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Abstract

The ability to follow instructions is crucial for
Large Language Models (LLMs) to handle var-
ious real-world applications. Existing bench-
marks primarily focus on evaluating pure re-
sponse quality, rather than assessing whether
the response follows constraints stated in the in-
struction. To fill this research gap, in this paper,
we propose FollowBench, a Multi-level
Fine-grained Constraints Following Bench-
mark for LLMs. FollowBench comprehen-
sively includes five different types (i.e., Con-
tent, Situation, Style, Format, and Example) of
fine-grained constraints. To enable a precise
constraint following estimation on diverse diffi-
culties, we introduce a Multi-level mechanism
that incrementally adds a single constraint to
the initial instruction at each increased level.
To assess whether LLMs’ outputs have satis-
fied every individual constraint, we propose to
prompt strong LLMs with constraint-evolution
paths to handle challenging open-ended instruc-
tions. By evaluating 13 closed-source and open-
source popular LLMs on FollowBench, we
highlight the weaknesses of LLMs in instruc-
tion following and point towards potential av-
enues for future work. The data and code
are publicly available at https://github.
com/YJiangcm/FollowBench.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; OpenAI, 2022) pre-trained on web-scale cor-
pora have showcased proficiency in generating flu-
ent and realistic text. Yet, human instructions in
real-life cases require the model to generate text
that not only possesses a high degree of natural-
ness but adheres to specific constraints (Yang et al.,
2023). For instance, the model may be required to
recommend ten books that are specifically written
in Chinese (Figure 1), or it might be expected to
generate responses that have a certain tone.

∗Work done during the internship at Huawei Noah’s Ark
Lab.

I am interested in Tang Dynasty. In Shakespeare's tone,
recommend me ten relevant Chinese books. Use bullet
point in your answer. Please response based on the
examples:⋯

I am interested in Tang Dynasty. In Shakespeare's tone,
recommend me ten relevant Chinese books. Use bullet
point in your answer.

I am interested in Tang Dynasty. In Shakespeare's tone,
recommend me ten relevant Chinese books.

I am interested in Tang Dynasty. Recommend me ten
relevant Chinese books.

Recommend me ten Chinese books.

Recommend me ten books.

+ Content

+ Situation

+ Style

+ Format

+ Example

L1

L2

L5

L4

L3

Figure 1: FollowBench covers five fine-grained con-
straint categories and is constructed based on the Multi-
level mechanism, which increasingly adds a single con-
straint to straightforward instructions. On the right, the
model that can follow instructions with more constraints
is deemed to possess better instruction-following ability.

The dominant paradigm for assessing if a model
can follow instructions involves using human an-
notators or strongly aligned LLMs to judge its
response quality, in terms of helpfulness, rele-
vance, accuracy, depth, creativity, and level of de-
tail (Wang et al., 2023a; Li et al., 2023; Zheng
et al., 2023; Xu et al., 2023). However, prior
work still has two limitations. Firstly, they ig-
nore the fine-grained constraints inside instruc-
tions, which are essential and objective standards
for evaluating the instruction-following capabil-
ity. While several benchmarks have rigorously
explored individual constraint types, including se-
mantic restrictions (Chen et al., 2022) and com-
plex formatting (Tang et al., 2023), there exists a
lack of comprehensive analysis across the diverse
spectrum of constraint categories. Secondly, few
benchmarks consider the varying difficulty of in-
structions, which is controlled by the number of im-
posed constraints. This makes it challenging to pre-
cisely assess the degree to which LLMs can follow
instructions. Towards this end, our research ques-
tion is: how can we systemically and precisely eval-
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uate the instruction-following capability of LLMs?

In this paper, we construct FollowBench, a
Multi-level Fine-grained Constraints Following
Benchmark. FollowBench comprehensively
includes five different types of constraints from
real-world scenarios, namely Content (i.e., ex-
plicit restrictions on the response content), Situ-
ation (i.e., specific situation/background informa-
tion added to the question), Style (i.e., response
style requirements), Format (i.e., response format
requirements), and Example (i.e., example pat-
tern recognition and following). To precisely es-
timate the difficulty degree to which LLMs can
follow instructions, as shown in Figure 1, we pro-
pose a novel Multi-level mechanism that incremen-
tally adds a single constraint to straightforward in-
structions at each increased level. The multi-level
mechanism enables us to pinpoint the difficulty
level at which LLMs fail to follow instructions,
thereby estimating the upper limit of instruction-
following capability in LLMs more precisely. Over-
all, FollowBench consists of 820 meticulously
curated instructions from over 50 NLP tasks, in-
cluding both closed- and open-ended questions.
For evaluation purposes, we propose a hybrid eval-
uation method comprising rule-based and model-
based solutions. Given LLMs’ outputs, both solu-
tions judge whether the outputs satisfy each of the
constraints in the instructions. The rule-based solu-
tions focus on closed-ended instructions while the
model-based solutions are applied to opened-ended
instructions. For model-based solutions, instead of
merely using current instructions and responses as
input, we additionally provide the evolution pro-
cess of the instructions in the input prompts to
LLM judges to better understand each individual
constraint. Both the data construction and the eval-
uation undergo human verification.

In our experiments, we propose three metrics
to assess the instruction-following ability of 13
prominent closed-source and open-source LLMs
on FollowBench. Our principal observations
are: (1) the performance of all tested models de-
clines substantially with an increase in difficulty
level (the number of constraints in an instruction);
(2) although closed-source models such as GPT-
4 and GPT-3.5 only consecutively satisfy around
three constraints on average, they still markedly
surpass all open-source models; (3) certain specific
constraint categories, such as Situation and Exam-
ple, prove to be more challenging for LLMs than

others; (4) beyond capabilities such as knowledge
and reasoning, instruction following can offer an
additional lens for comprehensively assessing the
proficiency of LLMs.

2 Related Work

2.1 Instruction-Following Language Models

Prior research has found that LLMs fine-tuned
with annotated “instructional” data, which is com-
posed of language instructional commands and
their desired outcomes, can be effective at follow-
ing general language instructions (Weller et al.,
2020; Sanh et al., 2021; Mishra et al., 2022; Jiang
et al., 2024). To enhance the understanding of
LLMs regarding the intricate and varied intentions
of users in real-world scenarios, works like Chat-
GPT (OpenAI, 2022) and GPT-4 (OpenAI, 2023)
implement instruction tuning across a wide range
of human-crafted instructions and task categories.
Recent studies (Zheng et al., 2023; Xu et al., 2023;
Jiang et al., 2023) have pivoted towards automati-
cally generating high-quality data to enhance the
instruction-following capability of LLMs, address-
ing the challenges posed by labor-intensive human
annotation.

2.2 Evaluation for Instruction Following

There are several research efforts in evaluating
LLMs’ following capability towards particular
tasks. Tang et al. (2023) focuses on evaluat-
ing LLMs’ generation capability towards complex
structured tabular data in text, HTML, and Latex.
They first collect tables from existing NLP bench-
marks and websites, then construct guiding instruc-
tions based on these data. Chen et al. (2022)
evaluates whether LLMs can follow particular
knowledge-intensive generation instructions. They
first provide a list of examples (e.g., a list of sports
stars in the UK), followed by a constraint that is
contradicted by the examples (e.g., not mentioning
any athletes). These benchmarks can only demon-
strate particular types of instruction-following capa-
bility of LLMs. In contrast, FollowBench com-
prehensively includes instructions with five differ-
ent types of fine-grained constraints in multi-level
difficulty and FollowBench should provide a
well-rounded and precise estimation of instruction-
following capability for existing LLMs. For more
details on LLM evaluation, we refer to recent sur-
veys (Chang et al., 2023; Wang et al., 2023b).
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Constraint Task Avg Len #Data Evaluation

Data-to-Text Generation 84 25
Document-Level Event Argument Extraction 696 25
Document-Level Named Entity Recognition 376 25
Text Generation with Language Constraints 88 25

Content

Open-ended Question Answering 56 25

Suggestion Generation 69 40
Role-playing 111 15Situation
Complex Situation Reasoning 102 55

Style Open-ended Question Answering 64 150

Text-to-Table Generation 171 30Format
Open-ended Question Answering 74 120

Example 40 diverse NLP tasks 739 200

Text Editing 96 25
Summarization 254 25
Machine Translation 91 25Mixed

Story Generation 34 10

Table 1: An overview of FollowBench. “Avg Len” is the average word number of instructions. refers to
rule-based evaluation, while refers to model-based evaluation.

3 FollowBench

As shown in Table 1, FollowBench encom-
passes five distinct fine-grained constraint cate-
gories: Content, Situation, Style, Format, and Ex-
ample. Each category consists of instructions from
various NLP tasks. Different from previous bench-
marks, we introduce a Multi-level mechanism that
incrementally adds constraints to an initial instruc-
tion (see examples in Figure 2), producing a set of
instructions ranging from 1 to 5 constraints. In the
following part of this paper, we use “level n” to
denote an instruction containing n constraints. It is
worth noticing that the way of adding constraints
is meticulously designed for each task within its re-
spective constraint category. The multi-level mech-
anism enables us to pinpoint the difficulty level at
which LLMs fail to follow instructions, thereby es-
timating the upper bound of instruction-following
capability in LLMs more precisely.

To encapsulate, we will introduce the data con-
struction process of FollowBench, including
fine-grained constraints and the Multi-level mech-
anism, in §3.1. In §3.2, we propose an evaluation
protocol with three metrics that seamlessly inte-
grate with the multi-level mechanism.

3.1 Data Construction

Content Constraints Content constraints refer
to explicit impositions of specific conditions that
shape the depth or scope of the response content.
An example is shown in Figure 2, which sets spe-

cific criteria for the retrieved object. Ensuring
that LLMs adhere to content constraints has be-
come a critical challenge in Controlled Text Gener-
ation (Zhang et al., 2022), as it demands models to
understand specific guidelines and adapt responses
to prescribed conditions (Chen et al., 2022). To
this end, we first collect data from the following
tasks: (1) Complex Information Extraction aims at
retrieving specific information about specific ob-
jects from the given text; (2) Text Generation with
Language Constraints requires to generate fluent
on-topic content while respecting a specified con-
straint; (3) Open-ended Question Answering comes
from real scenarios (e.g., open-source platforms)
to prevent the risk of data leakage. Subsequently,
we construct multi-level instructions by adding one
content constraint to the collected instructions each
time. The manners of introducing additional con-
straints depend on different tasks (see details in Ap-
pendix A.1). For Complex Information Extraction,
we gradually narrow down the scope of the infor-
mation to be extracted. For Text Generation with
Language Constraints, we incorporate additional
restrictions from WordNet (Miller, 1992) and Wiki-
data (Vrandečić and Krötzsch, 2014). For Open-
ended Question Answering, we utilize advanced
LLMs like GPT-4 to generate a new instruction
with one more constraint based on the given in-
struction. While the output from the LLMs serves
primarily as a reference, we handpick the most rel-
evant and challenging synthesized instructions to
ensure data quality.
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C
O

N
T

E
N

T INITIAL Recommend 5 films to me.

LEVEL 1 Recommend me 5 Chinese films.

LEVEL 2 Recommend me 5 Chinese films released before 1990.
S

IT
U

A
T

IO
N INITIAL How can I increase my productivity while working from home?

LEVEL 1 Since the pandemic began, I've been working remotely. How can I increase my productivity while working from home?

LEVEL 2
I have a small child at home. Since the pandemic began, I've been working remotely. How can I increase my 

productivity while working from home?

S
T

Y
L

E

INITIAL How did US states get their names?

LEVEL 1 How did US states get their names? Please respond in the writing style of Shakespeare.

LEVEL 2
How did US states get their names? Please respond in the writing style of Shakespeare, whilst infusing a touch of 

humor into the answer.

F
O

R
M

A
T INITIAL Why can I see the moon during the day?

LEVEL 1 Why can I see the moon during the day? Answer in a table format with columns “Reason” and “Explanation”.

LEVEL 2
Why can I see the moon during the day? Answer in a table format with columns “Reason” and “Explanation”. Each 

explanation should not exceed 20 words in length.

E
X

A
M

P
L

E LEVEL 1

question_template_1.format(example_1) + answer_template_1.format(example_1) 

question_template_1.format(example_2) + answer_template_1.format(example_2) 

⁝

question_template_1.format(query)

LEVEL 2

question_template_1.format(example_1) + answer_template_1.format(example_1) 

question_template_2.format(example_2) + answer_template_2.format(example_2) 

⁝

question_template_1.format(query)

Figure 2: FollowBench covers five fine-grained categories of constraints. Within each constraint type, we
construct a range of Multi-level instructions by incrementally adding constraints (highlighted in red). There are five
levels in total; however, we only display the first two levels from each category for demonstration purposes.

Situation Constraints Situation Constraints re-
fer to impositions of specific situations or back-
grounds that implicitly guide the appropriate an-
swer of the response. For instance, it is necessary to
illustrate the situation when asking for customized
suggestions, as shown in Figure 2. Another exam-
ple is to customize LLMs to simulate various char-
acters under certain circumstances, namely Role-
playing, which provides a more nuanced interac-
tion for users (Shanahan et al., 2023; Wang et al.,
2023c). Situation constraints push LLMs beyond
mere factual retrieval or surface-level synthesis,
demanding a nuanced understanding, a dynamic
adaptation, and complicated reasoning to the situ-
ation (Yao et al., 2022; Liu et al., 2023). Besides
real-life questions, we also consider Complex Situ-
ation Reasoning tasks including Math Word Prob-
lems, Time/Spatial Reasoning, and Code Genera-
tion. These tasks all require interpreting and solv-
ing problems within a given situation, thus match-
ing the definition of situation constraints. We first
collect initial instructions from these sources and
then manually curate multi-level instructions by
incrementally supplementing situation information
inside (see Appendix A.2).

Style Constraints Style Constraints control the
stylistic variations of output to accomplish specific

stylistic goals, such as tone, sentiment, formality,
and empathy (Tsai et al., 2021), as illustrated in
Figure 2. The challenges of style constraints for
LLMs are the intricate understanding and adapta-
tion of language nuances, ensuring contextually ap-
propriate and stylistically consistent outputs (Smith
et al., 2020; Cheng and Li, 2022). Drawing from
Open-ended Question Answering datasets and on-
line platforms, we collect initial instructions and
then leverage LLMs’ in-context learning capabil-
ity to craft instructions with multi-level style con-
straints. The prompt template can be viewed in
Figure 8. Human experts subsequently review and
refine the outputs produced by LLMs.

Format Constraints Format Constraints refer to
stipulations governing the structural, linguistic, or
output presentation of generated content. An exam-
ple is shown in Figure 2, which sets limits on word
length and requires the format of the response to
be a table. Format constraints necessitate a deep,
nuanced understanding of language and structure,
allowing them to flexibly adapt outputs according
to diverse and often intricate specifications (Zhao
et al., 2023). Recent work has pointed out that even
the most superior LLMs may struggle with tasks
that require generating complex, structured outputs
such as tables, JSON, HTML, or LaTeX (Tang
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et al., 2023). To include a variety of format con-
straints, we first collect instructions from broader
domains, encompassing Text-to-Table Generation
and Open-ended Question Answering, then we uti-
lize powerful LLMs to sequentially add format con-
straints ranging from length and hierarchy to spe-
cialized linguistic features and output mediums.
See Figure 9 for the prompt template. Finally, we
ask human experts to carefully check and refine the
synthesized instructions.

Example Constraints LLMs have demonstrated
stunning few-shot learning ability (Brown et al.,
2020), which enables them to adapt quickly to
a new query by recognizing patterns from just a
few examples provided in the prompt. However,
the robustness of few-shot learning, which means
whether LLMs can still follow correct patterns af-
ter introducing “noise” examples, has not been ex-
plored. Thus, we propose a novel constraint cate-
gory named Example Constraints to evaluate the ex-
ample pattern recognition and following capability
of LLMs. We automatically craft instructions with
multi-level example constraints based on Prompt-
Source (Bach et al., 2022), where instructions at
level n have n−1 noise examples in the input. The
details are illustrated in Appendix A.3.

Mixed Constraints For the above five constraint
categories, we construct multi-level instructions
by adding the same type of constraint sequentially.
Nevertheless, real-world scenarios often require
more than one type of constraint to be enforced in
a singular instruction. Therefore, we define Mixed
Constraints as the composition of varied constraint
categories. For instance, in the Text Editing task,
we may want to add some content as well as adjust
the output format. Besides, we also consider sev-
eral tasks that are naturally suitable for constructing
mixed constraints, including Summarization, Ma-
chine Translation, and Story Generation (see Ap-
pendix A.4). Instructions with multi-level mixed
constraints are produced by specifying the format
of generating answers (Format Constraints), requir-
ing the generated text to include or not include
certain keywords (Content Constraints), etc.

Data Quality Control To ensure the data qual-
ity of FollowBench, we implement a dual-layer
verification system for each instruction. Two an-
notators independently evaluate: (1) the appropri-
ateness of the instruction for its designated con-
straint category, and (2) the validity of the added

Figure 3: Verb-noun structure of FollowBench In-
structions.

constraint within the instruction. In instances of
divergent evaluations, a third annotator intervenes
for a detailed review to ensure consensus.

We analyze the comprehensiveness and diver-
sity of in FollowBench, which includes 820 in-
structions in total. To maintain data diversity, we
strive to ensure that the ROUGE-L score between
any two initial instructions is below 0.7. Figure 3
shows the verb-noun structure of FollowBench
instructions, where the top 20 verbs (inner circle)
and their top 4 direct noun objects (outer circle) are
depicted.

3.2 Evaluation Protocol

Given that nearly half of instructions in
FollowBench are open-ended without ref-
erence answers, devising a rule-based program to
assess the outputs is extremely challenging. To
overcome this, inspired by (Gilardi et al., 2023;
Huang et al., 2023), we propose to develop a
model-based approach by using strong LLMs1 as
judges. Previous works leverage strong LLMs to
determine the quality of a response, by prompting
them to consider multiple factors such as useful-
ness, relevance, and level of detail (Li et al., 2023;
Zheng et al., 2023). To effectively guide strong
LLMs to judge the constraint following capability
objectively and faithfully, we propose a Multi-
level-aware prompt template, as shown in Figure 4.
Rather than merely presenting the instruction and

1We use GPT-4-Preview-1106 in our experiments.
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Given an initial instruction, we add one {constraint_type} constraint per
time and obtain the final instruction with {level_n} additional constraints.

#Initial Instruction#
{initial_instruction}

#Initial Instruction + 1 constraint#
{level_1_instruction}

⁝

#Initial Instruction + {level_n} constraints#
{level_n_instruction}

#Answer of Initial Instruction + {level_n} constraints#
{answer_of_level_n_instruction}

#System#
1) Please identify all {level_n} added constraints.
2) For the {level_n} added constraints, discriminate if the #Answer of
Initial Instruction + {level_n} constraints# satisfies each constraint.
3) In the final line, only output a Python LIST with {level_n} elements
('YES' or 'NO') indicating whether the answer satisfies each constraint.

Prompt Template for Model-based Evaluation

Figure 4: Prompt template for model-based evaluation.

asking LLMs to determine whether all constraints
are satisfied, we illustrate the evolution process of
the instruction and prompt LLMs to pinpoint the
newly added constraint at each level. Exposing the
evolution process of the instruction allows for a
more granular understanding and identification of
individual constraints, enhancing LLMs’ ability to
discriminate with precision. The ablation study in
§5.1 validates the effectiveness of this strategy.

Moreover, we propose three novel metrics to
evaluate the instruction-following ability of LLMs.
For an instruction with n constraints (level n), we
use the rule-based program or LLM judge (refer to
Table 1) to discriminate if the response of a model
satisfies each constraint in the instruction. At each
level n, given a set of m instructions, we define the
Hard Satisfaction Rate (HSR) and Soft Satisfaction
Rate (SSR) as follows:

HSR =
1

m

m∑

i=1

n∏

j=1

sji (1)

SSR =
1

mn

m∑

i=1

n∑

j=1

sji (2)

where sji = 1 if the j-th constraint of i-th instruc-
tion is satisfied and sji = 0 otherwise. HSR mea-
sures the average rate at which all constraints of in-
dividual instructions are fully satisfied, while SSR
calculates the average satisfaction rate of individual
constraints across all instructions.

As described in §3, we construct
FollowBench by incrementally adding
five constraints to an initial instruction, enabling

us to pinpoint the difficulty level at which LLMs
fail to follow instructions. Therefore, we propose a
metric called Consistent Satisfaction Levels (CSL)
to estimate how many consecutive levels a model
can satisfy, beginning from level 1:

CSL =
1

g

g∑

i=1

argmax
l

(
l ×

l∏

n=1

Sn
i

)
(3)

where g is the group number of initial instructions,
Sn
i = 1 if all constraints of the i-th instruction at

level-n are satisfied and Sn
i = 0 otherwise.

4 Experiments

This section first introduces experimental setup in
§4.1, and then presents the main experiment results
across two key dimensions: difficulty level in §4.2
and constraint category in §4.3.

4.1 Experimental Setup
We evaluate 13 popular LLMs including
GPT-4-Preview-1106 (OpenAI, 2023), GPT-
3.5-Turbo-1106 (OpenAI, 2022), Qwen-Chat-
72B/14B/7B (Bai et al., 2023), LLaMA2-
Chat-70B/13B/7B (Touvron et al., 2023),
WizardLM-13B-V1.2 (Xu et al., 2023), Vicuna-
13B/7B-V1.5 (Zheng et al., 2023), Baichuan2-Chat-
7B (Baichuan, 2023), and ChatGLM3-6B (Du
et al., 2022). We access GPT-4-Preview-1106
and GPT-3.5-Turbo-1106 via OpenAI API. We
access other open-source LLMs from their official
repositories. During the inference process, we
set the temperature to 0 to ensure deterministic
outputs. We set the maximum generation length
to 2048. Other parameters use their default
values. To facilitate the multilingual evaluation of
LLM’s instruction-following ability, we also craft
a Chinese version of FollowBench, namely
FollowBench-zh, in Appendix D.

4.2 Level-categorized Results
Table 2 provides a comprehensive comparison of
various models across five difficulty levels, denoted
as L1 to L5. The detailed results for each constraint
category are listed in Appendix B. From a bird’s-
eye view, we can infer that the performance typi-
cally diminishes as we progress from L1 to L5 for
almost all models. This trend coincides with the
increasing complexity or stringent requirements
associated with higher levels. Besides, models
with larger architectures generally outperform their
smaller counterparts. However, it’s worth noting
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HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 L5 Avg. CSL

GPT-4-Preview-1106 84.7 75.6 70.8 73.9 61.9 73.4 84.7 77.0 75.3 77.0 72.3 77.2 3.3
GPT-3.5-Turbo-1106 80.3 68.0 68.6 61.1 53.2 66.2 80.3 71.2 74.2 69.6 67.1 72.5 2.9
Qwen-Chat-72B 73.8 63.3 54.3 45.2 39.9 55.3 73.8 67.5 63.2 57.6 56.0 63.6 2.4
LLaMA2-Chat-70B 59.9 53.3 46.0 40.2 37.9 47.5 59.9 57.3 55.7 53.3 53.2 55.9 2.1
Qwen-Chat-14B 62.8 56.2 47.7 38.7 30.9 47.3 62.8 61.9 57.7 52.6 51.4 57.3 1.9
WizardLM-13B-V1.2 68.8 64.1 53.1 40.8 35.8 52.5 68.8 65.7 61.8 53.4 53.9 60.7 2.2
LLaMA2-Chat-13B 57.0 56.0 50.4 44.4 38.1 49.2 57.0 60.0 58.0 54.8 52.2 56.4 2.2
Vicuna-13B-V1.5 71.2 60.2 49.6 40.6 34.0 51.1 71.2 64.8 59.9 54.5 53.6 60.8 2.1
Qwen-Chat-7B 55.9 51.7 38.7 33.1 23.3 40.6 55.9 58.2 51.6 48.9 45.9 52.1 1.5
LLaMA2-Chat-7B 58.0 51.3 47.4 39.5 35.3 46.3 58.0 56.5 55.6 52.5 51.4 54.8 1.9
Vicuna-7B-V1.5 60.8 52.0 42.2 33.3 23.9 42.4 60.8 58.6 55.5 48.3 49.0 54.4 1.7
Baichuan2-Chat-7B 58.3 46.1 40.7 30.4 25.5 40.2 58.3 55.4 54.9 49.9 49.3 53.6 1.4
ChatGLM3-6B 60.9 46.6 36.7 27.8 21.4 38.7 60.9 55.3 51.2 47.9 45.0 52.0 1.6

Table 2: Results across five difficulty levels. For each level, we compute the average score of all
constraint categories. Proprietary LLMs , open-sourced LLMs (large) , open-sourced LLMs (medium) , and

open-sourced LLMs (small) are distinguished by different colors.

that the scaling law does not apply as effectively
to LLaMA2-Chat-70B. It can be observed from
Appendix B that while LLaMA-2-Chat-70B does
indeed outperform LLaMA-2-Chat-13B in Situa-
tion constraints, it shows a relative underperfor-
mance in Format and Mixed Constraints categories.
More importantly, there’s a marked performance
gap between closed-source models (i.e., GPT-4 and
GPT-3.5) and open-source models. Regarding CSL,
it can be deduced that the instruction-following up-
per bound for GPT-4 and GPT-3.5 is approximately
3 constraints (level 3) added to an initial instruc-
tion. In contrast, open-source models typically
have an upper limit of about 2 constraints (level 2).
This significant difference underscores the better
instruction-following ability of proprietary models,
possibly due to superior data quality or optimiza-
tion strategies such as RLHF (Ouyang et al., 2022).
Furthermore, even the most sophisticated models
are limited to following instructions with about
three constraints, suggesting significant potential
for further improvement.

4.3 Constraint-categorized Results

As depicted in Figure 5, we assess various models
over different constraint categories to succinctly
showcase the instruction-following capability of
LLMs in a singular dimension. Notably, GPT-4
and GPT-3.5 surpass open-source models in ev-
ery constraint category, with a pronounced advan-
tage in Content, Situation, Example, and Mixed
constraints. Furthermore, most models demon-
strated commendable proficiency under the Style
constraint. While GPT-4, GPT-3.5, and LLaMA2-

Content

SituationStyle

Format

Example Mixed

0.2
0.4

0.6
0.8

GPT-4
GPT-3.5
Qwen-Chat-72B
LLaMA2-Chat-70B
Qwen-Chat-14B
LLaMA2-Chat-13B
Vicuna-13B-V1.5
Qwen-Chat-7B
LLaMA2-Chat-7B
Vicuna-7B-V1.5

Figure 5: HSR (%) results in diverse constraint cat-
egories. For each category, we compute the average
score of all difficulty levels.

Chat-70B were the frontrunners, the trend suggests
that style adaptation is an area where many mod-
els excel, hinting at its utility in real-world appli-
cations. However, the Example and Mixed con-
straints posed a challenge to most models. While
GPT-4 led the segment, even its scores were no-
ticeably lower than in other categories. To illus-
trate, in the “Example” category, we evaluated the
instruction-following capabilities of LLMs by in-
troducing “noise examples” with varying natural
language templates. The observed performance
decline is primarily due to the LLMs’ limited train-
ing in processing such noisy inputs within context-
based learning scenarios. Typically, LLMs are fine-
tuned on clean and uniform datasets, which do not
adequately prepare them to sift through and ignore
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irrelevant or misleading information. This limita-
tion becomes apparent when faced with the intri-
cacies of real-world data. Our findings underscore
the complexity of these constraints and pinpoint an
area for potential improvement.

5 Analysis

This section includes: an ablation study confirm-
ing our prompt template’s effectiveness for model-
based evaluation (§5.1); a comparison of instruc-
tion following vs. other LLM’s abilities (§5.2); an
examination of failure consistency (§5.3); and an
investigation of various decoding strategies (§5.4).
In addition, a case study is presented in Appendix
C for further analysis.

5.1 Ablation Study of Model-based
Evaluation

We randomly sample 100 cases that require LLM
evaluation, encompassing five constraints, five dis-
tinct levels, and four diverse models to guaran-
tee comprehensive representation. Then we ask
three expert-level human labelers to assess whether
the model’s response satisfies all the constraints
in each case and use the majority voting as the fi-
nal human annotations. As shown in Table 3, our
prompt template (Figure 4) registers an impressive
88% agreement with expert human evaluations, sur-
passing even the internal agreement among human
experts, which stands at 85%. Remarkably, when
the evolution process of multi-level constraints is
removed from our prompt template, the agreement
rate dips by 9%. This underlines the instrumen-
tal role played by the detailed portrayal of the in-
struction’s evolution in enhancing LLM’s precision
in discernment. In contrast, we also employ the
prompt template from Vicuna (Zheng et al., 2023),
a standard prompt for assessing the overall quality
of response. This template prompts the LLM to
assign a score from 0 to 10 for each response. We
consider responses with a score above 5.0 to meet
all the constraints of an instruction. This approach
achieves 67% agreement with human evaluators.
Such a disparity highlights the fundamental differ-
ence between assessing the instruction-following
ability and the overall response quality.

5.2 Instruction Following vs. Other Abilities

Table 4 presents a comparison of representative
LLMs across different abilities, not just instruction
following (FollowBench). This includes over-

Prompt Agreement with Human

Ours 88%
Ours w/o ML 79%
Vicuna-Single 67%

Table 3: Agreement between human and diverse prompt
templates. We use ML to denote multi-level.

Model Following Overall Knowledge Reasoning

GPT-4-Preview-1106 3.3 97.7 86.4 86.7
GPT-3.5-turbo-1106 2.9 86.3 70.0 70.1
LLaMA2-Chat-70B 2.1 92.7 63.0 60.8
WizardLM-13B-V1.2 2.2 89.2 52.7 –
LLaMA2-Chat-13B 2.2 81.1 53.6 40.2
Vicuna-13B-V1.5 2.1 – 55.8 51.5
LLaMA2-Chat-7B 1.9 71.4 45.8 35.6
Vicuna-7B-V1.5 1.7 – 49.8 43.4

Table 4: Model comparison on different abilities.

all response quality (AlpacaEval (Li et al., 2023)),
knowledge (MMLU (Hendrycks et al., 2021)), and
reasoning (BBH (Suzgun et al., 2022)). We can find
that our FollowBench provides an additional
perspective for a holistic LLM evaluation. As an
illustration, while the performance of WizardLM-
13B-V1.2 exceeds that of GPT-3.5 in terms of
overall response quality, it notably lags behind in
instruction-following ability. Similarly, Vicuna-
V1.5 excels over LLaMA2-Chat in the realms
of knowledge and reasoning but struggles with
instruction-following tasks.

5.3 Does Failure at Lower Level Necessarily
Lead to Failure at Higher Level?

For a set of instructions that has five difficulty lev-
els, if a model’s response doesn’t satisfy the con-
straints at level n, where n ranges from 1 to 4, we
define the failure consistency as the percentage that
the response will also not fulfill the constraints at
any subsequent level greater than n. Combining
Table 2 and Table 5, it can be seen that models
with better instruction-following capability may
exhibit lower failure consistency. One possible rea-
son is that the instruction-following ability of more
powerful models is less sensitive to the number
of constraints in an instruction, thus they are bet-
ter equipped to adapt and fulfill the requirements
even as the constraints increase. This adaptabil-
ity means that while they may falter at a lower
difficulty level, they can still manage to meet the
demands of higher difficulty levels, leading to a
decrease in failure consistency.

4674



Model Failure Consistency (%)

GPT-4-Preview-1106 42.2
WizardLM-13B-V1.2 57.3
Vicuna-7B-V1.5 61.8
ChatGLM3-6B 64.0

Table 5: Results on failure consistency.

GPT-4 WizardLM-13B-V1.2 Vicuna-7B-V1.5 ChatGLM3-6B
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Figure 6: The effect of varying the temperature parame-
ter τ . We use τ = 0 to denote greedy decoding.

5.4 Does Different Decoding Strategies Affect
the Instruction-following Ability?

In this section, we systematically investigate the im-
pact of different decoding strategies, represented by
the temperature parameter τ , on LLM’s instruction-
following ability. The temperature τ is a commonly
used parameter that controls the sharpness of the
distribution from which we sample the next token:

P (w) =
exp(zw/τ)∑

w′∈V exp(zw′/τ)
(4)

where zw is the logit for word w, V is the vocabu-
lary. Lower values for temperature result in more
consistent outputs, while higher values generate
more diverse and creative results. As illustrated in
Figure 6, the temperature τ has a tangible influence
on the instruction-following ability across all four
models. The sweet spot seems to be somewhere
in the middle where there’s enough variability to
capture the nuances and intricacies of complex in-
structions, yet not so much that the model goes
off tangent. This balanced behavior ensures that
the model remains within the desired context, pro-
ducing outputs that align closely with the given
instructions while also allowing for a slight cre-
ative touch when needed.

6 Conclusion

In this paper, we introduce FollowBench, a
Multi-level Fine-grained Constraints Following

Benchmark tailored for gauging the instruction-
following capability of LLMs. FollowBench
covers five fine-grained constraint categories and
over 50 NLP tasks, utilizes a novel Multi-level
mechanism for precisely estimating the upper limit
of instruction-following capability. Furthermore,
we propose an evaluation protocol with three met-
rics that seamlessly integrate with the multi-level
mechanism. Our extensive tests over 13 popular
LLMs reveal a substantial performance advantage
for GPT-4 and GPT-3.5 over their counterparts, and
there is still significant room for improving the
instruction-following ability of current LLMs.

Limitations

While our study contributes valuable insights, it is
essential to acknowledge several limitations that
warrant consideration.

Firstly, our current investigation is confined to
single-round interactions, aiming to offer a con-
trolled environment for evaluation. Future research
may extend its scope to multi-round conversa-
tions to comprehensively assess the instruction-
following proficiency of LLMs in more dynamic
and extended dialogues (Kwan et al., 2024).

Secondly, the model-based evaluation frame-
work employed in our experiments, while rigorous,
relies on prompt engineering, introducing an inher-
ent imperfection. Despite our meticulous selection
of high-performing prompts, the potential for fur-
ther optimization remains, which may impact the
reported evaluation metrics.

Lastly, we refrain from proposing specific solu-
tions to address identified weaknesses of LLMs in
instruction following. A plausible avenue for future
research involves fine-tuning LLMs using our pro-
posed FollowBench as a benchmark, providing
a potential roadmap for enhancing instruction ad-
herence. We defer the exploration of these aspects
to subsequent studies, recognizing the need for a
comprehensive examination of LLM capabilities
across varying interaction complexities.

Ethics Statement

Our paper aims to systemically and precisely eval-
uate the capability of LLMs to follow natural lan-
guage instructions. However, it is essential to
bear in mind that malicious instructions have the
potential to prompt the model to generate harm-
ful or inappropriate outputs. Therefore, ensur-
ing safe and responsible practices when assessing
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the instruction-following capability of LLMs is of
paramount importance. In FollowBench, each
piece of data undergoes a meticulous human review
process to identify and eliminate any potentially
harmful instructions or offensive content. This rig-
orous approach underscores our commitment to
maintaining a secure and ethical evaluation frame-
work.
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A Data Generation Process

Here we outline the sources for our data and pro-
vide a detailed description of the data generation
process for each constraint category.

A.1 Content Constraints
The data of content constraints is constructed from
five tasks as follows:

• Data-to-Text Generation We create instruc-
tions with 1 to 5 constraints by adapting sam-
ples from E2E (Novikova et al., 2017). Differ-
ent from the original task, we ask the model
to extract the flat meaning representations ac-
cording to the corresponding natural language
texts. The number of constraints increases
with the number of attributes and the num-
ber of restaurants. We use exact match as the
evaluation metric.

• Document-Level Event Argument Extrac-
tion We create instructions by adapting sam-
ples from WIKIEVENTS (Li et al., 2021).
Given a document, the model is required to
extract n events that satisfy a specific event
template, where n ∈ [1, 5] corresponds to the

number of constraints. We use accuracy as the
evaluation metric.

• Document-Level Named Entity Recogni-
tion We derive instructions from samples in
the CONLL-2003 dataset (Tjong Kim Sang
and De Meulder, 2003). We ask the model
to extract a single named entity from a pro-
vided document. Notably, as the number of
constraints rises, the requirements for the re-
trieved named entity correspondingly increase.
For example, “extract one named entity that is
a location” → “extract one named entity that
is a location in east Asia”. We use accuracy
as the evaluation metric.

• Text Generation with Language Con-
straints COGNAC (Chen et al., 2022) is a
challenging benchmark wherein models are
presented with a topic accompanied by exam-
ple text and explicit constraints on the text to
avoid. We curate data from COGNAC, for-
mulating instructions with 1 to 5 constraints
by integrating additional linguistic restric-
tions from WordNet (Miller, 1992) and Wiki-
data (Vrandečić and Krötzsch, 2014).

• Open-ended Question Answering We first
choose initial instructions from existing
datasets including self-instruct evaluation
set (Wang et al., 2023a), helpful evaluation re-
leased by Anthropic(Bai et al., 2022), Vicuna
evaluation(Zheng et al., 2023), and Koala eval-
uation(Geng et al., 2023), as well as open-
source platforms such as Quora 2, Reddit 3,
and ShareGPT 4. Given the challenges associ-
ated with iteratively adding constraints to an
initial instruction, we prompt GPT-4 with a
specific prompt shown in Figure 7 to generate
a new instruction with one more constraint
based on the given instruction. The above
process is repeated five times. Finally, we ob-
tain a set of instructions ranging from 1 to 5
constraints.

A.2 Situation Constraints
The data of situation constraints is constructed from
tasks as follows:

• Suggestion Generation, Role-playing We
collect multi-level instructions that fit within

2https://www.quora.com
3https://www.reddit.com
4https://sharegpt.com
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the paradigm of situation constraints from
Open-ended Question Answering datasets and
online platforms. Examples include asking
the model to give suggestions under specific
circumstances, asking the model to act as a
terminal and output based on the given infor-
mation, etc.

• Math Word Problems The initial instruc-
tions are collected from GSM8K (Cobbe et al.,
2021) and AGIEval (Zhong et al., 2023). We
then manually add constraints progressively
by enhancing the situation descriptions, ensur-
ing that the core question remains unaltered.
We use accuracy as the evaluation metric.

• Time/Spatial Reasoning We generate data by
refining samples from BIG-Bench Hard (Suz-
gun et al., 2022). For Time Reasoning, we
increase the difficulty level by incorporating
additional temporal concepts, such as weeks,
months, and years. In the realm of Spatial Rea-
soning, we opt for a logical deduction task that
necessitates deducing the order of a sequence
of objects. Here, the number of constraints
escalates by augmenting the task with detailed
location descriptions for a new object. We use
accuracy as the evaluation metric.

• Code Generation We sourced initial instruc-
tions from HumanEval (Chen et al., 2021) and
enhanced the difficulty level by adding com-
plexity to the function descriptions within the
instructions. We use pass@1 (Kulal et al.,
2019) as the evaluation metric.

A.3 Example Constraints
Specifically, we choose 40 diverse NLP tasks from
PromptSource (Bach et al., 2022), where each task
has more than 5 question templates. Additionally,
we create 29 answer templates (shown in Table 6)
that regulate the format of the response. For instruc-
tions at difficulty level 1, we utilize the standard
5-shot prompting, where 5 shots are equipped with
1 sampled question template and 1 sampled answer
template, and the model is required to respond to
a query using the answer template. For instruc-
tions at difficulty level n (1 < n ≤ 5), the 5 shots
are randomly paired with n question templates and
n corresponding answer templates. Based on the
question template of the query, the model is re-
quired to recognize the matched question template
in the 5 shots and respond using the corresponding

Answer template

{question}\n{answer}
{question}\nA: {answer}
{question}\nAnswer: {answer}
{question}\nANSWER: {answer}
{question}\n[Answer]\n{answer}
{question}\n#Answer#\n{answer}
{question}\nThe answer is: {answer}
{question}\n{"answer": "{answer}"}
{question}\n{"Answer": "{answer}"}
{question}\n<body>{answer}</body>
{question}\nResponse: {answer}
{question}\nRESPONSE: {answer}
{question}\n[Response]\n{answer}
{question}\n#Response#\n{answer}
{question}\nThe response is: {answer}
{question}\n{"response": "{answer}"}
{question}\n{"Response": "{answer}"}
{question}\nBot: {answer}
{question}\nBOT: {answer}
{question}\n[Bot]\n{answer}
{question}\n#Bot#\n{answer}
{question}\nThe response of the bot is: {answer}
{question}\n{"bot": "{answer}"}
{question}\n{"Bot": "{answer}"}
{question}\nAI assistant: {answer}
{question}\n[AI assistant]\n{answer}
{question}\n#AI assistant#\n{answer}
{question}\nThe response of the AI assistant is: {answer}
{question}\n{"AI assistant": "{answer}"}

Table 6: Answer template of Example Constraints.

answer template. We use accuracy as the evaluation
metric.

A.4 Mixed Constraints
In this paper, we consider four below tasks which
are naturally suitable for constructing mixed con-
straints:

• Text Editing We start by gathering text from
different online sources, like sentences, let-
ters, and emails. Next, we create instructions
with multi-level mixed constraints by increas-
ingly adding an editing requirement to the
text at each level. For example, “swap the first
and last words in the sentence” (Content Con-
straints), “response using ’###’ at the begin-
ning” (Format Constraints), etc. We write rule-
based programs for individual instructions to
assess the satisfaction of internal constraints,
employing exact match as the evaluation met-
ric.

• Summarization The initial instructions are
sampled from CNN/Daily Mail(Nallapati
et al., 2016), XSum (Narayan et al., 2018),
SAMSum (Gliwa et al., 2019), English Giga-
word (Graff et al., 2003), and arXiv (arXiv.org
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submitters, 2023). The instructions with multi-
level mixed constraints are produced by speci-
fying the format of generating answers (For-
mat Constraints), requiring the generated text
to include or not include certain keywords
(Content Constraints), etc. We write rule-
based programs for individual instructions to
assess the satisfaction of internal constraints,
employing accuracy as the evaluation metric.

• Machine Translation The initial instructions
are sampled from OpenSubtitles (Lison and
Tiedemann, 2016), TED Talks (Cettolo et al.,
2012), and News-Commentary (Tiedemann,
2012). Then we construct instructions from
level 1 to level 5 using a similar pipeline as
that of Summarization. We write rule-based
programs for individual instructions to assess
the satisfaction of internal constraints, employ-
ing accuracy as the evaluation metric.

• Story Generation We collect initial instruc-
tions from ROCStories (Mostafazadeh et al.,
2016) and WritingPrompts (Fan et al., 2018).
Then we add 5 mixed constraints sequentially
to the initial instructions based on the ground
truth, such as the number of sentences in the
generated story (Format Constraints), requir-
ing the generated text to include certain key-
words (Content Constraints), specifying the
writing style (Style Constraints), etc.

B Detailed Experimental Results

Here we list the experimental results across 5 dif-
ficulty levels for each constraint category, includ-
ing Content Constraints in Table 7, Situation Con-
straints in Table 8, Style Constraints in Table 9, For-
mat Constraints in Table 10, Example Constraints
in Table 11, and Mixed Constraints in Table 12.

C Case Study

Table 13 and Table 14 show the respective re-
sponses and evaluation results of GPT-4 and
WizardLM-13B-V1.5 when tasked with a level-
5 instruction under the category of Content Con-
straints. It can be observed that GPT-4 meets all
five specified constraints, whereas WizardLM-13B-
V1.5 fails to fulfill the third constraint, which man-
dates that the output animals must be able to swim.
Besides, these two cases also validate the effective-
ness of our model-based evaluation.

D FollowBench-zh

To facilitate the multilingual evaluation of LLM’s
instruction-following ability, we have additionally
crafted a Chinese version of FollowBench, de-
noted as FollowBench-zh. This involved em-
ploying a data generation process analogous to
that utilized in the development of the English
version. Overall, FollowBench-zh consists of
790 meticulously curated instructions from over 50
NLP tasks, including both closed- and open-ended
questions. The detailed data statistics are listed in
Table 15.

Following §3.2 and §4.1, we evaluate 13
popular LLMs on FollowBench-zh. The
prompt template for model-based evaluation
of FollowBench-zh is shown in Figure 10.
It is noticeable that although LLaMA2-Chat-
70B/13B/7B, WizardLM-13B-V1.2, and Vicuna-
13B/7B-V1.5 are not specifically trained on Chi-
nese corpora, they can still understand and re-
spond in Chinese. Table 16 provides a compre-
hensive comparison of various models across five
difficulty levels, denoted as L1 to L5. Similar
to FollowBench, the performance of nearly all
models on FollowBench-zh typically dimin-
ishes as we progress from L1 to L5. Nevertheless,
GPT-3.5 exhibits a notably diminished proficiency
in following instructions on FollowBench-zh
in comparison to GPT-4, showcasing a more
pronounced performance gap than observed on
FollowBench. Moreover, models such as
Baichuan2-Chat-7B and ChatGLM3-6B, which are
pre-trained on a combination of English and Chi-
nese corpora, demonstrate comparable or even bet-
ter performance compared to their open-source
counterparts. This highlights the significance of
incorporating diverse linguistic datasets in pre-
training to enhance the multilingual instruction-
following capability of LLMs. Figure 11 depicts
the instruction-following capability of LLMs over
different constraint categories, with GPT-4 stand-
ing out notably among its counterparts. In a nut-
shell, there is still a substantial opportunity for
enhancing the instruction-following capabilities of
existing LLMs.

4681



You are an Instruction Rewriting Expert. You need to rewrite #Given Instruction# based on #Rewriting Requirement#, in order to obtain a #Rewritten
Instruction#. Basically, #Rewritten Instruction# should adhere to the following guidelines:
1. Your rewriting cannot omit the non-text parts such as the table and code in #Given Instruction#.
2. #Rewritten Instruction# must be reasonable and must be understood and responded by humans.
3. You should try your best not to make the #Rewritten Instruction# become verbose, #Rewritten Instruction# can only add 10 to 20 words into #Given
Instruction#.

#Given Instruction#
{given_instruction}

#Rewriting Requirement#
Please add one proper content constraint to the #Given Instruction#. The content constraints include but are not limited to:
1. Add a Subtask or Another Related Question.
2. Narrow Down the Topic: Instead of a general theme or topic, provide a more specific subset.
3. Set a Higher Standard: Raise the bar for what's considered acceptable or successful.
4. Limit Resources: Restrict the number or type of resources someone can use.
5. Introduce Specific Criteria: Mandate particular components or features that must be included.
6. Specifying Sequence: Dictate the order in which certain steps or actions should be taken.

#Rewritten Instruction#

Prompt Template (Open-ended Question Answering in Content Constraints)

Figure 7: The prompt template for Open-ended Question Answering in Content Constraints.

You are an Instruction Rewriting Expert. You need to rewrite #Given Instruction# based on #Rewriting Requirement#, in order to obtain a #Rewritten
Instruction#. Basically, #Rewritten Instruction# should adhere to the following guidelines:
1. Your rewriting cannot omit the non-text parts such as the table and code in #Given Instruction#.
2. #Rewritten Instruction# must be reasonable and must be understood and responded by humans.
3. You should try your best not to make the #Rewritten Instruction# become verbose, #Rewritten Instruction# can only add 10 to 20 words into #Given
Instruction#.

#Given Instruction#
{given_instruction}

#Rewriting Requirement#
Please add one proper style constraint that #Given Instruction# does not have. The style constraints include but are not limited to:
1. Tone and Emotion: Specify the desired emotional tone for the response.
2. Writing Style: Ask the AI to mimic a specific author's writing style.
3. Contradiction: Ask the AI to provide a response that contradicts the previous statement or take a stance opposite to its prior response.
4. Ambiguity: Instruct the AI to create responses with intentional ambiguity or double meanings.
5. Humor or Satire: Request that the response be humorous or satirical, requiring the AI to generate jokes or witty remarks.

#Rewritten Instruction#

Prompt Template (Open-ended Question Answering in Style Constraints)

Figure 8: The prompt template for Open-ended Question Answering in Style Constraints.

You are an Instruction Rewriting Expert. You need to rewrite #Given Instruction# based on #Rewriting Requirement#, in order to obtain a #Rewritten
Instruction#. Basically, #Rewritten Instruction# should adhere to the following guidelines:
1. Your rewriting cannot omit the non-text parts such as the table and code in #Given Instruction#.
2. #Rewritten Instruction# must be reasonable and must be understood and responded by humans.
3. You should try your best not to make the #Rewritten Instruction# become verbose, #Rewritten Instruction# can only add 10 to 20 words into #Given
Instruction#.

#Given Instruction#
{given_instruction}

#Rewriting Requirement#
Please add one proper format constraint that #Given Instruction# does not have. The format constraints include but are not limited to:
1. Length: Imposing constraints on the length of individual words, sentences, or paragraphs.
2. Hierarchical Instructions: Providing instructions that have a hierarchical structure, where the AI needs to understand and follow a hierarchy of tasks to
construct a response.
3. Special Output Format: Asking the AI to respond by using data format like table, json, HTML, LaTeX, etc.
4. Morphological Constraints: Asking the AI to avoid or use specific morphemes.
5. Multi-lingual Constraints: Asking the AI to respond in multiple languages or switch between languages according to complex patterns.
6. Incorporation of Specific Literary Devices: Requiring the inclusion of specific, and perhaps numerous, literary devices.
7. Following a Specific Grammatical Structure: Requiring the AI to create responses that strictly follow a particular grammatical structure.

#Rewritten Instruction#

Prompt Template (Open-ended Question Answering in Format Constraints)

Figure 9: The prompt template for Open-ended Question Answering in Format Constraints.
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HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 L5 Avg. CSL

GPT-4-Preview-1106 84.0 76.0 72.0 80.0 72.0 76.8 84.0 78.0 74.7 83.0 80.8 80.1 3.5
GPT-3.5-Turbo-1106 72.0 68.0 72.0 56.0 48.0 63.2 72.0 70.0 76.0 67.0 64.0 69.8 2.7
Qwen-Chat-72B 84.0 72.0 72.0 52.0 56.0 67.2 84.0 76.0 76.0 62.0 66.4 72.9 3.2
LLaMA2-Chat-70B 48.0 44.0 44.0 40.0 40.0 43.2 48.0 48.0 48.0 47.0 47.2 47.6 2.2
Qwen-Chat-14B 56.0 64.0 60.0 44.0 36.0 52.0 56.0 68.0 66.7 55.0 51.2 59.4 2.1
WizardLM-13B-V1.2 68.0 56.0 48.0 44.0 28.0 48.8 68.0 60.0 56.0 51.0 45.6 56.1 2.4
LLaMA2-Chat-13B 48.0 44.0 48.0 48.0 36.0 44.8 48.0 48.0 50.7 50.0 47.2 48.8 2.1
Vicuna-13B-V1.5 60.0 52.0 52.0 44.0 32.0 48.0 60.0 58.0 58.7 53.0 44.8 54.9 2.3
Qwen-Chat-7B 56.0 56.0 36.0 36.0 24.0 41.6 56.0 60.0 48.0 48.0 40.8 50.6 1.7
LLaMA2-Chat-7B 44.0 48.0 44.0 40.0 36.0 42.4 44.0 48.0 46.7 46.0 46.4 46.2 1.8
Vicuna-7B-V1.5 60.0 48.0 52.0 40.0 16.0 43.2 60.0 56.0 61.3 51.0 44.0 54.5 1.9
Baichuan2-Chat-7B 60.0 48.0 40.0 36.0 24.0 41.6 60.0 52.0 45.3 50.0 44.8 50.4 1.7
ChatGLM3-6B 68.0 44.0 44.0 36.0 24.0 43.2 68.0 52.0 49.3 50.0 40.8 52.0 1.9

Table 7: Results of Content Constraints across 5 difficulty levels. Proprietary LLMs , open-sourced LLMs (large) ,

open-sourced LLMs (medium) , and open-sourced LLMs (small) are distinguished by different colors.

HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 L5 Avg. CSL

GPT-4-Preview-1106 90.0 90.0 85.0 65.0 50.0 76.0 90.0 90.0 88.3 76.2 69.0 82.7 3.5
GPT-3.5-Turbo-1106 72.7 72.7 72.7 63.6 68.2 70.0 72.7 72.7 75.8 71.6 75.5 73.7 3.2
Qwen-Chat-72B 81.8 81.8 54.6 54.6 50.0 64.6 81.8 86.4 71.2 65.9 60.9 73.2 2.4
LLaMA2-Chat-70B 72.7 68.2 54.6 40.9 50.0 57.3 72.7 70.5 66.7 61.4 68.2 67.9 2.4
Qwen-Chat-14B 72.7 68.2 59.1 45.5 50.0 59.1 72.7 72.7 71.2 56.8 61.8 67.1 2.2
WizardLM-13B-V1.2 65.0 65.0 70.0 35.0 45.0 56.0 65.0 67.5 71.7 50.0 58.0 62.4 1.9
LLaMA2-Chat-13B 63.6 77.3 59.1 45.5 36.4 56.4 63.6 81.8 69.7 58.0 53.6 65.4 2.2
Vicuna-13B-V1.5 68.2 63.6 54.5 31.8 40.9 51.8 68.2 65.9 60.6 47.7 54.5 59.4 1.9
Qwen-Chat-7B 59.1 59.1 54.6 36.4 50.0 51.8 59.1 68.2 65.2 52.3 66.4 62.2 1.6
LLaMA2-Chat-7B 68.2 45.5 54.5 27.3 54.5 50.0 68.2 59.1 63.6 54.5 65.5 62.2 1.8
Vicuna-7B-V1.5 45.5 45.5 31.8 22.7 27.3 34.5 45.5 50.0 43.9 34.1 49.1 44.5 1.4
Baichuan2-Chat-7B 36.4 40.9 40.9 22.7 18.2 31.8 36.4 54.5 54.5 42.0 41.8 45.9 0.9
ChatGLM3-6B 63.6 63.6 40.9 27.3 22.7 43.6 63.6 70.5 56.1 44.3 43.6 55.6 1.8

Table 8: Results of Situation Constraints across 5 difficulty levels. Proprietary LLMs ,

open-sourced LLMs (large) , open-sourced LLMs (medium) , and open-sourced LLMs (small) are distin-
guished by different colors.

HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 L5 Avg. CSL

GPT-4-Preview-1106 96.7 93.3 86.7 96.7 90.0 92.7 96.7 95.0 93.3 98.3 98.0 96.3 4.3
GPT-3.5-Turbo-1106 96.7 93.3 90.0 93.3 86.7 92.0 96.7 96.7 95.6 98.3 97.3 96.9 4.1
Qwen-Chat-72B 90.0 83.3 70.0 66.7 56.7 73.3 90.0 90.0 90.0 89.2 86.0 89.0 3.0
LLaMA2-Chat-70B 96.7 93.3 93.3 83.3 83.3 90.0 96.7 96.7 97.8 95.0 96.0 96.4 4.1
Qwen-Chat-14B 80.0 73.3 46.7 60.0 46.7 61.3 80.0 86.7 75.6 82.5 78.0 80.6 2.2
WizardLM-13B-V1.2 96.7 93.3 80.0 83.3 60.0 82.7 96.7 95.0 91.1 92.5 90.0 93.1 3.6
LLaMA2-Chat-13B 96.7 93.3 90.0 86.7 86.7 90.7 96.7 96.7 95.6 96.7 96.0 96.3 4.1
Vicuna-13B-V1.5 90.0 90.0 60.0 73.3 60.0 74.7 90.0 95.0 83.3 87.5 89.3 89.0 3.1
Qwen-Chat-7B 66.7 73.3 46.7 53.3 33.3 54.7 66.7 86.7 76.7 80.0 64.7 74.9 1.6
LLaMA2-Chat-7B 96.7 93.3 90.0 86.7 70.0 87.3 96.7 96.7 95.6 96.7 93.3 95.8 4.1
Vicuna-7B-V1.5 80.0 80.0 53.3 63.3 53.3 66.0 80.0 88.3 80.0 87.5 82.0 83.6 2.3
Baichuan2-Chat-7B 76.7 83.3 56.7 53.3 50.0 64.0 76.7 90.0 80.0 85.8 87.3 84.0 2.2
ChatGLM3-6B 80.0 60.0 50.0 36.7 33.3 52.0 80.0 76.7 73.3 74.2 74.7 75.8 1.9

Table 9: Results of Style Constraints across 5 difficulty levels. Proprietary LLMs , open-sourced LLMs (large) ,

open-sourced LLMs (medium) , and open-sourced LLMs (small) are distinguished by different colors.
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HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 L5 Avg. CSL

GPT-4-Preview-1106 90.0 93.3 86.7 93.3 80.0 86.0 90.0 95.0 94.4 98.3 93.3 90.1 4.1
GPT-3.5-Turbo-1106 90.0 76.7 80.0 70.0 50.0 73.3 90.0 85.0 88.9 85.0 82.0 86.2 3.2
Qwen-Chat-72B 86.7 80.0 83.3 60.0 56.7 73.3 86.7 86.7 87.8 83.3 81.3 85.2 3.3
LLaMA2-Chat-70B 83.3 76.7 66.7 53.3 36.7 63.3 83.3 85.0 86.7 78.3 70.0 80.7 2.4
Qwen-Chat-14B 86.7 86.7 80.0 56.7 33.3 68.7 86.7 90.0 86.7 80.8 72.0 83.2 3.1
WizardLM-13B-V1.2 83.3 93.3 73.3 56.7 40.0 69.3 83.3 95.0 86.7 77.5 73.3 83.2 2.9
LLaMA2-Chat-13B 86.7 80.0 70.0 56.7 40.0 66.7 86.7 86.7 86.7 80.0 72.7 82.5 3.1
Vicuna-13B-V1.5 86.7 76.7 76.7 53.3 30.0 64.7 86.7 85.0 86.7 78.3 70.7 81.5 2.6
Qwen-Chat-7B 76.7 76.7 66.7 50.0 30.0 60.0 76.7 83.3 77.8 74.2 70.7 76.5 2.4
LLaMA2-Chat-7B 80.0 80.0 66.7 53.3 33.3 62.7 80.0 88.3 86.7 78.3 68.0 80.3 2.4
Vicuna-7B-V1.5 80.0 76.7 73.3 43.3 20.0 58.7 80.0 86.7 85.6 70.8 67.3 78.1 2.4
Baichuan2-Chat-7B 80.0 56.7 60.0 40.0 36.7 54.7 80.0 73.3 81.1 72.5 72.7 75.9 1.9
ChatGLM3-6B 80.0 60.0 46.7 33.3 23.3 48.7 80.0 71.7 72.2 69.2 68.0 72.2 2.1

Table 10: Results of Format Constraints across 5 difficulty levels. Proprietary LLMs , open-sourced LLMs (large) ,

open-sourced LLMs (medium) , and open-sourced LLMs (small) are distinguished by different colors.

HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 L5 Avg. CSL

GPT-4-Preview-1106 87.5 57.5 57.5 45.0 42.5 58.0 87.5 57.5 57.5 45.0 42.5 58.0 2.4
GPT-3.5-Turbo-1106 80.0 50.0 50.0 42.5 42.5 53.0 80.0 50.0 50.0 42.5 42.5 53.0 2.2
Qwen-Chat-72B 30.0 10.0 5.0 2.5 2.5 10.0 30.0 10.0 5.0 2.5 2.5 10.0 0.5
LLaMA2-Chat-70B 0.0 2.5 0.0 0.0 0.0 0.5 0.0 2.5 0.0 0.0 0.0 0.5 0.0
Qwen-Chat-14B 22.5 10.0 5.0 2.5 7.5 9.5 22.5 10.0 5.0 2.5 7.5 9.5 0.4
WizardLM-13B-V1.2 40.0 30.0 27.5 12.5 15.0 25.0 40.0 30.0 27.5 12.5 15.0 25.0 0.9
LLaMA2-Chat-13B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vicuna-13B-V1.5 57.5 37.5 25.0 17.5 17.5 31.0 57.5 37.5 25.0 17.5 17.5 31.0 1.2
Qwen-Chat-7B 12.5 10.0 5.0 5.0 2.5 7.0 12.5 10.0 5.0 5.0 2.5 7.0 0.2
LLaMA2-Chat-7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vicuna-7B-V1.5 52.5 32.5 25.0 12.5 15.0 27.5 52.5 32.5 25.0 12.5 15.0 27.5 1.2
Baichuan2-Chat-7B 50.0 30.0 35.0 12.5 12.5 28.0 50.0 30.0 35.0 12.5 12.5 28.0 1.1
ChatGLM3-6B 32.5 22.5 15.0 10.0 7.5 17.5 32.5 22.5 15.0 10.0 7.5 17.5 0.6

Table 11: Results of Example Constraints across 5 difficulty levels. Proprietary LLMs ,

open-sourced LLMs (large) , open-sourced LLMs (medium) , and open-sourced LLMs (small) are distin-
guished by different colors.

HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 L5 Avg. CSL

GPT-4-Preview-1106 60.0 46.7 40.0 66.7 40.0 50.7 60.0 50.0 48.9 66.7 56.0 56.3 1.9
GPT-3.5-Turbo-1106 70.6 47.1 47.1 41.2 23.5 45.9 70.6 52.9 58.8 52.9 41.2 55.3 1.7
Qwen-Chat-72B 70.6 52.9 41.2 35.3 17.7 43.5 70.6 55.9 49.0 42.7 38.8 51.4 1.8
LLaMA2-Chat-70B 58.8 35.3 17.7 23.5 17.7 30.6 58.8 41.2 35.3 38.2 37.7 42.2 1.2
Qwen-Chat-14B 58.8 35.3 35.3 23.5 11.8 32.9 58.8 44.1 41.2 38.2 37.7 44.0 1.4
WizardLM-13B-V1.2 60.0 46.7 20.0 13.3 26.7 33.3 60.0 46.7 37.8 36.7 41.3 44.5 1.4
LLaMA2-Chat-13B 47.1 41.2 35.3 29.4 29.4 36.5 47.1 47.1 45.1 44.1 43.5 45.4 1.5
Vicuna-13B-V1.5 64.7 41.2 29.4 23.5 23.5 36.5 64.7 47.1 45.1 42.6 44.7 48.9 1.5
Qwen-Chat-7B 64.7 35.3 23.5 17.6 0.0 28.2 64.7 41.2 37.3 33.8 30.6 41.5 1.2
LLaMA2-Chat-7B 58.8 41.2 29.4 29.4 17.6 35.3 58.8 47.1 41.2 39.7 35.3 44.4 1.5
Vicuna-7B-V1.5 47.1 29.4 17.6 17.6 11.8 24.7 47.1 38.2 37.2 33.8 36.5 38.6 1.1
Baichuan2-Chat-7B 47.1 17.6 11.8 17.6 11.8 21.2 47.1 32.4 33.3 36.8 36.5 37.2 0.7
ChatGLM3-6B 41.2 29.4 23.5 23.5 17.7 27.1 41.2 38.2 41.2 39.7 35.3 39.1 1.1

Table 12: Results of Mixed Constraints across 5 difficulty levels. Proprietary LLMs , open-sourced LLMs (large) ,

open-sourced LLMs (medium) , and open-sourced LLMs (small) are distinguished by different colors.
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The response and evaluation result of GPT-4-Preview-1106 for a level-5 instruction

Instruction

Talk about domestic animal:
== the norwegian elkhound is one of the northern spitz type breed of dog and is the national dog of
norway. ==
== the irish terrier (irish: brocaire rua) is a dog breed from ireland, one of many breeds of terrier. ==
== a hearing dog is a type of assistance dog specifically selected and trained to assist people who are
deaf or hard of hearing by alerting their handler to important sounds, such as doorbells, smoke alarms,
ringing telephones, or alarm clocks. ==
Could you list three more domestic animals that satisfy ALL of following conditions:
1. Do not talk about dog.
2. Their weights are less than 100kg.
3. Can swim.
4. Have 4 legs.
5. Are hairy.

Response

1. The Maine Coon cat is a large domesticated cat breed that originates from the United States. Known
for their size, they typically weigh less than 100kg. They have a thick, water-resistant fur coat, which
allows them to swim if necessary.

2. The American Mink is a semi-aquatic, fur-bearing mammal that is often domesticated for
its fur. It has four legs, can swim, and weighs significantly less than 100kg.

3. The Norwegian Forest Cat, also known as the "Wegie", is a breed of domestic cat originat-
ing in Northern Europe. This breed is adapted to a very cold climate, with a top coat of glossy, long,
water-shedding hairs, and a woolly undercoat for insulation. Despite their large size, they weigh less
than 100kg and are known to be good swimmers.

Evaluation

1) The 5 added constraints are:
- Do not talk about dog.
- Their weights are less than 100kg.
- Can swim.
- Have 4 legs.
- Are hairy.

2) For the 5 added constraints, the #Answer of Initial Instruction + 5 constraints# satisfies
each constraint as follows:
- Do not talk about dog: Yes, the answer talks about Maine Coon cat, American Mink, and Norwegian
Forest Cat, not dogs.
- Their weights are less than 100kg: Yes, all the animals mentioned weigh less than 100kg.
- Can swim: Yes, all the animals mentioned can swim.
- Have 4 legs: Yes, all the animals mentioned have 4 legs.
- Are hairy: Yes, all the animals mentioned are hairy.

3) [’YES’, ’YES’, ’YES’, ’YES’, ’YES’]

Table 13: The response and evaluation result of GPT-4-Preview-1106 for a level-5 instruction belonging to Content
Constraints.
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The response and evaluation result of WizardLM-13B-V1.2 for a level-5 instruction

Instruction

Talk about domestic animal:
== the norwegian elkhound is one of the northern spitz type breed of dog and is the national dog of
norway. ==
== the irish terrier (irish: brocaire rua) is a dog breed from ireland, one of many breeds of terrier. ==
== a hearing dog is a type of assistance dog specifically selected and trained to assist people who are
deaf or hard of hearing by alerting their handler to important sounds, such as doorbells, smoke alarms,
ringing telephones, or alarm clocks. ==
Could you list three more domestic animals that satisfy ALL of following conditions:
1. Do not talk about dog.
2. Their weights are less than 100kg.
3. Can swim.
4. Have 4 legs.
5. Are hairy.

Response

1. Cat: Cats are domestic animals that weigh less than 100kg, have four legs, and are hairy. They are
also known for their swimming abilities, making them suitable for households with access to water.
2. Rabbit: Rabbits are small, furry animals that weigh less than 100kg and have four legs. They are also
excellent swimmers, thanks to their powerful hind legs and water-resistant fur.
3. Hamster: Hamsters are small, furry rodents that weigh less than 100kg and have four legs. They are
popular pets due to their gentle nature and low maintenance care.

Evaluation

1) The 5 added constraints are:
- Do not talk about dog.
- Their weights are less than 100kg.
- Can swim.
- Have 4 legs.
- Are hairy.

2) For the 5 added constraints:
- Do not talk about dog: The answer does not mention any dogs. It talks about cats, rabbits, and hamsters.
So, it satisfies this constraint.
- Their weights are less than 100kg: The animals mentioned in the answer (cats, rabbits, and hamsters)
all weigh less than 100kg. So, it satisfies this constraint.
- Can swim: The answer mentions that cats and rabbits can swim. However, hamsters are not natural
swimmers. So, it does not satisfy this constraint.
- Have 4 legs: All the animals mentioned in the answer (cats, rabbits, and hamsters) have four legs. So, it
satisfies this constraint.
- Are hairy: All the animals mentioned in the answer (cats, rabbits, and hamsters) are described as being
hairy or furry. So, it satisfies this constraint.

3) [’YES’, ’YES’, ’NO’, ’YES’, ’YES’]

Table 14: The response and evaluation result of WizardLM-13B-V1.2 for a level-5 instruction belonging to Content
Constraints.
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Constraint Task Avg Len #Data Evaluation

Data-to-Text Generation 158 25
Document-Level Event Argument Extraction 1,356 15
Document-Level Named Entity Recognition 652 25
Text Generation with Language Constraints 167 25

Content

Open-ended Question Answering 116 25

Suggestion Generation 139 40
Role-playing 203 15Situation
Complex Situation Reasoning 187 55

Style Open-ended Question Answering 120 150

Text-to-Table Generation 305 30Format
Open-ended Question Answering 136 120

Example 40 diverse NLP tasks 1,556 200

Text Editing 195 20
Summarization 481 25
Machine Translation 179 10Mixed

Story Generation 56 10

Table 15: An overview of FollowBench-zh. “Avg Len” is the average character number of instructions. refers
to rule-based evaluation, while refers to model-based evaluation.

HSR (%) SSR (%)
Model L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 L5 Avg. CSL

GPT-4-Preview-1106 86.7 83.9 68.7 67.0 61.1 73.5 86.7 84.8 76.0 74.0 71.8 78.6 3.1
GPT-3.5-Turbo-1106 69.6 65.2 52.8 49.1 39.5 55.2 69.6 70.8 63.8 64.0 59.5 65.5 2.2
Qwen-Chat-72B 66.8 58.9 47.3 42.8 36.5 50.5 66.8 62.3 59.1 59.1 57.9 61.0 2.1
LLaMA2-Chat-70B 52.8 46.4 41.0 30.3 23.5 38.8 52.8 53.1 54.0 51.0 49.1 52.0 1.5
Qwen-Chat-14B 64.0 48.3 42.2 33.6 25.9 42.8 64.0 57.2 56.5 53.7 51.2 56.5 1.6
WizardLM-13B-V1.2 55.9 46.5 37.8 29.4 19.6 37.8 55.9 50.9 51.3 50.2 47.3 51.1 1.6
LLaMA2-Chat-13B 53.3 46.0 36.1 30.6 29.5 39.1 53.3 51.9 50.4 48.3 49.0 50.6 1.6
Vicuna-13B-V1.5 56.4 43.8 36.9 32.4 22.5 38.4 56.4 53.0 52.0 52.2 46.5 52.0 1.5
Qwen-Chat-7B 54.2 45.6 33.2 23.1 18.9 35.0 54.2 52.9 51.2 50.6 46.4 51.0 1.3
LLaMA2-Chat-7B 54.0 44.7 37.6 21.7 21.7 35.9 54.0 51.3 51.0 44.2 44.4 49.0 1.5
Vicuna-7B-V1.5 52.6 37.8 30.0 22.0 13.4 31.2 52.6 48.8 46.6 46.7 40.5 47.1 1.2
ChatGLM3-6B 62.0 45.9 36.6 28.1 17.8 38.1 62.0 53.4 54.3 49.1 45.6 52.9 1.5

Table 16: Results across five difficulty levels of FollowBench-zh. For each level, we compute the average score
of all constraint categories. Proprietary LLMs , open-sourced LLMs (large) , open-sourced LLMs (medium) ,

and open-sourced LLMs (small) are distinguished by different colors.

4687



给定一个初始指令，我们每次添加一个{constraint_type}约束，获得
了有{level_n}个附加约束的最终指令。

#初始指令#
{initial_instruction}

#初始指令 + 1个约束#
{level_1_instruction}

⁝

#初始指令 + {level_n}个约束#
{level_n_instruction}

#初始指令 + {level_n}个约束的答案#
{answer_of_level_n_instruction}

#系统#
1)请识别出添加的{level_n}个约束。
2)对于添加的{level_n}个约束，请判断#初始指令 + {level_n}个约束的
答案#是否满足了每个约束。
3)在最后一行，只输出一个包含{level_n}个元素（“YES”或“NO”）的
Python列表，表明答案是否满足添加的每一个约束。

Prompt Template for Model-based Evaluation (zh)

Figure 10: Prompt template for model-based evaluation
of FollowBench-zh.

Content

SituationStyle

Format

Example Mixed

0.2
0.4

0.6
0.8

GPT-4
GPT-3.5
Qwen-Chat-72B
LLaMA2-Chat-70B
Qwen-Chat-14B
LLaMA2-Chat-13B
Vicuna-13B-V1.5
Qwen-Chat-7B
LLaMA2-Chat-7B
Vicuna-7B-V1.5

Figure 11: HSR (%) results in diverse constraint cate-
gories of FollowBench-zh. For each category, we
compute the average score of all difficulty levels.
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