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Abstract

We develop a mutual information-based fea-
ture extraction method and apply it to English
speech production and perception error data.
The extracted features show different phoneme
groupings than conventional phonological fea-
tures, especially in the place features. We eval-
uate how well the extracted features can define
natural classes to account for English phono-
logical patterns. The features extracted from
production errors had performance close to
conventional phonological features, while the
features extracted from perception errors per-
formed worse. The study shows that featural
information can be extracted from underused
sources of data such as confusion matrices of
production and perception errors, and the re-
sults suggest that phonological patterning is
more closely related to natural production er-
rors than to perception errors in noisy speech.

1 Introduction

Phonological features have usually been assumed
to be phonetically grounded in addition to explain-
ing phonological behaviour. Yet the sources of
phonetic data that have been used to infer the na-
ture of phonological features are largely limited to
physical acoustic and articulatory measures. Fur-
thermore, the analytical methods available to infer
features that are consistent with phonetic data are
limited. This study proposes a new method for auto-
matically inferring binary features from similarity
matrices, which lends itself to directly studying
data relevant to human phonetic processing: here
we study perception and production errors.

Previous work has attempted to infer
phonetically-grounded features using clus-
tering (Lin, 2005; Lin and Mielke, 2006; Mielke,
2008, 2012; Shain and Elsner, 2019). For example,
Mielke (2008) modelled consonant similarity
using hierarchical clustering applied to perceptual
confusion data, which combines consonants
together into nested clusters.
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However, clustering does not directly output
features in the usual sense of independent, cross-
cutting properties of phonemes. Non-hierarchical
clustering applied to phonemes yields a flat set
of classes, the equivalent of a single binary or n-
ary feature. Hierarchical clustering yields classes
that can contain other class divisions (for exam-
ple, a cluster of vowels can be subdivided into a
cluster of high and a cluster of low vowels, and
so on). However, in typical approaches to hier-
archical clustering, decisions as to how to make
sub-clusters are taken independently in each clus-
ter. Features are thus not allowed to have scope
over more than one sub-cluster. Not only does this
contrast sharply with usual approaches to phono-
logical features which naturally give rise to par-
allel relations across clusters—the “proportional
oppositions” of Trubetzkoy (1969)—it means that
any data about similarity between phonemes across
clusters is necessarily ignored by such algorithms.

To address these issues, we develop a method
inspired by Miller and Nicely’s (1955) analysis
of confusion matrices, based on an information-
theoretic measure of feature transmission. We first
introduce the algorithm and demonstrate it using an
artificial example. Next, we report an experiment
where the feature extraction algorithm is applied to
phoneme perception and production errors, and the
extracted features sets are evaluated based on their
utility and efficiency in describing phonological
classes. Finally, we discuss the insights yielded for
the study of phonological features.

Although the paper infers phonological features
from data, our goal is not to argue that phonolog-
ical features are emergent. This paper analyzes
confusion data, and determines what set of features
would be most compatible with the data (under
certain assumptions). While this could be consis-
tent with a hypothesis that learners infer features
based on their own confusions, we tend toward the
opposite view: features are primary, and feature
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similarity is a cause of confusions. In any case, our
analysis is correlational, and as such it is neutral
to what is the cause and what is the result. The
question is merely what features best explain the
data at hand.

Of course, if we do assume that feature represen-
tations are one cause of errors (rather than assum-
ing that features are emergent from error patterns),
we must accept that feature similarity is only one
cause among others—for example, noise in the au-
dio signal, the nature of that noise, physiological
constraints on production, and phonological neigh-
bourhoods (Vitevitch, 2002), among other things.
For our purposes, we need to assume that the effect
of distinctive features on error patterns is strong
enough to be detected in spite of these other factors.

2 Extracting feature with
Redundancy-Corrected Transmission

2.1 Background

Miller and Nicely (1955) analyzed confusion ma-
trices from an identification task in which partic-
ipants heard a CV syllable in noise (a consonant
followed by /a/) and had to provide a phonemic
label for the onset consonant. They developed an
information-theoretic measure of feature transmis-
sion in a confusion matrix, using it as part of an
argument that listeners use distinctive features in
speech perception.

Miller and Nicely assumed that speech process-
ing works by transmitting information over a fixed
number of channels (features). They used five fea-
tures to analyze English consonants (voicing, nasal-
ity, affrication, duration, and place). By analyzing
the confusions between consonants with opposing
values for each feature separately (e.g., between
voiced and voiceless sounds), they measured the
amount of information faithfully transmitted for
each feature under various amounts of additive
noise. They argue that the result of this analysis
suggests that each of these five features is perceived
by listeners independently of the others, since the
sum of the information transmitted for these five
features is close to the the amount of transmitted
information measured if phonemes are not orga-
nized into features—Ilittle information is lost by
analyzing phonemes into independent features.

For our purposes, it is not this argument that mat-
ters but their transmission measure itself, which can
be seen as a measure of how “consistent” a hypo-
thetical feature is with a given confusion matrix. In
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particular, a hypothetical feature which is consis-
tently extremely poorly transmitted is clearly not
implicated in perception. In what follows, we de-
velop this intuition further and show its limitations,
and motivate the use of a further term penalizing
feature redundancy. We show that, despite its lim-
itations, the idea of discovering a set of features
with high transmission and minimal redundancy
leads to satisfactory results in an artificial example.

2.2 Developing the algorithm

We use a hypothetical phoneme mapping process
within a 4-phoneme inventory [ABCD] to illus-
trate these ideas. We assume these phonemes are
transmitted via some noisy process (for example,
perception or production) whose goal is accurate
transmission—in other words, to faithfully map an
input phoneme to itself. Table 1 summarizes a pos-
sible outcome from repetitions of this transmission
process with different input phonemes.

Input
ABCD
108 2 0
g8 100 2
2 0 108
02 8 10

Output

A
B
C
D

Table 1: A confusion matrix of the hypothetical map-
pings in a four-phoneme system with two features.

Furthermore, we assume that, in this hypotheti-
cal process, the phonemes are transmitted by trans-
mitting the values of two underlying features f/
([AB | CD]) and f2 ([AC | BD]). As features are
often transmitted with different degrees of degra-
dation (Miller and Nicely, 1955), we make it so
that f1 is maintained better than f2, resulting in
more confusions between phoneme pairs that are
differentiated by f2 (such as A and B) than between
phoneme pairs differentiated by f7 (such as A and
C). Our goal of feature extraction is to infer the true
underlying features (f/ and f2) based only on the
confusion matrix. To achieve this, we consider all
potential features, i.e., all binary groupings (While
nothing prevents the algorithm we develop here
from being used with n-ary features, we restrict
the current paper to binary features.). We examine
how well each potential feature is transmitted by
collapsing the confusion matrix according to that
feature. We show this in Table 2 for the feature that
splits the inventory into [AB | CD] (which happens



to be one of the true features used in transmission).

Input
+ —_
AB CD
Z FAB[36 4
8 —cp| 4 36

Table 2: Collapsed confusion matrices for the exam-
ple in Table 1 according to the feature that splits the
inventory into [AB | CD].

Higher counts on the diagonal represent more
faithful transmissions in the collapsed confusion
matrix. Thus, even at first glance, the feature in
Table 2 is a good candidate for a feature which is
transmitted faithfully. To quantitatively evaluate
how well a feature is preserved in the output, we
calculate the transmission of a signal from the input
(1) to the output (O) with Equation 1 as defined in
Miller and Nicely (1955).

T(I;0) = > pli,0)log pp(i’o)

1
vl
When the confusion matrix is collapsed based on
a potential feature f, T'(Xs; Yy) evaluates the how
much information about the feature is transmitted.

The transmission alone can capture how much
information is transmitted, but it is not sufficient
to evaluate how well a feature is transmitted. This
is because the transmission value is influenced not
only by how well information from the input is
preserved in the output, but also by both how much
information was contained in the input in the first
place. In order to eliminate the influence of the
information in the input, we instead evaluate the
proportion of the input information successfully
transferred to the output. First, we quantify the
amount of information in the input by calculating
the entropy of input re-coded with the feature, as
defined in Equation 2:

— > p(x)logp(z)

zeX

H(X) 2

in order to calculate the relative transmission
Tye1(X¢; Yy) of the input information with respect
to the feature f:

T(Xy;Yy)

3
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in which H(X) is the amount of information in
the input and 7'(Xf; Yy) is the amount of informa-
tion shared by the input and the output.

With the relative transmission criterion, we can
evaluate all possible candidate features to character-
ize the inventory [ABCD], as seen in Table 3. The
relative transmission of the true underlying feature
f1 (feature I in the table), is higher than that of any
other hypothetical feature, as expected, given that
our constructed transmission process was one in
which this feature was well-transmitted.

However, to extract a set of relevant features,
simply seeking a set of features in which each fea-
ture individually has a high relative transmission
would usually not result in an ideal feature set. This
is because a highly informative feature can often
undergo a minor adjustment to create a slightly dif-
ferent, spurious, feature that also has high transmis-
sion. Consider Table 3 again: hypothesized feature
II corresponds to the second true underlying feature
that was used to generate the example, f2. While its
relative transmission of 0.029 is higher than that of
the (incorrect) feature III, it is still lower than that
of features IV and V. These features have a high
relative transmission because they largely overlap
with the well-transmitted feature f1, grouping to-
gether either [CD] (feature IV) or [AB] (feature
V). In order to avoid extracting features partially
containing the information included in already se-
lected feature, we consider the redundancy of the
new feature with respect to each old feature by
calculating the mutual information 1(X;Y). The
mutual information captures the degree of associa-
tion between the states of two variables. As such, it
can be used to evaluate the similarity between two
features. The mutual information I(X;Y") for two
discrete random variables X and Y is defined as:

I(X;v) =Y Zp(:r,y)log;(x’y)

4
S (@)p(y) @

When evaluating the similarity between features, X
and Y are the counts of the input variable re-coded
with the two features, respectively.

To keep the mutual information between features
on the same scale as the relative transmission of
features, we also define a relative mutual informa-
tion I¢;(Xy,; Xy, ) between the features f, and fp
to quantify a new feature’s redundancy with respect
to an existing feature f,.

1(Xp,; Xy,)

&)



Features 1 1I 111 v \"
Value + - + — + - | + — + —
AB CD|AC BD|AD BC| A BCD| C ABD

+ 36 4 24 16 | 20 20 | 10 10 10 10

— 4 36 | 16 24 | 20 20 [ 10 50 10 50
Tret(X5;Yy) 0.531 0.029 0 0.091 0.091
J(f:5) Step 1 0.531 0.029 0 0.091 0.091
' Step 2 \ 0.029 0 -0.22 -0.22

Table 3: Evaluating features in the four-phoneme system from Table 1. The table includes collapsed confusion
matrices according to different features, the corresponding T.;(X; Yy), and the RCT criterion J(f; S) at two
steps of feature extraction. The J(f;.S) values of the selected feature at each step are marked in bold. After two
steps, the selected features are efficient to differentiate all phonemes and the algorithm ends.

Together this leads us to propose the Redundancy-
Corrected Transmission (RCT) criterion J(f, S):

1
J(f:8) =Tra(Xp:Yy) — &l > La(Xp Xy,)

fi€s
(6)
In the RCT criterion we use the average of the
relative mutual information between the candidate
feature (f) and each of the features that are already
selected (f; € S) to minimize redundancy. In ad-
dition to this, we also filter the non-contrasting
features from candidate feature set before each step
of feature selection. Non-contrasting features are
defined as the candidate features that do not cre-
ate new contrast between phonemes given a set
of selected features. For example, in a hypothet-
ical consonant inventory [ptfsmnv z], assum-
ing that two features [p t f s | m n v z] ([voice]) and
[ptmn | fsvz] ([continuant]) have been selected,
then the feature [p t v z | m n f s] would be a non-
contrasting feature since it does not create any divi-
sions in the smallest classes (i.e., [p t], [f s], [m n],
[v z]) created by the two previous features. This
filtering process ensures that the algorithm finds a
compact set of features to encode all phonemes.
The extraction process above is summarized in
Algorithm 1.

2.3 Preprocessing

Finally, we will discuss the preprocessing steps that
are important in the preparation of confusion data
for feature extraction. In real data, especially in the
errors collected from natural speech, three issues
are often present.

First, some input phonemes may present very
few errors. The sparsity of the data for a given
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Algorithm 1: Binary feature extraction al-
gorithm with RCT.
Data: A confusion matrix for n items
Result: A set of binary features
F+o
fori =1to2" ! do
| F = F Ui (as abinary string)
end
S+ o
while Not all phonemes have distinct
featural representations do

fselect =fer J(f7 S)
S=SU {fselect}
F=F-— {fselect}
for f € F'do
if [unique(Xgugry)| =
lunique(Xg)| then

‘ Fredundant =FU {f})
end

end
F=F- Fredundant

end

phoneme means that it may be difficult to distin-
guish between hypothesized features on the basis
of this phoneme. We address this issue by apply-
ing add-one smoothing to the data. In add-one
smoothing, we take each column in the confusion
matrix that corresponds to the counts (number of
errors) for the input phoneme, then add one to all
the values in the column. Second, in some Kinds
of data, the number of examples of each phoneme
in the input may not be balanced. This is notably
the case in speech error data, which is observa-
tional. To avoid high-frequency phonemes having
an undue influence, we balance the data by con-



verting the matrices of the error counts into the
error probability for each phoneme. Summing up
these first two steps, we estimate the probability of
mapping input phoneme ¢ to output phoneme j as
pij = (i + 1)/ ((32; naj) + njj)-

The third potential issue arises in the speech
error data: while the data lists the errors, it does not
record counts of the number of correctly articulated
instances. Missing faithful transmissions could
potentially lead to errors in feature extraction.

Input
x 'y z
2 x| o V
g ylv o v
@) z v o

Table 4: Confusion matrix for a hypothetical phoneme
inventory. Check marks represent confusions phonemes,
circles represent faithful mappings. Without the faithful
transmissions, x and z cannot be differentiated.

Consider the example in Table 4, a hypothetical
phoneme inventory with three phonemes x, y, z,
and two underlying features, one separating x and
y against z, the other separating y and z against x.
Without the faithful mappings, both x and z would
only have data from confusions with y, making it
impossible to differentiate x and z. As a result, the
incorrect feature [x z | y] has the highest transmis-
sion and would be selected as the first feature. In
order to prevent similar issues in the data where
faithful mappings are missing, the diagonal of the
confusion matrix needs to be filled in before the
feature extraction.

In our experiment, we fill the diagonal cells in
the confusion matrices with the sum of the error
counts in the corresponding column, which results
in a 50% error rate for each input phoneme. The
50% error rate provides information of phoneme
identity to address the issue described above, while
also maintains the contrasts between phonemes.

Table 5 shows the preprocessed data after each
step, from the artificial example in Table 1.

3 Experiment

We apply Algorithm 1 to a perceptual confusion
matrix from Miller and Nicely (1955), as well as
to a collection of speech error data from Fromkin
(1971). We evaluate how well the resulting features
can be used to define natural classes in English.
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A B C D A B C D
A10 8 2 0 A1l 9 3 1
B8 10 0 2 B9 11 1 3
cf2 0 1008 C3 1 11 9
Do 2 8 10 D1 3 9 11

(a) original data (b) add-one smoothing

A B C D A B C D
Al 11 07 02 01 A1 07 02 0.1
B| 0.7 11 0.1 02 Bj| 0.7 1 0.1 0.2
C/02 0.1 11 07 C/02 01 1 0.7
Dj 0.1 02 0.7 11 D 0.1 02 0.7 1
(c) normalizing error rates (d) filling diagonals

Table 5: Confusion matrices showing the outcome after
each step of preprocessing from the example data.

3.1 Data: Perception errors

We analyzed perception errors from Table III
(shown in Table 8 in the Appendix) of Miller and
Nicely (1955), which summarizes the result from
a syllable identification experiment. In the exper-
iment, the stimuli are [Ca] with 16 English con-
sonants as the onset. The acoustic stimuli under-
went frequency modulation, and noise was added
to the stimuli. The data from the condition with the
widest-band noise (200-6500 Hz) was chosen in the
current study. This choice was made to avoid poten-
tial biases due to the exclusion of frequency ranges
of greater importance for a subset of features. The
condition with a relatively low S/N ratio of —12
dB was chosen so that weakly similar phonemes
could still be confused with each other, potentially
revealing more information about features that are
usually well preserved during transmission.

3.2 Data: Production errors

Speech error data were collected from the Fromkin
Speech Error Database web interface.! The
database contains spontaneous speech errors from
natural speech. The search query included “En-
glish” as the “target language,” “phonological” as
the “error type,” “substitution” as the “process pro-
cedure,” and “all” in other fields. The entries that
also had “addition” or “exchange” as the “process
procedure” in any analysis were excluded. Then,
entries were manually removed if they involved the
following: (1) a change in the number of segments
in the same syllable component (e.g., “small” —

'nttps://www.mpi.nl/dompi/sedb/sperco_
form4.pl



“fall”; [31] was considered a single segment); (2)
changes of multiple syllable components (e.g. “de-
tectors” —“locators”); (3) blending of two words
(e.g., “jumped”/ “leapt” —[dzipt] “jeapt”); (4)
mispronunciation due to orthography (e.g., [sam]
“psalm” —[pam] “palm”). Only phonemes that
were present in both production and perception data
were kept in the analysis, namely, the sixteen conso-
nants [ptkbdgfv0dsz[3mn]. This resulted
in 455 production errors summarized in Table 9.

3.3 Evaluation

To evaluate how well the extracted features cor-
respond to the features that are actually used in
the English language, we examine the the feature
sets’ capacities in defining natural classes, which
are the groups of phonemes that pattern together in
phonological alternations.

English rule-based sound patterns from P-Base
(Mielke, 2008) were used to extract natural classes
in English phonology. The English patterns in
P-Base were produced with reference to Jensen
(1993); McMahon (2002). The search resulted in
9 rule-based natural classes (found as the left envi-
ronment, the right environment, the target, or the
output of the rule). Some natural classes contain
phonemes that are not included in the 16 conso-
nants for feature extraction in this study—in these
cases, the extra phonemes were removed. The pat-
terns yielded 9 unique natural classes.

The evaluation of a discovered feature set was
based on that feature set’s minimal feature defi-
nition for the set of phonemes that is the closest
to attested natural class in terms of the number of
different phonemes, where the feature definition is
formed by a single feature value or by the conjunc-
tion of multiple feature values.

We also tested how well a reference set of dis-
tinctive features could define the natural classes
to compare with extracted feature sets. We use
a set of seven phonological features from the
Sound Pattern of English (SPE; Chomsky and Halle
(1968)). We take these features to be reasonably
well adapted to capturing English phonological
classes, and thus a useful point of contact with
English phonology. The SPE features included
are [nasal] ([nas]), [voice] ([voi]), [continuant]
([cont]), [strident] ([strid]), [coronal] ([cor]), [ante-
rior] ([ant]), and [distributed].?

2Since [distributed] is underspecified for velars, in the class

definition test, velars are considered as [-distributed] to make
the [distributed] feature comparable to other features.

100

3.4 Results

Here we present the extracted results and compare
the extracted features with traditional phonolog-
ical features. The goal of this section is to as-
sess whether the discovered features are mean-
ingful beyond describing the errors in percep-
tion/production.

3.4.1 Perception

A

- +
[ptkfOs/[] [bdgvdzzmn]
/\ /\
- + - +
[ptk] [fO6s)] [mn] [bdgvozs]
N SN AN T
-+ - + -+ - +
[p] [tk] [£6] [s[] [m][n] [bvd] [dgz3]
VANVANEIVAN N SN
-+ -+ -+ - + -+
(K] Tt [ET(01 (/1 [s] [b] [vd] [dg3][z]
/NN
-+ + +
[0][v] [g 3] [d]
/N
-+
[9]13]
1: voi [ptkfOs[ | bdgvzdzmn]
2:nascont [ptkmn | bdgfOs[vzd3]
3: py [pbfOvom | tkdgs[z3n]
4:contpl, [pkbdgf[fzm | t6svzon]
5 [pkg0szdzm | tbdf[vn]
6 [pkbdgfbsvn | tf[fzd3m]

Figure 1: The binary feature set extracted from the
perception data, presented as a tree (above) and as lists
of phonemes split by the “| ” symbol (below). For the
sake of visual presentation, we leave nodes that do not
branch off of the tree, but it should be noted that the
features are fully specified: all phonemes have some
value for every feature.

As shown in figure 1, the first extracted per-
ception feature accurately differentiates the voiced
phonemes from the voiceless phonemes. The sec-
ond perception feature divides the two sub-clusters
created by the first feature based on two differ-
ent properties. Among voiceless sounds, it divides
fricatives from plosives. Meanwhile, among voiced
sounds, it creates a division based on nasality. We
remark that, unlike the hierarchical clustering meth-
ods alluded to in the introduction, which perform
a myopic subdivision of each cluster—ignoring



all of the phonemes outside it—the algorithm we
employ here only ever discovers features that are
specified for every phoneme in the inventory. It is
therefore curious that, in this example, we see an
apparently myopic behaviour, whereby the second
discovered feature picks out a (physically) different
phonetic property depending on the value of the
first discovered feature. In addition to the fact that
the perception data may capture patterns that would
not be obvious from an objective phonetic point of
view, it should be underscored that, while the algo-
rithm’s use of fully-specified features means that it
can capture commonalities that cross-cut the whole
inventory, nothing requires that these commonal-
ities be the decisive factor in selecting a feature.
In this case, it is difficult to determine whether the
attribution of a common feature value to nasals and
voiceless plosives is perceptually meaningful or
whether it is merely an artefact of the algorithm’s
need to construct fully-specified features.

The third feature groups the labial and interden-
tal consonants against the consonants that are fur-
ther back. We will explore this “[front]” feature fur-
ther below. The rest of the extracted features com-
plete the other divisions needed to distinguish all
phonemes, but do not clearly correspond to phono-
logical properties.

3.4.2 Production

As shown in figure 2, the first production feature
corresponds to nasality. In the non-nasal subset
that the first feature induces, the second feature
mostly corresponds to the [cont] feature, with the
exception that the labiodental fricatives [f v] are
grouped with the stops. This pattern might suggest
an intermediate status for English labiodental con-
sonants between fricatives and stops. Just like in
the perception-based features, the behaviour of the
second feature is different for the nasal versus the
non-nasal subset: it divides the two nasals by place
of articulation.

The third feature also picks out phonetically dif-
ferent classes depending on the featurally-defined
subset. Among the stops, it separates labial sounds
from coronal and velar sounds. Among the frica-
tives, however, it separates [0 3] from the rest. The
fourth feature corresponds to [voice] with the ex-
ception of [3m], which are both grouped with
voiceless segments. The fifth feature mostly con-
trasts coronal against non-coronal sounds; in the
clusters where there are only labial sounds, it sepa-
rates the sounds based on continuancy. The last fea-
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/\

— +
[ptkbdgfOs[vzdg] [m n]
T AN
— + - +

[ptkbdgfv] [00s2f3] [m][n]
T~ T
- + — +

[pbfv] [tkdg] [0sz]] [03]

N PN VAN

- + -+ - + - +

[pf] [bv] [tk] [dg] [0s]]
NN NN N
-+ -+ -+ -+ - 4+
[pI[E][b] [vI[K][t] [g1[d][6] [sJ]

[z][3][0]

/N

-+

(1]
1: nas [ptkbdgfOs[vzdz | mn]
2: cont [ptkbdgfvm | 6s[z0d3n]
3:plivoi [pbfOsfvzm | tkdgd3n]
4: voi [ptkfOsf3zm | bdgvzdn]
S:plycont [pkbg6dm | tdfs[vz3zn]
6 [pkbg[z3zm | tdfOsvdn]

Figure 2: The binary feature set extracted from the
speech error data, presented as a tree (above) and as
lists of phonemes split by the “| ” symbol (below). For
the sake of visual presentation, we leave nodes that do
not branch off of the tree, but it should be noted that
the features are fully specified: all phonemes have some
value for every feature.

ture provides the last remaining contrast between

[J s].

3.4.3 Defining natural classes

The performance in defining natural classes is sum-
marized in Table 6. Recall that, for each natural
class in the list of English natural classes, we seek
to find the conjunction of features that gives the
most similar set of phonemes.

The first column indicates how many of the nat-
ural classes allow an exact match. We see that
the SPE feature set is the most capable in defining
natural classes, followed by the production feature
set, while the perception feature set performs the
worst. There is one of the natural classes [p t k f 0]
that the SPE feature set cannot define. This class
includes all voiceless obstruents except for [s [].
In fact, this class, which appears in P-Base, is ap-
parently the result of an overly surface-oriented
characterization of an English phonological pat-



Features Classes success- Mean minimal
fully captured feature number
for matches
production 6 2.5
perception 4 2.8
SPE 8 2

Table 6: Defining natural classes (n=9) in English rule-
based patterns with different feature sets by feature con-
junction.

tern: it is that set of consonants for which, if they
are at the end of a noun, a plural suffix would be
realized as [s] (rather than [z] or [oz]). This alter-
nation in the plural suffix is usually described with
two phonological rules (devoicing and epenthesis),
rather than with reference to this superficial class.
The two classes required in the underlying rules
are voiceless consonants and sibilants, which can
both be defined by the SPE features. The perfor-
mance is better when this class is excluded—and
we note that none of the discovered feature sets can
characterize it either. The second column shows
the average number of features required to define
the exact-matched natural classes. Again, the SPE
feature set does best, followed by the production
and then the perception features.

Here we discuss the definitions of two example
classes. The first class is the interdental consonants
[0 8]. This class showcases that the same group of
consonants may be captured differently by three
feature sets. SPE defines it with [+continuant,-
strident]. The perception feature set defines it
with [+2,-3,-4] (42 is [bdgfOs[vz0d3], -3 is
[pbfOvom], -4is [pkg0szd3m]). The pro-
duction feature set defines it with two features [+2,-
5](+2is[0s[z0d3n];-5is [pkbgH 0o m]). Note
that neither of the two extracted feature sets utilizes
features that only target fricatives like the SPE fea-
ture [strident].

The second class, alveolar obstruents [td s z],
shows the limit of the extracted feature sets. It can
be defined by the SPE features [+coronal -nasal
-distributed]. But both production and perception
feature sets failed to accurately define this class:
the closest sets defined by the two feature sets are
[tdfs[vz3z]and[tkdgs[z3n], respectively.

4 Discussion

4.1 Algorithm

As discussed above, the algorithm may “meld” fea-
tures across sub-inventories: for example, the sec-
ond feature discovered from the production data di-
vides obstruents by continuancy, but divides nasals
by place. The nature of the redundancy term con-
tributes to this problem. An alternative feature en-
coding only continuancy would not split the nasals
at all. As this would lead to greater similarity to
the previous feature (which also groups the nasals
together), this is dispreferred by the redundancy
term. One potential future direction for automatic
feature extraction method is to develop a criterion
for assigning the weight of the redundancy term so
that this tendency could be controlled.

4.2 Data sets

In the production data set, errors were collected
by multiple linguists in daily conversations. This
might introduce biases. First, the phonemes are
not equally distributed in natural speech. This
contributes to the lack of errors related to the
phonemes [0 3]. Second, because the speech error
data is based on researchers’ perception of speech,
it is inherently influenced by the biases in per-
ception (Alderete and Davies, 2019; Pouplier and
Goldstein, 2005), for examples, researchers might
have different criteria for correct pronunciation and
might miss some errors that are more difficult to
hear. The Fromkin Speech Error Database is the
most suitable publicly available English production
data for feature extraction at the time of this study.
However, researchers have started collecting new
data sets with more systematic approaches to ad-
dress these issues, for example, the Simon Fraser
University Speech Error Database Cantonese 1.0
(Alderete, 2023). Applying our feature extraction
algorithm to these new data sets could potentially
reveal more accurate featural information in pro-
duction.

In the perception data set, the errors were col-
lected from the identification of noise-masked syl-
lable audio. The design of the noise could impact
different features unequally, which also might in-
troduce biases in feature extraction.

Together, these observations point to a deeper
question: if the goal of inferring features from data
is to arrive at a single, common representation, how
might multiple, sometimes contradictory, types of
data be productively combined into a single analy-
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sis? The commonalities between the two learned
feature sets above are promising—the presence of
features encoding nasality, voicing, and continu-
ancy in both—but also highlight important differ-
ences: voicing is more prominent in the perception
data, while nasality is more prominent in the pro-
duction data. These kinds of inconsistencies may
pose challenges for combining data sets.

4.3 Insights into English consonant features

As discussed above, the English labiodental con-
sonants behave similarly to plosives in production
error data, and, as a result, share a feature in the
analysis. The consequences of such a move for
the analysis of English are not immediately ob-
vious, but the idea that these phonemes have an
intermediate continuancy status has not previously
be considered to our knowledge.

Second, considering the extracted features from
both production and perception errors, a set of two
potential place features are suggested in Table 7.

[+front] [—front]
[+peripheral] | [bp (fv)m] [kg[3]
[—peripheral] | [(fv) 6 0] [tdszn]

Table 7: A possible four-way place distinction for 16
English phonemes. [fv] may be specified as either
[+peripheral] or [—peripheral].

The suggested [front] feature is supported by the
third perception feature and the resembling third
production feature. This [front] feature is similar to
the [anterior] SPE feature, the difference between
the two being the membership of the alveolar con-
sonants.

The [peripheral] feature in this system is based
on the fifth production feature and a similar feature
that is the fourth perception feature. It is similar to
the Peripheral constituent proposed by Rice (1994).
The difference is that Rice’s Peripheral constituent
only encompasses the features Labial and Dorsal,
while the feature [peripheral] here also includes the
fricatives [[ 3]. Besides the similarity with Periph-
eral, if the labiodental fricatives [f v] are analyzed
as [+peripheral], then the [—peripheral] feature
would also be the same as the [dental] feature of
SPE (Chomsky and Halle, 1968).

5 Summary of contributions

The current study is the first-ever attempt to ex-
tract cross-classifying features, as opposed to mere
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classes, from phoneme confusion data in percep-
tion and production. The extracted feature sets
from two modalities differ, but both show links
to phonological properties. Familiar features such
as voicing, nasality, and continuancy are seen in
both extracted feature sets. The extracted feature
sets also showed interesting deviations from com-
monly used phonological features, including the
different features based on the frontness and pe-
ripherality of consonants. These alternative ex-
tracted features are also useful in defining natural
classes, with the production features having a better
performance, showing more connection between
phonology and production errors than the connec-
tion between phonology and perception errors.

6 Data availability

Code and data is available at
https://github.com/zhanaofu/

speech—-feature-extraction.
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Phoneme in audio
p t k f 06 s b d g v 0 z 3 m n
p | 80 43 64 17 14 6 2 1 1 1 1 2
t |71 84 55 5 9 3 8 1 1 2 2 3
k | 66 76 107 12 8 9 4 1 1
f |18 12 175 48 11 1 7 2 1 2
6 |19 17 16 104 64 32 7 5 4 6 5
o S |8 5 4 23 39 107 45 4 2 3 1 1 3 2 1
§ 11 6 3 4 6 29 195 3 1
S
S b |1 5 4 4 136 10 9 47 16 6 1 5 4
2 d 8 5 80 45 1120 20 26 1
'g g 2 3 63 66 3 19 37 56 3
o
\ 2 2 48 5 5 145 45 12 4
0 31 6 17 8 58 21 5 6 4
z 1 1 1 7 20 27 16 28 94 44 1
3 1 26 18 3 8 45 129 2
m | 1 4 1 3 177 46
n 4 1 5 2 7 1 6 47 163
Table 8: Perception errors from Table III in Miller and Nicely (1955).
Intended phoneme
p t k b d ¢ f 06 s v 0 z 3 m n
p 12 15 8 1 12 7 4 1
t |8 7 3 1 3 6 3 1
k |15 8 4 5 4 3 5 1 1
b 3 3 6 3 7 10
d|1 6 3 4 3 5 1 1 1 5
) 8 5 5 1
§ 9
s f |15 4 2 5 1 4 8 10 2
g 0|1 3 4
o s |1 4 1 3 7 3 2
é | 2 1 1 1 1 31 1 2
g
~ oy 2 3 8§ 1 1 5
0 1 1 1
zZ 4 2 1
3 1 1
m |9 6 1 4 1 1 9
n 9 3 1 15

Table 9: Single-phoneme substitution production errors extracted from the Fromkin Speech Error Database.
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[nas]
[voi]
[cont]
[strid]
[cor]
[ant]
[dist]

+
+
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+

++ o+

++ 4+

+

+ +|8

+ +

|+ +|F

+ +

Table 10: SPE features (Chomsky and Halle, 1968)
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