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Abstract

We consider the task of generating structured
representations of text using large language
models (LLMs). We focus on tables and
mind maps as representative modalities. Ta-
bles are more organized way of representing
data, while mind maps provide a visually dy-
namic and flexible approach, particularly suit-
able for sparse content. Despite the effective-
ness of LLMs on different tasks, we show
that current models struggle with generating
structured outputs. In response, we present ef-
fective prompting strategies for both of these
tasks. We introduce a taxonomy of prob-
lems around factuality, global and local struc-
ture, common to both modalities and propose
a set of critiques to tackle these issues result-
ing in an absolute improvement in accuracy
of +37pp (79%) for mind maps and +15pp
(78%) for tables. To evaluate semantic cov-
erage of generated structured representations
we propose AUTO-QA, and we verify the ad-
equacy of AUTO-QA using SQuAD dataset.
We further evaluate the usefulness of struc-
tured representations via a text comprehension
user study. The results show a significant re-
duction in comprehension time compared to
text when using table (42.9%) and mind map
(31.9%), without loss in accuracy.

1 Introduction

The overwhelming amount of information avail-
able online poses a significant challenge for users
seeking to quickly grasp and process relevant in-
formation. Current large language models (LLMs),
such as PALM-2 (PaLM2, 2023), Gemini (Gemini
Team, 2023) and ChatGPT (OpenAI, 2022), while
capable of providing text-based responses to user
queries, often fail to adequately structure and or-
ganize this information in a way that facilitates
comprehension (Tang et al., 2023). This can lead
to information processing bottlenecks that hinder

* Work done while interning at Google DeepMind.
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Figure 1: Overview of (a) tables and (b) mind map gen-
eration prompts. The prompting steps are colored .
Figure (a) illustrates the divide-and-generate prompt.
The input passage is initially segmented into sub-
passages, followed by the generation of multiple ta-
bles. Figure (b) demonstrates the generation process
for mind maps. After the main concept has been gener-
ated, an iterative expansion phase ensues, during which
the mind map is expanded until termination.

users’ ability to efficiently extract meaningful in-
sights from text.
To address this issue, we introduce the notion of
structured summaries, or STRUCTSUM in short.
STRUCTSUMs are derived by hierarchically orga-
nizing information and inducing semantic connec-
tions from an input text passage. Without loss of
generality, we focus on tables (Wu et al., 2022; Li
et al., 2023) and mind maps (Buzan, 1996; Huang
et al., 2021) as possible STRUCTSUM instantia-
tions:

• Tables are well-studied in the NLP literature.
However the vast majority of the work focused
on simpler tasks where tables are inputs – such as
QA (Herzig et al., 2020), semantic parsing (Bo-
gin et al., 2019), NLG (Andrejczuk et al., 2022;
Puduppully and Lapata, 2021; Laha et al., 2020),
etc. – rather than outputs. Indeed, faithfully
transforming an arbitrary text passage into a ta-
ble is a difficult task as the model must deal with
different challenges, such as reasoning at multi-
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ple levels, dealing with missing information, and
visually consistent formatting. Motivated by the
limitations above, we propose to generate multi-
ple tables instead. We argue that this is a simpler
task for an LLM, as shown in Figure 2, which
compares single-table and multi-table generation
side by side. We therefore propose a divide-and-
generate prompting approach (see Figure 1) that
first divides the input text into multiple text pas-
sages, each representing a sub-topic, followed by
an LLM prompt to generate a table-caption pair
for each smaller passage. This decomposition al-
lows the model to generate smaller, focused and
more informative tables, especially for complex
text passages with multiple sub-topics.

• Mind maps (Hu et al., 2021; Wei et al., 2019)
are less studied in the literature, but are helpful
for comprehension and learning (Buzan, 1996;
Dhindsa et al., 2011). Mind maps are comple-
mentary to tables in their structure, allowing for
more flexibility and dynamism than tables, as
they are inherently schema-less. However, gen-
erating mind maps with LLMs presents several
challenges: (i) the model first need to select a
central concept, that is the fulcrum of all the
successive extractions, as mind maps revolve
around a central root node; (ii) being a schema-
less abstraction, each connecting branch has its
own independent sub-topic, making it difficult
to automatically add branches all at once; (iii) to
ensure readability and well-structuredness each
leaf node should terminate the path in a way
that concludes the idea or sub-topic; (iv) depend-
ing on the information density, some paths may
be shorter than others. Therefore, the model
should decide whether or not a branch is worth
expanding. Following the structure of these ob-
servations, we propose an iterative prompting
technique for mind map generation. As show
in Figure 1, we initialize the mind map by gen-
erating the root concept. At each iteration, we
decide either to expand the current mind map
further or stop the process. During the expan-
sion step, we prompt the model to add branches
to the current leaf nodes. We represent the mind
map as a JSON object, as it is easy to parse and
verify.

Through extensive experimentation with PALM-
2 (PaLM2, 2023), we show that LLMs are not al-
ways effective at generating STRUCTSUMs that are
factual and structurally correct. To overcome these

issues we propose a pipeline for structured data gen-
eration. Our pipeline consists of structure-specific
prompts followed by critics to assess output quality
along three different dimensions, that are common
both to tables and mind maps: (i) Factuality, (ii) Lo-
cal Structure and (iii) Global Structure. We found
that our proposed critics improved the overall qual-
ity of the generated output by +37pp for mind maps
and +15pp for tables.

To ensure the usefulness of STRUCTSUM for
text-comprehension tasks, we propose Auto-QA
as a measure of output coverage. We automati-
cally generate QA pairs from input text and use
structured outputs to answer these questions. Fur-
thermore, we verify the appropriateness of using
Auto-QA by comparing Auto-QA with human gen-
erated QA pairs on SQuAD (Rajpurkar et al., 2016)
development set.

Finally, starting from the initial hypothesis that
STRUCTSUMs can enhance the effectiveness of
information-seeking scenarios, we conducted a
user study to evaluate their impact on users’ ability
to process information, using a text comprehen-
sion user study. Results demonstrate how STRUCT-
SUMs improve information seeking, specifically
on timed text comprehension metrics. We found
that by using the structured representation, users
can answer questions 42.9% faster for tables and
31.9% for mind maps.

2 Related Work

Structured Output. Generating structured out-
put from text has been explored in the context of
information extraction (Li et al., 2023; Pietruszka
et al., 2022). Most of the work focus on text-
to-table (Wu et al., 2022) generation using the
model trained on domain specific dataset. Ni and
Li (2023) use LLM for information extraction by
generating key-value pairs. Tang et al. (2023)
evaluate different models on table generation from
text by prompting where table structure is provided
as format instructions. Mind map generation has
been explored in the form of relation graph struc-
ture (Hu et al., 2021; Wei et al., 2019) to summarize
new articles (Cheng and Lapata, 2016; Hermann
et al., 2015). In contrast, we focus on a generation
pipeline applicable for multiple structured outputs
types by prompting LLM given a text input. We
keep the output structure flexible and domain inde-
pendent by not instructing the model with specific
format.
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Displacement Length Beam Draught

4,050 long tons 300 feet 46 feet 20 feet 2 inches

Speed Range Complement –

18 knots 8,750 nautical miles 300 to 350 officers and 
ratings

Armament – – –

Two breech-loading (BL) 8-inch (203 mm) guns, one each…

Armour – – –

A lower armoured deck that was 2 inches (51 mm) on the flat and 3 inches...

Input Passage: The Mersey-class cruisers were improved versions of the Leander class with more armour and no sailing rig on a smaller displacement. Like their predecessors, they 
were intended to protect British shipping. The cruisers had a length between perpendiculars of 300 feet (91.4 m) ...

Length Beam Draught Displacement

300 feet 46 feet 20 feet 2 inches 4,050 long tons

Weapon Quantity Location

BL 8-inch gun 2 Fore and aft on pivot mounts

BL 6-inch guns
…

10
…

Five on each broadside in sponsons
…

Single Table Generation
Multiple Table Generation

The Mersey-class cruisers were improved versions of the Leander class with more 
armour and no sailing rig on a smaller displacement. 

The Mersey-class cruiser

Armament

Location Thickness (in)

Lower Armoured Deck 2 (flat) / 3 (slope)

Conning Tower 9

Mersey-class armour
Attribute Value

Engine type Two-cylinder…

Shafts 2

The Mersey-class cruiser’s machinery

Figure 2: Example table generation for the text at top, comparing single table (left) vs multiple table generation
(right). Some parts in the table and text were truncated (...) for readability. The full example is reported in Figure 6.

Prompting. Our prompting strategy is rooted
in task decomposition techniques. Least-to-
most (Zhou et al., 2023), in contrast with chain-of-
thought (Wei et al., 2022), progresses from easiest
to hardest questions eventually answering the com-
plete question, while successive prompting (Dua
et al., 2022) iteratively generate new questions
based on previous answers. Unlike least-to-most,
decomposed prompting (Khot et al., 2023) doesn’t
restrict task decomposition from easiest to the hard-
est and iteratively generate next steps that can be
executed by different systems. Most of the prior
work is focused on reasoning for solving QA type
problems, in contrast, we are interested in trans-
forming text to structured formats. Our divide-and-
generate prompting for multiple table generation
(similar to least-to-most) uses an initial prompt
to divide the input passage into different topical
sub-passages that simplifies the table generation in
next step. Different from these tasks our iterative
prompting for mind maps requires reasoning over
current structured output at each step.

Factuality. Attribution is used as a tool for as-
sessing the reliability of LLMs and identifying po-
tential sources of inaccuracy or fabrication in their
generated outputs. Current work apply attribution
on unstructured text generation settings, such as,
question answering (Bohnet et al., 2022) and text
generation tasks (Gao et al., 2023a). Diverging
from that, our work require verifying the factuality
of generated structured outputs.

Evaluation. Due to the cost of human evalua-
tion, LLMs are used to critique the generated out-
puts (Wang et al., 2023). Recent instructions tuned
models, such as, GPT-4 (OpenAI, 2023) and Chat-

GPT (OpenAI, 2022) are shown to be strong eval-
uators. To avoid using external APIs, Kim et al.
(2023); Wang et al. (2023) fine-tune a smaller pre-
trained model to critic model responses. We are in-
terested in evaluating the quality structured outputs
using critics and self-correct based on the feedback.
As a part of data generation pipeline, our focus is
on filtering instances that are incomplete and are
not factually grounded.

3 Generating STRUCTSUMs

We focus on tables and mind maps as a possible
STRUCTSUM instantiations.

3.1 Tables: Divide & Generate prompting

Given an input text we would like to transform it
into multiple tables. Although generating multi-
ple tables from text may seem unnecessary, single-
table generation lead to several issues, as shown in
Figure 2 (bottom left). The model often produces
complex table structures, resulting in missing cell
values or the exclusion of relevant information. Ad-
ditionally, complex tables are difficult to verify for
factual accuracy and can require additional mental
effort from the user to understand.

To address these limitations, we propose a
divide-and-generate approach that dynamically par-
titions the passage into smaller subtopic segments.
While deterministic rule-based chunking methods
(e.g., based on word or sentence count) can be em-
ployed, they often produce suboptimal results due
to potential under-chunking, over-chunking, and
the absence of division for certain instances. There-
fore, the chunking must be adaptive and depend
on the input text and its sub-topic distribution. We
use a one-shot prompt for this step, as shown in
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Kay Daly

Personal life

Birth place

Castlecaufield

County Tyrone

UlsterIreland

Birth date

January 8, 1919

Death place

United States

Death date October 16, 1975

Spouse

Richard Bradford

Warren Leslie

Children

John Kelly Bradford

Richard Bradford

Peter Bradford

Career

Employer

Norman, Craig & Kümmel

Revlon

Occupation

Advertising executive

Notable works

Maidenform 'I Dreamed'
campaign

Revlon's Fire And Ice
campaign

Figure 3: Example mind map output. The full example
along with the input text is reported in Figure 7.

Appendix B (Figure 14). After the chunking, we
prompt the model to generate a table along with
its caption for each sub-passage obtained in the
previous step.

Algorithm 1 Mind maps Iterative Prompting
Require:

input text passage: input
maximum number of steps: max_steps

1: step← 0
2: mindmap← GENERATE-ROOT(input)
3: while step < max_steps do
4: step← step + 1
5: if CONTINUE-PROMPT(input, mindmap) then
6: expansions← EXPAND(input,mindmap)
7: mindmap← JSON-CRITIC(expansions)
8: else
9: return mindmap

10: end if
11: end while
12: return mindmap

3.2 Mind maps: Iterative Prompting

Contrary to tables, mind maps (see example in Fig-
ure 3) are more flexible and present a different set
of challenges. The first challenge is representa-
tion. We desire a representation that is (i) close
to a familiar format, and (ii) is easily parsable and
verifiable using current tools. JSON meets both
of these requirements. The second challenge is
that mind maps, unlike tables where each row can
be produced linearly, necessitate attaching infor-
mation in different locations depending on which
branch is being expanded. This requires the model
to think radially.

We propose an iterative prompting for mind
maps generation. Algorithm 1 shows the overall
procedure. Details of each prompt is in Appendix B.
We start by generating the root concept that be-
comes the central node for the mind map. This

separate step allows the model to independently
reason about the theme of the passage. After gener-
ating the root, at each step we prompt the model to
decide if current mind map can be expanded further.
If the model decides to expand (line 5), we prompt
the model using the current mind map to add more
branches. Otherwise, the procedure terminates and
we return the current mind map. At each expansion
step we sample multiple mind maps. Utilizing the
fact that JSON verification is cheaper we select the
topmost JSON that is parsed correctly. In the rare
case, when none of the samples are parsable we
call a critic prompt to correct the top JSON (line
7).

4 Data Generation Pipeline

We now present our STRUCTSUM data generation
pipeline. Although each STRUCTSUM is seem-
ingly different, we identify three dimensions that
are common to both table and mind map modalities:
(i) Factuality, (ii) Local Structure, and (iii) Global
Structure. We use a set of critics, implemented via
prompts, to ensure sufficient quality across each di-
mension. Through our initial experiments we find
that tweaking each critic according to the structure
is more helpful.

4.1 Factuality Critic
We use post-attribution (Gao et al., 2023a) to ver-
ify factuality, as we found that jointly generating
and attributing (Gao et al., 2023b) results in (i) un-
natural text output and (ii) in the model copying
verbatim from the input text passage.

Critic cost is one aspect that requires consider-
ation. For example, for tables, verifying each cell
could be more robust, however, it increases the
number of LLMs calls (listed in Table 1), from
O(1) to O(#number of cells).

For simplicity, we choose a single prompt per
STRUCTSUM: for tables we ask the LLM to at-
tribute each row, while for mind maps we ask to
attribute each path from root to leaf. We convert
the input text passage to a list of sentences and ask
the model to cite, following the [x,y] format for
attribution, the source sentence(s) where the infor-
mation can be found or [NA] in case this is not
possible. The prompts are reported in Figure 15.

4.2 Local Structure Critic
For tables, a common issue arises from the model
misplacing values in incorrect columns. For exam-
ple, placing “66 years” in the Birth date column or
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Critic
# LLM calls

Tables Mindmaps

Factuality O(1) O(1)
Local Structure O(#cols) O(#paths)
Global Structure NA O(1)

Table 1: Cost for each critic in terms of #LLM calls
as proxy. #cols is number of columns in output table.
#paths is the number of paths in a mind map from root
node to a terminal node.

an address in the Company Name column. To de-
tect such errors, we leverage each column header as
a category and verify whether all cell values within
that column belong to the same category. For mind
maps, we observed that a well-defined terminal
node can often represent the entire path leading to
it. We use this fact and prompt the model to verify
whether the terminal node is a specific value, rather
than a general concept. The prompts are reported
in Figure 16.

4.3 Global Structure Critic

Global critic allows us to verify the overall struc-
ture of the output. This means understanding
whether all the information contained in a STRUCT-
SUM makes sense globally.
For tables, we simply verify whether the table
is well formatted: e.g. we verify equal number
columns in the header and subsequent rows, there-
fore ignoring semantic content of the table and only
focusing on form rather than the content. This is re-
alized via simple heuristics implemented in Python
(we do not prompt the model for these).
For mind maps, we used a stricter approach, to en-
sure that information were semantically valid on a
global level. Specifically, we convert the mind map
into a familiar format like table of contents (ToC),
which we hypothesize is more likely to be seen dur-
ing the pre-training phase of existing LLMs, and
ask the model to check if the ToC is at right level of
abstraction. The prompts are reported in Figure 17.

5 Semantic Coverage using AUTO-QA

In this section we propose an automatic way to
assess the quality and the general usefulness of
STRUCTSUMs introducing AUTO-QA coverage as
proxy metric. 1 This metric measures the semantic

1We do not present AUTO-QA as a substitute for human
evaluations of quality. Instead, we propose AutoQA as a cover-
age metric that allows us to use synthetic question generation.

coverage or percentage of questions that are an-
swerable when using a STRUCTSUM s, instead of
the full text passage t. Formally it is defined as:

COV (s) =
1

|GenQA(t)|

|GenQA(t)|∑

i=1

1Eai
[Q(s, qi)]

where GenQA(x) is a function that generates
(q, a) pairs given the input text passage t, Q(s, qi)
is a function that generates an answer given in input
a STRUCTSUM s and the question qi, whereas the
indicator function 1Eai

(x) asses the answer equiv-
alence between ai and x. Figure 18 in Appendix B,
show all the prompts associated with AUTOQA
module (Deutsch et al., 2021; Fabbri et al., 2022).

Independently of perceived quality, it is worth
noting that this simple metric can be thought as
an abstractiveness measure or compression quality
for a given STRUCTSUM s. A value of 1 indicates
no information loss at the expense of no compres-
sion/abstraction, whereas a value of 0 indicates
theoretically maximum compression at the expense
of not providing any useful information. A target
value is therefore application specific and must be
adjusted accordingly 2.

QA pairs generation GenQA(t) is implemented
by prompting the LLM to generate a list of
question-answer (QA) pairs conditioned on the in-
put text t. To ensure that the quality of QA pairs
is sufficient, after generation, we we apply a three-
step procedure. First, we removed duplicate ques-
tions via string match. Second, we removed an-
swers if none of the words appeared in the input
text, thereby ensuring with reasonable certainty
that the answer is grounded in the text without be-
ing overly stringent. Third, we performed a cyclic
consistency check, where we prompted the model
to answer the generated question based on input
text.

Question answering We use a simple prompt
for function Q(s, qi). For tables, we convert the
table representation to a markdown table format,
whereas for mind maps we simply serialize the
information as a JSON object.

Answer Equivalence As the model might gen-
erate verbose answers, verifying whether two an-

2It is possible to include coverage as a critic. But we opted
not to do so, as the threshold for coverage depends on the
specific use case. This also allowed us to analyze coverage
independently, without being influenced by other factors.
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swers are the same is a problem of semantic sim-
ilarity. Instead of using lexical matching, that is
1Eai

(x) := ai = x, we prompt the model to check
if two answers are equivalent.

6 Model

For all the experiments, we use the Unicorn (PaLM-
2-unicorn, 2023) variant of PALM-2, a fine-tuned
transformer-based model with UL2 (Tay et al.,
2022) like objectives. PALM-2 improves on
PaLM (Chowdhery et al., 2023) through optimized
scaling, richer training data and instructing tun-
ing (Wei et al., 2021; Chung et al., 2022).

7 Dataset

To test our pipeline on a diverse set of input pas-
sages, we selected Wikipedia text as the source.
Specifically, we started with the English split of the
WIKI40B (Guo et al., 2020) dataset 3. The dataset
is cleaned up by page filtering to remove disam-
biguation pages, redirect pages, deleted pages, and
non-entity pages. Input to our prompts are pas-
sages that are obtained by splitting the Wikipedia
text using the _START_PARAGRAPH_ symbol that is
already provided as part of the dataset.

7.1 Filtering for Tables Generation

Not all input paragraphs are well suited for table
generation. As a proxy for selecting adequate pas-
sages, we used regex-based filters to only include
passages with more that 20 numeric values and re-
moved passages with less than three sentences. In a
real world setting, we would like a systematic way
of deciding which modality is adequate for a given
text. We leave this exploration as future work.

8 Results

In this section, we present the results of our experi-
ments using PALM-2.

8.1 Quality impact of prompting style and
automated critics

We assessed the quality of generated structured
data through manual human ratings. The study was
conducted on 100 instances for mind maps. For
multi-table generation, we choose 100 individual

3We used the version that is available via the Ten-
sorflow datasets https://www.tensorflow.org/datasets/
catalog/wiki40b.

Tables

Single Table 54
Multi Table 63

Mindmaps

CoT 39
Iterative 42

Table 2: Table / mind map accuracy per prompt style.
Outputting multiple tables provides higher quality for
the table modality. For mindmaps, an iterative ap-
proach is to be preferred to a CoT approach. Full
prompts are reported in the Appendix B.

Critic Tables Mind maps

Baseline† 63 42
↪−→ Structure 70 71
↪−→ Factuality 78 79

Table 3: Human annotation accuracy at different
pipeline stages. The use of critics is a critical step to
improve perceived quality. Local and Global Structure
critic provides a significant lift for mind maps. The in-
crease in performance for Factuality, is similar for both
Tables and mind map.

table-text pair for annotation 4. Input passages
were obtained via data filtering strategy described
in Section 7.

Guidelines Annotators were asked to rate each
instance as “Good“ or “Bad” by checking the over-
all quality of the output. For both modalities, an-
notators were asked to check for factuality as well
as the structural quality of the output. To help the
annotators measure the structural quality we asked
the annotators to check “table structure”, “table
header”, “column header-value match” for tables.
For mind maps, they were asked to check “incom-
plete branches”, “not a good main concept”, “too
dense / too sparse” and “wrong edge connections”.
We also encouraged the annotators to mark the in-
stance as bad if they find any other issues.

Prompt style Table 2 show the results for both
the modalities. For table generation task we find
that annotators prefer multiple tables generation
outputs compared to single table generation. This
can be attributed to the fact that multi-table gener-
ation enables the model to generate more concise,
focused and informative tables. For mind map, we
compare chain-of-thought (Wei et al., 2022) with
our proposed iterative generation strategy described

4We made sure that the input passages are the same for the
different ablations within modalities. For multi-table genera-
tion, we choose 100 text-table pairs generated using 52 input
passages.
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Figure 4: AUTO-QA based coverage. A point 〈X,Y 〉
in each line show that X% of data has at least Y % of
coverage measured using AUTO-QA.

in Algorithm 1. We find that iterative generation
were preferred over simpler prompt outputs.

8.2 Do Critics Align with Human Ratings?
Through our human annotations results in Sec-
tion 8.1, we find that many generated outputs are
not of acceptable quality. To improve the quality
of the generated data and to avoid costly human
annotations, we propose to use a combination of
critics as a measure of data quality. To verify the
efficacy of our critics, we first filtered the generated
dataset with our critics. Specifically, we performed
a logical AND of individual critics and filtered the
instances that do not pass the criterion. We then
sampled 100 instances from filtered examples and
conducted the same evaluation as in Section 8.1.

Results in Table 3 show that using the proposed
critics the overall quality is improved by a signif-
icant margin. We observe that data filtered using
Structure (Global and Local) and Factuality crit-
ics improve the percentage of acceptable instances
generated using the pipeline. We find that the
quality of mind maps improve by absolute +37pp.
Similarly, for tables quality improves by absolute
+15pp. These results indicate that the critics were
able to retain good examples and that the selection
criterion is in agreement with human judgement.

8.3 Measuring Coverage via Auto-QA
Results in Figure 4 show AUTO-QA coverage for
mind maps and tables. The curve shows for a par-
ticular coverage threshold what percentage of data
meets that threshold. Overall, we observe that ta-
bles have better coverage compared to mind maps,
meaning that they have an higher abstractiveness or
information retention capacity. Interestingly, even

QA Type
Auto Human

Mind map 55.6 61.4
Multi-Table (Divide-and-generate) 66.8 69.3
Single Table 57.1 58.8
Query Focused (Single Table) 81 85.5

Table 4: QA accuracy on different modalities as con-
text, generated using SQuAD validation set. AUTO-
QA is automatic question-answer pair generation. Hu-
man QA are original SQuAD questions curated by hu-
mans.

though both modalities are perceptually different,
we notice that both of them follow similar trends.

8.4 Is Auto-QA a reasonable metric?
We investigate the feasibility of using AUTO-QA
as a surrogate for manually written QA pairs. We
aim to determine whether AUTO-QA can generate
QA pairs of comparable quality to those written
by humans, and leading to a similar evaluation of
semantic coverage. To verify the same, we use ran-
domly selected 1000 <passage, question, answer>
triples from the SQuAD (Rajpurkar et al., 2016)
validation set (common for all the experiments).
Using the text passage as input we generate differ-
ent STRUCTSUMs. Next, we generate a QA pair
corresponding to each text passage. This QA pairs
acts as a substitute for human written QA pair for
AUTO-QA study. The goal is to check whether,
keeping the passage and output STRUCTSUM the
same, there is a correlation in performance between
human generated QA pairs and automatically gen-
erated QA pairs.

Table 4 shows the overall results. Second (Mind
maps) and third (Multi-Table) row show the com-
parison between Human QA and Auto QA for
our proposed divide-and-generate prompt for ta-
bles and iterative prompt for Mindmap generation.
We can see that AUTO-QA has comparable results
and is a reasonable substitute for human generated
questions as a measure of semantic coverage. We
further study the limitations of AUTO-QA, and the
difference in Human vs Auto QA scores in Sec-
tion 10.

8.5 Multiple Tables vs Single Table
To check whether generating multiple tables is bet-
ter at covering more information, we perform a
comparison between the ability to answer ques-
tions by generating single or multiple tables. On
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Figure 5: Results for timed text comprehension based user study. Plots show 95% confidence interval over time
taken in seconds to answer question with different structure combinations as context. For both tables (left) and
mind map (right), compared to text only, we observe significant reduction (42.9% and 31.9% resp.) in average
time taken by annotators to answer the question.

comparing Multi-Table and Single Table row in Ta-
ble 4, we observe that for both AUTO-QA and Hu-
man QA generating multiple table provides more
coverage. So in addition to the benefits such as
comparatively better verifiability and robust gener-
ation, multiple table generation are also better at
covering more semantic information.

8.6 Query Focused Generation

In many cases user intent is known in advance,
for example, a user query to search or LLM-based
Assistant interface (e.g., ChatGPT, Gemini, etc.).
We explore the possibility of generating structured
data in the presence of a query. We perform a
preliminary analysis by adding the query in single
table generation prompt. As we can see in last row
in Table 4, query focused generation improve the
performance by more than 20 for AUTO-QA and
25 points for Human-QA. Since this requires fur-
ther investigation in terms of prompting and output
quality analysis, we leave a comprehensive explo-
ration of query-focused structured data generation
as future work.

8.7 Are STRUCTSUMs useful?

We evaluate whether STRUCTSUM are useful ab-
stractions for the users. For this we design a timed
text comprehension based user study. We assume
that user is looking to answer a specific query, i.e.
has a specific intent. We measure time taken to
satisfy the user intent as a proxy of usefulness. Our
evaluation team consists of 12 volunteers who are

affiliated with our institution. Five of these volun-
teers are female, and seven are male. All volunteers
are proficient in English, although not native speak-
ers.

We create an intent in the form of a question
along with different context combinations. For
example, for a question q, we create 〈q, s〉, 〈q, t〉,
〈q, s + t〉 as possible combinations, where s is a
STRUCTSUM and t is the input text passage. Each
of these combinations are presented to different
annotators while ensuring that no annotator see the
same question twice. We then measure how long it
takes to answer the question in each scenario.

STRUCTSUMs for the study were generated us-
ing our data generation pipeline and critic-based
filtering, as discussed in Section 4. In total 600
instances were annotated, equally divided into dif-
ferent context combinations for mind maps and
table generation. Annotators consistently answered
correctly across all context combinations (Ap-
pendix A), suggesting that the level of context did
not significantly impact their accuracy. Figure 5
shows the overall results. The plots show 95% con-
fidence interval of time taken by the annotators
when using different modality:
• Tables. Figure 5a shows that on average anno-

tators with access to tables were able to answer
almost 42.9% time faster on average compared
to annotators with only text. Furthermore, we
observe that presenting both table and text is also
useful to the annotators.

• Mind maps. Figure 5b shows the results for
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QA Type
Auto Human

Mind map 60.2 [57.0, 63.3] 61.3 [58.1, 64.4]
Multi-Table (Divide-and-generate) 72.3 [69.4, 75.2] 68.9 [66.0, 71.9]
Single Table 61.8 [58.7, 64.9] 58.1 [54.9, 61.3]
Query Focused (Single Table) 87.7 [85.5, 89.8] 85.5 [83.2, 87.8]

Table 5: Human and AUTO-QA accuracy with 95% confidence interval on different modalities as context. Unlike
the results presented in Table 4, we have excluded SQuAD passages for which none of the questions generated by
AUTO-QA passed the filter.

Tables

Avg #words per chunk 114.8
Avg #sentences per chunk 3.9
Avg #words per input 240.6
Avg #sentences per input 8.1
Avg #rows 7.1
Avg #cols 3.3
Avg #tables 1.9
Max #tables 11

Mind map

Avg #words 194.6
Avg #sentences 7.9
Avg #nodes 11.8
Avg depth 2.2

Table 6: Table / mind map text input and output statis-
tics. On average two (∼ 1.9) tables (top) are generated
per input text instance. Mind maps (bottom) contains
11.8 nodes on average.

the study with mind map. A similar trend can
be observed, with a reduction of approximately
31.9% in average time between annotators with
mind maps compared to annotators that only
used text to answer the question.

We note that 〈q, s+ t〉 performs worse than 〈q, s〉.
We believe this is due to the fact that the annotators
cross-checked the answer from both the modalities,
leading to increase in time to answer the question.

9 Data Generation statistics

Table 6 shows different statistics of data generated
using our prompts. For tables generation we ob-
serve that our methods generate almost two (∼ 1.9)
tables per instance and the tables have 7.1 rows
and 3.3 columns on average. Mind maps have an
average of 11.8 nodes with a depth of 2.2. We show
example mind map and table generation in Figure 7
and Figure 6 respectively.

10 Limitations of AUTO-QA

We propose AUTO-QA as a coverage metric, in
order to measure how much information from the
original passage is retained in the STRUCTSUM.

Note that the metric is not intended as a substitute
for evaluations of overall quality. The primary ben-
efit of AUTO-QA is the synthetic question genera-
tion component, which can be run at scale without
costly human annotations. In Table 4, we measured
how closely the synthetic AUTO-QA aligns with
human generated question-answer pairs, revealing
certain limitations of the metric. Notably the qual-
ity of generated questions is not always reasonable,
which is mitigated using specialized filters, as dis-
cussed in Section 5. Although we generate several
question-answer pairs, it is possible that none pass
the filters, which we see for fewer than 10% of
input passages. Such instances adversely affect
the AUTO-QA coverage score, contributing to the
score discrepancies in Table 4. When the analysis
is restricted to those subsets where the AUTO-QA
filtering is successful, the observed differences are
diminished and fall within the bounds of experi-
mental noise, as reported in Table 5.

11 Conclusion

In this work we study the potential of structured rep-
resentations like tables and mind maps to enhance
information comprehension. Utilizing our divide-
and-generate prompting and iterative expansion,
we achieved significant improvements in output
quality (+37pp for mind maps, +15pp for tables)
using structure-specific prompts and critics. We
proposed AUTO-QA based coverage metric that au-
tomatically generates QA pairs from the input text
and uses STRUCTSUM outputs to answer them.
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13 Limitations

We outline the limitations of our work to ensure
transparency and inspire future research. First, the
structured output representations we experimented
with are limited to tables and mind maps. How-
ever, to comprehensively evaluate the effectiveness
of our critics and pipeline, it is desirable to also
evaluate other input and output modalities, e.g. im-
age and video, considering the recent advances in
VLMs. Secondly, our work and experimental find-
ings are limited to only English sources. We plan
to also explore multilingual structured summaries
in future work. Third, we would to warn against
the risk of blindly trusting models to generate struc-
tured summaries from an input accurately. Al-
though we take extra care to increase the factuality
of the outputs via the use of critics, and experimen-
tally validate QA coverage, we believe that special
care should be taken to verify outputs in accuracy-
sensitive applications. Finally, our STRUCTSUM

generation is performed using a LLM with fixed
prompts, however, prior work have shown a rea-
sonable portability of prompts across similar mod-
els (Zhou et al., 2023; Khot et al., 2023).
Despite these limitations, our work serves as an
initial step in constructing reliable structured sum-
marization evaluations, models and applications.
We hope future research can greatly benefit from
this starting point.

References

Ewa Andrejczuk, Julian Eisenschlos, Francesco Pic-
cinno, Syrine Krichene, and Yasemin Altun.
2022. Table-to-text generation and pre-training with
TabT5. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 6758–6766,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019.
Global reasoning over database structures for text-
to-SQL parsing. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3659–3664, Hong Kong, China. As-
sociation for Computational Linguistics.

Bernd Bohnet, Vinh Q. Tran, Pat Verga, Roee Aha-
roni, Daniel Andor, Livio Baldini Soares, Massimil-
iano Ciaramita, Jacob Eisenstein, Kuzman Ganchev,
Jonathan Herzig, Kai Hui, Tom Kwiatkowski, Ji Ma,
Jianmo Ni, Lierni Sestorain Saralegui, Tal Schus-
ter, William W. Cohen, Michael Collins, Dipanjan

Das, Donald Metzler, Slav Petrov, and Kellie Web-
ster. 2022. Attributed question answering: Evalua-
tion and modeling for attributed large language mod-
els. arXiv preprint.

Tony Buzan. 1996. The Mind Map Book: How to
Use Radiant Thinking to Maximize Your Brain’s Un-
tapped Potential. Plume.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 484–494, Berlin, Germany. As-
sociation for Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2023. Palm: Scaling lan-
guage modeling with pathways. Journal of Machine
Learning Research, 24(240):1–113.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416.

Daniel Deutsch, Tania Bedrax-Weiss, and Dan Roth.
2021. Towards Question-Answering as an Auto-
matic Metric for Evaluating the Content Quality of a
Summary. Transactions of the Association for Com-
putational Linguistics, 9:774–789.

Harkirat S. Dhindsa, Makarimi-Kasim, and
O. Roger Anderson. 2011. Constructivist-visual
mind map teaching approach and the quality of
students’ cognitive structures. Journal of Science
Education and Technology, 20(2):186–200.

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and
Matt Gardner. 2022. Successive prompting for de-
composing complex questions. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1251–1265, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Alexander Fabbri, Chien-Sheng Wu, Wenhao Liu, and
Caiming Xiong. 2022. QAFactEval: Improved QA-
based factual consistency evaluation for summariza-
tion. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 2587–2601, Seattle, United States. Asso-
ciation for Computational Linguistics.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony
Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vincent
Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and
Kelvin Guu. 2023a. RARR: Researching and revis-
ing what language models say, using language mod-
els. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 16477–16508, Toronto,
Canada. Association for Computational Linguistics.

7885

https://doi.org/10.18653/v1/2022.findings-emnlp.503
https://doi.org/10.18653/v1/2022.findings-emnlp.503
https://doi.org/10.18653/v1/D19-1378
https://doi.org/10.18653/v1/D19-1378
https://doi.org/10.48550/ARXIV.2212.08037
https://doi.org/10.48550/ARXIV.2212.08037
https://doi.org/10.48550/ARXIV.2212.08037
https://doi.org/10.18653/v1/P16-1046
https://doi.org/10.18653/v1/P16-1046
https://doi.org/10.1162/tacl_a_00397
https://doi.org/10.1162/tacl_a_00397
https://doi.org/10.1162/tacl_a_00397
https://doi.org/10.1007/s10956-010-9245-4
https://doi.org/10.1007/s10956-010-9245-4
https://doi.org/10.1007/s10956-010-9245-4
https://doi.org/10.18653/v1/2022.emnlp-main.81
https://doi.org/10.18653/v1/2022.emnlp-main.81
https://doi.org/10.18653/v1/2022.naacl-main.187
https://doi.org/10.18653/v1/2022.naacl-main.187
https://doi.org/10.18653/v1/2022.naacl-main.187
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2023.acl-long.910


Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen.
2023b. Enabling large language models to generate
text with citations. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6465–6488, Singapore. Associa-
tion for Computational Linguistics.

Gemini Team. 2023. Gemini: A family of highly capa-
ble multimodal models. Technical report, Google.

Mandy Guo, Zihang Dai, Denny Vrandecic, and Rami
Al-Rfou. 2020. Wiki-40b: Multilingual language
model dataset. In LREC 2020.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. Advances in neural information
processing systems, 28.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4320–4333, Online. Association for
Computational Linguistics.

Mengting Hu, Honglei Guo, Shiwan Zhao, Hang Gao,
and Zhong Su. 2021. Efficient mind-map generation
via sequence-to-graph and reinforced graph refine-
ment. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 8130–8141, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1419–1436, On-
line. Association for Computational Linguistics.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2023. Decomposed prompting: A modular
approach for solving complex tasks. In The Eleventh
International Conference on Learning Representa-
tions.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang,
Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, and
Minjoon Seo. 2023. Prometheus: Inducing fine-
grained evaluation capability in language models.
Preprint, arXiv:2310.08491.

Anirban Laha, Parag Jain, Abhijit Mishra, and Karthik
Sankaranarayanan. 2020. Scalable Micro-planned
Generation of Discourse from Structured Data.
Computational Linguistics, 45(4):737–763.

Tong Li, Zhihao Wang, Liangying Shao, Xuling Zheng,
Xiaoli Wang, and Jinsong Su. 2023. A sequence-
to-sequence&set model for text-to-table generation.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 5358–5370, Toronto,
Canada. Association for Computational Linguistics.

Xuanfan Ni and Piji Li. 2023. Unified text struc-
turalization with instruction-tuned language models.
arXiv preprint arXiv:2303.14956.

OpenAI. 2022. Chatgpt: Optimizing language models
for dialogue.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

PaLM-2-unicorn. 2023. PaLM-2 google ai
blog. https://blog.google/technology/ai/
google-palm-2-ai-large-language-model/.
Accessed: 2023-05-10.

PaLM2. 2023. PaLM2 technical report.
https://ai.google/static/documents/
palm2techreport.pdf. Accessed: 2023-05-10.

Michał Pietruszka, Michał Turski, Łukasz Borchmann,
Tomasz Dwojak, Gabriela Pałka, Karolina Szyndler,
Dawid Jurkiewicz, and Łukasz Garncarek. 2022.
Stable: Table generation framework for encoder-
decoder models. arXiv preprint arXiv:2206.04045.

Ratish Puduppully and Mirella Lapata. 2021. Data-
to-text Generation with Macro Planning. Transac-
tions of the Association for Computational Linguis-
tics, 9:510–527.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Xiangru Tang, Yiming Zong, Jason Phang, Yilun Zhao,
Wangchunshu Zhou, Arman Cohan, and Mark Ger-
stein. 2023. Struc-bench: Are large language mod-
els really good at generating complex structured
data? Preprint, arXiv:2309.08963.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Gar-
cia, Jason Wei, Xuezhi Wang, Hyung Won Chung,
Dara Bahri, Tal Schuster, Steven Zheng, et al. 2022.
Ul2: Unifying language learning paradigms. In The
Eleventh International Conference on Learning Rep-
resentations.

Tianlu Wang, Ping Yu, Xiaoqing Ellen Tan, Sean
O’Brien, Ramakanth Pasunuru, Jane Dwivedi-Yu,
Olga Golovneva, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. 2023. Shepherd: A
critic for language model generation. arXiv preprint
arXiv:2308.04592.

7886

https://doi.org/10.18653/v1/2023.emnlp-main.398
https://doi.org/10.18653/v1/2023.emnlp-main.398
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.296.pdf
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.296.pdf
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2021.emnlp-main.641
https://doi.org/10.18653/v1/2021.emnlp-main.641
https://doi.org/10.18653/v1/2021.emnlp-main.641
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://arxiv.org/abs/2310.08491
https://arxiv.org/abs/2310.08491
https://doi.org/10.1162/coli_a_00363
https://doi.org/10.1162/coli_a_00363
https://doi.org/10.18653/v1/2023.findings-acl.330
https://doi.org/10.18653/v1/2023.findings-acl.330
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774
https://blog.google/technology/ai/google-palm-2-ai-large-language-model/
https://blog.google/technology/ai/google-palm-2-ai-large-language-model/
https://ai.google/static/documents/palm2techreport.pdf
https://ai.google/static/documents/palm2techreport.pdf
https://doi.org/10.1162/tacl_a_00381
https://doi.org/10.1162/tacl_a_00381
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/abs/2309.08963
https://arxiv.org/abs/2309.08963
https://arxiv.org/abs/2309.08963


Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–
24837.

Yang Wei, Honglei Guo, Jinmao Wei, and Zhong
Su. 2019. Revealing semantic structures of texts:
Multi-grained framework for automatic mind-map
generation. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intel-
ligence, IJCAI-19, pages 5247–5254. International
Joint Conferences on Artificial Intelligence Organi-
zation.

Xueqing Wu, Jiacheng Zhang, and Hang Li. 2022.
Text-to-table: A new way of information extraction.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2518–2533, Dublin, Ireland.
Association for Computational Linguistics.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations.

7887

https://doi.org/10.24963/ijcai.2019/729
https://doi.org/10.24963/ijcai.2019/729
https://doi.org/10.24963/ijcai.2019/729
https://doi.org/10.18653/v1/2022.acl-long.180
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM


A User Study

Usually, mind maps are represented as a graph as
shown in Figure 7. However, for the text com-
prehension user study described in Section 8.7, to
avoid bias due to color or orientation, we simplify
the representation as a tree (Figure 10). To estab-
lish the known query intent, annotators’ are first
shown with input question, e.g., Figure 8. Next,
on clicking Show content button, annotators are
shown context in the form of either text (Figure 9),
structure (Figure 10), or structure + text (Figure 11).
The question-answer pairs were generated automat-
ically conditioned on input text (Section 5). An-
notators were also allowed to mark an instance
un-answerable. The user study for tables is per-
formed in a similar manner. We annotated 100
question-answer pairs for both mind maps and ta-
bles. Each input instance is annotated with three
different context combinations, leading to 600 total
annotations. We filtered instances that were marked
un-answerable by the annotators (32% and 22% for
tables and mind map study resp.). To avoid penal-
izing for spelling errors or other typing mistakes,
the answers were evaluated via human evaluation.

We adopt timed-comprehension for answering
free-form questions as a proxy measure for useful-
ness of generated structured representation. This
makes it different from categorical data annotations.
We calculate rater agreement for the questionnaire
responses. We find that 89.9% of questions had
full rater agreement regarding the correct response,
with the only differences in the time taken to re-
spond. Each question was shown to three raters.
Table 7 shows the overall accuracy as percentage of
questions answered correctly in different context.
Irrespective of context combinations, annotators
were able to answer the questions correctly with a
high accuracy.

Tables

Table 95.6
Text 94.1
Table+Text 94.1

Mindmaps

Mind map 97.7
Text 94.3
Mind map+Text 97.7

Table 7: Answer accuracy (as percentage) for different
context combinations. Structure context performs on
par/better compared to text.

B Prompts

We include the different prompts used in this
study. In our implementation we use Jinja (https:

//jinja.palletsprojects.com/) to specify the
prompt template. The prompts can be found in
Figures 12 to 18.
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The Mersey-class cruisers were improved versions of the Leander class with more armour
and no sailing rig on a smaller displacement. Like their predecessors, they were
intended to protect British shipping. The cruisers had a length between perpendiculars
of 300 feet (91.4 m), a beam of 46 feet (14.0 m) and a draught of 20 feet 2 inches
(6.1 m). They displaced 4,050 long tons (4,110 t). The ships were powered by a
pair of two-cylinder horizontal, direct-acting, compound-expansion steam engines,
each driving one shaft, which were designed to produce a total of 6,000 indicated
horsepower (4,500 kW) and a maximum speed of 18 knots (33 km/h; 21 mph) using steam
provided by a dozen cylindrical boilers with forced draught. The Mersey class carried
enough coal to give them a range of 8,750 nautical miles (16,200 km; 10,070 mi) at a
speed of 10 knots (19 km/h; 12 mph). The ships’ complement was 300 to 350 officers
and ratings. Their main armament consisted of two breech-loading (BL) 8-inch (203
mm) guns, one each fore and aft on pivot mounts. Their secondary armament was ten
BL 6-inch (152 mm) guns, five on each broadside in sponsons. Protection against
torpedo boats was provided by three quick-firing (QF) 6-pounder Hotchkiss guns and
three QF 3-pounder Hotchkiss guns. The ship was also armed with a pair of submerged
14-inch (356 mm) torpedo tubes and carried a pair of 14-inch torpedo carriages. The
Mersey-class ships were protected by a lower armoured deck that was 2 inches (51 mm)
on the flat and 3 inches (76 mm) on the slope. It sloped down at the bow to reinforce
the ram. The armoured sides of the conning tower were 9 inches (229 mm) thick.

(a) Input text for table genetation.

Displacement Length Beam Draught

4,050 long tons (4,110 t) 300 feet (91.4m) 46 feet (14.0 m) 20 feet 2 inches (6.1 m)

Speed Range Complement –

18 knots (33km/h; 21 mph) 8,750 nautical miles (16,200 km; 10,070 mi) at a speed of 10 knots (19 km/h; 12 mph) 300 to 350 officers and ratings

Armament – – –

Two breech-loading (BL) 8-inch (203 mm) guns, one each fore and aft on pivot mounts. Their secondary armament was ten BL 6-inch (152 mm) guns, five on each broadside in 
sponsons. Protection against torpedo boats was provided by three quick-firing (QF) 6-pounder Hotchkiss guns and three QF 3-pounder Hotchkiss guns. The ship was also armed with a 
pair of submerged 14-inch (356 mm) torpedo tubes and carried a pair of 14-inch torpedo carriages. 

Armour – – –

A lower armoured deck that was 2 inches (51 mm) on the flat and 3 inches (76 mm) on the slope. It sloped down at the bow to reinforce the ram. The armoured sides of the conning 
tower were 9 inches (229 mm) thick.

Caption: The Mersey-class cruisers were improved versions of the Leander class with more armour and no sailing rig on a smaller displacement. 

(b) Single table generation output.

Length Beam Draught Displacement

300 feet (91.4m) 46 feet (14.0 m) 20 feet 2 inches (6.1 m) 4,050 long tons (4,110 t)

Caption: The Mersey-class cruiser

Caption: Armament

Location Thickness (in)

Lower Armoured Deck 2 (flat) / 3 (slope)

Conning Tower 9

Caption: Mersey-class armour

Attribute Value

Engine type Two-cylinder horizontal,…

Shafts 2

Horsepower 6,000 horsepower (4,500 kW)

Speed 18 knots (33 km/h; 21 mph)

Biolers Twelve cylindrical boilers with forced draught

Range 8,750 nautical miles (16,200 km; 10,070 mi) at a speed of 
10 knots (19 km/h; 12 mph)

Complement 300 to 350 officers and ratings

Caption: The Mersey-class cruiser’s machinery

Weapon Quantity Location

BL 8-inch (203mm) gun 2 Fore and aft on pivot mounts

BL 6-inch (152 mm) guns 10 Five on each broadside in sponsons

(QF) 6-pounder Hotchkiss 
guns

3 –

QF 3-pounder Hotchkiss guns 3 –

14-inch (356 mm) torpedo tube 2 Submerged

14-inch torpedo carriages 2 –

(c) Multiple table generation output.

Figure 6: Example outputs for single and multiple table generation approach. Text in (a) shows the input. (b) and
(c) show the outputs for single and multiple table generation respectively.
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Kathleen "Kay" Daly (January 8, 1919 – October 16, 1975) was an Irish-born American
advertising executive and one of the four "celebrated Daly sisters". At Norman, Craig
& Kümmel she was the creative force behind the famous Maidenform "I Dreamed ..."
campaign and Revlon’s legendary 1952 Fire And Ice campaign, working with photographer
Richard Avedon. She also was responsible for the line ”Every woman alive loves Chanel
Number Five". She went on to join Revlon in 1961 as vice president and creative
director. Kathleen Daly was born in Castlecaufield, County Tyrone, Ulster, Ireland,
in 1919. Northern Ireland was created two years later with Tyrone one of its six
counties. The family emigrated early in the 1920s. She grew up as one of four sisters,
Maggie, Kay, Maureen, and American-born Sheila. They became known for their writing
and work in journalism, fashion, and advertising, and were called "the celebrated
Daly sisters" by Time magazine in 1966. Life magazine ran a feature story on them
in 1949 and a follow-up in 1959. All four were at least once employed by the Chicago
Tribune. When she moved to San Francisco after World War II, Kay Daly famously
rented space on a billboard to advertise for an apartment. It not only netted her
an apartment, but netted her nationwide fame and countless marriage proposals. She
had a brief marriage to BMW executive and film producer Richard Bradford (part of
the famous Bradford family of Plymouth Colony), who fathered her sons John (Kelly),
Richard, and Peter. She then was married to journalist and executive Warren Leslie,
who adopted and raised her sons, until her death on October 16, 1975, of pancreatic
cancer. She was survived by husband Warren, sons Kelly, Peter, and Richard Bradford,
and stepsons Warren and Michael Leslie.

(a) Input text for mind map generation.

Kay Daly

Personal life

Birth place

Castlecaufield

County Tyrone

UlsterIreland

Birth date

January 8, 1919

Death place

United States

Death date October 16, 1975

Spouse

Richard Bradford

Warren Leslie

Children

John Kelly Bradford

Richard Bradford

Peter Bradford

Career

Employer

Norman, Craig & Kümmel

Revlon

Occupation

Advertising executive

Notable works

Maidenform 'I Dreamed'
campaign

Revlon's Fire And Ice
campaign

(b) Mind map output.

Figure 7: Example mind map (below) generation for the input text (above). We use mermaid.js (https://mermaid.
js.org/) to visualize the output.
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Figure 8: Example UI frame that is shown at the beginning of each annotation instance.

Figure 9: A followup frame shown after Figure 8 with text as context.
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Figure 10: A followup frame shown after Figure 8 with structure (mind map) output as context.
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Figure 11: A followup frame shown after Figure 8 with structure (mind map) output and input text as context.
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{% set step1 = '{"node": "Global Climate change"}' -%}
{% set step2 = '{"node": "Global Climate change","branches

↪→ ":[{" node": "effects "},{" node": "causes "},{" node":
↪→ "solutions "}]}' -%}

{% set step3 = '{"node": "Global Climate change","branches
↪→ ":[{" node": "effects","branches ": [{" node": "
↪→ melting ice"},{" node": "heat waves "}]} ,{" node": "
↪→ causes","branches ": [{" node": "Enhanced greenhouse
↪→ effect "},{" node": "Pollution "}]} ,{" node": "
↪→ solutions","branches ": [{" node": "Individual
↪→ efforts "},{" node": "International resolutions
↪→ "}]}]} ' -%}

{% set step4 = '{"node": "Global Climate change","branches
↪→ ":[{" node": "effects","branches ": [{" node": "
↪→ melting ice"},{" node": "heat waves","branches ": [{"
↪→ node" : "droughts "}]}]} ,{" node": "causes","branches
↪→ ": [{" node": "Enhanced greenhouse effect "},{" node":
↪→ "Pollution","branches ": [{" node": "Carbon emission
↪→ "},{" node": "Burning coal "}]}]} ,{" node": "solutions
↪→ ","branches ": [{" node": "Individual efforts "},{"
↪→ node": "International resolutions "}]}]} ' -%}

A mind map is a diagram used to visually organize
↪→ information into a hierarchy , showing relationships
↪→ among pieces of the whole. It is often created
↪→ around a single concept. Major ideas are connected
↪→ directly to the central concept , and other ideas
↪→ branch out from those major ideas. Mind maps can be
↪→ generated based on the content present in text in
↪→ multiple steps.

Consider the following example.
Given the following text:
Global climate change has many effects , including melting

↪→ ice , heat waves , and droughts. It is caused by the
↪→ enhanced greenhouse effect , which is caused by
↪→ pollution , such as carbon emissions and burning
↪→ coal. Solutions to global climate change include
↪→ individual efforts and international resolutions.

Choose primary concept that is the root
Output:
MindMap
{{ format_json(step1)|safe }}
END_THOUGHT
Can we add branches ?
Output: Yes
END_THOUGHT
Add branches:
MindMap
{{ format_json(step2)|safe }}
END_THOUGHT
Can we add branches ?
Output: Yes
END_THOUGHT
Add branches:
MindMap
{{ format_json(step3)|safe }}
END_THOUGHT
Can we add branches ?
Output: Yes
END_THOUGHT
Add branches:
MindMap
{{ format_json(step4)|safe }}
END_THOUGHT
Can we add branches ?
Output: No
END_THOUGHT

Now for the text below:
{{ input_text }}
Choose primary concept that is the root
Output:
MindMap{%- if root %}
{{root}}
END_THOUGHT
{% if current_mindmap -%}
Can we add branches?
Output: Yes
Add branches:
MindMap
{{ current_mindmap }}
END_THOUGHT
{%- endif %}
Can we add branches ?
{%- if y_n_current %}
Output: {{ y_n_current }}
END_THOUGHT
Add branches:
MindMap
{%- else %}
Output: {%- endif %}
{%- endif %}

Figure 12: Iterative prompt in Jinja template format for
mind map generation that is used in Algorithm 1.

{% set step = '{"node": "Global Climate change","branches
↪→ ":[{" node": "effects","branches ": [{" node": "
↪→ melting ice"},{" node": "heat waves","branches ": [{"
↪→ node" : "droughts "}]}]} ,{" node": "causes","branches
↪→ ": [{" node": "Enhanced greenhouse effect "},{" node":
↪→ "Pollution","branches ": [{" node": "Carbon emission
↪→ "},{" node": "Burning coal "}]}]} ,{" node": "solutions
↪→ ","branches ": [{" node": "Individual efforts "},{"
↪→ node": "International resolutions "}]}]} ' -%}

A mind map is a diagram used to visually organize
↪→ information into a hierarchy , showing relationships
↪→ among pieces of the whole. It is often created
↪→ around a single concept. Major ideas are connected
↪→ directly to the central concept , and other ideas
↪→ branch out from those major ideas. Mind maps can be
↪→ generated based on the content present in text in
↪→ multiple steps.

Consider the following example.
Given the following text:
Global climate change has many effects , including melting

↪→ ice , heat waves , and droughts. It is caused by the
↪→ enhanced greenhouse effect , which is caused by
↪→ pollution , such as carbon emissions and burning
↪→ coal. Solutions to global climate change include
↪→ individual efforts and international resolutions.

Thought: Primary concept is Global climate change. Global
↪→ climate change has branches , effects , causes and
↪→ solutions. Effects have branches that include
↪→ effects , melting ice and heat waves. Causes have
↪→ branches enhanced greenhouse effect. Solutions have
↪→ branches , individual efforts and international
↪→ resolutions.

Output:
MindMap
{{ format_json(step)|safe }}

Now summarize the following text as a mind map.
{{ input_text }}

Figure 13: Prompt in Jinja template format for mind
map generation without iterative process.
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Your task is to divide a passage into smaller passages
↪→ grouped by similar facts. Separate passages by
↪→ __NEW_PASSAGE__.

For example giving the following passage:
On December 31, 2016, the bank met all capital adequacy

↪→ requirements to which it was subject and exceeded
↪→ the regulatory minimum capital levels to be
↪→ considered well -capitalized under the regulatory
↪→ framework for prompt corrective action. At December
↪→ 31, 2016, the bank 's ratio of common equity tier 1
↪→ capital to risk -weighted assets was 11.59% , total
↪→ capital to risk -weighted assets was 12.85% , tier 1
↪→ capital to risk weighted assets was 11.59% and tier
↪→ 1 capital to average assets was 10.10%. Our
↪→ shareholders are entitled to dividends when and if
↪→ declared by our board of directors out of funds
↪→ legally available. Connecticut law prohibits us
↪→ from paying cash dividends except from our net
↪→ profits , which are defined by state statutes. On
↪→ January 27, 2016 the company 's board of directors
↪→ declared a $0.05 per share cash dividend , payable
↪→ February 22, 2016 to shareholders of record on
↪→ February 12, 2016. On April 27, 2016 the company 's
↪→ board of directors declared a $0.05 per share cash
↪→ dividend , payable May 26, 2016 to shareholders of
↪→ record on May 16, 2016. On July 27, 2016 the
↪→ company 's board of directors declared a $0.05 per
↪→ share cash dividend , payable August 26, 2016 to
↪→ shareholders of record on August 16, 2016. The
↪→ company 's board of directors declared a $0.07 per
↪→ share cash dividend , payable November 28, 2016 to
↪→ shareholders of record on November 18, 2016,
↪→ representing a 40% increase when compared to the
↪→ last quarter.

Smaller passages looks like:
__NEW_PASSAGE__
On December 31, 2016, the bank met all capital adequacy

↪→ requirements to which it was subject and exceeded
↪→ the regulatory minimum capital levels to be
↪→ considered well -capitalized under the regulatory
↪→ framework for prompt corrective action. At December
↪→ 31, 2016, the bank 's ratio of common equity tier 1
↪→ capital to risk -weighted assets was 11.59% , total
↪→ capital to risk -weighted assets was 12.85% , tier 1
↪→ capital to risk weighted assets was 11.59% and tier
↪→ 1 capital to average assets was 10.10%.

__NEW_PASSAGE__
Our shareholders are entitled to dividends when and if

↪→ declared by our board of directors out of funds
↪→ legally available. Connecticut law prohibits us
↪→ from paying cash dividends except from our net
↪→ profits , which are defined by state statutes. On
↪→ January 27, 2016 the company 's board of directors
↪→ declared a $0.05 per share cash dividend , payable
↪→ February 22, 2016 to shareholders of record on
↪→ February 12, 2016. On April 27, 2016 the company 's
↪→ board of directors declared a $0.05 per share cash
↪→ dividend , payable May 26, 2016 to shareholders of
↪→ record on May 16, 2016. On July 27, 2016 the
↪→ company 's board of directors declared a $0.05 per
↪→ share cash dividend , payable August 26, 2016 to
↪→ shareholders of record on August 16, 2016. The
↪→ company 's board of directors declared a $0.07 per
↪→ share cash dividend , payable November 28, 2016 to
↪→ shareholders of record on November 18, 2016,
↪→ representing a 40% increase when compared to the
↪→ last quarter.

Now divide the following passage into Smaller passages
↪→ grouped by similar facts.

{{ input_text }}

Summarize the contents of the text below in a table.

{{ input_text }}

Use the following format.

Caption: A caption for the table you generate. Can be
↪→ multiple lines

Table: A table in markdown format.

Caption:

Figure 14: Text segmentation prompt (top) for multiple
table generation. Zero-shot prompt for text to table and
caption generation (bottom).

Given the text:
{{ bullet_points }}

Table:
{{table}}

Rewrite the table adding a citation column , using the format
↪→ [X], indicating the sentence number where that
↪→ specific information can be found. When unsure use
↪→ [NA].

Table with citations:

Input text:
{{ bullet_points }}

Paths:
{{paths}}

Add an attribution to each path , using the format [X], where
↪→ X is a sentence of the input text. When unsure use
↪→ [NA] as attribution.

Paths with attribution:

Figure 15: Factuality critic prompts for Table (top) and
Mind maps (bottom).

Your task is to check if all the values in a list falls
↪→ under a category. Go over all the values one by one
↪→ and check if they belong to the assigned category.
↪→ Use the following format to answer.

Thought: Reasoning for the answer.
Answer: Single final answer yes or no.

Category: {{ category }}
Values:
{{ values }}

Thought:

There are some words or sentences that describes concept
↪→ while other describes values associated with them.
↪→ Values are defined as ordinals , type of job , degree
↪→ , education level , location , region , date etc.

Answer No If any words is not a specific value otherwise
↪→ answer yes.

For example:
Words:
Delhi
10
Cat
26 May
Lawyer

Thought: All the words are specific content words.
Answer: yes

Words:
IBM
Trucks
Birth
Family
26 May

Thought: Many words such as Trucks , Family , Birth are
↪→ concept without specific values.

Answer: no

Words:
{{words}}

Thought:

Figure 16: Local structure critic prompt for Tables (top,
zero-shot) and Mind maps (bottom, few-shot).
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A TOC contains titles that are either too specific/long or
↪→ too generic/short , or common sense. A useful TOC
↪→ contains short , concise and informative titles at
↪→ the right level of abstraction. Following a path in
↪→ the TOC should allow you to generate or infer a
↪→ sensible sentence.

Table of contents: root((K-26))
1. southern terminus

1.1. location
1.1.2. city
1.1.3. state

1.2. state
2. northern terminus

2.1. location
2.1.1. city
2.1.2. state

2.2. state
3. maintained by

3.1. organization
4. traffic

4.1. annual average daily traffic
4.2. trucks

5. national highway system
5.1. listed

Thought (be specific): I can 't create a sensible sentence
↪→ following the path K-26 -> southern terminus ->
↪→ location -> city

Useful: no
Table of contents: root(( Assyria))

1. Assyrian cities
1.1. Aššur
1.2. Nineveh

2. Assyrian empire
2.1. Neo -Assyrian Empire

3. Assyrian period
4. Assyrian kingdoms

4.1. Adiabene
4.2. Osroene
4.3. Assur
4.4. Beth Garmai

5. Assyrian language
5.1. Old Aramaic language
5.2. Syriac language

Thought (be specific): All the titles contain useful
↪→ information. All the paths allow generation of
↪→ sensible sentences.

Useful: yes
Table of contents: root(( Lonnie Johnson))

1. Early life
1.1. Birth
1.2. Family
1.3. Education

2. Career
2.1. Blues contest
2.2. Recording contract
2.3. Recordings
2.4. Tours
2.5. Collaborations
2.6. Style
2.7. Compositions
2.8. Great Depression
2.9. Later years

3. Death
3.1. Date
3.2. Place
3.3. Cause

Thought (be specific): Lonnie Johnson -> Early life -> Birth
↪→ is a generic path not useful for generating a
↪→ sentence.

Useful: no
Table of contents: {{toc}}
Thought (be specific):

Figure 17: Global structure critic few shot prompt for
Mind map.

Your task is to generate a list of fact based questions that
↪→ can be answered by the text passage. The format
↪→ should be [Question ][ Answer ].

Paragraph: {{text}}

Check if the following two answers are equivalent.
Use the following format.
Question: question text
Answer 1: answer text
Answer 2: answer text
Conclusion: Yes/No

Question: {{ context_question }}
Answer 1: {{ answer1 }}
Answer 2: {{ answer2 }}
Conclusion:

Answer in concise manner the question using the information
↪→ below. Say <unknown > when the questions cannot be
↪→ answered.

{{data}}

Question:
{{ question }}

Figure 18: Prompts used by the AutoQA pipeline:
QA pair generation prompt (top); Conditional answer
equivalence (middle); Question answering prompt (bot-
tom)
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