementation greatly degraded the reflec-
tion ability. An alternative single-player approach is to
perform RL and SFT concurrently so that the reflection
ability can be retained, but this strategy would compli-
cate the training process.

4.2

Two components are essential in reflection generation:
¢ Logical consistency. We want a trajectory to be logi-
cally consistent, in that the action ay, at step h logically
follows the reflection Ry, at step k. This requirement
is critical for the policy model 7y to derive the correct
action from the reflection.

Generating Reflection for Training

Algorithm 1 Training with Reflect-RL

1: Input and initialize: Environment F, batch size B,
prompting function p, action enumeration function «,
SFT data size N, pretrained LM M, LLM to generate
reflection data M r, number of updates 7T'.

2: Drefiect < I, Dnegalive — J.

3: forn=1,2,...,Ndo

4: FE.reset(), h — 1

5: while —F.done do

6: sp < FE.observation()

7: Ry MR(p(Sh)vpreﬁect)

8 an < Mg(p(sn), Rn, a(A(sh)))

9: Dreﬂect <~ Dreﬁect U {(S}H Rha a(A(S}L))y ah)}

10: ay, ~ Uniform(A(sp)\an)

// random action
11: E, E' < E.step(ay), E.step(a},)
12: h—h+1
13: /I Look ahead: reflect after the “wrong” action
14: s}, < E’.observation()
15: R;.L <« MR(p(SIh)ypncgalivc)
16: a/h HMR(p(Sh),Rh,Oé(A(S;L)))
17: Dnegative «— Dnegalive U {(S/h7 R;—” Q(A(S/h))v a/h)}
18: end while
19: end for

20: D « Dreflect U Dnegative

21: R« SFT(M, {(R | p(s)) € D})

22: mp, «— SFT(M, {(a | p(s), R, a(A(s))) € D})
23: fort =0,1,...,7 —1do

24: forb=1,2,...,Bdo

25: FE.reset(),h «— 1

26: while —F.done do

27: Sp «— EA.observation()

28: Ry ~ R(p(sh))

29: an ~ 7o, (p(sn), Rn, A(sn))
30: E « Estep(an), h — h+1
31: end while

32: Tb<—(51,R1,A(81),a1;...)
33: end for

34: 641 <Policy_Gradient(6:, {71,...,78})
35: end for

e Negative examples. Using optimal or oracle ac-
tions to train policy models is a well-established strat-
egy in RL. However, employing this strategy to gen-
erate training data with LLM may introduce a bias to-
wards producing predominantly affirmative reflections
on previous actions. If such data are exclusively used
for training, the reflection model might merely flatter
the decisions made by the policy model, without pro-
viding substantive self-reflections. Consequently, the
model’s ability to generalize to new or sub-optimal ac-
tions could be significantly limited. To mitigate this,
incorporating negative examples (sub-optimal actions)
can help balance the dataset and enhance the error-
correcting capabilities of the reflection model.

Accordingly, we use two methods to generate the
SFT dataset, with two types of special prompts Prefiect
and Pregative -

At step h, we get the state s;, from the environment
and send (Sp, Prefiect) to GPT-4. Here piefiect tells GPT-
4 to first analyze current situation, plan for the next

999

steps, then generate the action. GPT-4 will generate
a response, from which we can easily extract out re-
flection RYPT and action aj, because of GPT-4’s high-
level instruction-following capability. Next we send
ap, to the environment and increment A until termina-
tion. The above procedure generates a logically consis-
tent trajectory 7. The illustration can be found between
Lines 7 and 9 of Algorithm 1 and Figure 1.

To get negative examples, we start from 7 or an op-
timal trajectory 7* by perturbing each step. For any
step h, we first restore the environment to state sp_1,
then we randomly pick an action aj,_, from the set
A(sp—1)\{an—1}. This perturbed action will lead us
into another state s},. We send (},, Pnegative) to GPT-4,
where ppegaiive tells GPT-4 that the last action a’h_1 is
sub-optimal, and lets it to find out the reason of sub-
optimality, plan for the next steps to correct the mis-
take, then generate the action aj,. The reflection gener-
ated at this step is (RSPT)’. We halt at this step, using
only (s}, (RSFTY, aj)) as a negative example.

4.3 Single-Prompt Action Enumeration

The action spaces in the benchmarks are extremely
large and state-dependent. Moreover, a valid action
spans over several tokens, and has constraints on the
token combination. For instance, in ALFWorld, the
action spaces can differ across tasks or locations, due
to variations in the objects that can be interacted with.
A typical valid action is “go to cabinet 10” which
contains 4 tokens, while “take cabinet 10” is in-
valid. However, this valid action may become invalid
when presented in another task where “cabinet 10”
does not exist. As stated in various works (Ahn et al.,
2022; Tan et al., 2024), it is highly possible for the lan-
guage model to generate a long token sequence that
does not meet the constraints.

The remedies proposed by these works share the
same spirit. SayCan (Ahn et al., 2022) and Ac-
tion prompt normalization (Tan et al., 2024) are sim-
ilar approaches enumerating all the valid actions a €
A(s), calculating the probability 7y (a|s), and normal-
izing over A(s). Calculating my(als) using a Trans-
former model takes ©((|s| + |a|)?) time. This ap-
proach takes O3, () (|5 +[a])?) = O(A(s)| s+
DacA(s) |a|?) time, which is intractable when | A(s)| is
large. Here we assume |s| > |a| as in almost all of the
benchmarks. For two benchmarks (AutoExplore and
ALFWorld) considered in our work, we have | A(s)| ~
20, |s| ~ 500, and |a| ~ 5 for almost all the states. As
aresult, action prompt normalization cannot be applied
to our benchmarks.

We propose single-prompt action enumeration
which shares spirit with many language classification
tasks (Zellers et al., 2018; Bisk et al., 2019; Hendrycks
et al., 2021) to reduce time complexity while enforc-

ing valid actions. This method works on two sides.
On the environment side, we introduce an extra com-
ponent: the action enumeration function . Suppose
a1, as, ... is an order of actions in .A(s), then we com-
pose a(A(s)) = (1,a1;2,ag;...) by explicitly writ-
ing down the choice letter ¢ and action a;. « is sent
to the policy model as additional input, together with
state s and reflection R. On the model side, we restrict
the policy model to output exactly one token, repre-
senting the choice in «. We also mask out rows of
1m_head (neurons of the final output layer) that does
not decode into a choice letter. With these combined,
we are ensured that the generated action is valid. As a
comparison with action prompt normalization, the run-
ning time of our approach is ©(([s|+ X, 4 () la])?) =
o(ls|”> + DacAs) |la|?), which is strictly better. Here
reflection R is considered as part of s without loss of
generality.

4.4 Curriculum Learning

Curriculum learning (Elman, 1993; Bengio et al.,
2009) is a paradigm in machine learning using a topo-
logical ordering of tasks to help with training. Starting
with easy tasks, the model can have a faster conver-
gence on hard tasks compared with directly training on
them. In this work, we experiment on a curriculum de-
sign called “extra reward signal”. For tasks with long
horizons and sparse rewards, it is nearly impossible for
a policy to sample a trajectory with a meaningful re-
ward signal, thus policy gradient methods will make
slow progress. We design the curriculum by manually
adding rewards to some “milestones”. In experiments
of DangerousTaxi (see Section 5), which requires to
first pick up then drop off a passenger while only giv-
ing reward after a successful dropoff, we design the
curriculum to give a reward after a successful pickup.

5 Benchmarks

Motivated by the LLF-Bench (Cheng et al., 2023),
we have created a natural language environment base
class (NatLangEnv) that is compatible with the Ope-
nAl Gym framework, characterized by its unique ap-
proach of utilizing textual representations for both ob-
servations and actions. This adjustment allows us to
effectively train and test language models.

AutoExplore. To verify our methodology of
Reflect-RL on the exploration example mentioned
in Section 1.1, we built a complete benchmark for au-
tonomous exploration. This benchmark contains three
components: a AutoExploreSandbox for file pro-
tection, a multi-agent system AutoExploreCopilot
for interactive decision-making, and a labeled dataset
for performance assessment. The AutoExplore
environment enables LMs to interact with the file

1000

Model Depth 1 Depth2 | Pickup - +Dropoir® | ALFHorLe
Mistral 7B 34% 3% 7% 0% 0%
Open Source Llama2 7B-chat 2% 1% 3% 0% 0%
Orca-2 7B 6% 1% 1% 0% 0%
SFT Only GPT-2XL 1.56B | 4% 9% 7% 0% 0%
RLFT Only | GPT-2XL 1.56B | 12% 3% 2% 0% 0%
SFT+RLFT (w/o reflection) | GPT-2 XL 1.56B | 20% 4% | 6% 0% | 66%
SFT+RLFT (w/o negative) | GPT-2 XL 1.56B 33% 12% - - -
Reflect-RL (Ours) GPT-2XL 1.56B | 36% 17% | 58% 29% 74%

Table 2: Testing performance (average success rate) of open source models (Jiang et al., 2023; Touvron et al.,
2023; Mitra et al., 2023), GPT-2 XL fine-tuned with baselines, and with Ref1ect-RL. ReAct and memory mech-
anism, as shown in Figure 1, have been incorporated to improve performance. For conciseness, we have not
performed prompt optimization for the open-source models, and their performance could potentially be improved
with different prompting techniques in the future. Explanation for baselines: “SFT+RL (w/o reflection)” means
the policy model is the only model involved, and the reflection field is removed from SFT data. “SFT+RL (w/o
negative)” means there are no negative examples in SFT data, so both the reflection model and the policy model
are trained on expert demonstrations. We only ran this ablation on AutoExplore. Explanation for tasks: For
AutoExplore, we tested on 44 user queries, each with 10 runs. “Depth ¢ includes the tasks with target file depth
exactly 4. For DangerousTaxi, we ran on 100 random maps. “Pickup” computes the success rate of picking up
the passenger, and “+Dropoff” computes the overall success rate. For ALFWorld, we tested on 4 tasks, each with
25 runs.

system safely, with the ultimate goal of answering
a natural language question specified by users. The
labeled dataset is composed of several real-world and
synthesized repositories, with over 2500 trajectories.
See Appendix C for more details.

This exploration task draws inspiration from Re-
trieval Augmented Generation (RAG) (Lewis et al.,
2020) and InterCode (Yang et al., 2023). RAG’s per-
formance is linearly dependent on the amount of con-
tent (e.g., number of files) in the search space, present-
ing scalability challenges. In contrast, InterCode uti-
lizes a tree-structured search methodology, requiring
merely logarithmic space and time. This approach is
notably beneficial for expansive search spaces or envi-
ronments prone to frequent updates (e.g., Docker envi-
ronments, customized systems). By integrating online
RL training into InterCode, our proof-of-concept en-
vironment aims to create code interpreter designed for
large code repositories.

During interaction with AutoExploreCopilot,
each step the agent receives —1 reward as the cost of
time. After 15 steps or the agent explicitly terminates,
if the correct file is identified, a +15 reward is given;
otherwise a —15 reward is given.

DangerousTaxi. We extended the OpenAl Gym’s
Taxi environment to introduce a higher level of chal-
lenge, thereby creating the “DangerousTaxi ” en-
vironment. This game concludes prematurely if the

player commits any invalid action, such as colliding
with a wall, or incorrectly picking up or dropping off
passengers at unauthorized locations. This modifica-
tion crucially elevates the task’s difficulty by eliminat-
ing the opportunity for the model to correct its mis-
takes after a wrong decision—a common allowance in
the standard environment.

We applied curriculum learning to DangerousTaxi.
In the designed pickup curriculum, we assign a pos-
itive reward 20 and terminate the environment after
the driver successfully pickup the passenger. In the
dropoff stage, the pickup reward is retained, but the
driver needs to further dropoff the passenger at desti-
nation to receive the full reward.

ALFWorld. Our study leverages ALFWorld (Coté
et al., 2019; Shridhar et al., 2020), a multi-turn plat-
form tailored for simulating household tasks by con-
verting the graphical representation of a house into de-
scriptive language. A robot in is required to complete
certain tasks based on the descriptions. This bench-
mark has gained recognition to evaluate LLM agents,
with studies like Arabzadeh et al. (2024) demonstrat-
ing its efficacy. Our focus on the tomato picking task
stems from its optimal mix of simplicity and represen-
tativeness.

1001

Reflect-RL = = = SFT+RL = - - RL

80

Success Rate (%)

\ | | |
0 1,000 2,000 3,000 4,000 5,000

Iters

Figure 2: Training success rates of different training
methods with GPT-2 XL in the pickup curriculum of
the DangerousTaxi environment. We compared dif-
ferent RL methods for 5000 iterations during RLFT.
SFT with 5000 iterations would only achieve 7% suc-
cess rate, hence only RL methods are shown.

6 Experimental Results

To verify our approach, we apply Reflect-RL on
GPT-2 XL (Radford et al., 2019). Table 2 presents a
comprehensive evaluation of various models’ perfor-
mance across different environments. LMs still face
challenges in multi-step decision-making in interactive
environments, and Reflect-RL has significantly im-
proved their decision-making capabilities in complex
environments. This method not only utilizes the in-
herent strengths of LMs in reflection but also closely
aligns with the multi-step decision-making process in-
trinsic to RL. Our findings highlight the potential of
merging advanced prompting techniques with LMs to
address complex RL tasks, establishing a new bench-
mark for future research in this field.

Open source models and commercial GPT models.
We evaluated three open-source 7B models with nec-
essary prompt engineering such as ReAct and mem-
ory mechanism included. These models all perform
poorly on the three tasks, except for Mistral 7B on
AutoExplore depth 1. We also examined GPT-3.5-
turbo and GPT-4 (version 1106) through Azure Ope-
nAl API. GPT-4 can achieve a success rate of 71%
in AutoExplore depth 1, 81% in depth 2, and 84%
in ALFWorld; meanwhile, GPT-3.5-turbo achieves a
success rate of 31% in AutoExplore depth 1, 8% in
depth 2, and 6% in ALFWorld. During the evaluation,
we noticed potential data contamination of these two
models: GPT-4 can sometimes identify near-optimal
actions without extensive exploration of the space. In
the DangerousTaxi environment, the success rates of
the dropoff curriculum for GPT-4 and GPT-3.5-turbo
are both 0%. Even though GPT-4 has 70% chance ex-
ecuting a valid action in each step, it is prone to fail-
ure upon committing minor errors along the long nav-
igation path during multi-turn interactions. These ob-
servations suggest that even powerful LLMs may still
need online RL training for multi-turn interactions.

SFT is not enough. Supervised fine-tuning (SFT)
has been widely used offline to improve LMs’ perfor-
mance on specific tasks. However, our results (Table 2)
indicate that SFT alone is not sufficient for complex
RL tasks requiring multi-step decision-making. While
SFT enhances task-specific knowledge, it fails to solve
problems requiring deep reasoning, planning, and re-
flection.

Reflection helps learning. Incorporating reflective
processes into LLMs significantly enhances decision-
making and learning from past actions. Our compara-
tive analysis between models with and without reflec-
tion capabilities highlights the importance of reflec-
tion for advanced understanding and adaptability in RL
tasks. As shown in Figure 2, the curves representing
online RL without reflection are constantly below the
curve of Reflect-RL. Figure 4 shows a similar result.

Reflecting from mistakes is beneficial. The philos-
ophy of “learning from mistakes” plays a meaningful
role in Reflect-RL. Without negative reflection sam-
ples, the model’s performance would be worse (in ab-
solute difference) than the model trained with both pos-
itive and negative data. For AutoExplore, the test ac-
curacies without negative examples are 33% and 12%
for each curriculum, compared with 36% and 17% with
negative examples. As shown in Figure 3, the solid
curve represents the integration of negative examples
into the SFT dataset, and we observed a faster conver-
gence during RLFT.

Positive + Negative Examples

S

\; 60 Positive Examples Only

5

~

2 40

0]

3!

> 20

v 0 1,000 2,000 3,000 4,000 5,000
Iters

Figure 3: Training success rate with and without neg-
ative examples in the AutoExplore setting, each as-
sessed in a single run. When negative examples are ex-
cluded, the training process exhibits decreased speed
and lacks smoothness.

Curriculum learning (CL) accelerates learning.
As shown in the top two curves in Figure 4, CL ac-
celerates the learning curve for complex RL tasks by
structuring the training process with challenging tasks.
To ensure a fair evaluation, both learning approaches
(Reflect-RL with and without CL) are pre-trained
with the same reflection dataset during the SFT phase.
The curriculum learning approach begins with an ini-
tial RL training phase focused on the pickup curricu-
lum, followed by the dropoff curriculum. Without cur-

1002

riculum learning, the model is trained directly using the
dropoff curriculum, resulting in slightly inferior per-
formance.

g Reflect-RL (W/CL) = = = Reflect-RL (w/o CL)

o 40 RL + SFT -—— RL

IS

a2

%)

%]

(]

Q

g 0 sflS>slmscseT S [= ===m

2! 1,000 2,000 3,000 4,000 5,000
Iters

Figure 4: Comparison of training success rates in the
drop-off curriculum in the DangerousTaxi environ-
ment. The top two curves represent Reflect-RL;
“w/ CL” means the experiment incorporates curricu-
lum learning (CL) and is trained with the pickup cur-
riculum. The bottom two dashed curves represent on-
line RL without reflection. All single run.

Sensitivity of the policy model with respect to the
reflection model. For DangerousTaxi pickup sub-
task, using the same policy model after Reflect-RL,
we switch the reflection model to GPT-2 Small 0.12B
and Mistral 7B SFTed with the reflection data. The
results for GPT-2 Small 0.12B, GPT-2 XL 1.56B, and
Mistral 7B are 55%, 58% (as in Table 2), and 64%.
This phenomenon indicates that the policy model is not
extremely sensitive to the robustness/accuracy of the
reflection model as the policy model can easily adapt.
Additionally, using a more capable reflection model
can improve the performance.

7 Discussion and Conclusion

Risk, impact, and responsible AIL. In this study, we
adhere to principles of Responsible Al by ensuring
transparency, efficiency, and security in both the train-
ing and evaluation stages. An exemplar of our commit-
ment is the development of AutoExploreSandbox,
designed to reduce the risk of security issues in the file
system. Recognizing the importance of ethical consid-
erations and the social impact of our work, we pledge
to engage in continuous evaluation of LMs’s perfor-
mance in multi-step environment.

Limitations. Our study, while comprehensive, ac-
knowledges certain limitations. Although ALFWorld
benchmark is multimodal, this study primarily focued
on the text representation, leaving the examination of
multimodal models and cross-attention encoding of
other modalities (such as images and audio) for fu-
ture work. Comparisons with commercial models is
discussed in Section 6, but the proprietary nature and
potential biases (e.g., unknown training data) limit a
fair comparison with open-source models. Standard-

ized benchmarks in the field are needed for further
evaluation. Lastly, the reflection data utilized in our
study is generated by GPT-4, which may not fully cap-
ture the distribution of real human data. This indicates
the importance of integrating more authentic human-
generated data in future evaluations.

Future direction. The primary goal of this study is
to create an efficient online RL pipeline for LMs to
perform multi-step problem solving. Building on this
foundation, future research directions may explore the
scalability of Reflect-RL to develop larger founda-
tion models, enabling them to adapt to previously un-
seen environments with out-of-domain generalization
capabilities. The two-player design in our framework
may naturally be extended to other multi-agent settings
where language models can show their strengths. An-
other future direction is to train the reflection model
in RLFT stage as we freeze it because of the interfer-
ence with the policy model (Appendix F.2), which will
improve the reasoning ability of language models for
decision-making tasks.

Acknowledgement

We thank Adith Swaminathan, Julia Kiseleva, Ishai
Menache, Chi Wang, Yin Tat Lee, and Yi Zhang from
Microsoft Research for useful discussions and support.

We also want to thank Jieyu Zhang from University
of Washington for their valuable feedback.

References

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol
Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu,
Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang,
Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jes-
month, Nikhil J Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Kuang-Huei Lee, Sergey
Levine, Yao Lu, Linda Luu, Carolina Parada, Pe-
ter Pastor, Jornell Quiambao, Kanishka Rao, Jarek
Rettinghouse, Diego Reyes, Pierre Sermanet, Nico-
las Sievers, Clayton Tan, Alexander Toshev, Vincent
Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,
Mengyuan Yan, and Andy Zeng. 2022. Do As I Can,
Not As I Say: Grounding Language in Robotic Af-
fordances.

Negar Arabzadeh, Julia Kiseleva, Qingyun Wu, Chi
Wang, Ahmed Awadallah, Victor Dibia, Adam Four-
ney, and Charles Clarke. 2024. Towards better
Human-Agent Alignment: Assessing Task Utility in
LLM-Powered Applications.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,

1003

http://arxiv.org/abs/2204.01691
http://arxiv.org/abs/2204.01691
http://arxiv.org/abs/2204.01691
http://arxiv.org/abs/2402.09015
http://arxiv.org/abs/2402.09015
http://arxiv.org/abs/2402.09015

Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson
Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec,
Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam McCandlish,
Chris Olah, Ben Mann, and Jared Kaplan. 2022.
Training a Helpful and Harmless Assistant with
Reinforcement Learning from Human Feedback.

Yoshua Bengio, Jérome Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML 09, page
41-48, New York, NY, USA. Association for Com-
puting Machinery.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. PIQA: Reasoning about
Physical Commonsense in Natural Language.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Bal-
dassari, Andrew D White, and Philippe Schwaller.
2023. ChemCrow: Augmenting large-language
models with chemistry tools.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak,
Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse,
Andrew N. Carr, Jan Leike, Josh Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew
Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba.
2021. Evaluating Large Language Models Trained
on Code.

Yen-Chun Chen, Zhe Gan, Yu Cheng, Jingzhou Liu,
and Jingjing Liu. 2020. Distilling Knowledge
Learned in BERT for Text Generation.

Ching-An Cheng, Andrey Kolobov, Dipendra
Misra, Allen Nie, and Adith Swaminathan. 2023.
LLF-Bench: Benchmark for Interactive Learn-
ing from Language Feedback. arXiv preprint
arXiv:2312.06853.

Marc-Alexandre C6té, Akos Kadar, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, et al. 2019. Textworld: A learning environ-
ment for text-based games. In Computer Games:

10

7th Workshop, CGW 2018, Held in Conjunction with
the 27th International Conference on Artificial In-
telligence, 1JCAI 2018, Stockholm, Sweden, July
13, 2018, Revised Selected Papers 7, pages 41-75.
Springer.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and Play Language Mod-
els: A Simple Approach to Controlled Text Genera-
tion.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient Fine-
tuning of Quantized LLMs.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Yuging Du, Olivia Watkins, Zihan Wang, Cédric Colas,
Trevor Darrell, Pieter Abbeel, Abhishek Gupta, and
Jacob Andreas. 2023. Guiding Pretraining in Rein-
forcement Learning with Large Language Models.

Zane Durante, Bidipta Sarkar, Ran Gong, Rohan
Taori, Yusuke Noda, Paul Tang, Ehsan Adeli,
Shrinidhi Kowshika Lakshmikanth, Kevin Schul-
man, Arnold Milstein, et al. 2024. An Inter-
active Agent Foundation Model. arXiv preprint
arXiv:2402.05929.

Jeffrey L. Elman. 1993. Learning and development in
neural networks: the importance of starting small.
Cognition, 48(1):71-99.

Avrilia Floratou, Fotis Psallidas, Fuheng Zhao,
Shaleen Deep, Gunther Hagleither, Joyce Cahoon,
Rana Alotaibi, et al. 2024. NL2SQL Is a Solved
Problem... Not! In Proceedings of the CIDER 2024.

Gemini Team. 2023. Gemini: A Family of Highly Ca-
pable Multimodal Models.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, and Yoshua Bengio. 2017. On integrating
a language model into neural machine translation.
Computer Speech & Language, 45:137-148.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring Massive Multitask Lan-
guage Understanding.

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.

1004

http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
https://doi.org/10.1145/1553374.1553380
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/2304.05376
http://arxiv.org/abs/2304.05376
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1911.03829
http://arxiv.org/abs/1911.03829
http://arxiv.org/abs/1912.02164
http://arxiv.org/abs/1912.02164
http://arxiv.org/abs/1912.02164
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2302.06692
http://arxiv.org/abs/2302.06692
https://doi.org/https://doi.org/10.1016/0010-0277(93)90058-4
https://doi.org/https://doi.org/10.1016/0010-0277(93)90058-4
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
https://doi.org/https://doi.org/10.1016/j.csl.2017.01.014
https://doi.org/https://doi.org/10.1016/j.csl.2017.01.014
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. LoRA: Low-Rank Adaptation
of Large Language Models.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan,
Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre
Sermanet, Noah Brown, Tomas Jackson, Linda Luu,
Sergey Levine, Karol Hausman, and Brian Ichter.
2022. Inner Monologue: Embodied Reasoning
through Planning with Language Models.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lu-
cas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and
Edouard Grave. 2022. Atlas: Few-shot Learning
with Retrieval Augmented Language Models.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Tim-
othée Lacroix, and William El Sayed. 2023. Mistral
7B.

Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak
Lenz, Opher Lieber, Nir Ratner, Yoav Shoham,
Hofit Bata, Yoav Levine, Kevin Leyton-Brown,
Dor Muhlgay, Noam Rozen, Erez Schwartz, Gal
Shachaf, Shai Shalev-Shwartz, Amnon Shashua,
and Moshe Tenenholtz. 2022. MRKL Systems: A
modular, neuro-symbolic architecture that combines
large language models, external knowledge sources
and discrete reasoning.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual Language Model Pretraining.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim
Rocktdschel, et al. 2020. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. Ad-

vances in Neural Information Processing Systems,
33:9459-9474.

Haotian Liu, Chunyuan Li, Qingyang Wu, and
Yong Jae Lee. 2023. Visual instruction tuning.
arXiv preprint arXiv:2304.08485.

Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang,
Lianhui Qin, Peter West, Prithviraj Ammanabrolu,
and Yejin Choi. 2022. Quark: Controllable Text
Generation with Reinforced Unlearning.

11

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng
Sun, Xiaoran Jin, and Hang Li. 2024. ReFT: Rea-
soning with Reinforced Fine-Tuning.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub
Adamek, Eric Malmi, and Aliaksei Severyn. 2023.
Teaching Small Language Models to Reason.

Grégoire Mialon, Clémentine Fourrier, Craig Swift,
Thomas Wolf, Yann LeCun, and Thomas Scialom.
2023. Gaia: a benchmark for general ai assistants.
arXiv preprint arXiv:2311.12983.

Arindam Mitra, Luciano Del Corro, Shweti Maha-
jan, Andres Codas, Clarisse Simoes, Sahaj Agarwal,
Xuxi Chen, Anastasia Razdaibiedina, Erik Jones,
Kriti Aggarwal, Hamid Palangi, Guoqing Zheng,
Corby Rosset, Hamed Khanpour, and Ahmed
Awadallah. 2023. Orca 2: Teaching Small Language
Models How to Reason.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive Learning from
Complex Explanation Traces of GPT-4.

NVIDIA. 2024. Build a Custom LLM with
Chat With RTX NVIDIA. https:
//www.nvidia.com/en-us/ai-on-rtx/

chat-with-rtx-generative-ai/. Accessed:
2024-02-13.

OpenAl. 2023. GPT-4 Technical Report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions
with human feedback.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai,
Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. 2023. Generative agents: Interactive sim-
ulacra of human behavior. In Proceedings of the
36th Annual ACM Symposium on User Interface
Software and Technology, pages 1-22.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large Language
Model Connected with Massive APIs.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu,
Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi.
2023. Is Reinforcement Learning (Not) for Natural
Language Processing: Benchmarks, Baselines, and
Building Blocks for Natural Language Policy Opti-
mization.

1005

http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2207.05608
http://arxiv.org/abs/2207.05608
http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2205.00445
http://arxiv.org/abs/2205.00445
http://arxiv.org/abs/2205.00445
http://arxiv.org/abs/2205.00445
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/2205.13636
http://arxiv.org/abs/2205.13636
http://arxiv.org/abs/2401.08967
http://arxiv.org/abs/2401.08967
http://arxiv.org/abs/2212.08410
http://arxiv.org/abs/2311.11045
http://arxiv.org/abs/2311.11045
http://arxiv.org/abs/2306.02707
http://arxiv.org/abs/2306.02707
https://www.nvidia.com/en-us/ai-on-rtx/chat-with-rtx-generative-ai/
https://www.nvidia.com/en-us/ai-on-rtx/chat-with-rtx-generative-ai/
https://www.nvidia.com/en-us/ai-on-rtx/chat-with-rtx-generative-ai/
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
http://arxiv.org/abs/2210.01241
http://arxiv.org/abs/2210.01241
http://arxiv.org/abs/2210.01241
http://arxiv.org/abs/2210.01241

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal Policy
Optimization Algorithms.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu
Yao. 2023. Reflexion: Language Agents with Ver-
bal Reinforcement Learning.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Coté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv
preprint arXiv:2010.03768.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Coté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2021. ALFWorld: Aligning Text and
Embodied Environments for Interactive Learning.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M.
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. 2022. Learning
to summarize from human feedback.

Richard S Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 1999. Policy Gradient Meth-
ods for Reinforcement Learning with Function Ap-
proximation. In Advances in Neural Information
Processing Systems, volume 12. MIT Press.

R.S. Sutton and A.G. Barto. 1998. Reinforcement
Learning: An Introduction. [EEE Transactions on
Neural Networks, 9(5):1054-1054.

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bog-
dan Mazoure, Walter Talbott, Katherine Metcalf,
Natalie Mackraz, Devon Hjelm, and Alexander To-
shev. 2023. Large Language Models as Generaliz-
able Policies for Embodied Tasks.

Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao
Zheng, Xinrun Wang, and Bo An. 2024. True
Knowledge Comes from Practice: Aligning LLMs
with Embodied Environments via Reinforcement
Learning.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel Kloumann, Artem
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael

12

Smith, Ranjan Subramanian, Xiaoqing Ellen Tan,
Binh Tang, Ross Taylor, Adina Williams, Jian Xi-
ang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur,
Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. 2023. Llama
2: Open Foundation and Fine-Tuned Chat Models.

Alexander Sasha Vezhnevets, John P Agapiou, Avia
Aharon, Ron Ziv, Jayd Matyas, Edgar A Duéiiez-
Guzmén, William A Cunningham, Simon Osindero,
Danny Karmon, and Joel Z Leibo. 2023. Genera-
tive agent-based modeling with actions grounded in
physical, social, or digital space using Concordia.
arXiv preprint arXiv:2312.03664.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang,
Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. 2023a. A survey
on large language model based autonomous agents.
arXiv preprint arXiv:2308.11432.

Zengzhi Wang, Qiming Xie, Zixiang Ding, Yi Feng,
and Rui Xia. 2023b. Is ChatGPT a Good Sentiment
Analyzer? A Preliminary Study.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadal-
lah, Ryen W White, Doug Burger, and Chi Wang.
2023. AutoGen: Enabling Next-Gen LLM Applica-
tions via Multi-Agent Conversation.

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2023. InterCode: Standardizing
and Benchmarking Interactive Coding with Execu-
tion Feedback. arXiv preprint arXiv:2306.14898.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023a. Tree of Thoughts: Deliberate
Problem Solving with Large Language Models.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Weiran Yao, Shelby Heinecke, Juan Carlos Niebles,
Zhiwei Liu, Yihao Feng, Le Xue, Rithesh Murthy,
Zeyuan Chen, Jianguo Zhang, Devansh Arpit, Ran
Xu, Phil Mui, Huan Wang, Caiming Xiong, and Sil-
vio Savarese. 2023b. Retroformer: Retrospective
Large Language Agents with Policy Gradient Op-
timization.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun
Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason We-
ston. 2024. Self-rewarding language models. arXiv
preprint arXiv:2401.10020.

1006

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2010.03768
http://arxiv.org/abs/2010.03768
http://arxiv.org/abs/2009.01325
http://arxiv.org/abs/2009.01325
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1109/TNN.1998.712192
http://arxiv.org/abs/2310.17722
http://arxiv.org/abs/2310.17722
http://arxiv.org/abs/2401.14151
http://arxiv.org/abs/2401.14151
http://arxiv.org/abs/2401.14151
http://arxiv.org/abs/2401.14151
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2304.04339
http://arxiv.org/abs/2304.04339
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2308.02151
http://arxiv.org/abs/2308.02151
http://arxiv.org/abs/2308.02151

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin
Choi. 2018. SWAG: A Large-Scale Adversarial
Dataset for Grounded Commonsense Inference.

Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu,
Zihan Zhao, and Kai Yu. 2023. Large Language
Model Is Semi-Parametric Reinforcement Learning
Agent. arXiv preprint arXiv:2306.07929.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2023. Can ChatGPT Understand
Too? A Comparative Study on ChatGPT and Fine-
tuned BERT.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2020. Fine-Tuning Lan-
guage Models from Human Preferences.

13

Appendix

Table of Contents
A Discussion on PPO 13
B Illustrations of Pipeline 13
C Autonomous Exploration Details 15
D Other Benchmark Details 16
E Experiment Details 17
F Qualitative Observations 17

A Discussion on PPO

Proximal policy optimization (PPO) is an advanced
policy gradient method, which aims to take the largest
possible improvement step on a policy while ensuring
the deviation from the previous policy is reasonably
small. The update step is

mo(als)

0,1 = arg méiXEs,a [min{ AT (s, a),

o, (als)
mo(als)

clip (W’l 61+ 6) AT (s,a) } } ’

where € usually takes small values such as 0.1 or 0.2.

In practice, we found that PPO did not work well.
For tasks with a large state space, action space, and
a long horizon, the training processes were constantly
unstable, with sudden drops of the expected total re-
ward. Such tasks pose high difficulty for the value
function estimator to learn the value functions when
the policy network changes. Most importantly, inher-
ent randomness (including dropout, padding length in
different batches, top_p and top_k) of LMs results in
high sensitivity for the terms of ¢ (&"SS)). Though we
want the policy to sample actions with small possibili-
ties (e.g., mp, (als) < €) to encourage exploration, high
sensitivity will result in such values becoming to 0 in
almost all the future re-evaluations.

B Illustrations of Pipeline

In this section we present detailed versions of Figure 1.
Figure 5 is the illustration for data generation. Figure 6
is the illustration for SFT stage. Figure 7 is the illus-
tration for RLFT stage.

1007

http://arxiv.org/abs/1808.05326
http://arxiv.org/abs/1808.05326
http://arxiv.org/abs/2302.10198
http://arxiv.org/abs/2302.10198
http://arxiv.org/abs/2302.10198
http://arxiv.org/abs/1909.08593
http://arxiv.org/abs/1909.08593

Env1ronment

Environment

s N
Observation @ Reflection
You are in the Taking the tomato to the
middle of a room. microwave is correct.
You see a cabinet 18, GPT—4 Next step is to place the
_r acabinet 3, a ... Reﬂector tomato .
L) Database
s N i
Possible Action
~. | Possible Actions Memory
L oa X Task: Cook Tomato @ "
- (lose microwave Act 0: Go to fridge — > Action: 2 —
2. P_‘" tomato in Obs 0: Tt is closed GPT—4
microwave .
3. Go to cabinet Act4: Open microwave POllcy
Obs 4: You see amug ...
. J
Figure 5: Pipeline of Reflect-RL data generation.
7 'éreﬂect(ﬁb)
Vo
s N
. g o
Observation ‘ Reflection
You are in the S Taking the tomato to the
middle of a room. R ﬂ t microwave is correct. -
You see a cabinet 18, € eCA Next step is to place the
acabinet 3, a ... Agent R¢ tomato ...
L) Database
p Y :
s 0 !
Possible Actions & ;
Memory ¢
X Task: Cook Tomato
1. Close microwave Act 0: Go to fridge i -« — w ACtion: 2
2. Put tomato in Obs 0: Itis closed Policy
microwave
3. Go to cabinet Act4: Open microwave Agent i K
. N
Obs 4: You see a mug
N J A
T ~. L‘,pohcy(G)
Figure 6: Pipeline of Reflect-RL SFT stage.
s N
.) 2
Observation @‘ Reflection
You are in the Taking the tomato to the
middle of a room. R ﬂ microwave is correct.
You see a cabinet 18, € eCE\ Next step is to place the
o acabinet3,a ... Agent R tomato ...
. J L
e R i
~. | Possible Actions Memory
1 . Task: Cook Tomato
N 1. Close microwave Act 0: Go to fridge i —_ % ACtion: 2
I 2. Put tomato in Obs 0: Itis closed Policy
. microwave
] 3. Go to cabinet Act4: Open microwave Agent i K
- Obs 4: You see a mug ... _ . .
| N J N,) Policy Gradient

[Reward: +1]

Figure 7: Pipeline of Reflect-RL RLFT stage.

14
1008

h Q(s,a)Volnmg(als)

C Autonomous Exploration Details

Autonomous exploration in a well-organized reposi-
tory can reduce the number of reads of files to a large
extent. Ideally, if the repository has n files and is or-
ganized as a k-ary tree, the best language model only
takes O(k + log, n) (compared to O(n) using exhaus-
tive enumeration) commands to identify the correct
file, then proceed with the specific needs of reading,
editing, and executing. This serves as an motivation of
autonomous exploration benchmark.

C.1 Autonomous Exploration Sandbox

AutoExploreSandbox is a sandbox protecting the
original repository from modification. An instance of
AutoExploreSandbox could be initialized with the
path to the original repository, then this instance will
create a temporary directory in a specified location
(could possibly be a ram disk) and make a duplication
of the original repository. AutoExploreSandbox sup-
ports two main functions:

1. Executing system commands: For the purpose
of our work, commands such as “cd”, “ls”,
“cat”, “head”, “tail”, “echo”, “python” and
“pip” are supported to enable document retrieval
and coding.

Tracking changed files: The wuser of
AutoExploreSandbox could call a function
to get the list of the changed files and their
contents compared to the original status when
creating the sandbox.

C.2 Autonomous Exploration Copilot

AutoExploreCopilot is an agent medi-
ating between language models, humans,
and AutoExploreSandbox. An instance of

AutoExploreCopilot could be initialized with
a natural language question and the correspond-
ing repository to work in. The main function of
AutoExploreCopilot is to give natural language
descriptions of the current autonomous exploration
task for either human or language models to make
decisions. The interaction proceeds in loops (k starts
from 0):

e Step 3k +1: Prompting. AutoExploreCopilot
compiles a prompt pj given the current status of
AutoExploreSandbox, which includes the ques-
tion, current working directory (cwd) in the repos-
itory, files and folders under cwd (optional, can be
used to replace 1s and reduce interaction), histor-
ical commands cg,c1,...,Cr_1 from the human
or language model, and execution result of the last
command cj_1.

15

» Step 3k + 2: Querying. AutoExploreCopilot
sends the prompt pj to human or LM and gets
the response. This response may contain exces-
sive information such as analysis of the current
situation (which is a typical behavior of GPT-4),
so AutoExploreCopilot needs to extract sys-
tem command ¢ from the response.

* Step 3k + 3: Executing. AutoExploreCopilot
sends the system command «¢; to
AutoExploreSandbox and gets the execu-
tion results. The results contain standard output
and standard error, such as the file content after
“cat” and runtime error of “python”.

The interaction ends when the response in step 3k + 2
contains an exit signal stipulated in the prompt.

AutoExploreCopilot is capable of prompting
GPT-4 to do the entire task, while for the smaller mod-
els in this work we only set the goal to be a subtask
(file identification).

C.3 Labeled Dataset

The licenses are bounded by each open-source reposi-
tory used in this dataset.

Using GPT-4 from Azure OpenAl service, we
constructed a synthetic repository called “Coffee
Company”, which contains documents (in .md for-
mat), codes (in various programming languages), and
database files (in .csv format). This repository con-
tains around 12 million tokens. In addition, we down-
loaded 12 open-source repositories containing codes
and documentations from GitHub.

After collecting the repositories, we built a labeled
dataset regarding autonomous exploration. Each da-
tum in the dataset contains the following fields: the
name of the repository n, a natural language question
q, an answer to this question a, the related file f, and
the shortest system command path to reach this file
¢t = (¢§,c1,...,¢5_1). As a start point, this work
focus on an important step in autonomous exploration:
find the correct file f given the natural language ques-
tion g, so the answer a is for future work.

This dataset is generated in a “reverse question gen-
eration” manner. We first enumerate the pair (n, f),
then send the content of f to GPT-4 to let it generate
several pairs of (¢, a). We prompt GPT-4 to ask ques-
tions on the functionality of the file by requiring it to
analyze the file’s role in the whole repository.

This dataset contains 1764 training data (292 user
queries), 505 validation data (86 user queries), and 252
test data (44 user queries).

Here is the prompt template for AutoExplore label
generation:

Below is a text file {NAME} from a
repository. This repository is deployed
as a backend service, providing users

1009

with certain services. Users want to use
specific functionality or ask questions
about the services, such as "tell me the
business philosophy of this company" or
"what is the high-level architecture of
the proposed model". These inquiries are
guaranteed to be answered by reading some
text files.

Your task is to first analyze its
content. Then, come up with some user
queries which involves this text file,
along with the answers to them. Use the
following format:

ANALYSIS

QUERY1:
ANSWER1:
QUERY2:
ANSWER2:

Text
{CONTENT}

C.4 Reflection Generation

Here is the system message for AutoExplore reflec-
tion generation:

You are a helpful assistant to explore
a file system. Given a natural language
task, you need to generate a sequence
of system commands to identify the
correct file. During interaction, you
can only output a single choice number
as response, which comes from a list
of commands given to you. For example,
the possible commands are: ["A. cat
test.py", "c. cd progs", "9. cd .."].
Your answer should be "A", "c", or "9",
not the entire command.

A special command ‘id X‘ is introduced

to this task, which means to identify

the file X as the final answer. Once

you are sure X is the answer, use ‘id°¢

to explicitly identify it, then the
interaction terminates. Remember, simply
‘cat‘ a file does not identify it.

Here is prefiect: Now analyze the current
situation and plan what to do next using
50 words. Don’t give the choice yet. If
you have identified the correct file in
previous steps, you should exit at this
step.

Here is Dnegative - The last command opens
a wrong folder or file, which is a

16

suboptimal move. Give reasons why the
folder or file is incorrect and plan what
to do next using 50 words. Don’t give
the choice yet.

D Other Benchmark Details

D.1 Dangerous Taxi

OpenAl Gym uses MIT License.

Here is the system message for DangerousTaxi re-
flection generation:

Given a problem state, the actions you
have taken, and the observations you
have.

You need to give reflection on your
actions, such as:

- What is the consequence of your
previous action?

- How is your previous action?
bad? Why?

- What is the next action you want to
take if possible? Why?

Good or

I might give you some spoiler information
and optimal action for cheating, but you
should not mention that you have seen any
spoilers, optimal actions, or any other
information that you should not know.
Pretend you are smart and just know these
information.

Don’t use any words related to "optimal"
in your reflection.

Keep your reflection concise within 100
words.

For instance,

Because ..., so I ...
The task is to,... I
I found ... So...
etc.

Here iS ppegaiive: The previous actions might
contain some mistakes. Ppegaive 1S directly ap-
pended to the observation prompt p(s).

D.2 ALFWorld

ALFWorld and TextWorld use MIT License, Fast
Downward uses GNU General Public License (GPL)
v3.0.

ALFWorld shares the same system message and
Dnegative With DangerousTaxi

1010

Hyperparameter Value
Train batch size 1 on 4090
2 on A6000 and A40
Evaluate / Sample trajectory batch size | 4
Gradient accumulation steps 1
Learning rate 2x107%
Gradient clipping norm 0.3
Weight decay 1x1073
Precision bf16
LoRA quantization 8bit
LoRA « 16
LoRA rank 64
Maximum token length 1024
Temperature 1
Top p 1
Top k 99999

Table 3: Hyperparameters of experiments

E Experiment Details

1. Pickup the passenger.
2. Dropoff the passenger at
the destination.

(a) AutoExplore (b) DangerousTaxi (C) ALFWorld

Figure 8: Illustration of our environment

We use NVIDIA RTX 4090, RTX A6000, and Tesla
A40 for the training and evaluation of our proposed
Reflect-RL method. Python, PyTorch, HuggingFace
PEFT, and AutoGen are used throughout the project.

All the experiments share the set of hyperparameters
in Table 3.

For AutoExplore, it takes around 30 sec per it-
eration under the setting of horizon H 15. For
DangerousTaxi, it takes 30 sec per iteration under
the setting of horizon H = 15 in pickup, and 60 sec
per iteration under the the setting of horizon I = 30
in dropoff. For ALFWorld, it takes 90 sec per iteration
under the setting of horizon H = 15.

F Qualitative Observations

F.1 [Illustration of Reflection-Aided
Decision-Making

Figures 9 to 14 show an entire trajectory of our
reflection-aided decision-making method. Irrelevant
observations and actions are omitted by “...”

17

F.2 Same Model for Reflection and Policy

Figures 15 and 16 are two log scripts in an experiment.
In this experiment, the reflection model R and policy
model 7y, are the same. Thus, the gradients computed
on the action part will be influence the reflection part.
The reflect quality degraded drastically after 1194 iter-
ations of updates.

1011

Observation:
You are in the middle of a room.
Looking quickly around you, you see a
cabinet 20, ..., a fridge 1,
Your task is to: put a tomato in
microwave.
Reflection:
Observation:
You are in the middle of a room.
Looking quickly around you, you see a
Action List: cabinet 20,
Action 0: go to cabinet 1 Your task is to: put a tomato in
Action 1: go to cabinet 10 microwave.
- Here is the previous path:
Action 27: go to fridge 1 --- Step: 0 ---
Action: -—— Step: 1 ---
27 Action: open fridge 1

Observation: You open the fridge 1.
The fridge 1 is open. In it, you see

Figure 9: Step 1 of a reflection-aided decision-making
aegg 1, a pot 2, a pot 1, a tomato

example.
2, and a tomato 1.
Reflection:
Observation:
You are in the middle of a room.
Looking quickly around you, you see a
cabinet 20,
Your task is to: put a tomato in
microwave.
Here is the previous path:
-—= Step: 0 --- Action List:
Action: go to fridge 1 Action 0: close fridge 1
Observation: You arrive at loc 24.
The fridge 1 is closed. Action 46: take tomato 2 from fridge
Reflection: 1
Action:
46
Figure 11: Step 3 of a reflection-aided decision-
making example.
Action List:
Action 0: examine fridge 1
Action 1: go to cabinet 1
Action 41: open fridge 1
Action:
41

Figure 10: Step 2 of a reflection-aided decision-
making example.

18

1012

Observation:
You are in the middle of a room.
Looking quickly around you, you see a

Observation:
You are in the middle of a room.

cabinet 20, ..., a microwave 1, . X
. . Looking quickly around you, you see a
Your task is to: put a tomato in .
. cabinet 20,
microwave. . .
. . Your task is to: put a tomato in
Here is the previous path: .
microwave.
--- Step: 0 -—- . .
Here is the previous path:
T --- Step: 0 -—-
--- Step: 2 --—- P
Action: take tomato 2 from fridge 1
--- Step: 3 ---

Observation: You pick up the tomato

2 from the fridge 1. Action: go to microwave 1

Observation: You arrive at loc 22.

Reflection:

eflection The microwave 1 is closed.
Reflection:

Action List: Action List:

Action 0: examine microwave 1
Action 0: <close fridge 1
Action 43: open microwave 1
Action:

43

Action 32: go to microwave 1

Action:

32

Figure 13: Step 5 of a reflection-aided decision-

Figure 12: Step 4 of a reflection-aided decision- making example.

making example.

19

1013

Observation:

You are in the middle of a room.
Looking quickly around you, you see a
cabinet 20,

Your task is to: put a tomato in
microwave.

Here is the previous path:

--- Step: 0 ---

--- Step: 4 --—-

Action: open microwave 1
Observation: You open the microwave
1. The microwave 1 is open. Imn it,
you see a mug 1.

Reflection:

Action List:
Action 0: close microwave 1
Action 44: put tomato 2 in/on
microwave 1

Action:

44

Observation:

Task

What is the reason for the planned
domain name change for the website?
Current working directory

Files under current working
directory

README .md

Command history

Execution result of your last
command

Reflection:

Action List:

t. exit

103. cat README.md
110. id README.md
Action:

103

Figure 14: Step 6 of a reflection-aided decision-

making example.

20
1014

Figure 15: A log script from iteration #10.

Observation:

Task

What is the reason for the planned
domain name change for the website?
Current working directory

Files under current working
directory

README.md

Command history

Execution result of your last
command

Reflection:

Action List:

166. id README.md
T. exit

g. cat README.md

Action:
g

Figure 16: A log script from iteration #1204.

21

1015

